1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 struct btrfs_ioctl_encoded_io_args; 53 54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 55 56 /* 57 * Maximum number of mirrors that can be available for all profiles counting 58 * the target device of dev-replace as one. During an active device replace 59 * procedure, the target device of the copy operation is a mirror for the 60 * filesystem data as well that can be used to read data in order to repair 61 * read errors on other disks. 62 * 63 * Current value is derived from RAID1C4 with 4 copies. 64 */ 65 #define BTRFS_MAX_MIRRORS (4 + 1) 66 67 #define BTRFS_MAX_LEVEL 8 68 69 #define BTRFS_OLDEST_GENERATION 0ULL 70 71 /* 72 * we can actually store much bigger names, but lets not confuse the rest 73 * of linux 74 */ 75 #define BTRFS_NAME_LEN 255 76 77 /* 78 * Theoretical limit is larger, but we keep this down to a sane 79 * value. That should limit greatly the possibility of collisions on 80 * inode ref items. 81 */ 82 #define BTRFS_LINK_MAX 65535U 83 84 #define BTRFS_EMPTY_DIR_SIZE 0 85 86 /* ioprio of readahead is set to idle */ 87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 88 89 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 90 91 /* 92 * Use large batch size to reduce overhead of metadata updates. On the reader 93 * side, we only read it when we are close to ENOSPC and the read overhead is 94 * mostly related to the number of CPUs, so it is OK to use arbitrary large 95 * value here. 96 */ 97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 98 99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 100 101 /* 102 * Deltas are an effective way to populate global statistics. Give macro names 103 * to make it clear what we're doing. An example is discard_extents in 104 * btrfs_free_space_ctl. 105 */ 106 #define BTRFS_STAT_NR_ENTRIES 2 107 #define BTRFS_STAT_CURR 0 108 #define BTRFS_STAT_PREV 1 109 110 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 111 { 112 BUG_ON(num_stripes == 0); 113 return sizeof(struct btrfs_chunk) + 114 sizeof(struct btrfs_stripe) * (num_stripes - 1); 115 } 116 117 /* 118 * Runtime (in-memory) states of filesystem 119 */ 120 enum { 121 /* Global indicator of serious filesystem errors */ 122 BTRFS_FS_STATE_ERROR, 123 /* 124 * Filesystem is being remounted, allow to skip some operations, like 125 * defrag 126 */ 127 BTRFS_FS_STATE_REMOUNTING, 128 /* Filesystem in RO mode */ 129 BTRFS_FS_STATE_RO, 130 /* Track if a transaction abort has been reported on this filesystem */ 131 BTRFS_FS_STATE_TRANS_ABORTED, 132 /* 133 * Bio operations should be blocked on this filesystem because a source 134 * or target device is being destroyed as part of a device replace 135 */ 136 BTRFS_FS_STATE_DEV_REPLACING, 137 /* The btrfs_fs_info created for self-tests */ 138 BTRFS_FS_STATE_DUMMY_FS_INFO, 139 140 BTRFS_FS_STATE_NO_CSUMS, 141 142 /* Indicates there was an error cleaning up a log tree. */ 143 BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 144 145 BTRFS_FS_STATE_COUNT 146 }; 147 148 #define BTRFS_BACKREF_REV_MAX 256 149 #define BTRFS_BACKREF_REV_SHIFT 56 150 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 151 BTRFS_BACKREF_REV_SHIFT) 152 153 #define BTRFS_OLD_BACKREF_REV 0 154 #define BTRFS_MIXED_BACKREF_REV 1 155 156 /* 157 * every tree block (leaf or node) starts with this header. 158 */ 159 struct btrfs_header { 160 /* these first four must match the super block */ 161 u8 csum[BTRFS_CSUM_SIZE]; 162 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 163 __le64 bytenr; /* which block this node is supposed to live in */ 164 __le64 flags; 165 166 /* allowed to be different from the super from here on down */ 167 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 168 __le64 generation; 169 __le64 owner; 170 __le32 nritems; 171 u8 level; 172 } __attribute__ ((__packed__)); 173 174 /* 175 * this is a very generous portion of the super block, giving us 176 * room to translate 14 chunks with 3 stripes each. 177 */ 178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 179 180 /* 181 * just in case we somehow lose the roots and are not able to mount, 182 * we store an array of the roots from previous transactions 183 * in the super. 184 */ 185 #define BTRFS_NUM_BACKUP_ROOTS 4 186 struct btrfs_root_backup { 187 __le64 tree_root; 188 __le64 tree_root_gen; 189 190 __le64 chunk_root; 191 __le64 chunk_root_gen; 192 193 __le64 extent_root; 194 __le64 extent_root_gen; 195 196 __le64 fs_root; 197 __le64 fs_root_gen; 198 199 __le64 dev_root; 200 __le64 dev_root_gen; 201 202 __le64 csum_root; 203 __le64 csum_root_gen; 204 205 __le64 total_bytes; 206 __le64 bytes_used; 207 __le64 num_devices; 208 /* future */ 209 __le64 unused_64[4]; 210 211 u8 tree_root_level; 212 u8 chunk_root_level; 213 u8 extent_root_level; 214 u8 fs_root_level; 215 u8 dev_root_level; 216 u8 csum_root_level; 217 /* future and to align */ 218 u8 unused_8[10]; 219 } __attribute__ ((__packed__)); 220 221 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 222 #define BTRFS_SUPER_INFO_SIZE 4096 223 224 /* 225 * The reserved space at the beginning of each device. 226 * It covers the primary super block and leaves space for potential use by other 227 * tools like bootloaders or to lower potential damage of accidental overwrite. 228 */ 229 #define BTRFS_DEVICE_RANGE_RESERVED (SZ_1M) 230 231 /* 232 * the super block basically lists the main trees of the FS 233 * it currently lacks any block count etc etc 234 */ 235 struct btrfs_super_block { 236 /* the first 4 fields must match struct btrfs_header */ 237 u8 csum[BTRFS_CSUM_SIZE]; 238 /* FS specific UUID, visible to user */ 239 u8 fsid[BTRFS_FSID_SIZE]; 240 __le64 bytenr; /* this block number */ 241 __le64 flags; 242 243 /* allowed to be different from the btrfs_header from here own down */ 244 __le64 magic; 245 __le64 generation; 246 __le64 root; 247 __le64 chunk_root; 248 __le64 log_root; 249 250 /* 251 * This member has never been utilized since the very beginning, thus 252 * it's always 0 regardless of kernel version. We always use 253 * generation + 1 to read log tree root. So here we mark it deprecated. 254 */ 255 __le64 __unused_log_root_transid; 256 __le64 total_bytes; 257 __le64 bytes_used; 258 __le64 root_dir_objectid; 259 __le64 num_devices; 260 __le32 sectorsize; 261 __le32 nodesize; 262 __le32 __unused_leafsize; 263 __le32 stripesize; 264 __le32 sys_chunk_array_size; 265 __le64 chunk_root_generation; 266 __le64 compat_flags; 267 __le64 compat_ro_flags; 268 __le64 incompat_flags; 269 __le16 csum_type; 270 u8 root_level; 271 u8 chunk_root_level; 272 u8 log_root_level; 273 struct btrfs_dev_item dev_item; 274 275 char label[BTRFS_LABEL_SIZE]; 276 277 __le64 cache_generation; 278 __le64 uuid_tree_generation; 279 280 /* the UUID written into btree blocks */ 281 u8 metadata_uuid[BTRFS_FSID_SIZE]; 282 283 /* Extent tree v2 */ 284 __le64 block_group_root; 285 __le64 block_group_root_generation; 286 u8 block_group_root_level; 287 288 /* future expansion */ 289 u8 reserved8[7]; 290 __le64 reserved[25]; 291 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 292 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 293 294 /* Padded to 4096 bytes */ 295 u8 padding[565]; 296 } __attribute__ ((__packed__)); 297 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 298 299 /* 300 * Compat flags that we support. If any incompat flags are set other than the 301 * ones specified below then we will fail to mount 302 */ 303 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 304 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 305 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 306 307 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 308 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 309 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 310 BTRFS_FEATURE_COMPAT_RO_VERITY) 311 312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 314 315 #ifdef CONFIG_BTRFS_DEBUG 316 /* 317 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG 318 */ 319 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 320 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 321 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 322 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 323 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 324 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 325 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 326 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 327 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 328 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 329 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 330 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 331 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 332 BTRFS_FEATURE_INCOMPAT_ZONED | \ 333 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2) 334 #else 335 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 336 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 337 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 338 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 339 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 340 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 341 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 342 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 343 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 344 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 345 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 346 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 347 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 348 BTRFS_FEATURE_INCOMPAT_ZONED) 349 #endif 350 351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 352 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 354 355 /* 356 * A leaf is full of items. offset and size tell us where to find 357 * the item in the leaf (relative to the start of the data area) 358 */ 359 struct btrfs_item { 360 struct btrfs_disk_key key; 361 __le32 offset; 362 __le32 size; 363 } __attribute__ ((__packed__)); 364 365 /* 366 * leaves have an item area and a data area: 367 * [item0, item1....itemN] [free space] [dataN...data1, data0] 368 * 369 * The data is separate from the items to get the keys closer together 370 * during searches. 371 */ 372 struct btrfs_leaf { 373 struct btrfs_header header; 374 struct btrfs_item items[]; 375 } __attribute__ ((__packed__)); 376 377 /* 378 * all non-leaf blocks are nodes, they hold only keys and pointers to 379 * other blocks 380 */ 381 struct btrfs_key_ptr { 382 struct btrfs_disk_key key; 383 __le64 blockptr; 384 __le64 generation; 385 } __attribute__ ((__packed__)); 386 387 struct btrfs_node { 388 struct btrfs_header header; 389 struct btrfs_key_ptr ptrs[]; 390 } __attribute__ ((__packed__)); 391 392 /* Read ahead values for struct btrfs_path.reada */ 393 enum { 394 READA_NONE, 395 READA_BACK, 396 READA_FORWARD, 397 /* 398 * Similar to READA_FORWARD but unlike it: 399 * 400 * 1) It will trigger readahead even for leaves that are not close to 401 * each other on disk; 402 * 2) It also triggers readahead for nodes; 403 * 3) During a search, even when a node or leaf is already in memory, it 404 * will still trigger readahead for other nodes and leaves that follow 405 * it. 406 * 407 * This is meant to be used only when we know we are iterating over the 408 * entire tree or a very large part of it. 409 */ 410 READA_FORWARD_ALWAYS, 411 }; 412 413 /* 414 * btrfs_paths remember the path taken from the root down to the leaf. 415 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 416 * to any other levels that are present. 417 * 418 * The slots array records the index of the item or block pointer 419 * used while walking the tree. 420 */ 421 struct btrfs_path { 422 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 423 int slots[BTRFS_MAX_LEVEL]; 424 /* if there is real range locking, this locks field will change */ 425 u8 locks[BTRFS_MAX_LEVEL]; 426 u8 reada; 427 /* keep some upper locks as we walk down */ 428 u8 lowest_level; 429 430 /* 431 * set by btrfs_split_item, tells search_slot to keep all locks 432 * and to force calls to keep space in the nodes 433 */ 434 unsigned int search_for_split:1; 435 unsigned int keep_locks:1; 436 unsigned int skip_locking:1; 437 unsigned int search_commit_root:1; 438 unsigned int need_commit_sem:1; 439 unsigned int skip_release_on_error:1; 440 /* 441 * Indicate that new item (btrfs_search_slot) is extending already 442 * existing item and ins_len contains only the data size and not item 443 * header (ie. sizeof(struct btrfs_item) is not included). 444 */ 445 unsigned int search_for_extension:1; 446 }; 447 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 448 sizeof(struct btrfs_item)) 449 struct btrfs_dev_replace { 450 u64 replace_state; /* see #define above */ 451 time64_t time_started; /* seconds since 1-Jan-1970 */ 452 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 453 atomic64_t num_write_errors; 454 atomic64_t num_uncorrectable_read_errors; 455 456 u64 cursor_left; 457 u64 committed_cursor_left; 458 u64 cursor_left_last_write_of_item; 459 u64 cursor_right; 460 461 u64 cont_reading_from_srcdev_mode; /* see #define above */ 462 463 int is_valid; 464 int item_needs_writeback; 465 struct btrfs_device *srcdev; 466 struct btrfs_device *tgtdev; 467 468 struct mutex lock_finishing_cancel_unmount; 469 struct rw_semaphore rwsem; 470 471 struct btrfs_scrub_progress scrub_progress; 472 473 struct percpu_counter bio_counter; 474 wait_queue_head_t replace_wait; 475 }; 476 477 /* 478 * free clusters are used to claim free space in relatively large chunks, 479 * allowing us to do less seeky writes. They are used for all metadata 480 * allocations. In ssd_spread mode they are also used for data allocations. 481 */ 482 struct btrfs_free_cluster { 483 spinlock_t lock; 484 spinlock_t refill_lock; 485 struct rb_root root; 486 487 /* largest extent in this cluster */ 488 u64 max_size; 489 490 /* first extent starting offset */ 491 u64 window_start; 492 493 /* We did a full search and couldn't create a cluster */ 494 bool fragmented; 495 496 struct btrfs_block_group *block_group; 497 /* 498 * when a cluster is allocated from a block group, we put the 499 * cluster onto a list in the block group so that it can 500 * be freed before the block group is freed. 501 */ 502 struct list_head block_group_list; 503 }; 504 505 enum btrfs_caching_type { 506 BTRFS_CACHE_NO, 507 BTRFS_CACHE_STARTED, 508 BTRFS_CACHE_FINISHED, 509 BTRFS_CACHE_ERROR, 510 }; 511 512 /* 513 * Tree to record all locked full stripes of a RAID5/6 block group 514 */ 515 struct btrfs_full_stripe_locks_tree { 516 struct rb_root root; 517 struct mutex lock; 518 }; 519 520 /* Discard control. */ 521 /* 522 * Async discard uses multiple lists to differentiate the discard filter 523 * parameters. Index 0 is for completely free block groups where we need to 524 * ensure the entire block group is trimmed without being lossy. Indices 525 * afterwards represent monotonically decreasing discard filter sizes to 526 * prioritize what should be discarded next. 527 */ 528 #define BTRFS_NR_DISCARD_LISTS 3 529 #define BTRFS_DISCARD_INDEX_UNUSED 0 530 #define BTRFS_DISCARD_INDEX_START 1 531 532 struct btrfs_discard_ctl { 533 struct workqueue_struct *discard_workers; 534 struct delayed_work work; 535 spinlock_t lock; 536 struct btrfs_block_group *block_group; 537 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 538 u64 prev_discard; 539 u64 prev_discard_time; 540 atomic_t discardable_extents; 541 atomic64_t discardable_bytes; 542 u64 max_discard_size; 543 u64 delay_ms; 544 u32 iops_limit; 545 u32 kbps_limit; 546 u64 discard_extent_bytes; 547 u64 discard_bitmap_bytes; 548 atomic64_t discard_bytes_saved; 549 }; 550 551 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 552 553 /* fs_info */ 554 struct reloc_control; 555 struct btrfs_device; 556 struct btrfs_fs_devices; 557 struct btrfs_balance_control; 558 struct btrfs_delayed_root; 559 560 /* 561 * Block group or device which contains an active swapfile. Used for preventing 562 * unsafe operations while a swapfile is active. 563 * 564 * These are sorted on (ptr, inode) (note that a block group or device can 565 * contain more than one swapfile). We compare the pointer values because we 566 * don't actually care what the object is, we just need a quick check whether 567 * the object exists in the rbtree. 568 */ 569 struct btrfs_swapfile_pin { 570 struct rb_node node; 571 void *ptr; 572 struct inode *inode; 573 /* 574 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 575 * points to a struct btrfs_device. 576 */ 577 bool is_block_group; 578 /* 579 * Only used when 'is_block_group' is true and it is the number of 580 * extents used by a swapfile for this block group ('ptr' field). 581 */ 582 int bg_extent_count; 583 }; 584 585 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 586 587 enum { 588 BTRFS_FS_CLOSING_START, 589 BTRFS_FS_CLOSING_DONE, 590 BTRFS_FS_LOG_RECOVERING, 591 BTRFS_FS_OPEN, 592 BTRFS_FS_QUOTA_ENABLED, 593 BTRFS_FS_UPDATE_UUID_TREE_GEN, 594 BTRFS_FS_CREATING_FREE_SPACE_TREE, 595 BTRFS_FS_BTREE_ERR, 596 BTRFS_FS_LOG1_ERR, 597 BTRFS_FS_LOG2_ERR, 598 BTRFS_FS_QUOTA_OVERRIDE, 599 /* Used to record internally whether fs has been frozen */ 600 BTRFS_FS_FROZEN, 601 /* 602 * Indicate that balance has been set up from the ioctl and is in the 603 * main phase. The fs_info::balance_ctl is initialized. 604 */ 605 BTRFS_FS_BALANCE_RUNNING, 606 607 /* 608 * Indicate that relocation of a chunk has started, it's set per chunk 609 * and is toggled between chunks. 