xref: /openbmc/linux/fs/btrfs/ctree.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "ctree.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "print-tree.h"
15 #include "locking.h"
16 #include "volumes.h"
17 #include "qgroup.h"
18 #include "tree-mod-log.h"
19 
20 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
21 		      *root, struct btrfs_path *path, int level);
22 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
23 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
24 		      int data_size, int extend);
25 static int push_node_left(struct btrfs_trans_handle *trans,
26 			  struct extent_buffer *dst,
27 			  struct extent_buffer *src, int empty);
28 static int balance_node_right(struct btrfs_trans_handle *trans,
29 			      struct extent_buffer *dst_buf,
30 			      struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 		    int level, int slot);
33 
34 static const struct btrfs_csums {
35 	u16		size;
36 	const char	name[10];
37 	const char	driver[12];
38 } btrfs_csums[] = {
39 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
40 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
41 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
42 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
43 				     .driver = "blake2b-256" },
44 };
45 
46 int btrfs_super_csum_size(const struct btrfs_super_block *s)
47 {
48 	u16 t = btrfs_super_csum_type(s);
49 	/*
50 	 * csum type is validated at mount time
51 	 */
52 	return btrfs_csums[t].size;
53 }
54 
55 const char *btrfs_super_csum_name(u16 csum_type)
56 {
57 	/* csum type is validated at mount time */
58 	return btrfs_csums[csum_type].name;
59 }
60 
61 /*
62  * Return driver name if defined, otherwise the name that's also a valid driver
63  * name
64  */
65 const char *btrfs_super_csum_driver(u16 csum_type)
66 {
67 	/* csum type is validated at mount time */
68 	return btrfs_csums[csum_type].driver[0] ?
69 		btrfs_csums[csum_type].driver :
70 		btrfs_csums[csum_type].name;
71 }
72 
73 size_t __attribute_const__ btrfs_get_num_csums(void)
74 {
75 	return ARRAY_SIZE(btrfs_csums);
76 }
77 
78 struct btrfs_path *btrfs_alloc_path(void)
79 {
80 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
81 }
82 
83 /* this also releases the path */
84 void btrfs_free_path(struct btrfs_path *p)
85 {
86 	if (!p)
87 		return;
88 	btrfs_release_path(p);
89 	kmem_cache_free(btrfs_path_cachep, p);
90 }
91 
92 /*
93  * path release drops references on the extent buffers in the path
94  * and it drops any locks held by this path
95  *
96  * It is safe to call this on paths that no locks or extent buffers held.
97  */
98 noinline void btrfs_release_path(struct btrfs_path *p)
99 {
100 	int i;
101 
102 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
103 		p->slots[i] = 0;
104 		if (!p->nodes[i])
105 			continue;
106 		if (p->locks[i]) {
107 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
108 			p->locks[i] = 0;
109 		}
110 		free_extent_buffer(p->nodes[i]);
111 		p->nodes[i] = NULL;
112 	}
113 }
114 
115 /*
116  * safely gets a reference on the root node of a tree.  A lock
117  * is not taken, so a concurrent writer may put a different node
118  * at the root of the tree.  See btrfs_lock_root_node for the
119  * looping required.
120  *
121  * The extent buffer returned by this has a reference taken, so
122  * it won't disappear.  It may stop being the root of the tree
123  * at any time because there are no locks held.
124  */
125 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
126 {
127 	struct extent_buffer *eb;
128 
129 	while (1) {
130 		rcu_read_lock();
131 		eb = rcu_dereference(root->node);
132 
133 		/*
134 		 * RCU really hurts here, we could free up the root node because
135 		 * it was COWed but we may not get the new root node yet so do
136 		 * the inc_not_zero dance and if it doesn't work then
137 		 * synchronize_rcu and try again.
138 		 */
139 		if (atomic_inc_not_zero(&eb->refs)) {
140 			rcu_read_unlock();
141 			break;
142 		}
143 		rcu_read_unlock();
144 		synchronize_rcu();
145 	}
146 	return eb;
147 }
148 
149 /*
150  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
151  * just get put onto a simple dirty list.  Transaction walks this list to make
152  * sure they get properly updated on disk.
153  */
154 static void add_root_to_dirty_list(struct btrfs_root *root)
155 {
156 	struct btrfs_fs_info *fs_info = root->fs_info;
157 
158 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
159 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
160 		return;
161 
162 	spin_lock(&fs_info->trans_lock);
163 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
164 		/* Want the extent tree to be the last on the list */
165 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
166 			list_move_tail(&root->dirty_list,
167 				       &fs_info->dirty_cowonly_roots);
168 		else
169 			list_move(&root->dirty_list,
170 				  &fs_info->dirty_cowonly_roots);
171 	}
172 	spin_unlock(&fs_info->trans_lock);
173 }
174 
175 /*
176  * used by snapshot creation to make a copy of a root for a tree with
177  * a given objectid.  The buffer with the new root node is returned in
178  * cow_ret, and this func returns zero on success or a negative error code.
179  */
180 int btrfs_copy_root(struct btrfs_trans_handle *trans,
181 		      struct btrfs_root *root,
182 		      struct extent_buffer *buf,
183 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
184 {
185 	struct btrfs_fs_info *fs_info = root->fs_info;
186 	struct extent_buffer *cow;
187 	int ret = 0;
188 	int level;
189 	struct btrfs_disk_key disk_key;
190 
191 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 		trans->transid != fs_info->running_transaction->transid);
193 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
194 		trans->transid != root->last_trans);
195 
196 	level = btrfs_header_level(buf);
197 	if (level == 0)
198 		btrfs_item_key(buf, &disk_key, 0);
199 	else
200 		btrfs_node_key(buf, &disk_key, 0);
201 
202 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
203 				     &disk_key, level, buf->start, 0,
204 				     BTRFS_NESTING_NEW_ROOT);
205 	if (IS_ERR(cow))
206 		return PTR_ERR(cow);
207 
208 	copy_extent_buffer_full(cow, buf);
209 	btrfs_set_header_bytenr(cow, cow->start);
210 	btrfs_set_header_generation(cow, trans->transid);
211 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
212 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
213 				     BTRFS_HEADER_FLAG_RELOC);
214 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
215 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
216 	else
217 		btrfs_set_header_owner(cow, new_root_objectid);
218 
219 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
220 
221 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
222 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
223 		ret = btrfs_inc_ref(trans, root, cow, 1);
224 	else
225 		ret = btrfs_inc_ref(trans, root, cow, 0);
226 	if (ret) {
227 		btrfs_tree_unlock(cow);
228 		free_extent_buffer(cow);
229 		btrfs_abort_transaction(trans, ret);
230 		return ret;
231 	}
232 
233 	btrfs_mark_buffer_dirty(cow);
234 	*cow_ret = cow;
235 	return 0;
236 }
237 
238 /*
239  * check if the tree block can be shared by multiple trees
240  */
241 int btrfs_block_can_be_shared(struct btrfs_root *root,
242 			      struct extent_buffer *buf)
243 {
244 	/*
245 	 * Tree blocks not in shareable trees and tree roots are never shared.
246 	 * If a block was allocated after the last snapshot and the block was
247 	 * not allocated by tree relocation, we know the block is not shared.
248 	 */
249 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
250 	    buf != root->node && buf != root->commit_root &&
251 	    (btrfs_header_generation(buf) <=
252 	     btrfs_root_last_snapshot(&root->root_item) ||
253 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
254 		return 1;
255 
256 	return 0;
257 }
258 
259 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
260 				       struct btrfs_root *root,
261 				       struct extent_buffer *buf,
262 				       struct extent_buffer *cow,
263 				       int *last_ref)
264 {
265 	struct btrfs_fs_info *fs_info = root->fs_info;
266 	u64 refs;
267 	u64 owner;
268 	u64 flags;
269 	u64 new_flags = 0;
270 	int ret;
271 
272 	/*
273 	 * Backrefs update rules:
274 	 *
275 	 * Always use full backrefs for extent pointers in tree block
276 	 * allocated by tree relocation.
277 	 *
278 	 * If a shared tree block is no longer referenced by its owner
279 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
280 	 * use full backrefs for extent pointers in tree block.
281 	 *
282 	 * If a tree block is been relocating
283 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
284 	 * use full backrefs for extent pointers in tree block.