610 */ 611 BTRFS_FS_RELOC_RUNNING, 612 613 /* Indicate that the cleaner thread is awake and doing something. */ 614 BTRFS_FS_CLEANER_RUNNING, 615 616 /* 617 * The checksumming has an optimized version and is considered fast, 618 * so we don't need to offload checksums to workqueues. 619 */ 620 BTRFS_FS_CSUM_IMPL_FAST, 621 622 /* Indicate that the discard workqueue can service discards. */ 623 BTRFS_FS_DISCARD_RUNNING, 624 625 /* Indicate that we need to cleanup space cache v1 */ 626 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 627 628 /* Indicate that we can't trust the free space tree for caching yet */ 629 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 630 631 /* Indicate whether there are any tree modification log users */ 632 BTRFS_FS_TREE_MOD_LOG_USERS, 633 634 /* Indicate that we want the transaction kthread to commit right now. */ 635 BTRFS_FS_COMMIT_TRANS, 636 637 /* Indicate we have half completed snapshot deletions pending. */ 638 BTRFS_FS_UNFINISHED_DROPS, 639 640 /* Indicate we have to finish a zone to do next allocation. */ 641 BTRFS_FS_NEED_ZONE_FINISH, 642 643 #if BITS_PER_LONG == 32 644 /* Indicate if we have error/warn message printed on 32bit systems */ 645 BTRFS_FS_32BIT_ERROR, 646 BTRFS_FS_32BIT_WARN, 647 #endif 648 }; 649 650 /* 651 * Exclusive operations (device replace, resize, device add/remove, balance) 652 */ 653 enum btrfs_exclusive_operation { 654 BTRFS_EXCLOP_NONE, 655 BTRFS_EXCLOP_BALANCE_PAUSED, 656 BTRFS_EXCLOP_BALANCE, 657 BTRFS_EXCLOP_DEV_ADD, 658 BTRFS_EXCLOP_DEV_REMOVE, 659 BTRFS_EXCLOP_DEV_REPLACE, 660 BTRFS_EXCLOP_RESIZE, 661 BTRFS_EXCLOP_SWAP_ACTIVATE, 662 }; 663 664 /* Store data about transaction commits, exported via sysfs. */ 665 struct btrfs_commit_stats { 666 /* Total number of commits */ 667 u64 commit_count; 668 /* The maximum commit duration so far in ns */ 669 u64 max_commit_dur; 670 /* The last commit duration in ns */ 671 u64 last_commit_dur; 672 /* The total commit duration in ns */ 673 u64 total_commit_dur; 674 }; 675 676 struct btrfs_fs_info { 677 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 678 unsigned long flags; 679 struct btrfs_root *tree_root; 680 struct btrfs_root *chunk_root; 681 struct btrfs_root *dev_root; 682 struct btrfs_root *fs_root; 683 struct btrfs_root *quota_root; 684 struct btrfs_root *uuid_root; 685 struct btrfs_root *data_reloc_root; 686 struct btrfs_root *block_group_root; 687 688 /* the log root tree is a directory of all the other log roots */ 689 struct btrfs_root *log_root_tree; 690 691 /* The tree that holds the global roots (csum, extent, etc) */ 692 rwlock_t global_root_lock; 693 struct rb_root global_root_tree; 694 695 spinlock_t fs_roots_radix_lock; 696 struct radix_tree_root fs_roots_radix; 697 698 /* block group cache stuff */ 699 rwlock_t block_group_cache_lock; 700 struct rb_root_cached block_group_cache_tree; 701 702 /* keep track of unallocated space */ 703 atomic64_t free_chunk_space; 704 705 /* Track ranges which are used by log trees blocks/logged data extents */ 706 struct extent_io_tree excluded_extents; 707 708 /* logical->physical extent mapping */ 709 struct extent_map_tree mapping_tree; 710 711 /* 712 * block reservation for extent, checksum, root tree and 713 * delayed dir index item 714 */ 715 struct btrfs_block_rsv global_block_rsv; 716 /* block reservation for metadata operations */ 717 struct btrfs_block_rsv trans_block_rsv; 718 /* block reservation for chunk tree */ 719 struct btrfs_block_rsv chunk_block_rsv; 720 /* block reservation for delayed operations */ 721 struct btrfs_block_rsv delayed_block_rsv; 722 /* block reservation for delayed refs */ 723 struct btrfs_block_rsv delayed_refs_rsv; 724 725 struct btrfs_block_rsv empty_block_rsv; 726 727 u64 generation; 728 u64 last_trans_committed; 729 /* 730 * Generation of the last transaction used for block group relocation 731 * since the filesystem was last mounted (or 0 if none happened yet). 732 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 733 */ 734 u64 last_reloc_trans; 735 u64 avg_delayed_ref_runtime; 736 737 /* 738 * this is updated to the current trans every time a full commit 739 * is required instead of the faster short fsync log commits 740 */ 741 u64 last_trans_log_full_commit; 742 unsigned long mount_opt; 743 /* 744 * Track requests for actions that need to be done during transaction 745 * commit (like for some mount options). 746 */ 747 unsigned long pending_changes; 748 unsigned long compress_type:4; 749 unsigned int compress_level; 750 u32 commit_interval; 751 /* 752 * It is a suggestive number, the read side is safe even it gets a 753 * wrong number because we will write out the data into a regular 754 * extent. The write side(mount/remount) is under ->s_umount lock, 755 * so it is also safe. 756 */ 757 u64 max_inline; 758 759 struct btrfs_transaction *running_transaction; 760 wait_queue_head_t transaction_throttle; 761 wait_queue_head_t transaction_wait; 762 wait_queue_head_t transaction_blocked_wait; 763 wait_queue_head_t async_submit_wait; 764 765 /* 766 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 767 * when they are updated. 768 * 769 * Because we do not clear the flags for ever, so we needn't use 770 * the lock on the read side. 771 * 772 * We also needn't use the lock when we mount the fs, because 773 * there is no other task which will update the flag. 774 */ 775 spinlock_t super_lock; 776 struct btrfs_super_block *super_copy; 777 struct btrfs_super_block *super_for_commit; 778 struct super_block *sb; 779 struct inode *btree_inode; 780 struct mutex tree_log_mutex; 781 struct mutex transaction_kthread_mutex; 782 struct mutex cleaner_mutex; 783 struct mutex chunk_mutex; 784 785 /* 786 * this is taken to make sure we don't set block groups ro after 787 * the free space cache has been allocated on them 788 */ 789 struct mutex ro_block_group_mutex; 790 791 /* this is used during read/modify/write to make sure 792 * no two ios are trying to mod the same stripe at the same 793 * time 794 */ 795 struct btrfs_stripe_hash_table *stripe_hash_table; 796 797 /* 798 * this protects the ordered operations list only while we are 799 * processing all of the entries on it. This way we make 800 * sure the commit code doesn't find the list temporarily empty 801 * because another function happens to be doing non-waiting preflush 802 * before jumping into the main commit. 803 */ 804 struct mutex ordered_operations_mutex; 805 806 struct rw_semaphore commit_root_sem; 807 808 struct rw_semaphore cleanup_work_sem; 809 810 struct rw_semaphore subvol_sem; 811 812 spinlock_t trans_lock; 813 /* 814 * the reloc mutex goes with the trans lock, it is taken 815 * during commit to protect us from the relocation code 816 */ 817 struct mutex reloc_mutex; 818 819 struct list_head trans_list; 820 struct list_head dead_roots; 821 struct list_head caching_block_groups; 822 823 spinlock_t delayed_iput_lock; 824 struct list_head delayed_iputs; 825 atomic_t nr_delayed_iputs; 826 wait_queue_head_t delayed_iputs_wait; 827 828 atomic64_t tree_mod_seq; 829 830 /* this protects tree_mod_log and tree_mod_seq_list */ 831 rwlock_t tree_mod_log_lock; 832 struct rb_root tree_mod_log; 833 struct list_head tree_mod_seq_list; 834 835 atomic_t async_delalloc_pages; 836 837 /* 838 * this is used to protect the following list -- ordered_roots. 839 */ 840 spinlock_t ordered_root_lock; 841 842 /* 843 * all fs/file tree roots in which there are data=ordered extents 844 * pending writeback are added into this list. 845 * 846 * these can span multiple transactions and basically include 847 * every dirty data page that isn't from nodatacow 848 */ 849 struct list_head ordered_roots; 850 851 struct mutex delalloc_root_mutex; 852 spinlock_t delalloc_root_lock; 853 /* all fs/file tree roots that have delalloc inodes. */ 854 struct list_head delalloc_roots; 855 856 /* 857 * there is a pool of worker threads for checksumming during writes 858 * and a pool for checksumming after reads. This is because readers 859 * can run with FS locks held, and the writers may be waiting for 860 * those locks. We don't want ordering in the pending list to cause 861 * deadlocks, and so the two are serviced separately. 862 * 863 * A third pool does submit_bio to avoid deadlocking with the other 864 * two 865 */ 866 struct btrfs_workqueue *workers; 867 struct btrfs_workqueue *hipri_workers; 868 struct btrfs_workqueue *delalloc_workers; 869 struct btrfs_workqueue *flush_workers; 870 struct workqueue_struct *endio_workers; 871 struct workqueue_struct *endio_meta_workers; 872 struct workqueue_struct *endio_raid56_workers; 873 struct workqueue_struct *rmw_workers; 874 struct workqueue_struct *compressed_write_workers; 875 struct btrfs_workqueue *endio_write_workers; 876 struct btrfs_workqueue *endio_freespace_worker; 877 struct btrfs_workqueue *caching_workers; 878 879 /* 880 * fixup workers take dirty pages that didn't properly go through 881 * the cow mechanism and make them safe to write. It happens 882 * for the sys_munmap function call path 883 */ 884 struct btrfs_workqueue *fixup_workers; 885 struct btrfs_workqueue *delayed_workers; 886 887 struct task_struct *transaction_kthread; 888 struct task_struct *cleaner_kthread; 889 u32 thread_pool_size; 890 891 struct kobject *space_info_kobj; 892 struct kobject *qgroups_kobj; 893 894 /* used to keep from writing metadata until there is a nice batch */ 895 struct percpu_counter dirty_metadata_bytes; 896 struct percpu_counter delalloc_bytes; 897 struct percpu_counter ordered_bytes; 898 s32 dirty_metadata_batch; 899 s32 delalloc_batch; 900 901 struct list_head dirty_cowonly_roots; 902 903 struct btrfs_fs_devices *fs_devices; 904 905 /* 906 * The space_info list is effectively read only after initial 907 * setup. It is populated at mount time and cleaned up after 908 * all block groups are removed. RCU is used to protect it. 909 */ 910 struct list_head space_info; 911 912 struct btrfs_space_info *data_sinfo; 913 914 struct reloc_control *reloc_ctl; 915 916 /* data_alloc_cluster is only used in ssd_spread mode */ 917 struct btrfs_free_cluster data_alloc_cluster; 918 919 /* all metadata allocations go through this cluster */ 920 struct btrfs_free_cluster meta_alloc_cluster; 921 922 /* auto defrag inodes go here */ 923 spinlock_t defrag_inodes_lock; 924 struct rb_root defrag_inodes; 925 atomic_t defrag_running; 926 927 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 928 seqlock_t profiles_lock; 929 /* 930 * these three are in extended format (availability of single 931 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 932 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 933 */ 934 u64 avail_data_alloc_bits; 935 u64 avail_metadata_alloc_bits; 936 u64 avail_system_alloc_bits; 937 938 /* restriper state */ 939 spinlock_t balance_lock; 940 struct mutex balance_mutex; 941 atomic_t balance_pause_req; 942 atomic_t balance_cancel_req; 943 struct btrfs_balance_control *balance_ctl; 944 wait_queue_head_t balance_wait_q; 945 946 /* Cancellation requests for chunk relocation */ 947 atomic_t reloc_cancel_req; 948 949 u32 data_chunk_allocations; 950 u32 metadata_ratio; 951 952 void *bdev_holder; 953 954 /* private scrub information */ 955 struct mutex scrub_lock; 956 atomic_t scrubs_running; 957 atomic_t scrub_pause_req; 958 atomic_t scrubs_paused; 959 atomic_t scrub_cancel_req; 960 wait_queue_head_t scrub_pause_wait; 961 /* 962 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 963 * running. 964 */ 965 refcount_t scrub_workers_refcnt; 966 struct workqueue_struct *scrub_workers; 967 struct workqueue_struct *scrub_wr_completion_workers; 968 struct workqueue_struct *scrub_parity_workers; 969 struct btrfs_subpage_info *subpage_info; 970 971 struct btrfs_discard_ctl discard_ctl; 972 973 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 974 u32 check_integrity_print_mask; 975 #endif 976 /* is qgroup tracking in a consistent state? */ 977 u64 qgroup_flags; 978 979 /* holds configuration and tracking. Protected by qgroup_lock */ 980 struct rb_root qgroup_tree; 981 spinlock_t qgroup_lock; 982 983 /* 984 * used to avoid frequently calling ulist_alloc()/ulist_free() 985 * when doing qgroup accounting, it must be protected by qgroup_lock. 986 */ 987 struct ulist *qgroup_ulist; 988 989 /* 990 * Protect user change for quota operations. If a transaction is needed, 991 * it must be started before locking this lock. 992 */ 993 struct mutex qgroup_ioctl_lock; 994 995 /* list of dirty qgroups to be written at next commit */ 996 struct list_head dirty_qgroups; 997 998 /* used by qgroup for an efficient tree traversal */ 999 u64 qgroup_seq; 1000 1001 /* qgroup rescan items */ 1002 struct mutex qgroup_rescan_lock; /* protects the progress item */ 1003 struct btrfs_key qgroup_rescan_progress; 1004 struct btrfs_workqueue *qgroup_rescan_workers; 1005 struct completion qgroup_rescan_completion; 1006 struct btrfs_work qgroup_rescan_work; 1007 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 1008 1009 /* filesystem state */ 1010 unsigned long fs_state; 1011 1012 struct btrfs_delayed_root *delayed_root; 1013 1014 /* Extent buffer radix tree */ 1015 spinlock_t buffer_lock; 1016 /* Entries are eb->start / sectorsize */ 1017 struct radix_tree_root buffer_radix; 1018 1019 /* next backup root to be overwritten */ 1020 int backup_root_index; 1021 1022 /* device replace state */ 1023 struct btrfs_dev_replace dev_replace; 1024 1025 struct semaphore uuid_tree_rescan_sem; 1026 1027 /* Used to reclaim the metadata space in the background. */ 1028 struct work_struct async_reclaim_work; 1029 struct work_struct async_data_reclaim_work; 1030 struct work_struct preempt_reclaim_work; 1031 1032 /* Reclaim partially filled block groups in the background */ 1033 struct work_struct reclaim_bgs_work; 1034 struct list_head reclaim_bgs; 1035 int bg_reclaim_threshold; 1036 1037 spinlock_t unused_bgs_lock; 1038 struct list_head unused_bgs; 1039 struct mutex unused_bg_unpin_mutex; 1040 /* Protect block groups that are going to be deleted */ 1041 struct mutex reclaim_bgs_lock; 1042 1043 /* Cached block sizes */ 1044 u32 nodesize; 1045 u32 sectorsize; 1046 /* ilog2 of sectorsize, use to avoid 64bit division */ 1047 u32 sectorsize_bits; 1048 u32 csum_size; 1049 u32 csums_per_leaf; 1050 u32 stripesize; 1051 1052 /* 1053 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular 1054 * filesystem, on zoned it depends on the device constraints. 1055 */ 1056 u64 max_extent_size; 1057 1058 /* Block groups and devices containing active swapfiles. */ 1059 spinlock_t swapfile_pins_lock; 1060 struct rb_root swapfile_pins; 1061 1062 struct crypto_shash *csum_shash; 1063 1064 /* Type of exclusive operation running, protected by super_lock */ 1065 enum btrfs_exclusive_operation exclusive_operation; 1066 1067 /* 1068 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1069 * if the mode is enabled 1070 */ 1071 u64 zone_size; 1072 1073 /* Max size to emit ZONE_APPEND write command */ 1074 u64 max_zone_append_size; 1075 struct mutex zoned_meta_io_lock; 1076 spinlock_t treelog_bg_lock; 1077 u64 treelog_bg; 1078 1079 /* 1080 * Start of the dedicated data relocation block group, protected by 1081 * relocation_bg_lock. 1082 */ 1083 spinlock_t relocation_bg_lock; 1084 u64 data_reloc_bg; 1085 struct mutex zoned_data_reloc_io_lock; 1086 1087 u64 nr_global_roots; 1088 1089 spinlock_t zone_active_bgs_lock; 1090 struct list_head zone_active_bgs; 1091 1092 /* Updates are not protected by any lock */ 1093 struct btrfs_commit_stats commit_stats; 1094 1095 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1096 spinlock_t ref_verify_lock; 1097 struct rb_root block_tree; 1098 #endif 1099 1100 #ifdef CONFIG_BTRFS_DEBUG 1101 struct kobject *debug_kobj; 1102 struct kobject *discard_debug_kobj; 1103 struct list_head allocated_roots; 1104 1105 spinlock_t eb_leak_lock; 1106 struct list_head allocated_ebs; 1107 #endif 1108 }; 1109 1110 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1111 { 1112 return sb->s_fs_info; 1113 } 1114 1115 /* 1116 * The state of btrfs root 1117 */ 1118 enum { 1119 /* 1120 * btrfs_record_root_in_trans is a multi-step process, and it can race 1121 * with the balancing code. But the race is very small, and only the 1122 * first time the root is added to each transaction. So IN_TRANS_SETUP 1123 * is used to tell us when more checks are required 1124 */ 1125 BTRFS_ROOT_IN_TRANS_SETUP, 1126 1127 /* 1128 * Set if tree blocks of this root can be shared by other roots. 1129 * Only subvolume trees and their reloc trees have this bit set. 1130 * Conflicts with TRACK_DIRTY bit. 1131 * 1132 * This affects two things: 1133 * 1134 * - How balance works 1135 * For shareable roots, we need to use reloc tree and do path 1136 * replacement for balance, and need various pre/post hooks for 1137 * snapshot creation to handle them. 1138 * 1139 * While for non-shareable trees, we just simply do a tree search 1140 * with COW. 1141 * 1142 * - How dirty roots are tracked 1143 * For shareable roots, btrfs_record_root_in_trans() is needed to 1144 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1145 * don't need to set this manually. 1146 */ 1147 BTRFS_ROOT_SHAREABLE, 1148 BTRFS_ROOT_TRACK_DIRTY, 1149 BTRFS_ROOT_IN_RADIX, 1150 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1151 BTRFS_ROOT_DEFRAG_RUNNING, 1152 BTRFS_ROOT_FORCE_COW, 1153 BTRFS_ROOT_MULTI_LOG_TASKS, 1154 BTRFS_ROOT_DIRTY, 1155 BTRFS_ROOT_DELETING, 1156 1157 /* 1158 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1159 * 1160 * Set for the subvolume tree owning the reloc tree. 1161 */ 1162 BTRFS_ROOT_DEAD_RELOC_TREE, 1163 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1164 BTRFS_ROOT_DEAD_TREE, 1165 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1166 BTRFS_ROOT_HAS_LOG_TREE, 1167 /* Qgroup flushing is in progress */ 1168 BTRFS_ROOT_QGROUP_FLUSHING, 1169 /* We started the orphan cleanup for this root. */ 1170 BTRFS_ROOT_ORPHAN_CLEANUP, 1171 /* This root has a drop operation that was started previously. */ 1172 BTRFS_ROOT_UNFINISHED_DROP, 1173 /* This reloc root needs to have its buffers lockdep class reset. */ 1174 BTRFS_ROOT_RESET_LOCKDEP_CLASS, 1175 }; 1176 1177 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1178 { 1179 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 1180 } 1181 1182 /* 1183 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1184 * code. For detail check comment in fs/btrfs/qgroup.c. 1185 */ 1186 struct btrfs_qgroup_swapped_blocks { 1187 spinlock_t lock; 1188 /* RM_EMPTY_ROOT() of above blocks[] */ 1189 bool swapped; 1190 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1191 }; 1192 1193 /* 1194 * in ram representation of the tree. extent_root is used for all allocations 1195 * and for the extent tree extent_root root. 1196 */ 1197 struct btrfs_root { 1198 struct rb_node rb_node; 1199 1200 struct extent_buffer *node; 1201 1202 struct extent_buffer *commit_root; 1203 struct btrfs_root *log_root; 1204 struct btrfs_root *reloc_root; 1205 1206 unsigned long state; 1207 struct btrfs_root_item root_item; 1208 struct btrfs_key root_key; 1209 struct btrfs_fs_info *fs_info; 1210 struct extent_io_tree dirty_log_pages; 1211 1212 struct mutex objectid_mutex; 1213 1214 spinlock_t accounting_lock; 1215 struct btrfs_block_rsv *block_rsv; 1216 1217 struct mutex log_mutex; 1218 wait_queue_head_t log_writer_wait; 1219 wait_queue_head_t log_commit_wait[2]; 1220 struct list_head log_ctxs[2]; 1221 /* Used only for log trees of subvolumes, not for the log root tree */ 1222 atomic_t log_writers; 1223 atomic_t log_commit[2]; 1224 /* Used only for log trees of subvolumes, not for the log root tree */ 1225 atomic_t log_batch; 1226 int log_transid; 1227 /* No matter the commit succeeds or not*/ 1228 int log_transid_committed; 1229 /* Just be updated when the commit succeeds. */ 1230 int last_log_commit; 1231 pid_t log_start_pid; 1232 1233 u64 last_trans; 1234 1235 u32 type; 1236 1237 u64 free_objectid; 1238 1239 struct btrfs_key defrag_progress; 1240 struct btrfs_key defrag_max; 1241 1242 /* The dirty list is only used by non-shareable roots */ 1243 struct list_head dirty_list; 1244 1245 struct list_head root_list; 1246 1247 spinlock_t log_extents_lock[2]; 1248 struct list_head logged_list[2]; 1249 1250 spinlock_t inode_lock; 1251 /* red-black tree that keeps track of in-memory inodes */ 1252 struct rb_root inode_tree; 1253 1254 /* 1255 * radix tree that keeps track of delayed nodes of every inode, 1256 * protected by inode_lock 1257 */ 1258 struct radix_tree_root delayed_nodes_tree; 1259 /* 1260 * right now this just gets used so that a root has its own devid 1261 * for stat. It may be used for more later 1262 */ 1263 dev_t anon_dev; 1264 1265 spinlock_t root_item_lock; 1266 refcount_t refs; 1267 1268 struct mutex delalloc_mutex; 1269 spinlock_t delalloc_lock; 1270 /* 1271 * all of the inodes that have delalloc bytes. It is possible for 1272 * this list to be empty even when there is still dirty data=ordered 1273 * extents waiting to finish IO. 1274 */ 1275 struct list_head delalloc_inodes; 1276 struct list_head delalloc_root; 1277 u64 nr_delalloc_inodes; 1278 1279 struct mutex ordered_extent_mutex; 1280 /* 1281 * this is used by the balancing code to wait for all the pending 1282 * ordered extents 1283 */ 1284 spinlock_t ordered_extent_lock; 1285 1286 /* 1287 * all of the data=ordered extents pending writeback 1288 * these can span multiple transactions and basically include 1289 * every dirty data page that isn't from nodatacow 1290 */ 1291 struct list_head ordered_extents; 1292 struct list_head ordered_root; 1293 u64 nr_ordered_extents; 1294 1295 /* 1296 * Not empty if this subvolume root has gone through tree block swap 1297 * (relocation) 1298 * 1299 * Will be used by reloc_control::dirty_subvol_roots. 1300 */ 1301 struct list_head reloc_dirty_list; 1302 1303 /* 1304 * Number of currently running SEND ioctls to prevent 1305 * manipulation with the read-only status via SUBVOL_SETFLAGS 1306 */ 1307 int send_in_progress; 1308 /* 1309 * Number of currently running deduplication operations that have a 1310 * destination inode belonging to this root. Protected by the lock 1311 * root_item_lock. 1312 */ 1313 int dedupe_in_progress; 1314 /* For exclusion of snapshot creation and nocow writes */ 1315 struct btrfs_drew_lock snapshot_lock; 1316 1317 atomic_t snapshot_force_cow; 1318 1319 /* For qgroup metadata reserved space */ 1320 spinlock_t qgroup_meta_rsv_lock; 1321 u64 qgroup_meta_rsv_pertrans; 1322 u64 qgroup_meta_rsv_prealloc; 1323 wait_queue_head_t qgroup_flush_wait; 1324 1325 /* Number of active swapfiles */ 1326 atomic_t nr_swapfiles; 1327 1328 /* Record pairs of swapped blocks for qgroup */ 1329 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1330 1331 /* Used only by log trees, when logging csum items */ 1332 struct extent_io_tree log_csum_range; 1333 1334 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1335 u64 alloc_bytenr; 1336 #endif 1337 1338 #ifdef CONFIG_BTRFS_DEBUG 1339 struct list_head leak_list; 1340 #endif 1341 }; 1342 1343 /* 1344 * Structure that conveys information about an extent that is going to replace 1345 * all the extents in a file range. 1346 */ 1347 struct btrfs_replace_extent_info { 1348 u64 disk_offset; 1349 u64 disk_len; 1350 u64 data_offset; 1351 u64 data_len; 1352 u64 file_offset; 1353 /* Pointer to a file extent item of type regular or prealloc. */ 1354 char *extent_buf; 1355 /* 1356 * Set to true when attempting to replace a file range with a new extent 1357 * described by this structure, set to false when attempting to clone an 1358 * existing extent into a file range. 1359 */ 1360 bool is_new_extent; 1361 /* Indicate if we should update the inode's mtime and ctime. */ 1362 bool update_times; 1363 /* Meaningful only if is_new_extent is true. */ 1364 int qgroup_reserved; 1365 /* 1366 * Meaningful only if is_new_extent is true. 1367 * Used to track how many extent items we have already inserted in a 1368 * subvolume tree that refer to the extent described by this structure, 1369 * so that we know when to create a new delayed ref or update an existing 1370 * one. 1371 */ 1372 int insertions; 1373 }; 1374 1375 /* Arguments for btrfs_drop_extents() */ 1376 struct btrfs_drop_extents_args { 1377 /* Input parameters */ 1378 1379 /* 1380 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1381 * If 'replace_extent' is true, this must not be NULL. Also the path 1382 * is always released except if 'replace_extent' is true and 1383 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1384 * the path is kept locked. 1385 */ 1386 struct btrfs_path *path; 1387 /* Start offset of the range to drop extents from */ 1388 u64 start; 1389 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1390 u64 end; 1391 /* If true drop all the extent maps in the range */ 1392 bool drop_cache; 1393 /* 1394 * If true it means we want to insert a new extent after dropping all 1395 * the extents in the range. If this is true, the 'extent_item_size' 1396 * parameter must be set as well and the 'extent_inserted' field will 1397 * be set to true by btrfs_drop_extents() if it could insert the new 1398 * extent. 1399 * Note: when this is set to true the path must not be NULL. 1400 */ 1401 bool replace_extent; 1402 /* 1403 * Used if 'replace_extent' is true. Size of the file extent item to 1404 * insert after dropping all existing extents in the range 1405 */ 1406 u32 extent_item_size; 1407 1408 /* Output parameters */ 1409 1410 /* 1411 * Set to the minimum between the input parameter 'end' and the end 1412 * (exclusive, last byte + 1) of the last dropped extent. This is always 1413 * set even if btrfs_drop_extents() returns an error. 1414 */ 1415 u64 drop_end; 1416 /* 1417 * The number of allocated bytes found in the range. This can be smaller 1418 * than the range's length when there are holes in the range. 1419 */ 1420 u64 bytes_found; 1421 /* 1422 * Only set if 'replace_extent' is true. Set to true if we were able 1423 * to insert a replacement extent after dropping all extents in the 1424 * range, otherwise set to false by btrfs_drop_extents(). 1425 * Also, if btrfs_drop_extents() has set this to true it means it 1426 * returned with the path locked, otherwise if it has set this to 1427 * false it has returned with the path released. 1428 */ 1429 bool extent_inserted; 1430 }; 1431 1432 struct btrfs_file_private { 1433 void *filldir_buf; 1434 }; 1435 1436 1437 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1438 { 1439 1440 return info->nodesize - sizeof(struct btrfs_header); 1441 } 1442 1443 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1444 1445 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1446 { 1447 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1448 } 1449 1450 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1451 { 1452 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1453 } 1454 1455 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1456 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1457 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1458 { 1459 return BTRFS_MAX_ITEM_SIZE(info) - 1460 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1461 } 1462 1463 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1464 { 1465 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1466 } 1467 1468 /* 1469 * Flags for mount options. 1470 * 1471 * Note: don't forget to add new options to btrfs_show_options() 1472 */ 1473 enum { 1474 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1475 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1476 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1477 BTRFS_MOUNT_SSD = (1UL << 3), 1478 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1479 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1480 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1481 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1482 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1483 BTRFS_MOUNT_NOSSD = (1UL << 9), 1484 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1485 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1486 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1487 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1488 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1489 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1490 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1491 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1492 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1493 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1494 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1495 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1496 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1497 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1498 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1499 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1500 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1501 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1502 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1503 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1504 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1505 }; 1506 1507 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1508 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1509 1510 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1511 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1512 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1513 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1514 BTRFS_MOUNT_##opt) 1515 1516 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1517 do { \ 1518 if (!btrfs_test_opt(fs_info, opt)) \ 1519 btrfs_info(fs_info, fmt, ##args); \ 1520 btrfs_set_opt(fs_info->mount_opt, opt); \ 1521 } while (0) 1522 1523 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1524 do { \ 1525 if (btrfs_test_opt(fs_info, opt)) \ 1526 btrfs_info(fs_info, fmt, ##args); \ 1527 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1528 } while (0) 1529 1530 /* 1531 * Requests for changes that need to be done during transaction commit. 1532 * 1533 * Internal mount options that are used for special handling of the real 1534 * mount options (eg. cannot be set during remount and have to be set during 1535 * transaction commit) 1536 */ 1537 1538 #define BTRFS_PENDING_COMMIT (0) 1539 1540 #define btrfs_test_pending(info, opt) \ 1541 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1542 #define btrfs_set_pending(info, opt) \ 1543 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1544 #define btrfs_clear_pending(info, opt) \ 1545 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1546 1547 /* 1548 * Helpers for setting pending mount option changes. 1549 * 1550 * Expects corresponding macros 1551 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1552 */ 1553 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1554 do { \ 1555 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1556 btrfs_info((info), fmt, ##args); \ 1557 btrfs_set_pending((info), SET_##opt); \ 1558 btrfs_clear_pending((info), CLEAR_##opt); \ 1559 } \ 1560 } while(0) 1561 1562 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1563 do { \ 1564 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1565 btrfs_info((info), fmt, ##args); \ 1566 btrfs_set_pending((info), CLEAR_##opt); \ 1567 btrfs_clear_pending((info), SET_##opt); \ 1568 } \ 1569 } while(0) 1570 1571 /* 1572 * Inode flags 1573 */ 1574 #define BTRFS_INODE_NODATASUM (1U << 0) 1575 #define BTRFS_INODE_NODATACOW (1U << 1) 1576 #define BTRFS_INODE_READONLY (1U << 2) 1577 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1578 #define BTRFS_INODE_PREALLOC (1U << 4) 1579 #define BTRFS_INODE_SYNC (1U << 5) 1580 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1581 #define BTRFS_INODE_APPEND (1U << 7) 1582 #define BTRFS_INODE_NODUMP (1U << 8) 1583 #define BTRFS_INODE_NOATIME (1U << 9) 1584 #define BTRFS_INODE_DIRSYNC (1U << 10) 1585 #define BTRFS_INODE_COMPRESS (1U << 11) 1586 1587 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1588 1589 #define BTRFS_INODE_FLAG_MASK \ 1590 (BTRFS_INODE_NODATASUM | \ 1591 BTRFS_INODE_NODATACOW | \ 1592 BTRFS_INODE_READONLY | \ 1593 BTRFS_INODE_NOCOMPRESS | \ 1594 BTRFS_INODE_PREALLOC | \ 1595 BTRFS_INODE_SYNC | \ 1596 BTRFS_INODE_IMMUTABLE | \ 1597 BTRFS_INODE_APPEND | \ 1598 BTRFS_INODE_NODUMP | \ 1599 BTRFS_INODE_NOATIME | \ 1600 BTRFS_INODE_DIRSYNC | \ 1601 BTRFS_INODE_COMPRESS | \ 1602 BTRFS_INODE_ROOT_ITEM_INIT) 1603 1604 #define BTRFS_INODE_RO_VERITY (1U << 0) 1605 1606 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1607 1608 struct btrfs_map_token { 1609 struct extent_buffer *eb; 1610 char *kaddr; 1611 unsigned long offset; 1612 }; 1613 1614 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1615 ((bytes) >> (fs_info)->sectorsize_bits) 1616 1617 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1618 struct extent_buffer *eb) 1619 { 1620 token->eb = eb; 1621 token->kaddr = page_address(eb->pages[0]); 1622 token->offset = 0; 1623 } 1624 1625 /* some macros to generate set/get functions for the struct fields. This 1626 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1627 * one for u8: 1628 */ 1629 #define le8_to_cpu(v) (v) 1630 #define cpu_to_le8(v) (v) 1631 #define __le8 u8 1632 1633 static inline u8 get_unaligned_le8(const void *p) 1634 { 1635 return *(u8 *)p; 1636 } 1637 1638 static inline void put_unaligned_le8(u8 val, void *p) 1639 { 1640 *(u8 *)p = val; 1641 } 1642 1643 #define read_eb_member(eb, ptr, type, member, result) (\ 1644 read_extent_buffer(eb, (char *)(result), \ 1645 ((unsigned long)(ptr)) + \ 1646 offsetof(type, member), \ 1647 sizeof(((type *)0)->member))) 1648 1649 #define write_eb_member(eb, ptr, type, member, result) (\ 1650 write_extent_buffer(eb, (char *)(result), \ 1651 ((unsigned long)(ptr)) + \ 1652 offsetof(type, member), \ 1653 sizeof(((type *)0)->member))) 1654 1655 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1656 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1657 const void *ptr, unsigned long off); \ 1658 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1659 const void *ptr, unsigned long off, \ 1660 u##bits val); \ 1661 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1662 const void *ptr, unsigned long off); \ 1663 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1664 unsigned long off, u##bits val); 1665 1666 DECLARE_BTRFS_SETGET_BITS(8) 1667 DECLARE_BTRFS_SETGET_BITS(16) 1668 DECLARE_BTRFS_SETGET_BITS(32) 1669 DECLARE_BTRFS_SETGET_BITS(64) 1670 1671 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1672 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1673 const type *s) \ 1674 { \ 1675 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1676 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1677 } \ 1678 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1679 u##bits val) \ 1680 { \ 1681 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1682 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1683 } \ 1684 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1685 const type *s) \ 