285 	 * The reason for this is some operations (such as drop tree)
286 	 * are only allowed for blocks use full backrefs.
287 	 */
288 
289 	if (btrfs_block_can_be_shared(root, buf)) {
290 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
291 					       btrfs_header_level(buf), 1,
292 					       &refs, &flags);
293 		if (ret)
294 			return ret;
295 		if (refs == 0) {
296 			ret = -EROFS;
297 			btrfs_handle_fs_error(fs_info, ret, NULL);
298 			return ret;
299 		}
300 	} else {
301 		refs = 1;
302 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
303 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
304 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
305 		else
306 			flags = 0;
307 	}
308 
309 	owner = btrfs_header_owner(buf);
310 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
311 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
312 
313 	if (refs > 1) {
314 		if ((owner == root->root_key.objectid ||
315 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
316 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
317 			ret = btrfs_inc_ref(trans, root, buf, 1);
318 			if (ret)
319 				return ret;
320 
321 			if (root->root_key.objectid ==
322 			    BTRFS_TREE_RELOC_OBJECTID) {
323 				ret = btrfs_dec_ref(trans, root, buf, 0);
324 				if (ret)
325 					return ret;
326 				ret = btrfs_inc_ref(trans, root, cow, 1);
327 				if (ret)
328 					return ret;
329 			}
330 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
331 		} else {
332 
333 			if (root->root_key.objectid ==
334 			    BTRFS_TREE_RELOC_OBJECTID)
335 				ret = btrfs_inc_ref(trans, root, cow, 1);
336 			else
337 				ret = btrfs_inc_ref(trans, root, cow, 0);
338 			if (ret)
339 				return ret;
340 		}
341 		if (new_flags != 0) {
342 			int level = btrfs_header_level(buf);
343 
344 			ret = btrfs_set_disk_extent_flags(trans, buf,
345 							  new_flags, level, 0);
346 			if (ret)
347 				return ret;
348 		}
349 	} else {
350 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
351 			if (root->root_key.objectid ==
352 			    BTRFS_TREE_RELOC_OBJECTID)
353 				ret = btrfs_inc_ref(trans, root, cow, 1);
354 			else
355 				ret = btrfs_inc_ref(trans, root, cow, 0);
356 			if (ret)
357 				return ret;
358 			ret = btrfs_dec_ref(trans, root, buf, 1);
359 			if (ret)
360 				return ret;
361 		}
362 		btrfs_clean_tree_block(buf);
363 		*last_ref = 1;
364 	}
365 	return 0;
366 }
367 
368 /*
369  * does the dirty work in cow of a single block.  The parent block (if
370  * supplied) is updated to point to the new cow copy.  The new buffer is marked
371  * dirty and returned locked.  If you modify the block it needs to be marked
372  * dirty again.
373  *
374  * search_start -- an allocation hint for the new block
375  *
376  * empty_size -- a hint that you plan on doing more cow.  This is the size in
377  * bytes the allocator should try to find free next to the block it returns.
378  * This is just a hint and may be ignored by the allocator.
379  */
380 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
381 			     struct btrfs_root *root,
382 			     struct extent_buffer *buf,
383 			     struct extent_buffer *parent, int parent_slot,
384 			     struct extent_buffer **cow_ret,
385 			     u64 search_start, u64 empty_size,
386 			     enum btrfs_lock_nesting nest)
387 {
388 	struct btrfs_fs_info *fs_info = root->fs_info;
389 	struct btrfs_disk_key disk_key;
390 	struct extent_buffer *cow;
391 	int level, ret;
392 	int last_ref = 0;
393 	int unlock_orig = 0;
394 	u64 parent_start = 0;
395 
396 	if (*cow_ret == buf)
397 		unlock_orig = 1;
398 
399 	btrfs_assert_tree_write_locked(buf);
400 
401 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
402 		trans->transid != fs_info->running_transaction->transid);
403 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
404 		trans->transid != root->last_trans);
405 
406 	level = btrfs_header_level(buf);
407 
408 	if (level == 0)
409 		btrfs_item_key(buf, &disk_key, 0);
410 	else
411 		btrfs_node_key(buf, &disk_key, 0);
412 
413 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
414 		parent_start = parent->start;
415 
416 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
417 				     root->root_key.objectid, &disk_key, level,
418 				     search_start, empty_size, nest);
419 	if (IS_ERR(cow))
420 		return PTR_ERR(cow);
421 
422 	/* cow is set to blocking by btrfs_init_new_buffer */
423 
424 	copy_extent_buffer_full(cow, buf);
425 	btrfs_set_header_bytenr(cow, cow->start);
426 	btrfs_set_header_generation(cow, trans->transid);
427 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429 				     BTRFS_HEADER_FLAG_RELOC);
430 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432 	else
433 		btrfs_set_header_owner(cow, root->root_key.objectid);
434 
435 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
436 
437 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
438 	if (ret) {
439 		btrfs_tree_unlock(cow);
440 		free_extent_buffer(cow);
441 		btrfs_abort_transaction(trans, ret);
442 		return ret;
443 	}
444 
445 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
446 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
447 		if (ret) {
448 			btrfs_tree_unlock(cow);
449 			free_extent_buffer(cow);
450 			btrfs_abort_transaction(trans, ret);
451 			return ret;
452 		}
453 	}
454 
455 	if (buf == root->node) {
456 		WARN_ON(parent && parent != buf);
457 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
458 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459 			parent_start = buf->start;
460 
461 		atomic_inc(&cow->refs);
462 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
463 		BUG_ON(ret < 0);
464 		rcu_assign_pointer(root->node, cow);
465 
466 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
467 				      parent_start, last_ref);
468 		free_extent_buffer(buf);
469 		add_root_to_dirty_list(root);
470 	} else {
471 		WARN_ON(trans->transid != btrfs_header_generation(parent));
472 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
473 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
474 		btrfs_set_node_blockptr(parent, parent_slot,
475 					cow->start);
476 		btrfs_set_node_ptr_generation(parent, parent_slot,
477 					      trans->transid);
478 		btrfs_mark_buffer_dirty(parent);
479 		if (last_ref) {
480 			ret = btrfs_tree_mod_log_free_eb(buf);
481 			if (ret) {
482 				btrfs_tree_unlock(cow);
483 				free_extent_buffer(cow);
484 				btrfs_abort_transaction(trans, ret);
485 				return ret;
486 			}
487 		}
488 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
489 				      parent_start, last_ref);
490 	}
491 	if (unlock_orig)
492 		btrfs_tree_unlock(buf);
493 	free_extent_buffer_stale(buf);
494 	btrfs_mark_buffer_dirty(cow);
495 	*cow_ret = cow;
496 	return 0;
497 }
498 
499 static inline int should_cow_block(struct btrfs_trans_handle *trans,
500 				   struct btrfs_root *root,
501 				   struct extent_buffer *buf)
502 {
503 	if (btrfs_is_testing(root->fs_info))
504 		return 0;
505 
506 	/* Ensure we can see the FORCE_COW bit */
507 	smp_mb__before_atomic();
508 
509 	/*
510 	 * We do not need to cow a block if
511 	 * 1) this block is not created or changed in this transaction;
512 	 * 2) this block does not belong to TREE_RELOC tree;
513 	 * 3) the root is not forced COW.
514 	 *
515 	 * What is forced COW:
516 	 *    when we create snapshot during committing the transaction,
517 	 *    after we've finished copying src root, we must COW the shared
518 	 *    block to ensure the metadata consistency.
519 	 */
520 	if (btrfs_header_generation(buf) == trans->transid &&
521 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
522 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
523 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
524 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
525 		return 0;
526 	return 1;
527 }
528 
529 /*
530  * cows a single block, see __btrfs_cow_block for the real work.