1686 { \ 1687 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1688 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1689 } \ 1690 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1691 type *s, u##bits val) \ 1692 { \ 1693 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1694 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1695 } 1696 1697 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1698 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1699 { \ 1700 const type *p = page_address(eb->pages[0]) + \ 1701 offset_in_page(eb->start); \ 1702 return get_unaligned_le##bits(&p->member); \ 1703 } \ 1704 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1705 u##bits val) \ 1706 { \ 1707 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1708 put_unaligned_le##bits(val, &p->member); \ 1709 } 1710 1711 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1712 static inline u##bits btrfs_##name(const type *s) \ 1713 { \ 1714 return get_unaligned_le##bits(&s->member); \ 1715 } \ 1716 static inline void btrfs_set_##name(type *s, u##bits val) \ 1717 { \ 1718 put_unaligned_le##bits(val, &s->member); \ 1719 } 1720 1721 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1722 struct btrfs_dev_item *s) 1723 { 1724 static_assert(sizeof(u64) == 1725 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1726 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1727 total_bytes)); 1728 } 1729 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1730 struct btrfs_dev_item *s, 1731 u64 val) 1732 { 1733 static_assert(sizeof(u64) == 1734 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1735 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1736 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1737 } 1738 1739 1740 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1741 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1742 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1743 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1744 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1745 start_offset, 64); 1746 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1747 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1748 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1749 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1750 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1751 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1752 1753 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1754 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1755 total_bytes, 64); 1756 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1757 bytes_used, 64); 1758 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1759 io_align, 32); 1760 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1761 io_width, 32); 1762 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1763 sector_size, 32); 1764 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1765 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1766 dev_group, 32); 1767 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1768 seek_speed, 8); 1769 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1770 bandwidth, 8); 1771 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1772 generation, 64); 1773 1774 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1775 { 1776 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1777 } 1778 1779 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1780 { 1781 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1782 } 1783 1784 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1785 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1786 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1787 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1788 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1789 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1790 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1791 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1792 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1793 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1794 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1795 1796 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1797 { 1798 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1799 } 1800 1801 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1802 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1803 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1804 stripe_len, 64); 1805 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1806 io_align, 32); 1807 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1808 io_width, 32); 1809 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1810 sector_size, 32); 1811 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1812 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1813 num_stripes, 16); 1814 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1815 sub_stripes, 16); 1816 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1817 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1818 1819 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1820 int nr) 1821 { 1822 unsigned long offset = (unsigned long)c; 1823 offset += offsetof(struct btrfs_chunk, stripe); 1824 offset += nr * sizeof(struct btrfs_stripe); 1825 return (struct btrfs_stripe *)offset; 1826 } 1827 1828 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1829 { 1830 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1831 } 1832 1833 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1834 struct btrfs_chunk *c, int nr) 1835 { 1836 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1837 } 1838 1839 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1840 struct btrfs_chunk *c, int nr) 1841 { 1842 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1843 } 1844 1845 /* struct btrfs_block_group_item */ 1846 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1847 used, 64); 1848 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1849 used, 64); 1850 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1851 struct btrfs_block_group_item, chunk_objectid, 64); 1852 1853 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1854 struct btrfs_block_group_item, chunk_objectid, 64); 1855 BTRFS_SETGET_FUNCS(block_group_flags, 1856 struct btrfs_block_group_item, flags, 64); 1857 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1858 struct btrfs_block_group_item, flags, 64); 1859 1860 /* struct btrfs_free_space_info */ 1861 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1862 extent_count, 32); 1863 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1864 1865 /* struct btrfs_inode_ref */ 1866 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1867 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1868 1869 /* struct btrfs_inode_extref */ 1870 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1871 parent_objectid, 64); 1872 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1873 name_len, 16); 1874 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1875 1876 /* struct btrfs_inode_item */ 1877 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1878 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1879 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1880 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1881 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1882 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1883 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1884 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1885 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1886 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1887 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1888 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1889 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1890 generation, 64); 1891 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1892 sequence, 64); 1893 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1894 transid, 64); 1895 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1896 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1897 nbytes, 64); 1898 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1899 block_group, 64); 1900 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1901 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1902 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1903 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1904 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1905 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1906 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1907 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1908 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1909 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1910 1911 /* struct btrfs_dev_extent */ 1912 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1913 chunk_tree, 64); 1914 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1915 chunk_objectid, 64); 1916 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1917 chunk_offset, 64); 1918 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1919 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1920 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1921 generation, 64); 1922 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1923 1924 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1925 1926 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1927 struct btrfs_tree_block_info *item, 1928 struct btrfs_disk_key *key) 1929 { 1930 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1931 } 1932 1933 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1934 struct btrfs_tree_block_info *item, 1935 struct btrfs_disk_key *key) 1936 { 1937 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1938 } 1939 1940 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1941 root, 64); 1942 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1943 objectid, 64); 1944 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1945 offset, 64); 1946 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1947 count, 32); 1948 1949 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1950 count, 32); 1951 1952 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1953 type, 8); 1954 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1955 offset, 64); 1956 1957 static inline u32 btrfs_extent_inline_ref_size(int type) 1958 { 1959 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1960 type == BTRFS_SHARED_BLOCK_REF_KEY) 1961 return sizeof(struct btrfs_extent_inline_ref); 1962 if (type == BTRFS_SHARED_DATA_REF_KEY) 1963 return sizeof(struct btrfs_shared_data_ref) + 1964 sizeof(struct btrfs_extent_inline_ref); 1965 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1966 return sizeof(struct btrfs_extent_data_ref) + 1967 offsetof(struct btrfs_extent_inline_ref, offset); 1968 return 0; 1969 } 1970 1971 /* struct btrfs_node */ 1972 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1973 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1974 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1975 blockptr, 64); 1976 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1977 generation, 64); 1978 1979 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1980 { 1981 unsigned long ptr; 1982 ptr = offsetof(struct btrfs_node, ptrs) + 1983 sizeof(struct btrfs_key_ptr) * nr; 1984 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1985 } 1986 1987 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1988 int nr, u64 val) 1989 { 1990 unsigned long ptr; 1991 ptr = offsetof(struct btrfs_node, ptrs) + 1992 sizeof(struct btrfs_key_ptr) * nr; 1993 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1994 } 1995 1996 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1997 { 1998 unsigned long ptr; 1999 ptr = offsetof(struct btrfs_node, ptrs) + 2000 sizeof(struct btrfs_key_ptr) * nr; 2001 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 2002 } 2003 2004 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 2005 int nr, u64 val) 2006 { 2007 unsigned long ptr; 2008 ptr = offsetof(struct btrfs_node, ptrs) + 2009 sizeof(struct btrfs_key_ptr) * nr; 2010 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 2011 } 2012 2013 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 2014 { 2015 return offsetof(struct btrfs_node, ptrs) + 2016 sizeof(struct btrfs_key_ptr) * nr; 2017 } 2018 2019 void btrfs_node_key(const struct extent_buffer *eb, 2020 struct btrfs_disk_key *disk_key, int nr); 2021 2022 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 2023 struct btrfs_disk_key *disk_key, int nr) 2024 { 2025 unsigned long ptr; 2026 ptr = btrfs_node_key_ptr_offset(nr); 2027 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 2028 struct btrfs_key_ptr, key, disk_key); 2029 } 2030 2031 /* struct btrfs_item */ 2032 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 2033 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 2034 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2035 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2036 2037 static inline unsigned long btrfs_item_nr_offset(int nr) 2038 { 2039 return offsetof(struct btrfs_leaf, items) + 2040 sizeof(struct btrfs_item) * nr; 2041 } 2042 2043 static inline struct btrfs_item *btrfs_item_nr(int nr) 2044 { 2045 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2046 } 2047 2048 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 2049 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 2050 int slot) \ 2051 { \ 2052 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 2053 } \ 2054 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 2055 int slot, u32 val) \ 2056 { \ 2057 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 2058 } \ 2059 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 2060 int slot) \ 2061 { \ 2062 struct btrfs_item *item = btrfs_item_nr(slot); \ 2063 return btrfs_token_raw_item_##member(token, item); \ 2064 } \ 2065 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 2066 int slot, u32 val) \ 2067 { \ 2068 struct btrfs_item *item = btrfs_item_nr(slot); \ 2069 btrfs_set_token_raw_item_##member(token, item, val); \ 2070 } 2071 2072 BTRFS_ITEM_SETGET_FUNCS(offset) 2073 BTRFS_ITEM_SETGET_FUNCS(size); 2074 2075 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2076 { 2077 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2078 } 2079 2080 static inline void btrfs_item_key(const struct extent_buffer *eb, 2081 struct btrfs_disk_key *disk_key, int nr) 2082 { 2083 struct btrfs_item *item = btrfs_item_nr(nr); 2084 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2085 } 2086 2087 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2088 struct btrfs_disk_key *disk_key, int nr) 2089 { 2090 struct btrfs_item *item = btrfs_item_nr(nr); 2091 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2092 } 2093 2094 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2095 2096 /* 2097 * struct btrfs_root_ref 2098 */ 2099 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2100 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2101 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2102 2103 /* struct btrfs_dir_item */ 2104 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2105 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2106 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2107 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2108 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2109 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2110 data_len, 16); 2111 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2112 name_len, 16); 2113 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2114 transid, 64); 2115 2116 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2117 const struct btrfs_dir_item *item, 2118 struct btrfs_disk_key *key) 2119 { 2120 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2121 } 2122 2123 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2124 struct btrfs_dir_item *item, 2125 const struct btrfs_disk_key *key) 2126 { 2127 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2128 } 2129 2130 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2131 num_entries, 64); 2132 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2133 num_bitmaps, 64); 2134 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2135 generation, 64); 2136 2137 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2138 const struct btrfs_free_space_header *h, 2139 struct btrfs_disk_key *key) 2140 { 2141 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2142 } 2143 2144 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2145 struct btrfs_free_space_header *h, 2146 const struct btrfs_disk_key *key) 2147 { 2148 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2149 } 2150 2151 /* struct btrfs_disk_key */ 2152 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2153 objectid, 64); 2154 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2155 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2156 2157 #ifdef __LITTLE_ENDIAN 2158 2159 /* 2160 * Optimized helpers for little-endian architectures where CPU and on-disk 2161 * structures have the same endianness and we can skip conversions. 