531  * This version of it has extra checks so that a block isn't COWed more than
532  * once per transaction, as long as it hasn't been written yet
533  */
534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
535 		    struct btrfs_root *root, struct extent_buffer *buf,
536 		    struct extent_buffer *parent, int parent_slot,
537 		    struct extent_buffer **cow_ret,
538 		    enum btrfs_lock_nesting nest)
539 {
540 	struct btrfs_fs_info *fs_info = root->fs_info;
541 	u64 search_start;
542 	int ret;
543 
544 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
545 		btrfs_err(fs_info,
546 			"COW'ing blocks on a fs root that's being dropped");
547 
548 	if (trans->transaction != fs_info->running_transaction)
549 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
550 		       trans->transid,
551 		       fs_info->running_transaction->transid);
552 
553 	if (trans->transid != fs_info->generation)
554 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
555 		       trans->transid, fs_info->generation);
556 
557 	if (!should_cow_block(trans, root, buf)) {
558 		*cow_ret = buf;
559 		return 0;
560 	}
561 
562 	search_start = buf->start & ~((u64)SZ_1G - 1);
563 
564 	/*
565 	 * Before CoWing this block for later modification, check if it's
566 	 * the subtree root and do the delayed subtree trace if needed.
567 	 *
568 	 * Also We don't care about the error, as it's handled internally.
569 	 */
570 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
571 	ret = __btrfs_cow_block(trans, root, buf, parent,
572 				 parent_slot, cow_ret, search_start, 0, nest);
573 
574 	trace_btrfs_cow_block(root, buf, *cow_ret);
575 
576 	return ret;
577 }
578 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
579 
580 /*
581  * helper function for defrag to decide if two blocks pointed to by a
582  * node are actually close by
583  */
584 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
585 {
586 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
587 		return 1;
588 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
589 		return 1;
590 	return 0;
591 }
592 
593 #ifdef __LITTLE_ENDIAN
594 
595 /*
596  * Compare two keys, on little-endian the disk order is same as CPU order and
597  * we can avoid the conversion.
598  */
599 static int comp_keys(const struct btrfs_disk_key *disk_key,
600 		     const struct btrfs_key *k2)
601 {
602 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
603 
604 	return btrfs_comp_cpu_keys(k1, k2);
605 }
606 
607 #else
608 
609 /*
610  * compare two keys in a memcmp fashion
611  */
612 static int comp_keys(const struct btrfs_disk_key *disk,
613 		     const struct btrfs_key *k2)
614 {
615 	struct btrfs_key k1;
616 
617 	btrfs_disk_key_to_cpu(&k1, disk);
618 
619 	return btrfs_comp_cpu_keys(&k1, k2);
620 }
621 #endif
622 
623 /*
624  * same as comp_keys only with two btrfs_key's
625  */
626 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
627 {
628 	if (k1->objectid > k2->objectid)
629 		return 1;
630 	if (k1->objectid < k2->objectid)
631 		return -1;
632 	if (k1->type > k2->type)
633 		return 1;
634 	if (k1->type < k2->type)
635 		return -1;
636 	if (k1->offset > k2->offset)
637 		return 1;
638 	if (k1->offset < k2->offset)
639 		return -1;
640 	return 0;
641 }
642 
643 /*
644  * this is used by the defrag code to go through all the
645  * leaves pointed to by a node and reallocate them so that
646  * disk order is close to key order
647  */
648 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
649 		       struct btrfs_root *root, struct extent_buffer *parent,
650 		       int start_slot, u64 *last_ret,
651 		       struct btrfs_key *progress)
652 {
653 	struct btrfs_fs_info *fs_info = root->fs_info;
654 	struct extent_buffer *cur;
655 	u64 blocknr;
656 	u64 search_start = *last_ret;
657 	u64 last_block = 0;
658 	u64 other;
659 	u32 parent_nritems;
660 	int end_slot;
661 	int i;
662 	int err = 0;
663 	u32 blocksize;
664 	int progress_passed = 0;
665 	struct btrfs_disk_key disk_key;
666 
667 	WARN_ON(trans->transaction != fs_info->running_transaction);
668 	WARN_ON(trans->transid != fs_info->generation);
669 
670 	parent_nritems = btrfs_header_nritems(parent);
671 	blocksize = fs_info->nodesize;
672 	end_slot = parent_nritems - 1;
673 
674 	if (parent_nritems <= 1)
675 		return 0;
676 
677 	for (i = start_slot; i <= end_slot; i++) {
678 		int close = 1;
679 
680 		btrfs_node_key(parent, &disk_key, i);
681 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
682 			continue;
683 
684 		progress_passed = 1;
685 		blocknr = btrfs_node_blockptr(parent, i);
686 		if (last_block == 0)
687 			last_block = blocknr;
688 
689 		if (i > 0) {
690 			other = btrfs_node_blockptr(parent, i - 1);
691 			close = close_blocks(blocknr, other, blocksize);
692 		}
693 		if (!close && i < end_slot) {
694 			other = btrfs_node_blockptr(parent, i + 1);
695 			close = close_blocks(blocknr, other, blocksize);
696 		}
697 		if (close) {
698 			last_block = blocknr;
699 			continue;
700 		}
701 
702 		cur = btrfs_read_node_slot(parent, i);
703 		if (IS_ERR(cur))
704 			return PTR_ERR(cur);
705 		if (search_start == 0)
706 			search_start = last_block;
707 
708 		btrfs_tree_lock(cur);
709 		err = __btrfs_cow_block(trans, root, cur, parent, i,
710 					&cur, search_start,
711 					min(16 * blocksize,
712 					    (end_slot - i) * blocksize),
713 					BTRFS_NESTING_COW);
714 		if (err) {
715 			btrfs_tree_unlock(cur);
716 			free_extent_buffer(cur);
717 			break;
718 		}
719 		search_start = cur->start;
720 		last_block = cur->start;
721 		*last_ret = search_start;
722 		btrfs_tree_unlock(cur);
723 		free_extent_buffer(cur);
724 	}
725 	return err;
726 }
727 
728 /*
729  * Search for a key in the given extent_buffer.
730  *
731  * The lower boundary for the search is specified by the slot number @low. Use a
732  * value of 0 to search over the whole extent buffer.
733  *
734  * The slot in the extent buffer is returned via @slot. If the key exists in the
735  * extent buffer, then @slot will point to the slot where the key is, otherwise
736  * it points to the slot where you would insert the key.
737  *
738  * Slot may point to the total number of items (i.e. one position beyond the last
739  * key) if the key is bigger than the last key in the extent buffer.
740  */
741 static noinline int generic_bin_search(struct extent_buffer *eb, int low,
742 				       const struct btrfs_key *key, int *slot)
743 {
744 	unsigned long p;
745 	int item_size;
746 	int high = btrfs_header_nritems(eb);
747 	int ret;
748 	const int key_size = sizeof(struct btrfs_disk_key);
749 
750 	if (low > high) {
751 		btrfs_err(eb->fs_info,
752 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
753 			  __func__, low, high, eb->start,
754 			  btrfs_header_owner(eb), btrfs_header_level(eb));
755 		return -EINVAL;
756 	}
757 
758 	if (btrfs_header_level(eb) == 0) {
759 		p = offsetof(struct btrfs_leaf, items);
760 		item_size = sizeof(struct btrfs_item);
761 	} else {
762 		p = offsetof(struct btrfs_node, ptrs);
763 		item_size = sizeof(struct btrfs_key_ptr);
764 	}
765 
766 	while (low < high) {
767 		unsigned long oip;
768 		unsigned long offset;
769 		struct btrfs_disk_key *tmp;
770 		struct btrfs_disk_key unaligned;
771 		int mid;
772 
773 		mid = (low + high) / 2;
774 		offset = p + mid * item_size;
775 		oip = offset_in_page(offset);
776 
777 		if (oip + key_size <= PAGE_SIZE) {
778 			const unsigned long idx = get_eb_page_index(offset);
779 			char *kaddr = page_address(eb->pages[idx]);
780 
781 			oip = get_eb_offset_in_page(eb, offset);
782 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
783 		} else {
784 			read_extent_buffer(eb, &unaligned, offset, key_size);
785 			tmp = &unaligned;
786 		}
787 
788 		ret = comp_keys(tmp, key);
789 
790 		if (ret < 0)
791 			low = mid + 1;
792 		else if (ret > 0)
793 			high = mid;
794 		else {
795 			*slot = mid;
796 			return 0;
797 		}
798 	}
799 	*slot = low;
800 	return 1;
801 }
802 
803 /*
804  * Simple binary search on an extent buffer. Works for both leaves and nodes, and
805  * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
806  */
807 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
808 		     int *slot)
809 {
810 	return generic_bin_search(eb, 0, key, slot);
811 }
812 
813 static void root_add_used(struct btrfs_root *root, u32 size)
814 {
815 	spin_lock(&root->accounting_lock);
816 	btrfs_set_root_used(&root->root_item,
817 			    btrfs_root_used(&root->root_item) + size);
818 	spin_unlock(&root->accounting_lock);
819 }
820 
821 static void root_sub_used(struct btrfs_root *root, u32 size)
822 {
823 	spin_lock(&root->accounting_lock);
824 	btrfs_set_root_used(&root->root_item,
825 			    btrfs_root_used(&root->root_item) - size);
826 	spin_unlock(&root->accounting_lock);
827 }
828 
829 /* given a node and slot number, this reads the blocks it points to.  The
830  * extent buffer is returned with a reference taken (but unlocked).
831  */
832 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
833 					   int slot)
834 {
835 	int level = btrfs_header_level(parent);
836 	struct extent_buffer *eb;
837 	struct btrfs_key first_key;
838 
839 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
840 		return ERR_PTR(-ENOENT);
841 
842 	BUG_ON(level == 0);
843 
844 	btrfs_node_key_to_cpu(parent, &first_key, slot);
845 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
846 			     btrfs_header_owner(parent),
847 			     btrfs_node_ptr_generation(parent, slot),
848 			     level - 1, &first_key);
849 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
850 		free_extent_buffer(eb);
851 		eb = ERR_PTR(-EIO);
852 	}
853 
854 	return eb;
855 }
856 
857 /*
858  * node level balancing, used to make sure nodes are in proper order for
859  * item deletion.  We balance from the top down, so we have to make sure
860  * that a deletion won't leave an node completely empty later on.
861  */
862 static noinline int balance_level(struct btrfs_trans_handle *trans,
863 			 struct btrfs_root *root,
864 			 struct btrfs_path *path, int level)
865 {
866 	struct btrfs_fs_info *fs_info = root->fs_info;
867 	struct extent_buffer *right = NULL;
868 	struct extent_buffer *mid;
869 	struct extent_buffer *left = NULL;
870 	struct extent_buffer *parent = NULL;
871 	int ret = 0;
872 	int wret;
873 	int pslot;
874 	int orig_slot = path->slots[level];
875 	u64 orig_ptr;
876 
877 	ASSERT(level > 0);
878 
879 	mid = path->nodes[level];
880 
881 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
882 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
883 
884 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
885 
886 	if (level < BTRFS_MAX_LEVEL - 1) {
887 		parent = path->nodes[level + 1];
888 		pslot = path->slots[level + 1];
889 	}
890 
891 	/*
892 	 * deal with the case where there is only one pointer in the root
893 	 * by promoting the node below to a root
894 	 */
895 	if (!parent) {
896 		struct extent_buffer *child;
897 
898 		if (btrfs_header_nritems(mid) != 1)
899 			return 0;
900 
901 		/* promote the child to a root */
902 		child = btrfs_read_node_slot(mid, 0);
903 		if (IS_ERR(child)) {
904 			ret = PTR_ERR(child);
905 			btrfs_handle_fs_error(fs_info, ret, NULL);
906 			goto enospc;
907 		}
908 
909 		btrfs_tree_lock(child);
910 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
911 				      BTRFS_NESTING_COW);
912 		if (ret) {
913 			btrfs_tree_unlock(child);
914 			free_extent_buffer(child);
915 			goto enospc;
916 		}
917 
918 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
919 		BUG_ON(ret < 0);
920 		rcu_assign_pointer(root->node, child);
921 
922 		add_root_to_dirty_list(root);
923 		btrfs_tree_unlock(child);
924 
925 		path->locks[level] = 0;
926 		path->nodes[level] = NULL;
927 		btrfs_clean_tree_block(mid);
928 		btrfs_tree_unlock(mid);
929 		/* once for the path */
930 		free_extent_buffer(mid);
931 
932 		root_sub_used(root, mid->len);
933 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
934 		/* once for the root ptr */
935 		free_extent_buffer_stale(mid);
936 		return 0;
937 	}
938 	if (btrfs_header_nritems(mid) >
939 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
940 		return 0;
941 
942 	left = btrfs_read_node_slot(parent, pslot - 1);
943 	if (IS_ERR(left))
944 		left = NULL;
945 
946 	if (left) {
947 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
948 		wret = btrfs_cow_block(trans, root, left,
949 				       parent, pslot - 1, &left,
950 				       BTRFS_NESTING_LEFT_COW);
951 		if (wret) {
952 			ret = wret;
953 			goto enospc;
954 		}
955 	}
956 
957 	right = btrfs_read_node_slot(parent, pslot + 1);
958 	if (IS_ERR(right))
959 		right = NULL;
960 
961 	if (right) {
962 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
963 		wret = btrfs_cow_block(trans, root, right,
964 				       parent, pslot + 1, &right,
965 				       BTRFS_NESTING_RIGHT_COW);
966 		if (wret) {
967 			ret = wret;
968 			goto enospc;
969 		}
970 	}
971 
972 	/* first, try to make some room in the middle buffer */
973 	if (left) {
974 		orig_slot += btrfs_header_nritems(left);
975 		wret = push_node_left(trans, left, mid, 1);
976 		if (wret < 0)
977 			ret = wret;
978 	}
979 
980 	/*
981 	 * then try to empty the right most buffer into the middle
982 	 */
983 	if (right) {
984 		wret = push_node_left(trans, mid, right, 1);
985 		if (wret < 0 && wret != -ENOSPC)
986 			ret = wret;
987 		if (btrfs_header_nritems(right) == 0) {
988 			btrfs_clean_tree_block(right);
989 			btrfs_tree_unlock(right);
990 			del_ptr(root, path, level + 1, pslot + 1);
991 			root_sub_used(root, right->len);
992 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
993 					      0, 1);
994 			free_extent_buffer_stale(right);
995 			right = NULL;
996 		} else {
997 			struct btrfs_disk_key right_key;
998 			btrfs_node_key(right, &right_key, 0);
999 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1000 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1001 			BUG_ON(ret < 0);
1002 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1003 			btrfs_mark_buffer_dirty(parent);
1004 		}
1005 	}
1006 	if (btrfs_header_nritems(mid) == 1) {
1007 		/*
1008 		 * we're not allowed to leave a node with one item in the
1009 		 * tree during a delete.  A deletion from lower in the tree
1010 		 * could try to delete the only pointer in this node.
1011 		 * So, pull some keys from the left.
1012 		 * There has to be a left pointer at this point because
1013 		 * otherwise we would have pulled some pointers from the
1014 		 * right
1015 		 */
1016 		if (!left) {
1017 			ret = -EROFS;
1018 			btrfs_handle_fs_error(fs_info, ret, NULL);
1019 			goto enospc;
1020 		}
1021 		wret = balance_node_right(trans, mid, left);
1022 		if (wret < 0) {
1023 			ret = wret;
1024 			goto enospc;
1025 		}
1026 		if (wret == 1) {
1027 			wret = push_node_left(trans, left, mid, 1);
1028 			if (wret < 0)
1029 				ret = wret;
1030 		}
1031 		BUG_ON(wret == 1);
1032 	}
1033 	if (btrfs_header_nritems(mid) == 0) {
1034 		btrfs_clean_tree_block(mid);
1035 		btrfs_tree_unlock(mid);
1036 		del_ptr(root, path, level + 1, pslot);
1037 		root_sub_used(root, mid->len);
1038 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1039 		free_extent_buffer_stale(mid);
1040 		mid = NULL;
1041 	} else {
1042 		/* update the parent key to reflect our changes */
1043 		struct btrfs_disk_key mid_key;
1044 		btrfs_node_key(mid, &mid_key, 0);
1045 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1046 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1047 		BUG_ON(ret < 0);
1048 		btrfs_set_node_key(parent, &mid_key, pslot);
1049 		btrfs_mark_buffer_dirty(parent);
1050 	}
1051 
1052 	/* update the path */
1053 	if (left) {
1054 		if (btrfs_header_nritems(left) > orig_slot) {
1055 			atomic_inc(&left->refs);
1056 			/* left was locked after cow */
1057 			path->nodes[level] = left;
1058 			path->slots[level + 1] -= 1;
1059 			path->slots[level] = orig_slot;
1060 			if (mid) {
1061 				btrfs_tree_unlock(mid);
1062 				free_extent_buffer(mid);
1063 			}
1064 		} else {
1065 			orig_slot -= btrfs_header_nritems(left);
1066 			path->slots[level] = orig_slot;
1067 		}
1068 	}
1069 	/* double check we haven't messed things up */
1070 	if (orig_ptr !=
1071 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1072 		BUG();
1073 enospc:
1074 	if (right) {
1075 		btrfs_tree_unlock(right);
1076 		free_extent_buffer(right);
1077 	}
1078 	if (left) {
1079 		if (path->nodes[level] != left)
1080 			btrfs_tree_unlock(left);
1081 		free_extent_buffer(left);
1082 	}
1083 	return ret;
1084 }
1085 
1086 /* Node balancing for insertion.  Here we only split or push nodes around
1087  * when they are completely full.  This is also done top down, so we
1088  * have to be pessimistic.