2162 */ 2163 2164 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2165 const struct btrfs_disk_key *disk_key) 2166 { 2167 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2168 } 2169 2170 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2171 const struct btrfs_key *cpu_key) 2172 { 2173 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2174 } 2175 2176 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2177 struct btrfs_key *cpu_key, int nr) 2178 { 2179 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2180 2181 btrfs_node_key(eb, disk_key, nr); 2182 } 2183 2184 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2185 struct btrfs_key *cpu_key, int nr) 2186 { 2187 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2188 2189 btrfs_item_key(eb, disk_key, nr); 2190 } 2191 2192 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2193 const struct btrfs_dir_item *item, 2194 struct btrfs_key *cpu_key) 2195 { 2196 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2197 2198 btrfs_dir_item_key(eb, item, disk_key); 2199 } 2200 2201 #else 2202 2203 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2204 const struct btrfs_disk_key *disk) 2205 { 2206 cpu->offset = le64_to_cpu(disk->offset); 2207 cpu->type = disk->type; 2208 cpu->objectid = le64_to_cpu(disk->objectid); 2209 } 2210 2211 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2212 const struct btrfs_key *cpu) 2213 { 2214 disk->offset = cpu_to_le64(cpu->offset); 2215 disk->type = cpu->type; 2216 disk->objectid = cpu_to_le64(cpu->objectid); 2217 } 2218 2219 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2220 struct btrfs_key *key, int nr) 2221 { 2222 struct btrfs_disk_key disk_key; 2223 btrfs_node_key(eb, &disk_key, nr); 2224 btrfs_disk_key_to_cpu(key, &disk_key); 2225 } 2226 2227 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2228 struct btrfs_key *key, int nr) 2229 { 2230 struct btrfs_disk_key disk_key; 2231 btrfs_item_key(eb, &disk_key, nr); 2232 btrfs_disk_key_to_cpu(key, &disk_key); 2233 } 2234 2235 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2236 const struct btrfs_dir_item *item, 2237 struct btrfs_key *key) 2238 { 2239 struct btrfs_disk_key disk_key; 2240 btrfs_dir_item_key(eb, item, &disk_key); 2241 btrfs_disk_key_to_cpu(key, &disk_key); 2242 } 2243 2244 #endif 2245 2246 /* struct btrfs_header */ 2247 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2248 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2249 generation, 64); 2250 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2251 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2252 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2253 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2254 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2255 generation, 64); 2256 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2257 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2258 nritems, 32); 2259 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2260 2261 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2262 { 2263 return (btrfs_header_flags(eb) & flag) == flag; 2264 } 2265 2266 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2267 { 2268 u64 flags = btrfs_header_flags(eb); 2269 btrfs_set_header_flags(eb, flags | flag); 2270 } 2271 2272 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2273 { 2274 u64 flags = btrfs_header_flags(eb); 2275 btrfs_set_header_flags(eb, flags & ~flag); 2276 } 2277 2278 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2279 { 2280 u64 flags = btrfs_header_flags(eb); 2281 return flags >> BTRFS_BACKREF_REV_SHIFT; 2282 } 2283 2284 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2285 int rev) 2286 { 2287 u64 flags = btrfs_header_flags(eb); 2288 flags &= ~BTRFS_BACKREF_REV_MASK; 2289 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2290 btrfs_set_header_flags(eb, flags); 2291 } 2292 2293 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2294 { 2295 return btrfs_header_level(eb) == 0; 2296 } 2297 2298 /* struct btrfs_root_item */ 2299 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2300 generation, 64); 2301 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2302 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2303 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2304 2305 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2306 generation, 64); 2307 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2308 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2309 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2310 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2311 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2312 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2313 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2314 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2315 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2316 last_snapshot, 64); 2317 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2318 generation_v2, 64); 2319 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2320 ctransid, 64); 2321 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2322 otransid, 64); 2323 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2324 stransid, 64); 2325 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2326 rtransid, 64); 2327 2328 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2329 { 2330 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2331 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2332 } 2333 2334 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2335 { 2336 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2337 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2338 } 2339 2340 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2341 { 2342 return root->root_key.objectid; 2343 } 2344 2345 /* struct btrfs_root_backup */ 2346 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2347 tree_root, 64); 2348 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2349 tree_root_gen, 64); 2350 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2351 tree_root_level, 8); 2352 2353 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2354 chunk_root, 64); 2355 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2356 chunk_root_gen, 64); 2357 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2358 chunk_root_level, 8); 2359 2360 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2361 extent_root, 64); 2362 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2363 extent_root_gen, 64); 2364 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2365 extent_root_level, 8); 2366 2367 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2368 fs_root, 64); 2369 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2370 fs_root_gen, 64); 2371 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2372 fs_root_level, 8); 2373 2374 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2375 dev_root, 64); 2376 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2377 dev_root_gen, 64); 2378 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2379 dev_root_level, 8); 2380 2381 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2382 csum_root, 64); 2383 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2384 csum_root_gen, 64); 2385 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2386 csum_root_level, 8); 2387 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2388 total_bytes, 64); 2389 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2390 bytes_used, 64); 2391 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2392 num_devices, 64); 2393 2394 /* 2395 * For extent tree v2 we overload the extent root with the block group root, as 2396 * we will have multiple extent roots. 2397 */ 2398 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup, 2399 extent_root, 64); 2400 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup, 2401 extent_root_gen, 64); 2402 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level, 2403 struct btrfs_root_backup, extent_root_level, 8); 2404 2405 /* struct btrfs_balance_item */ 2406 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2407 2408 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2409 const struct btrfs_balance_item *bi, 2410 struct btrfs_disk_balance_args *ba) 2411 { 2412 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2413 } 2414 2415 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2416 struct btrfs_balance_item *bi, 2417 const struct btrfs_disk_balance_args *ba) 2418 { 2419 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2420 } 2421 2422 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2423 const struct btrfs_balance_item *bi, 2424 struct btrfs_disk_balance_args *ba) 2425 { 2426 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2427 } 2428 2429 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2430 struct btrfs_balance_item *bi, 2431 const struct btrfs_disk_balance_args *ba) 2432 { 2433 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2434 } 2435 2436 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2437 const struct btrfs_balance_item *bi, 2438 struct btrfs_disk_balance_args *ba) 2439 { 2440 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2441 } 2442 2443 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2444 struct btrfs_balance_item *bi, 2445 const struct btrfs_disk_balance_args *ba) 2446 { 2447 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2448 } 2449 2450 static inline void 2451 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2452 const struct btrfs_disk_balance_args *disk) 2453 { 2454 memset(cpu, 0, sizeof(*cpu)); 2455 2456 cpu->profiles = le64_to_cpu(disk->profiles); 2457 cpu->usage = le64_to_cpu(disk->usage); 2458 cpu->devid = le64_to_cpu(disk->devid); 2459 cpu->pstart = le64_to_cpu(disk->pstart); 2460 cpu->pend = le64_to_cpu(disk->pend); 2461 cpu->vstart = le64_to_cpu(disk->vstart); 2462 cpu->vend = le64_to_cpu(disk->vend); 2463 cpu->target = le64_to_cpu(disk->target); 2464 cpu->flags = le64_to_cpu(disk->flags); 2465 cpu->limit = le64_to_cpu(disk->limit); 2466 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2467 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2468 } 2469 2470 static inline void 2471 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2472 const struct btrfs_balance_args *cpu) 2473 { 2474 memset(disk, 0, sizeof(*disk)); 2475 2476 disk->profiles = cpu_to_le64(cpu->profiles); 2477 disk->usage = cpu_to_le64(cpu->usage); 2478 disk->devid = cpu_to_le64(cpu->devid); 2479 disk->pstart = cpu_to_le64(cpu->pstart); 2480 disk->pend = cpu_to_le64(cpu->pend); 2481 disk->vstart = cpu_to_le64(cpu->vstart); 2482 disk->vend = cpu_to_le64(cpu->vend); 2483 disk->target = cpu_to_le64(cpu->target); 2484 disk->flags = cpu_to_le64(cpu->flags); 2485 disk->limit = cpu_to_le64(cpu->limit); 2486 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2487 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2488 } 2489 2490 /* struct btrfs_super_block */ 2491 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2492 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2493 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2494 generation, 64); 2495 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2496 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2497 struct btrfs_super_block, sys_chunk_array_size, 32); 2498 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2499 struct btrfs_super_block, chunk_root_generation, 64); 2500 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2501 root_level, 8); 2502 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2503 chunk_root, 64); 2504 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2505 chunk_root_level, 8); 2506 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2507 log_root, 64); 2508 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2509 log_root_level, 8); 2510 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2511 total_bytes, 64); 2512 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2513 bytes_used, 64); 2514 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2515 sectorsize, 32); 2516 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2517 nodesize, 32); 2518 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2519 stripesize, 32); 2520 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2521 root_dir_objectid, 64); 2522 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2523 num_devices, 64); 2524 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2525 compat_flags, 64); 2526 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2527 compat_ro_flags, 64); 2528 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2529 incompat_flags, 64); 2530 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2531 csum_type, 16); 2532 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2533 cache_generation, 64); 2534 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2535 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2536 uuid_tree_generation, 64); 2537 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block, 2538 block_group_root, 64); 2539 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation, 2540 struct btrfs_super_block, 2541 block_group_root_generation, 64); 2542 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block, 2543 block_group_root_level, 8); 2544 2545 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2546 const char *btrfs_super_csum_name(u16 csum_type); 2547 const char *btrfs_super_csum_driver(u16 csum_type); 2548 size_t __attribute_const__ btrfs_get_num_csums(void); 2549 2550 2551 /* 2552 * The leaf data grows from end-to-front in the node. 2553 * this returns the address of the start of the last item, 2554 * which is the stop of the leaf data stack 2555 */ 2556 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2557 { 2558 u32 nr = btrfs_header_nritems(leaf); 2559 2560 if (nr == 0) 2561 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2562 return btrfs_item_offset(leaf, nr - 1); 2563 } 2564 2565 /* struct btrfs_file_extent_item */ 2566 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2567 type, 8); 2568 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2569 struct btrfs_file_extent_item, disk_bytenr, 64); 2570 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2571 struct btrfs_file_extent_item, offset, 64); 2572 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2573 struct btrfs_file_extent_item, generation, 64); 2574 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2575 struct btrfs_file_extent_item, num_bytes, 64); 2576 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2577 struct btrfs_file_extent_item, ram_bytes, 64); 2578 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2579 struct btrfs_file_extent_item, disk_num_bytes, 64); 2580 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2581 struct btrfs_file_extent_item, compression, 8); 2582 2583 static inline unsigned long 2584 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2585 { 2586 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2587 } 2588 2589 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2590 { 2591 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2592 } 2593 2594 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2595 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2596 disk_bytenr, 64); 2597 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2598 generation, 64); 2599 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2600 disk_num_bytes, 64); 2601 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2602 offset, 64); 2603 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2604 num_bytes, 64); 2605 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2606 ram_bytes, 64); 2607 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2608 compression, 8); 2609 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2610 encryption, 8); 2611 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2612 other_encoding, 16); 2613 2614 /* 2615 * this returns the number of bytes used by the item on disk, minus the 2616 * size of any extent headers. If a file is compressed on disk, this is 2617 * the compressed size 2618 */ 2619 static inline u32 btrfs_file_extent_inline_item_len( 2620 const struct extent_buffer *eb, 2621 int nr) 2622 { 2623 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2624 } 2625 2626 /* btrfs_qgroup_status_item */ 2627 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2628 generation, 64); 2629 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2630 version, 64); 2631 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2632 flags, 64); 2633 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2634 rescan, 64); 2635 2636 /* btrfs_qgroup_info_item */ 2637 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2638 generation, 64); 2639 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2640 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2641 rfer_cmpr, 64); 2642 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2643 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2644 excl_cmpr, 64); 2645 2646 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2647 struct btrfs_qgroup_info_item, generation, 64); 2648 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2649 rfer, 64); 2650 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2651 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2652 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2653 excl, 64); 2654 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2655 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2656 2657 /* btrfs_qgroup_limit_item */ 2658 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2659 flags, 64); 2660 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2661 max_rfer, 64); 2662 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2663 max_excl, 64); 2664 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2665 rsv_rfer, 