1089  */
1090 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1091 					  struct btrfs_root *root,
1092 					  struct btrfs_path *path, int level)
1093 {
1094 	struct btrfs_fs_info *fs_info = root->fs_info;
1095 	struct extent_buffer *right = NULL;
1096 	struct extent_buffer *mid;
1097 	struct extent_buffer *left = NULL;
1098 	struct extent_buffer *parent = NULL;
1099 	int ret = 0;
1100 	int wret;
1101 	int pslot;
1102 	int orig_slot = path->slots[level];
1103 
1104 	if (level == 0)
1105 		return 1;
1106 
1107 	mid = path->nodes[level];
1108 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1109 
1110 	if (level < BTRFS_MAX_LEVEL - 1) {
1111 		parent = path->nodes[level + 1];
1112 		pslot = path->slots[level + 1];
1113 	}
1114 
1115 	if (!parent)
1116 		return 1;
1117 
1118 	left = btrfs_read_node_slot(parent, pslot - 1);
1119 	if (IS_ERR(left))
1120 		left = NULL;
1121 
1122 	/* first, try to make some room in the middle buffer */
1123 	if (left) {
1124 		u32 left_nr;
1125 
1126 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1127 
1128 		left_nr = btrfs_header_nritems(left);
1129 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1130 			wret = 1;
1131 		} else {
1132 			ret = btrfs_cow_block(trans, root, left, parent,
1133 					      pslot - 1, &left,
1134 					      BTRFS_NESTING_LEFT_COW);
1135 			if (ret)
1136 				wret = 1;
1137 			else {
1138 				wret = push_node_left(trans, left, mid, 0);
1139 			}
1140 		}
1141 		if (wret < 0)
1142 			ret = wret;
1143 		if (wret == 0) {
1144 			struct btrfs_disk_key disk_key;
1145 			orig_slot += left_nr;
1146 			btrfs_node_key(mid, &disk_key, 0);
1147 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1148 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1149 			BUG_ON(ret < 0);
1150 			btrfs_set_node_key(parent, &disk_key, pslot);
1151 			btrfs_mark_buffer_dirty(parent);
1152 			if (btrfs_header_nritems(left) > orig_slot) {
1153 				path->nodes[level] = left;
1154 				path->slots[level + 1] -= 1;
1155 				path->slots[level] = orig_slot;
1156 				btrfs_tree_unlock(mid);
1157 				free_extent_buffer(mid);
1158 			} else {
1159 				orig_slot -=
1160 					btrfs_header_nritems(left);
1161 				path->slots[level] = orig_slot;
1162 				btrfs_tree_unlock(left);
1163 				free_extent_buffer(left);
1164 			}
1165 			return 0;
1166 		}
1167 		btrfs_tree_unlock(left);
1168 		free_extent_buffer(left);
1169 	}
1170 	right = btrfs_read_node_slot(parent, pslot + 1);
1171 	if (IS_ERR(right))
1172 		right = NULL;
1173 
1174 	/*
1175 	 * then try to empty the right most buffer into the middle
1176 	 */
1177 	if (right) {
1178 		u32 right_nr;
1179 
1180 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1181 
1182 		right_nr = btrfs_header_nritems(right);
1183 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1184 			wret = 1;
1185 		} else {
1186 			ret = btrfs_cow_block(trans, root, right,
1187 					      parent, pslot + 1,
1188 					      &right, BTRFS_NESTING_RIGHT_COW);
1189 			if (ret)
1190 				wret = 1;
1191 			else {
1192 				wret = balance_node_right(trans, right, mid);
1193 			}
1194 		}
1195 		if (wret < 0)
1196 			ret = wret;
1197 		if (wret == 0) {
1198 			struct btrfs_disk_key disk_key;
1199 
1200 			btrfs_node_key(right, &disk_key, 0);
1201 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1202 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1203 			BUG_ON(ret < 0);
1204 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1205 			btrfs_mark_buffer_dirty(parent);
1206 
1207 			if (btrfs_header_nritems(mid) <= orig_slot) {
1208 				path->nodes[level] = right;
1209 				path->slots[level + 1] += 1;
1210 				path->slots[level] = orig_slot -
1211 					btrfs_header_nritems(mid);
1212 				btrfs_tree_unlock(mid);
1213 				free_extent_buffer(mid);
1214 			} else {
1215 				btrfs_tree_unlock(right);
1216 				free_extent_buffer(right);
1217 			}
1218 			return 0;
1219 		}
1220 		btrfs_tree_unlock(right);
1221 		free_extent_buffer(right);
1222 	}
1223 	return 1;
1224 }
1225 
1226 /*
1227  * readahead one full node of leaves, finding things that are close
1228  * to the block in 'slot', and triggering ra on them.
1229  */
1230 static void reada_for_search(struct btrfs_fs_info *fs_info,
1231 			     struct btrfs_path *path,
1232 			     int level, int slot, u64 objectid)
1233 {
1234 	struct extent_buffer *node;
1235 	struct btrfs_disk_key disk_key;
1236 	u32 nritems;
1237 	u64 search;
1238 	u64 target;
1239 	u64 nread = 0;
1240 	u64 nread_max;
1241 	u32 nr;
1242 	u32 blocksize;
1243 	u32 nscan = 0;
1244 
1245 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1246 		return;
1247 
1248 	if (!path->nodes[level])
1249 		return;
1250 
1251 	node = path->nodes[level];
1252 
1253 	/*
1254 	 * Since the time between visiting leaves is much shorter than the time
1255 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1256 	 * much IO at once (possibly random).
1257 	 */
1258 	if (path->reada == READA_FORWARD_ALWAYS) {
1259 		if (level > 1)
1260 			nread_max = node->fs_info->nodesize;
1261 		else
1262 			nread_max = SZ_128K;
1263 	} else {
1264 		nread_max = SZ_64K;
1265 	}
1266 
1267 	search = btrfs_node_blockptr(node, slot);
1268 	blocksize = fs_info->nodesize;
1269 	if (path->reada != READA_FORWARD_ALWAYS) {
1270 		struct extent_buffer *eb;
1271 
1272 		eb = find_extent_buffer(fs_info, search);
1273 		if (eb) {
1274 			free_extent_buffer(eb);
1275 			return;
1276 		}
1277 	}
1278 
1279 	target = search;
1280 
1281 	nritems = btrfs_header_nritems(node);
1282 	nr = slot;
1283 
1284 	while (1) {
1285 		if (path->reada == READA_BACK) {
1286 			if (nr == 0)
1287 				break;
1288 			nr--;
1289 		} else if (path->reada == READA_FORWARD ||
1290 			   path->reada == READA_FORWARD_ALWAYS) {
1291 			nr++;
1292 			if (nr >= nritems)
1293 				break;
1294 		}
1295 		if (path->reada == READA_BACK && objectid) {
1296 			btrfs_node_key(node, &disk_key, nr);
1297 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1298 				break;
1299 		}
1300 		search = btrfs_node_blockptr(node, nr);
1301 		if (path->reada == READA_FORWARD_ALWAYS ||
1302 		    (search <= target && target - search <= 65536) ||
1303 		    (search > target && search - target <= 65536)) {
1304 			btrfs_readahead_node_child(node, nr);
1305 			nread += blocksize;
1306 		}
1307 		nscan++;
1308 		if (nread > nread_max || nscan > 32)
1309 			break;
1310 	}
1311 }
1312 
1313 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1314 {
1315 	struct extent_buffer *parent;
1316 	int slot;
1317 	int nritems;
1318 
1319 	parent = path->nodes[level + 1];
1320 	if (!parent)
1321 		return;
1322 
1323 	nritems = btrfs_header_nritems(parent);
1324 	slot = path->slots[level + 1];
1325 
1326 	if (slot > 0)
1327 		btrfs_readahead_node_child(parent, slot - 1);
1328 	if (slot + 1 < nritems)
1329 		btrfs_readahead_node_child(parent, slot + 1);
1330 }
1331 
1332 
1333 /*
1334  * when we walk down the tree, it is usually safe to unlock the higher layers
1335  * in the tree.  The exceptions are when our path goes through slot 0, because
1336  * operations on the tree might require changing key pointers higher up in the
1337  * tree.
1338  *
1339  * callers might also have set path->keep_locks, which tells this code to keep
1340  * the lock if the path points to the last slot in the block.  This is part of
1341  * walking through the tree, and selecting the next slot in the higher block.
1342  *
1343  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1344  * if lowest_unlock is 1, level 0 won't be unlocked
1345  */
1346 static noinline void unlock_up(struct btrfs_path *path, int level,
1347 			       int lowest_unlock, int min_write_lock_level,
1348 			       int *write_lock_level)
1349 {
1350 	int i;
1351 	int skip_level = level;
1352 	bool check_skip = true;
1353 
1354 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1355 		if (!path->nodes[i])
1356 			break;
1357 		if (!path->locks[i])
1358 			break;
1359 
1360 		if (check_skip) {
1361 			if (path->slots[i] == 0) {
1362 				skip_level = i + 1;
1363 				continue;
1364 			}
1365 
1366 			if (path->keep_locks) {
1367 				u32 nritems;
1368 
1369 				nritems = btrfs_header_nritems(path->nodes[i]);
1370 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1371 					skip_level = i + 1;
1372 					continue;
1373 				}
1374 			}
1375 		}
1376 
1377 		if (i >= lowest_unlock && i > skip_level) {
1378 			check_skip = false;
1379 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1380 			path->locks[i] = 0;
1381 			if (write_lock_level &&
1382 			    i > min_write_lock_level &&
1383 			    i <= *write_lock_level) {
1384 				*write_lock_level = i - 1;
1385 			}
1386 		}
1387 	}
1388 }
1389 
1390 /*
1391  * helper function for btrfs_search_slot.  The goal is to find a block
1392  * in cache without setting the path to blocking.  If we find the block
1393  * we return zero and the path is unchanged.
1394  *
1395  * If we can't find the block, we set the path blocking and do some
1396  * reada.  -EAGAIN is returned and the search must be repeated.
1397  */
1398 static int
1399 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1400 		      struct extent_buffer **eb_ret, int level, int slot,
1401 		      const struct btrfs_key *key)
1402 {
1403 	struct btrfs_fs_info *fs_info = root->fs_info;
1404 	u64 blocknr;
1405 	u64 gen;
1406 	struct extent_buffer *tmp;
1407 	struct btrfs_key first_key;
1408 	int ret;
1409 	int parent_level;
1410 
1411 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1412 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1413 	parent_level = btrfs_header_level(*eb_ret);
1414 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1415 
1416 	tmp = find_extent_buffer(fs_info, blocknr);
1417 	if (tmp) {
1418 		if (p->reada == READA_FORWARD_ALWAYS)
1419 			reada_for_search(fs_info, p, level, slot, key->objectid);
1420 
1421 		/* first we do an atomic uptodate check */
1422 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1423 			/*
1424 			 * Do extra check for first_key, eb can be stale due to
1425 			 * being cached, read from scrub, or have multiple
1426 			 * parents (shared tree blocks).
1427 			 */
1428 			if (btrfs_verify_level_key(tmp,
1429 					parent_level - 1, &first_key, gen)) {
1430 				free_extent_buffer(tmp);
1431 				return -EUCLEAN;
1432 			}
1433 			*eb_ret = tmp;
1434 			return 0;
1435 		}
1436 
1437 		/* now we're allowed to do a blocking uptodate check */
1438 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1439 		if (!ret) {
1440 			*eb_ret = tmp;
1441 			return 0;
1442 		}
1443 		free_extent_buffer(tmp);
1444 		btrfs_release_path(p);
1445 		return -EIO;
1446 	}
1447 
1448 	/*
1449 	 * reduce lock contention at high levels
1450 	 * of the btree by dropping locks before
1451 	 * we read.  Don't release the lock on the current
1452 	 * level because we need to walk this node to figure
1453 	 * out which blocks to read.
1454 	 */
1455 	btrfs_unlock_up_safe(p, level + 1);
1456 
1457 	if (p->reada != READA_NONE)
1458 		reada_for_search(fs_info, p, level, slot, key->objectid);
1459 
1460 	ret = -EAGAIN;
1461 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1462 			      gen, parent_level - 1, &first_key);
1463 	if (!IS_ERR(tmp)) {
1464 		/*
1465 		 * If the read above didn't mark this buffer up to date,
1466 		 * it will never end up being up to date.  Set ret to EIO now
1467 		 * and give up so that our caller doesn't loop forever
1468 		 * on our EAGAINs.
1469 		 */
1470 		if (!extent_buffer_uptodate(tmp))
1471 			ret = -EIO;
1472 		free_extent_buffer(tmp);
1473 	} else {
1474 		ret = PTR_ERR(tmp);
1475 	}
1476 
1477 	btrfs_release_path(p);
1478 	return ret;
1479 }
1480 
1481 /*
1482  * helper function for btrfs_search_slot.  This does all of the checks
1483  * for node-level blocks and does any balancing required based on
1484  * the ins_len.
1485  *
1486  * If no extra work was required, zero is returned.  If we had to
1487  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1488  * start over
1489  */
1490 static int
1491 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1492 		       struct btrfs_root *root, struct btrfs_path *p,
1493 		       struct extent_buffer *b, int level, int ins_len,
1494 		       int *write_lock_level)
1495 {
1496 	struct btrfs_fs_info *fs_info = root->fs_info;
1497 	int ret = 0;
1498 
1499 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1500 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1501 
1502 		if (*write_lock_level < level + 1) {
1503 			*write_lock_level = level + 1;
1504 			btrfs_release_path(p);
1505 			return -EAGAIN;
1506 		}
1507 
1508 		reada_for_balance(p, level);
1509 		ret = split_node(trans, root, p, level);
1510 
1511 		b = p->nodes[level];
1512 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1513 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1514 
1515 		if (*write_lock_level < level + 1) {
1516 			*write_lock_level = level + 1;
1517 			btrfs_release_path(p);
1518 			return -EAGAIN;
1519 		}
1520 
1521 		reada_for_balance(p, level);
1522 		ret = balance_level(trans, root, p, level);
1523 		if (ret)
1524 			return ret;
1525 
1526 		b = p->nodes[level];
1527 		if (!b) {
1528 			btrfs_release_path(p);
1529 			return -EAGAIN;
1530 		}
1531 		BUG_ON(btrfs_header_nritems(b) == 1);
1532 	}
1533 	return ret;
1534 }
1535 
1536 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1537 		u64 iobjectid, u64 ioff, u8 key_type,
1538 		struct btrfs_key *found_key)
1539 {
1540 	int ret;
1541 	struct btrfs_key key;
1542 	struct extent_buffer *eb;
1543 
1544 	ASSERT(path);
1545 	ASSERT(found_key);
1546 
1547 	key.type = key_type;
1548 	key.objectid = iobjectid;
1549 	key.offset = ioff;
1550 
1551 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1552 	if (ret < 0)
1553 		return ret;
1554 
1555 	eb = path->nodes[0];
1556 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1557 		ret = btrfs_next_leaf(fs_root, path);
1558 		if (ret)
1559 			return ret;
1560 		eb = path->nodes[0];
1561 	}
1562 
1563 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1564 	if (found_key->type != key.type ||
1565 			found_key->objectid != key.objectid)
1566 		return 1;
1567 
1568 	return 0;
1569 }
1570 
1571 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1572 							struct btrfs_path *p,
1573 							int write_lock_level)
1574 {
1575 	struct extent_buffer *b;
1576 	int root_lock = 0;
1577 	int level = 0;
1578 
1579 	if (p->search_commit_root) {
1580 		b = root->commit_root;
1581 		atomic_inc(&b->refs);
1582 		level = btrfs_header_level(b);
1583 		/*
1584 		 * Ensure that all callers have set skip_locking when
1585 		 * p->search_commit_root = 1.