64); 2666 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2667 rsv_excl, 64); 2668 2669 /* btrfs_dev_replace_item */ 2670 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2671 struct btrfs_dev_replace_item, src_devid, 64); 2672 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2673 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2674 64); 2675 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2676 replace_state, 64); 2677 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2678 time_started, 64); 2679 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2680 time_stopped, 64); 2681 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2682 num_write_errors, 64); 2683 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2684 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2685 64); 2686 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2687 cursor_left, 64); 2688 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2689 cursor_right, 64); 2690 2691 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2692 struct btrfs_dev_replace_item, src_devid, 64); 2693 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2694 struct btrfs_dev_replace_item, 2695 cont_reading_from_srcdev_mode, 64); 2696 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2697 struct btrfs_dev_replace_item, replace_state, 64); 2698 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2699 struct btrfs_dev_replace_item, time_started, 64); 2700 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2701 struct btrfs_dev_replace_item, time_stopped, 64); 2702 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2703 struct btrfs_dev_replace_item, num_write_errors, 64); 2704 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2705 struct btrfs_dev_replace_item, 2706 num_uncorrectable_read_errors, 64); 2707 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2708 struct btrfs_dev_replace_item, cursor_left, 64); 2709 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2710 struct btrfs_dev_replace_item, cursor_right, 64); 2711 2712 /* helper function to cast into the data area of the leaf. */ 2713 #define btrfs_item_ptr(leaf, slot, type) \ 2714 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2715 btrfs_item_offset(leaf, slot))) 2716 2717 #define btrfs_item_ptr_offset(leaf, slot) \ 2718 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2719 btrfs_item_offset(leaf, slot))) 2720 2721 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2722 { 2723 return crc32c(crc, address, length); 2724 } 2725 2726 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2727 { 2728 put_unaligned_le32(~crc, result); 2729 } 2730 2731 static inline u64 btrfs_name_hash(const char *name, int len) 2732 { 2733 return crc32c((u32)~1, name, len); 2734 } 2735 2736 /* 2737 * Figure the key offset of an extended inode ref 2738 */ 2739 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2740 int len) 2741 { 2742 return (u64) crc32c(parent_objectid, name, len); 2743 } 2744 2745 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2746 { 2747 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2748 } 2749 2750 /* extent-tree.c */ 2751 2752 enum btrfs_inline_ref_type { 2753 BTRFS_REF_TYPE_INVALID, 2754 BTRFS_REF_TYPE_BLOCK, 2755 BTRFS_REF_TYPE_DATA, 2756 BTRFS_REF_TYPE_ANY, 2757 }; 2758 2759 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2760 struct btrfs_extent_inline_ref *iref, 2761 enum btrfs_inline_ref_type is_data); 2762 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2763 2764 static inline u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, 2765 u64 offset) 2766 { 2767 u64 offset_in_sectors = offset >> fs_info->sectorsize_bits; 2768 2769 return csums + offset_in_sectors * fs_info->csum_size; 2770 } 2771 2772 /* 2773 * Take the number of bytes to be checksummed and figure out how many leaves 2774 * it would require to store the csums for that many bytes. 2775 */ 2776 static inline u64 btrfs_csum_bytes_to_leaves( 2777 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2778 { 2779 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2780 2781 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2782 } 2783 2784 /* 2785 * Use this if we would be adding new items, as we could split nodes as we cow 2786 * down the tree. 2787 */ 2788 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2789 unsigned num_items) 2790 { 2791 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2792 } 2793 2794 /* 2795 * Doing a truncate or a modification won't result in new nodes or leaves, just 2796 * what we need for COW. 2797 */ 2798 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2799 unsigned num_items) 2800 { 2801 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2802 } 2803 2804 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2805 u64 start, u64 num_bytes); 2806 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2807 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2808 unsigned long count); 2809 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2810 struct btrfs_delayed_ref_root *delayed_refs, 2811 struct btrfs_delayed_ref_head *head); 2812 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2813 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2814 struct btrfs_fs_info *fs_info, u64 bytenr, 2815 u64 offset, int metadata, u64 *refs, u64 *flags); 2816 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2817 int reserved); 2818 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2819 u64 bytenr, u64 num_bytes); 2820 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2821 int btrfs_cross_ref_exist(struct btrfs_root *root, 2822 u64 objectid, u64 offset, u64 bytenr, bool strict, 2823 struct btrfs_path *path); 2824 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2825 struct btrfs_root *root, 2826 u64 parent, u64 root_objectid, 2827 const struct btrfs_disk_key *key, 2828 int level, u64 hint, 2829 u64 empty_size, 2830 enum btrfs_lock_nesting nest); 2831 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2832 u64 root_id, 2833 struct extent_buffer *buf, 2834 u64 parent, int last_ref); 2835 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2836 struct btrfs_root *root, u64 owner, 2837 u64 offset, u64 ram_bytes, 2838 struct btrfs_key *ins); 2839 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2840 u64 root_objectid, u64 owner, u64 offset, 2841 struct btrfs_key *ins); 2842 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2843 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2844 struct btrfs_key *ins, int is_data, int delalloc); 2845 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2846 struct extent_buffer *buf, int full_backref); 2847 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2848 struct extent_buffer *buf, int full_backref); 2849 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2850 struct extent_buffer *eb, u64 flags, int level); 2851 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2852 2853 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2854 u64 start, u64 len, int delalloc); 2855 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2856 u64 len); 2857 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2858 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2859 struct btrfs_ref *generic_ref); 2860 2861 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2862 2863 /* 2864 * Different levels for to flush space when doing space reservations. 2865 * 2866 * The higher the level, the more methods we try to reclaim space. 2867 */ 2868 enum btrfs_reserve_flush_enum { 2869 /* If we are in the transaction, we can't flush anything.*/ 2870 BTRFS_RESERVE_NO_FLUSH, 2871 2872 /* 2873 * Flush space by: 2874 * - Running delayed inode items 2875 * - Allocating a new chunk 2876 */ 2877 BTRFS_RESERVE_FLUSH_LIMIT, 2878 2879 /* 2880 * Flush space by: 2881 * - Running delayed inode items 2882 * - Running delayed refs 2883 * - Running delalloc and waiting for ordered extents 2884 * - Allocating a new chunk 2885 */ 2886 BTRFS_RESERVE_FLUSH_EVICT, 2887 2888 /* 2889 * Flush space by above mentioned methods and by: 2890 * - Running delayed iputs 2891 * - Committing transaction 2892 * 2893 * Can be interrupted by a fatal signal. 2894 */ 2895 BTRFS_RESERVE_FLUSH_DATA, 2896 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2897 BTRFS_RESERVE_FLUSH_ALL, 2898 2899 /* 2900 * Pretty much the same as FLUSH_ALL, but can also steal space from 2901 * global rsv. 2902 * 2903 * Can be interrupted by a fatal signal. 2904 */ 2905 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2906 }; 2907 2908 enum btrfs_flush_state { 2909 FLUSH_DELAYED_ITEMS_NR = 1, 2910 FLUSH_DELAYED_ITEMS = 2, 2911 FLUSH_DELAYED_REFS_NR = 3, 2912 FLUSH_DELAYED_REFS = 4, 2913 FLUSH_DELALLOC = 5, 2914 FLUSH_DELALLOC_WAIT = 6, 2915 FLUSH_DELALLOC_FULL = 7, 2916 ALLOC_CHUNK = 8, 2917 ALLOC_CHUNK_FORCE = 9, 2918 RUN_DELAYED_IPUTS = 10, 2919 COMMIT_TRANS = 11, 2920 }; 2921 2922 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2923 struct btrfs_block_rsv *rsv, 2924 int nitems, bool use_global_rsv); 2925 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2926 struct btrfs_block_rsv *rsv); 2927 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2928 2929 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 2930 u64 disk_num_bytes, bool noflush); 2931 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2932 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2933 u64 start, u64 end); 2934 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2935 u64 num_bytes, u64 *actual_bytes); 2936 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2937 2938 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2939 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2940 struct btrfs_fs_info *fs_info); 2941 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2942 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2943 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2944 2945 /* ctree.c */ 2946 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2947 int *slot); 2948 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2949 int btrfs_previous_item(struct btrfs_root *root, 2950 struct btrfs_path *path, u64 min_objectid, 2951 int type); 2952 int btrfs_previous_extent_item(struct btrfs_root *root, 2953 struct btrfs_path *path, u64 min_objectid); 2954 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2955 struct btrfs_path *path, 2956 const struct btrfs_key *new_key); 2957 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2958 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2959 struct btrfs_key *key, int lowest_level, 2960 u64 min_trans); 2961 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2962 struct btrfs_path *path, 2963 u64 min_trans); 2964 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2965 int slot); 2966 2967 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2968 struct btrfs_root *root, struct extent_buffer *buf, 2969 struct extent_buffer *parent, int parent_slot, 2970 struct extent_buffer **cow_ret, 2971 enum btrfs_lock_nesting nest); 2972 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2973 struct btrfs_root *root, 2974 struct extent_buffer *buf, 2975 struct extent_buffer **cow_ret, u64 new_root_objectid); 2976 int btrfs_block_can_be_shared(struct btrfs_root *root, 2977 struct extent_buffer *buf); 2978 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2979 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2980 int btrfs_split_item(struct btrfs_trans_handle *trans, 2981 struct btrfs_root *root, 2982 struct btrfs_path *path, 2983 const struct btrfs_key *new_key, 2984 unsigned long split_offset); 2985 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2986 struct btrfs_root *root, 2987 struct btrfs_path *path, 2988 const struct btrfs_key *new_key); 2989 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2990 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2991 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2992 const struct btrfs_key *key, struct btrfs_path *p, 2993 int ins_len, int cow); 2994 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2995 struct btrfs_path *p, u64 time_seq); 2996 int btrfs_search_slot_for_read(struct btrfs_root *root, 2997 const struct btrfs_key *key, 2998 struct btrfs_path *p, int find_higher, 2999 int return_any); 3000 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 3001 struct btrfs_root *root, struct extent_buffer *parent, 3002 int start_slot, u64 *last_ret, 3003 struct btrfs_key *progress); 3004 void btrfs_release_path(struct btrfs_path *p); 3005 struct btrfs_path *btrfs_alloc_path(void); 3006 void btrfs_free_path(struct btrfs_path *p); 3007 3008 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3009 struct btrfs_path *path, int slot, int nr); 3010 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 3011 struct btrfs_root *root, 3012 struct btrfs_path *path) 3013 { 3014 return btrfs_del_items(trans, root, path, path->slots[0], 1); 3015 } 3016 3017 /* 3018 * Describes a batch of items to insert in a btree. This is used by 3019 * btrfs_insert_empty_items(). 3020 */ 3021 struct btrfs_item_batch { 3022 /* 3023 * Pointer to an array containing the keys of the items to insert (in 3024 * sorted order). 3025 */ 3026 const struct btrfs_key *keys; 3027 /* Pointer to an array containing the data size for each item to insert. */ 3028 const u32 *data_sizes; 3029 /* 3030 * The sum of data sizes for all items. The caller can compute this while 3031 * setting up the data_sizes array, so it ends up being more efficient 3032 * than having btrfs_insert_empty_items() or setup_item_for_insert() 3033 * doing it, as it would avoid an extra loop over a potentially large 3034 * array, and in the case of setup_item_for_insert(), we would be doing 3035 * it while holding a write lock on a leaf and often on upper level nodes 3036 * too, unnecessarily increasing the size of a critical section. 3037 */ 3038 u32 total_data_size; 3039 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 3040 int nr; 3041 }; 3042 3043 void btrfs_setup_item_for_insert(struct btrfs_root *root, 3044 struct btrfs_path *path, 3045 const struct btrfs_key *key, 3046 u32 data_size); 3047 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3048 const struct btrfs_key *key, void *data, u32 data_size); 3049 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3050 struct btrfs_root *root, 3051 struct btrfs_path *path, 3052 const struct btrfs_item_batch *batch); 3053 3054 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3055 struct btrfs_root *root, 3056 struct btrfs_path *path, 3057 const struct btrfs_key *key, 3058 u32 data_size) 3059 { 3060 struct btrfs_item_batch batch; 3061 3062 batch.keys = key; 3063 batch.data_sizes = &data_size; 3064 batch.total_data_size = data_size; 3065 batch.nr = 1; 3066 3067 return btrfs_insert_empty_items(trans, root, path, &batch); 3068 } 3069 3070 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3071 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3072 u64 time_seq); 3073 3074 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 3075 struct btrfs_path *path); 3076 3077 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 3078 struct btrfs_path *path); 3079 3080 /* 3081 * Search in @root for a given @key, and store the slot found in @found_key. 3082 * 3083 * @root: The root node of the tree. 3084 * @key: The key we are looking for. 3085 * @found_key: Will hold the found item. 3086 * @path: Holds the current slot/leaf. 3087 * @iter_ret: Contains the value returned from btrfs_search_slot or 3088 * btrfs_get_next_valid_item, whichever was executed last. 3089 * 3090 * The @iter_ret is an output variable that will contain the return value of 3091 * btrfs_search_slot, if it encountered an error, or the value returned from 3092 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 3093 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 3094 * 3095 * It's recommended to use a separate variable for iter_ret and then use it to 3096 * set the function return value so there's no confusion of the 0/1/errno 3097 * values stemming from btrfs_search_slot. 3098 */ 3099 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 3100 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 3101 (iter_ret) >= 0 && \ 3102 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 3103 (path)->slots[0]++ \ 3104 ) 3105 3106 static inline int btrfs_next_old_item(struct btrfs_root *root, 3107 struct btrfs_path *p, u64 time_seq) 3108 { 3109 ++p->slots[0]; 3110 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3111 return btrfs_next_old_leaf(root, p, time_seq); 3112 return 0; 3113 } 3114 3115 /* 3116 * Search the tree again to find a leaf with greater keys. 3117 * 3118 * Returns 0 if it found something or 1 if there are no greater leaves. 3119 * Returns < 0 on error. 3120 */ 3121 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 3122 { 3123 return btrfs_next_old_leaf(root, path, 0); 3124 } 3125 3126 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3127 { 3128 return btrfs_next_old_item(root, p, 0); 3129 } 3130 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3131 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3132 int for_reloc); 3133 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3134 struct btrfs_root *root, 3135 struct extent_buffer *node, 3136 struct extent_buffer *parent); 3137 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3138 { 3139 /* 3140 * Do it this way so we only ever do one test_bit in the normal case. 3141 */ 3142 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3143 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3144 return 2; 3145 return 1; 3146 } 3147 return 0; 3148 } 3149 3150 /* 3151 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3152 * anything except sleeping. This function is used to check the status of 3153 * the fs. 3154 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3155 * since setting and checking for SB_RDONLY in the superblock's flags is not 3156 * atomic. 