1586 		 */
1587 		ASSERT(p->skip_locking == 1);
1588 
1589 		goto out;
1590 	}
1591 
1592 	if (p->skip_locking) {
1593 		b = btrfs_root_node(root);
1594 		level = btrfs_header_level(b);
1595 		goto out;
1596 	}
1597 
1598 	/* We try very hard to do read locks on the root */
1599 	root_lock = BTRFS_READ_LOCK;
1600 
1601 	/*
1602 	 * If the level is set to maximum, we can skip trying to get the read
1603 	 * lock.
1604 	 */
1605 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1606 		/*
1607 		 * We don't know the level of the root node until we actually
1608 		 * have it read locked
1609 		 */
1610 		b = btrfs_read_lock_root_node(root);
1611 		level = btrfs_header_level(b);
1612 		if (level > write_lock_level)
1613 			goto out;
1614 
1615 		/* Whoops, must trade for write lock */
1616 		btrfs_tree_read_unlock(b);
1617 		free_extent_buffer(b);
1618 	}
1619 
1620 	b = btrfs_lock_root_node(root);
1621 	root_lock = BTRFS_WRITE_LOCK;
1622 
1623 	/* The level might have changed, check again */
1624 	level = btrfs_header_level(b);
1625 
1626 out:
1627 	/*
1628 	 * The root may have failed to write out at some point, and thus is no
1629 	 * longer valid, return an error in this case.
1630 	 */
1631 	if (!extent_buffer_uptodate(b)) {
1632 		if (root_lock)
1633 			btrfs_tree_unlock_rw(b, root_lock);
1634 		free_extent_buffer(b);
1635 		return ERR_PTR(-EIO);
1636 	}
1637 
1638 	p->nodes[level] = b;
1639 	if (!p->skip_locking)
1640 		p->locks[level] = root_lock;
1641 	/*
1642 	 * Callers are responsible for dropping b's references.
1643 	 */
1644 	return b;
1645 }
1646 
1647 /*
1648  * Replace the extent buffer at the lowest level of the path with a cloned
1649  * version. The purpose is to be able to use it safely, after releasing the
1650  * commit root semaphore, even if relocation is happening in parallel, the
1651  * transaction used for relocation is committed and the extent buffer is
1652  * reallocated in the next transaction.
1653  *
1654  * This is used in a context where the caller does not prevent transaction
1655  * commits from happening, either by holding a transaction handle or holding
1656  * some lock, while it's doing searches through a commit root.
1657  * At the moment it's only used for send operations.
1658  */
1659 static int finish_need_commit_sem_search(struct btrfs_path *path)
1660 {
1661 	const int i = path->lowest_level;
1662 	const int slot = path->slots[i];
1663 	struct extent_buffer *lowest = path->nodes[i];
1664 	struct extent_buffer *clone;
1665 
1666 	ASSERT(path->need_commit_sem);
1667 
1668 	if (!lowest)
1669 		return 0;
1670 
1671 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1672 
1673 	clone = btrfs_clone_extent_buffer(lowest);
1674 	if (!clone)
1675 		return -ENOMEM;
1676 
1677 	btrfs_release_path(path);
1678 	path->nodes[i] = clone;
1679 	path->slots[i] = slot;
1680 
1681 	return 0;
1682 }
1683 
1684 static inline int search_for_key_slot(struct extent_buffer *eb,
1685 				      int search_low_slot,
1686 				      const struct btrfs_key *key,
1687 				      int prev_cmp,
1688 				      int *slot)
1689 {
1690 	/*
1691 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1692 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1693 	 * always be at slot 0 on lower levels, since each key pointer
1694 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1695 	 * subtree it points to. Thus we can skip searching lower levels.
1696 	 */
1697 	if (prev_cmp == 0) {
1698 		*slot = 0;
1699 		return 0;
1700 	}
1701 
1702 	return generic_bin_search(eb, search_low_slot, key, slot);
1703 }
1704 
1705 static int search_leaf(struct btrfs_trans_handle *trans,
1706 		       struct btrfs_root *root,
1707 		       const struct btrfs_key *key,
1708 		       struct btrfs_path *path,
1709 		       int ins_len,
1710 		       int prev_cmp)
1711 {
1712 	struct extent_buffer *leaf = path->nodes[0];
1713 	int leaf_free_space = -1;
1714 	int search_low_slot = 0;
1715 	int ret;
1716 	bool do_bin_search = true;
1717 
1718 	/*
1719 	 * If we are doing an insertion, the leaf has enough free space and the
1720 	 * destination slot for the key is not slot 0, then we can unlock our
1721 	 * write lock on the parent, and any other upper nodes, before doing the
1722 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1723 	 * tasks to lock the parent and any other upper nodes.
1724 	 */
1725 	if (ins_len > 0) {
1726 		/*
1727 		 * Cache the leaf free space, since we will need it later and it
1728 		 * will not change until then.
1729 		 */
1730 		leaf_free_space = btrfs_leaf_free_space(leaf);
1731 
1732 		/*
1733 		 * !path->locks[1] means we have a single node tree, the leaf is
1734 		 * the root of the tree.
1735 		 */
1736 		if (path->locks[1] && leaf_free_space >= ins_len) {
1737 			struct btrfs_disk_key first_key;
1738 
1739 			ASSERT(btrfs_header_nritems(leaf) > 0);
1740 			btrfs_item_key(leaf, &first_key, 0);
1741 
1742 			/*
1743 			 * Doing the extra comparison with the first key is cheap,
1744 			 * taking into account that the first key is very likely
1745 			 * already in a cache line because it immediately follows
1746 			 * the extent buffer's header and we have recently accessed
1747 			 * the header's level field.
1748 			 */
1749 			ret = comp_keys(&first_key, key);
1750 			if (ret < 0) {
1751 				/*
1752 				 * The first key is smaller than the key we want
1753 				 * to insert, so we are safe to unlock all upper
1754 				 * nodes and we have to do the binary search.
1755 				 *
1756 				 * We do use btrfs_unlock_up_safe() and not
1757 				 * unlock_up() because the later does not unlock
1758 				 * nodes with a slot of 0 - we can safely unlock
1759 				 * any node even if its slot is 0 since in this
1760 				 * case the key does not end up at slot 0 of the
1761 				 * leaf and there's no need to split the leaf.
1762 				 */
1763 				btrfs_unlock_up_safe(path, 1);
1764 				search_low_slot = 1;
1765 			} else {
1766 				/*
1767 				 * The first key is >= then the key we want to
1768 				 * insert, so we can skip the binary search as
1769 				 * the target key will be at slot 0.
1770 				 *
1771 				 * We can not unlock upper nodes when the key is
1772 				 * less than the first key, because we will need
1773 				 * to update the key at slot 0 of the parent node
1774 				 * and possibly of other upper nodes too.
1775 				 * If the key matches the first key, then we can
1776 				 * unlock all the upper nodes, using
1777 				 * btrfs_unlock_up_safe() instead of unlock_up()
1778 				 * as stated above.
1779 				 */
1780 				if (ret == 0)
1781 					btrfs_unlock_up_safe(path, 1);
1782 				/*
1783 				 * ret is already 0 or 1, matching the result of
1784 				 * a btrfs_bin_search() call, so there is no need
1785 				 * to adjust it.
1786 				 */
1787 				do_bin_search = false;
1788 				path->slots[0] = 0;
1789 			}
1790 		}
1791 	}
1792 
1793 	if (do_bin_search) {
1794 		ret = search_for_key_slot(leaf, search_low_slot, key,
1795 					  prev_cmp, &path->slots[0]);
1796 		if (ret < 0)
1797 			return ret;
1798 	}
1799 
1800 	if (ins_len > 0) {
1801 		/*
1802 		 * Item key already exists. In this case, if we are allowed to
1803 		 * insert the item (for example, in dir_item case, item key
1804 		 * collision is allowed), it will be merged with the original
1805 		 * item. Only the item size grows, no new btrfs item will be
1806 		 * added. If search_for_extension is not set, ins_len already
1807 		 * accounts the size btrfs_item, deduct it here so leaf space
1808 		 * check will be correct.