3157 */ 3158 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3159 { 3160 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3161 btrfs_fs_closing(fs_info); 3162 } 3163 3164 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3165 { 3166 sb->s_flags |= SB_RDONLY; 3167 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3168 } 3169 3170 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3171 { 3172 sb->s_flags &= ~SB_RDONLY; 3173 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3174 } 3175 3176 /* root-item.c */ 3177 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3178 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3179 int name_len); 3180 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3181 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3182 int name_len); 3183 int btrfs_del_root(struct btrfs_trans_handle *trans, 3184 const struct btrfs_key *key); 3185 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3186 const struct btrfs_key *key, 3187 struct btrfs_root_item *item); 3188 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3189 struct btrfs_root *root, 3190 struct btrfs_key *key, 3191 struct btrfs_root_item *item); 3192 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3193 struct btrfs_path *path, struct btrfs_root_item *root_item, 3194 struct btrfs_key *root_key); 3195 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3196 void btrfs_set_root_node(struct btrfs_root_item *item, 3197 struct extent_buffer *node); 3198 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3199 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3200 struct btrfs_root *root); 3201 3202 /* uuid-tree.c */ 3203 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3204 u64 subid); 3205 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3206 u64 subid); 3207 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3208 3209 /* dir-item.c */ 3210 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3211 const char *name, int name_len); 3212 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3213 int name_len, struct btrfs_inode *dir, 3214 struct btrfs_key *location, u8 type, u64 index); 3215 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3216 struct btrfs_root *root, 3217 struct btrfs_path *path, u64 dir, 3218 const char *name, int name_len, 3219 int mod); 3220 struct btrfs_dir_item * 3221 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3222 struct btrfs_root *root, 3223 struct btrfs_path *path, u64 dir, 3224 u64 index, const char *name, int name_len, 3225 int mod); 3226 struct btrfs_dir_item * 3227 btrfs_search_dir_index_item(struct btrfs_root *root, 3228 struct btrfs_path *path, u64 dirid, 3229 const char *name, int name_len); 3230 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3231 struct btrfs_root *root, 3232 struct btrfs_path *path, 3233 struct btrfs_dir_item *di); 3234 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3235 struct btrfs_root *root, 3236 struct btrfs_path *path, u64 objectid, 3237 const char *name, u16 name_len, 3238 const void *data, u16 data_len); 3239 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3240 struct btrfs_root *root, 3241 struct btrfs_path *path, u64 dir, 3242 const char *name, u16 name_len, 3243 int mod); 3244 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3245 struct btrfs_path *path, 3246 const char *name, 3247 int name_len); 3248 3249 /* orphan.c */ 3250 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3251 struct btrfs_root *root, u64 offset); 3252 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3253 struct btrfs_root *root, u64 offset); 3254 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3255 3256 /* file-item.c */ 3257 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3258 struct btrfs_root *root, u64 bytenr, u64 len); 3259 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3260 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3261 struct btrfs_root *root, 3262 u64 objectid, u64 pos, 3263 u64 disk_offset, u64 disk_num_bytes, 3264 u64 num_bytes, u64 offset, u64 ram_bytes, 3265 u8 compression, u8 encryption, u16 other_encoding); 3266 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3267 struct btrfs_root *root, 3268 struct btrfs_path *path, u64 objectid, 3269 u64 bytenr, int mod); 3270 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3271 struct btrfs_root *root, 3272 struct btrfs_ordered_sum *sums); 3273 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3274 u64 offset, bool one_ordered); 3275 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3276 struct list_head *list, int search_commit); 3277 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3278 const struct btrfs_path *path, 3279 struct btrfs_file_extent_item *fi, 3280 const bool new_inline, 3281 struct extent_map *em); 3282 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3283 u64 len); 3284 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3285 u64 len); 3286 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3287 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3288 3289 /* inode.c */ 3290 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num); 3291 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio, 3292 int mirror_num, enum btrfs_compression_type compress_type); 3293 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3294 u32 pgoff, u8 *csum, const u8 * const csum_expected); 3295 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3296 u32 bio_offset, struct page *page, u32 pgoff); 3297 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3298 u32 bio_offset, struct page *page, 3299 u64 start, u64 end); 3300 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3301 u32 bio_offset, struct page *page, u32 pgoff); 3302 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3303 u64 start, u64 len); 3304 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3305 u64 *orig_start, u64 *orig_block_len, 3306 u64 *ram_bytes, bool strict); 3307 3308 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3309 struct btrfs_inode *inode); 3310 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3311 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3312 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3313 struct btrfs_inode *dir, struct btrfs_inode *inode, 3314 const char *name, int name_len); 3315 int btrfs_add_link(struct btrfs_trans_handle *trans, 3316 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3317 const char *name, int name_len, int add_backref, u64 index); 3318 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3319 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3320 int front); 3321 3322 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3323 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3324 bool in_reclaim_context); 3325 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3326 unsigned int extra_bits, 3327 struct extent_state **cached_state); 3328 struct btrfs_new_inode_args { 3329 /* Input */ 3330 struct inode *dir; 3331 struct dentry *dentry; 3332 struct inode *inode; 3333 bool orphan; 3334 bool subvol; 3335 3336 /* 3337 * Output from btrfs_new_inode_prepare(), input to 3338 * btrfs_create_new_inode(). 3339 */ 3340 struct posix_acl *default_acl; 3341 struct posix_acl *acl; 3342 }; 3343 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 3344 unsigned int *trans_num_items); 3345 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 3346 struct btrfs_new_inode_args *args); 3347 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 3348 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, 3349 struct inode *dir); 3350 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3351 u32 bits); 3352 void btrfs_clear_delalloc_extent(struct inode *inode, 3353 struct extent_state *state, u32 bits); 3354 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3355 struct extent_state *other); 3356 void btrfs_split_delalloc_extent(struct inode *inode, 3357 struct extent_state *orig, u64 split); 3358 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3359 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3360 void btrfs_evict_inode(struct inode *inode); 3361 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3362 struct inode *btrfs_alloc_inode(struct super_block *sb); 3363 void btrfs_destroy_inode(struct inode *inode); 3364 void btrfs_free_inode(struct inode *inode); 3365 int btrfs_drop_inode(struct inode *inode); 3366 int __init btrfs_init_cachep(void); 3367 void __cold btrfs_destroy_cachep(void); 3368 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3369 struct btrfs_root *root, struct btrfs_path *path); 3370 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3371 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3372 struct page *page, size_t pg_offset, 3373 u64 start, u64 end); 3374 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3375 struct btrfs_root *root, struct btrfs_inode *inode); 3376 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3377 struct btrfs_root *root, struct btrfs_inode *inode); 3378 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3379 struct btrfs_inode *inode); 3380 int btrfs_orphan_cleanup(struct btrfs_root *root); 3381 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3382 void btrfs_add_delayed_iput(struct inode *inode); 3383 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3384 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3385 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3386 u64 start, u64 num_bytes, u64 min_size, 3387 loff_t actual_len, u64 *alloc_hint); 3388 int btrfs_prealloc_file_range_trans(struct inode *inode, 3389 struct btrfs_trans_handle *trans, int mode, 3390 u64 start, u64 num_bytes, u64 min_size, 3391 loff_t actual_len, u64 *alloc_hint); 3392 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3393 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3394 struct writeback_control *wbc); 3395 int btrfs_writepage_cow_fixup(struct page *page); 3396 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3397 struct page *page, u64 start, 3398 u64 end, bool uptodate); 3399 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 3400 int compress_type); 3401 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 3402 u64 file_offset, u64 disk_bytenr, 3403 u64 disk_io_size, 3404 struct page **pages); 3405 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 3406 struct btrfs_ioctl_encoded_io_args *encoded); 3407 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 3408 const struct btrfs_ioctl_encoded_io_args *encoded); 3409 3410 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before); 3411 3412 extern const struct dentry_operations btrfs_dentry_operations; 3413 3414 /* Inode locking type flags, by default the exclusive lock is taken */ 3415 #define BTRFS_ILOCK_SHARED (1U << 0) 3416 #define BTRFS_ILOCK_TRY (1U << 1) 3417 #define BTRFS_ILOCK_MMAP (1U << 2) 3418 3419 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3420 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3421 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3422 const u64 add_bytes, 3423 const u64 del_bytes); 3424 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 3425 3426 /* ioctl.c */ 3427 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3428 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3429 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3430 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3431 struct dentry *dentry, struct fileattr *fa); 3432 int btrfs_ioctl_get_supported_features(void __user *arg); 3433 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3434 int __pure btrfs_is_empty_uuid(u8 *uuid); 3435 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3436 struct btrfs_ioctl_defrag_range_args *range, 3437 u64 newer_than, unsigned long max_to_defrag); 3438 void btrfs_get_block_group_info(struct list_head *groups_list, 3439 struct btrfs_ioctl_space_info *space); 3440 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3441 struct btrfs_ioctl_balance_args *bargs); 3442 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3443 enum btrfs_exclusive_operation type); 3444 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3445 enum btrfs_exclusive_operation type); 3446 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3447 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3448 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 3449 enum btrfs_exclusive_operation op); 3450 3451 3452 /* file.c */ 3453 int __init btrfs_auto_defrag_init(void); 3454 void __cold btrfs_auto_defrag_exit(void); 3455 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3456 struct btrfs_inode *inode, u32 extent_thresh); 3457 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3458 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3459 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3460 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3461 int skip_pinned); 3462 extern const struct file_operations btrfs_file_operations; 3463 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3464 struct btrfs_root *root, struct btrfs_inode *inode, 3465 struct btrfs_drop_extents_args *args); 3466 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3467 struct btrfs_path *path, const u64 start, 3468 const u64 end, 3469 struct btrfs_replace_extent_info *extent_info, 3470 struct btrfs_trans_handle **trans_out); 3471 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3472 struct btrfs_inode *inode, u64 start, u64 end); 3473 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 3474 const struct btrfs_ioctl_encoded_io_args *encoded); 3475 int btrfs_release_file(struct inode *inode, struct file *file); 3476 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3477 size_t num_pages, loff_t pos, size_t write_bytes, 3478 struct extent_state **cached, bool noreserve); 3479 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3480 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3481 size_t *write_bytes); 3482 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3483 3484 /* tree-defrag.c */ 3485 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3486 struct btrfs_root *root); 3487 3488 /* super.c */ 3489 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3490 unsigned long new_flags); 3491 int btrfs_sync_fs(struct super_block *sb, int wait); 3492 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3493 u64 subvol_objectid); 3494 3495 static inline __printf(2, 3) __cold 3496 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3497 { 3498 } 3499 3500 #ifdef CONFIG_PRINTK_INDEX 3501 3502 #define btrfs_printk(fs_info, fmt, args...) \ 3503 do { \ 3504 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \ 3505 _btrfs_printk(fs_info, fmt, ##args); \ 3506 } while (0) 3507 3508 __printf(2, 3) 3509 __cold 3510 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3511 3512 #elif defined(CONFIG_PRINTK) 3513 3514 #define btrfs_printk(fs_info, fmt, args...) \ 3515 _btrfs_printk(fs_info, fmt, ##args) 3516 3517 __printf(2, 3) 3518 __cold 3519 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3520 3521 #else 3522 3523 #define btrfs_printk(fs_info, fmt, args...) \ 3524 btrfs_no_printk(fs_info, fmt, ##args) 3525 #endif 3526 3527 #define btrfs_emerg(fs_info, fmt, args...) \ 3528 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3529 #define btrfs_alert(fs_info, fmt, args...) \ 3530 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3531 #define btrfs_crit(fs_info, fmt, args...) \ 3532 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3533 #define btrfs_err(fs_info, fmt, args...) \ 3534 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3535 #define btrfs_warn(fs_info, fmt, args...) \ 3536 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3537 #define btrfs_notice(fs_info, fmt, args...) \ 3538 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3539 #define btrfs_info(fs_info, fmt, args...) \ 3540 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3541 3542 /* 3543 * Wrappers that use printk_in_rcu 3544 */ 3545 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3546 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3547 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3548 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3549 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3550 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3551 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3552 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3553 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3554 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3555 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3556 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3557 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3558 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3559 3560 /* 3561 * Wrappers that use a ratelimited printk_in_rcu 3562 */ 3563 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3564 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3565 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3566 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3567 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3568 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3569 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3570 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3571 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3572 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3573 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3574 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3575 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3576 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3577 3578 /* 3579 * Wrappers that use a ratelimited printk 3580 */ 3581 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3582 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3583 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3584 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3585 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3586 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3587 #define btrfs_err_rl(fs_info, fmt, args...) \ 3588 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3589 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3590 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3591 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3592 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3593 #define btrfs_info_rl(fs_info, fmt, args...) \ 3594 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3595 3596 #if defined(CONFIG_DYNAMIC_DEBUG) 3597 #define btrfs_debug(fs_info, fmt, args...) \ 3598 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3599 fs_info, KERN_DEBUG fmt, ##args) 3600 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3601 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3602 fs_info, KERN_DEBUG fmt, ##args) 3603 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3604 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3605 fs_info, KERN_DEBUG fmt, ##args) 3606 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3607 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3608 fs_info, KERN_DEBUG fmt, ##args) 3609 #elif defined(DEBUG) 3610 #define btrfs_debug(fs_info, fmt, args...) \ 3611 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3612 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3613 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3614 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3615 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3616 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3617 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3618 #else 3619 #define btrfs_debug(fs_info, fmt, args...) \ 3620 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3621 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3622 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3623 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3624 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3625 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3626 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3627 #endif 3628 3629 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3630 do { \ 3631 rcu_read_lock(); \ 3632 btrfs_printk(fs_info, fmt, ##args); \ 3633 rcu_read_unlock(); \ 3634 } while (0) 3635 3636 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3637 do { \ 3638 rcu_read_lock(); \ 3639 btrfs_no_printk(fs_info, fmt, ##args); \ 3640 rcu_read_unlock(); \ 3641 } while (0) 3642 3643 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3644 do { \ 3645 static DEFINE_RATELIMIT_STATE(_rs, \ 3646 DEFAULT_RATELIMIT_INTERVAL, \ 3647 DEFAULT_RATELIMIT_BURST); \ 3648 if (__ratelimit(&_rs)) \ 3649 btrfs_printk(fs_info, fmt, ##args); \ 3650 } while (0) 3651 3652 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3653 do { \ 3654 rcu_read_lock(); \ 3655 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3656 rcu_read_unlock(); \ 3657 } while (0) 3658 3659 #ifdef CONFIG_BTRFS_ASSERT 3660 __cold __noreturn 3661 static inline void assertfail(const char *expr, const char *file, int line) 3662 { 3663 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3664 BUG(); 3665 } 3666 3667 #define ASSERT(expr) \ 3668 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3669 3670 #else 3671 static inline void assertfail(const char *expr, const char* file, int line) { } 3672 #define ASSERT(expr) (void)(expr) 3673 #endif 3674 3675 #if BITS_PER_LONG == 32 3676 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3677 /* 3678 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3679 * addresses of extents. 3680 * 3681 * For 4K page size it's about 10T, for 64K it's 160T. 3682 */ 3683 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3684 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3685 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3686 #endif 3687 3688 /* 3689 * Get the correct offset inside the page of extent buffer. 3690 * 3691 * @eb: target extent buffer 3692 * @start: offset inside the extent buffer 3693 * 3694 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3695 */ 3696 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3697 unsigned long offset) 3698 { 3699 /* 3700 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3701 * to PAGE_SIZE, thus adding it won't cause any difference. 3702 * 3703 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3704 * to the eb, thus we have to take the eb->start into consideration. 3705 */ 3706 return offset_in_page(offset + eb->start); 3707 } 3708 3709 static inline unsigned long get_eb_page_index(unsigned long offset) 3710 { 3711 /* 3712 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3713 * 3714 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3715 * and have ensured that all tree blocks are contained in one page, 3716 * thus we always get index == 0. 3717 */ 3718 return offset >> PAGE_SHIFT; 3719 } 3720 3721 /* 3722 * Use that for functions that are conditionally exported for sanity tests but 3723 * otherwise static 3724 */ 3725 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3726 #define EXPORT_FOR_TESTS static 3727 #else 3728 #define EXPORT_FOR_TESTS 3729 #endif 3730 3731 __cold 3732 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3733 { 3734 btrfs_err(fs_info, 3735 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3736 } 3737 3738 __printf(5, 6) 3739 __cold 3740 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3741 unsigned int line, int errno, const char *fmt, ...); 3742 3743 const char * __attribute_const__ btrfs_decode_error(int errno); 3744 3745 __cold 3746 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3747 const char *function, 3748 unsigned int line, int errno); 3749 3750 /* 3751 * Call btrfs_abort_transaction as early as possible when an error condition is 3752 * detected, that way the exact line number is reported. 3753 */ 3754 #define btrfs_abort_transaction(trans, errno) \ 3755 do { \ 3756 /* Report first abort since mount */ \ 3757 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3758 &((trans)->fs_info->fs_state))) { \ 3759 if ((errno) != -EIO && (errno) != -EROFS) { \ 3760 WARN(1, KERN_DEBUG \ 3761 "BTRFS: Transaction aborted (error %d)\n", \ 3762 (errno)); \ 3763 } else { \ 3764 btrfs_debug((trans)->fs_info, \ 3765 "Transaction aborted (error %d)", \ 3766 (errno)); \ 3767 } \ 3768 } \ 3769 __btrfs_abort_transaction((trans), __func__, \ 3770 __LINE__, (errno)); \ 3771 } while (0) 3772 3773 #ifdef CONFIG_PRINTK_INDEX 3774 3775 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3776 do { \ 3777 printk_index_subsys_emit( \ 3778 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \ 3779 KERN_CRIT, fmt); \ 3780 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3781 (errno), fmt, ##args); \ 3782 } while (0) 3783 3784 #else 3785 3786 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3787 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3788 (errno), fmt, ##args) 3789 3790 #endif 3791 3792 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3793 &(fs_info)->fs_state))) 3794 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ 3795 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ 3796 &(fs_info)->fs_state))) 3797 3798 __printf(5, 6) 3799 __cold 3800 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3801 unsigned int line, int errno, const char *fmt, ...); 3802 /* 3803 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3804 * will panic(). Otherwise we BUG() here. 3805 */ 3806 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3807 do { \ 3808 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3809 BUG(); \ 3810 } while (0) 3811 3812 3813 /* compatibility and incompatibility defines */ 3814 3815 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3816 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3817 #opt) 3818 3819 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3820 u64 flag, const char* name) 3821 { 3822 struct btrfs_super_block *disk_super; 3823 u64 features; 3824 3825 disk_super = fs_info->super_copy; 3826 features = btrfs_super_incompat_flags(disk_super); 3827 if (!(features & flag)) { 3828 spin_lock(&fs_info->super_lock); 3829 features = btrfs_super_incompat_flags(disk_super); 3830 if (!(features & flag)) { 3831 features |= flag; 3832 btrfs_set_super_incompat_flags(disk_super, features); 3833 btrfs_info(fs_info, 3834 "setting incompat feature flag for %s (0x%llx)", 3835 name, flag); 3836 } 3837 spin_unlock(&fs_info->super_lock); 3838 } 3839 } 3840 3841 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3842 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3843 #opt) 3844 3845 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3846 u64 flag, const char* name) 3847 { 3848 struct btrfs_super_block *disk_super; 3849 u64 features; 3850 3851 disk_super = fs_info->super_copy; 3852 features = btrfs_super_incompat_flags(disk_super); 3853 if (features & flag) { 3854 spin_lock(&fs_info->super_lock); 3855 features = btrfs_super_incompat_flags(disk_super); 3856 if (features & flag) { 3857 features &= ~flag; 3858 btrfs_set_super_incompat_flags(disk_super, features); 3859 btrfs_info(fs_info, 3860 "clearing incompat feature flag for %s (0x%llx)", 3861 name, flag); 3862 } 3863 spin_unlock(&fs_info->super_lock); 3864 } 3865 } 3866 3867 #define btrfs_fs_incompat(fs_info, opt) \ 3868 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3869 3870 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3871 { 3872 struct btrfs_super_block *disk_super; 3873 disk_super = fs_info->super_copy; 3874 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3875 } 3876 3877 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3878 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3879 #opt) 3880 3881 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3882 u64 flag, const char *name) 3883 { 3884 struct btrfs_super_block *disk_super; 3885 u64 features; 3886 3887 disk_super = fs_info->super_copy; 3888 features = btrfs_super_compat_ro_flags(disk_super); 3889 if (!(features & flag)) { 3890 spin_lock(&fs_info->super_lock); 3891 features = btrfs_super_compat_ro_flags(disk_super); 3892 if (!(features & flag)) { 3893 features |= flag; 3894 btrfs_set_super_compat_ro_flags(disk_super, features); 3895 btrfs_info(fs_info, 3896 "setting compat-ro feature flag for %s (0x%llx)", 3897 name, flag); 3898 } 3899 spin_unlock(&fs_info->super_lock); 3900 } 3901 } 3902 3903 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3904 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3905 #opt) 3906 3907 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3908 u64 flag, const char *name) 3909 { 3910 struct btrfs_super_block *disk_super; 3911 u64 features; 3912 3913 disk_super = fs_info->super_copy; 3914 features = btrfs_super_compat_ro_flags(disk_super); 3915 if (features & flag) { 3916 spin_lock(&fs_info->super_lock); 3917 features = btrfs_super_compat_ro_flags(disk_super); 3918 if (features & flag) { 3919 features &= ~flag; 3920 btrfs_set_super_compat_ro_flags(disk_super, features); 3921 btrfs_info(fs_info, 3922 "clearing compat-ro feature flag for %s (0x%llx)", 3923 name, flag); 3924 } 3925 spin_unlock(&fs_info->super_lock); 3926 } 3927 } 3928 3929 #define btrfs_fs_compat_ro(fs_info, opt) \ 3930 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3931 3932 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3933 { 3934 struct btrfs_super_block *disk_super; 3935 disk_super = fs_info->super_copy; 3936 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3937 } 3938 3939 /* acl.c */ 3940 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3941 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3942 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3943 struct posix_acl *acl, int type); 3944 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode, 3945 struct posix_acl *acl, int type); 3946 #else 3947 #define btrfs_get_acl NULL 3948 #define btrfs_set_acl NULL 3949 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans, 3950 struct inode *inode, struct posix_acl *acl, 3951 int type) 3952 { 3953 return -EOPNOTSUPP; 3954 } 3955 #endif 3956 3957 /* relocation.c */ 3958 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3959 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3960 struct btrfs_root *root); 3961 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3962 struct btrfs_root *root); 3963 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info); 3964 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3965 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3966 struct btrfs_root *root, struct extent_buffer *buf, 3967 struct extent_buffer *cow); 3968 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3969 u64 *bytes_to_reserve); 3970 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3971 struct btrfs_pending_snapshot *pending); 3972 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3973 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3974 u64 bytenr); 3975 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3976 3977 /* scrub.c */ 3978 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3979 u64 end, struct btrfs_scrub_progress *progress, 3980 int readonly, int is_dev_replace); 3981 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3982 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3983 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3984 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3985 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3986 struct btrfs_scrub_progress *progress); 3987 static inline void btrfs_init_full_stripe_locks_tree( 3988 struct btrfs_full_stripe_locks_tree *locks_root) 3989 { 3990 locks_root->root = RB_ROOT; 3991 mutex_init(&locks_root->lock); 3992 } 3993 3994 /* dev-replace.c */ 3995 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3996 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3997 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3998 3999 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 4000 { 4001 btrfs_bio_counter_sub(fs_info, 1); 4002 } 4003 4004 static inline int is_fstree(u64 rootid) 4005 { 4006 if (rootid == BTRFS_FS_TREE_OBJECTID || 4007 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 4008 !btrfs_qgroup_level(rootid))) 4009 return 1; 4010 return 0; 4011 } 4012 4013 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 4014 { 4015 return signal_pending(current); 4016 } 4017 4018 /* verity.c */ 4019 #ifdef CONFIG_FS_VERITY 4020 4021 extern const struct fsverity_operations btrfs_verityops; 4022 int btrfs_drop_verity_items(struct btrfs_inode *inode); 4023 4024 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 4025 encryption, 8); 4026 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 4027 size, 64); 4028 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 4029 struct btrfs_verity_descriptor_item, encryption, 8); 4030 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 4031 struct btrfs_verity_descriptor_item, size, 64); 4032 4033 #else 4034 4035 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 4036 { 4037 return 0; 4038 } 4039 4040 #endif 4041 4042 /* Sanity test specific functions */ 4043 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4044 void btrfs_test_destroy_inode(struct inode *inode); 4045 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4046 { 4047 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 4048 } 4049 #else 4050 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4051 { 4052 return 0; 4053 } 4054 #endif 4055 4056 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 4057 { 4058 return fs_info->zone_size > 0; 4059 } 4060 4061 /* 4062 * Count how many fs_info->max_extent_size cover the @size 4063 */ 4064 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size) 4065 { 4066 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4067 if (!fs_info) 4068 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 4069 #endif 4070 4071 return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size); 4072 } 4073 4074 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 4075 { 4076 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 4077 } 4078 4079 /* 4080 * We use page status Private2 to indicate there is an ordered extent with 4081 * unfinished IO. 4082 * 4083 * Rename the Private2 accessors to Ordered, to improve readability. 4084 */ 4085 #define PageOrdered(page) PagePrivate2(page) 4086 #define SetPageOrdered(page) SetPagePrivate2(page) 4087 #define ClearPageOrdered(page) ClearPagePrivate2(page) 4088 #define folio_test_ordered(folio) folio_test_private_2(folio) 4089 #define folio_set_ordered(folio) folio_set_private_2(folio) 4090 #define folio_clear_ordered(folio) folio_clear_private_2(folio) 4091 4092 #endif 4093