1809 		 */
1810 		if (ret == 0 && !path->search_for_extension) {
1811 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1812 			ins_len -= sizeof(struct btrfs_item);
1813 		}
1814 
1815 		ASSERT(leaf_free_space >= 0);
1816 
1817 		if (leaf_free_space < ins_len) {
1818 			int err;
1819 
1820 			err = split_leaf(trans, root, key, path, ins_len,
1821 					 (ret == 0));
1822 			ASSERT(err <= 0);
1823 			if (WARN_ON(err > 0))
1824 				err = -EUCLEAN;
1825 			if (err)
1826 				ret = err;
1827 		}
1828 	}
1829 
1830 	return ret;
1831 }
1832 
1833 /*
1834  * btrfs_search_slot - look for a key in a tree and perform necessary
1835  * modifications to preserve tree invariants.
1836  *
1837  * @trans:	Handle of transaction, used when modifying the tree
1838  * @p:		Holds all btree nodes along the search path
1839  * @root:	The root node of the tree
1840  * @key:	The key we are looking for
1841  * @ins_len:	Indicates purpose of search:
1842  *              >0  for inserts it's size of item inserted (*)
1843  *              <0  for deletions
1844  *               0  for plain searches, not modifying the tree
1845  *
1846  *              (*) If size of item inserted doesn't include
1847  *              sizeof(struct btrfs_item), then p->search_for_extension must
1848  *              be set.
1849  * @cow:	boolean should CoW operations be performed. Must always be 1
1850  *		when modifying the tree.
1851  *
1852  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1853  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1854  *
1855  * If @key is found, 0 is returned and you can find the item in the leaf level
1856  * of the path (level 0)
1857  *
1858  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1859  * points to the slot where it should be inserted
1860  *
1861  * If an error is encountered while searching the tree a negative error number
1862  * is returned
1863  */
1864 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1865 		      const struct btrfs_key *key, struct btrfs_path *p,
1866 		      int ins_len, int cow)
1867 {
1868 	struct btrfs_fs_info *fs_info = root->fs_info;
1869 	struct extent_buffer *b;
1870 	int slot;
1871 	int ret;
1872 	int err;
1873 	int level;
1874 	int lowest_unlock = 1;
1875 	/* everything at write_lock_level or lower must be write locked */
1876 	int write_lock_level = 0;
1877 	u8 lowest_level = 0;
1878 	int min_write_lock_level;
1879 	int prev_cmp;
1880 
1881 	lowest_level = p->lowest_level;
1882 	WARN_ON(lowest_level && ins_len > 0);
1883 	WARN_ON(p->nodes[0] != NULL);
1884 	BUG_ON(!cow && ins_len);
1885 
1886 	if (ins_len < 0) {
1887 		lowest_unlock = 2;
1888 
1889 		/* when we are removing items, we might have to go up to level
1890 		 * two as we update tree pointers  Make sure we keep write
1891 		 * for those levels as well
1892 		 */
1893 		write_lock_level = 2;
1894 	} else if (ins_len > 0) {
1895 		/*
1896 		 * for inserting items, make sure we have a write lock on
1897 		 * level 1 so we can update keys
1898 		 */
1899 		write_lock_level = 1;
1900 	}
1901 
1902 	if (!cow)
1903 		write_lock_level = -1;
1904 
1905 	if (cow && (p->keep_locks || p->lowest_level))
1906 		write_lock_level = BTRFS_MAX_LEVEL;
1907 
1908 	min_write_lock_level = write_lock_level;
1909 
1910 	if (p->need_commit_sem) {
1911 		ASSERT(p->search_commit_root);
1912 		down_read(&fs_info->commit_root_sem);
1913 	}
1914 
1915 again:
1916 	prev_cmp = -1;
1917 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
1918 	if (IS_ERR(b)) {
1919 		ret = PTR_ERR(b);
1920 		goto done;
1921 	}
1922 
1923 	while (b) {
1924 		int dec = 0;
1925 
1926 		level = btrfs_header_level(b);
1927 
1928 		if (cow) {
1929 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1930 
1931 			/*
1932 			 * if we don't really need to cow this block
1933 			 * then we don't want to set the path blocking,
1934 			 * so we test it here
1935 			 */
1936 			if (!should_cow_block(trans, root, b))
1937 				goto cow_done;
1938 
1939 			/*
1940 			 * must have write locks on this node and the
1941 			 * parent
1942 			 */
1943 			if (level > write_lock_level ||
1944 			    (level + 1 > write_lock_level &&
1945 			    level + 1 < BTRFS_MAX_LEVEL &&
1946 			    p->nodes[level + 1])) {
1947 				write_lock_level = level + 1;
1948 				btrfs_release_path(p);
1949 				goto again;
1950 			}
1951 
1952 			if (last_level)
1953 				err = btrfs_cow_block(trans, root, b, NULL, 0,
1954 						      &b,
1955 						      BTRFS_NESTING_COW);
1956 			else
1957 				err = btrfs_cow_block(trans, root, b,
1958 						      p->nodes[level + 1],
1959 						      p->slots[level + 1], &b,
1960 						      BTRFS_NESTING_COW);
1961 			if (err) {
1962 				ret = err;
1963 				goto done;
1964 			}
1965 		}
1966 cow_done:
1967 		p->nodes[level] = b;
1968 
1969 		/*
1970 		 * we have a lock on b and as long as we aren't changing
1971 		 * the tree, there is no way to for the items in b to change.
1972 		 * It is safe to drop the lock on our parent before we
1973 		 * go through the expensive btree search on b.
1974 		 *
1975 		 * If we're inserting or deleting (ins_len != 0), then we might
1976 		 * be changing slot zero, which may require changing the parent.
1977 		 * So, we can't drop the lock until after we know which slot
1978 		 * we're operating on.
1979 		 */
1980 		if (!ins_len && !p->keep_locks) {
1981 			int u = level + 1;
1982 
1983 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1984 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1985 				p->locks[u] = 0;
1986 			}
1987 		}
1988 
1989 		if (level == 0) {
1990 			if (ins_len > 0)
1991 				ASSERT(write_lock_level >= 1);
1992 
1993 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
1994 			if (!p->search_for_split)
1995 				unlock_up(p, level, lowest_unlock,
1996 					  min_write_lock_level, NULL);
1997 			goto done;
1998 		}
1999 
2000 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2001 		if (ret < 0)
2002 			goto done;
2003 		prev_cmp = ret;
2004 
2005 		if (ret && slot > 0) {
2006 			dec = 1;
2007 			slot--;
2008 		}
2009 		p->slots[level] = slot;
2010 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2011 					     &write_lock_level);
2012 		if (err == -EAGAIN)
2013 			goto again;
2014 		if (err) {
2015 			ret = err;
2016 			goto done;
2017 		}
2018 		b = p->nodes[level];
2019 		slot = p->slots[level];
2020 
2021 		/*
2022 		 * Slot 0 is special, if we change the key we have to update
2023 		 * the parent pointer which means we must have a write lock on
2024 		 * the parent
2025 		 */
2026 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2027 			write_lock_level = level + 1;
2028 			btrfs_release_path(p);
2029 			goto again;
2030 		}
2031 
2032 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2033 			  &write_lock_level);
2034 
2035 		if (level == lowest_level) {
2036 			if (dec)
2037 				p->slots[level]++;
2038 			goto done;
2039 		}
2040 
2041 		err = read_block_for_search(root, p, &b, level, slot, key);
2042 		if (err == -EAGAIN)
2043 			goto again;
2044 		if (err) {
2045 			ret = err;
2046 			goto done;
2047 		}
2048 
2049 		if (!p->skip_locking) {
2050 			level = btrfs_header_level(b);
2051 			if (level <= write_lock_level) {
2052 				btrfs_tree_lock(b);
2053 				p->locks[level] = BTRFS_WRITE_LOCK;
2054 			} else {
2055 				btrfs_tree_read_lock(b);
2056 				p->locks[level] = BTRFS_READ_LOCK;
2057 			}
2058 			p->nodes[level] = b;
2059 		}
2060 	}
2061 	ret = 1;
2062 done:
2063 	if (ret < 0 && !p->skip_release_on_error)
2064 		btrfs_release_path(p);
2065 
2066 	if (p->need_commit_sem) {
2067 		int ret2;
2068 
2069 		ret2 = finish_need_commit_sem_search(p);
2070 		up_read(&fs_info->commit_root_sem);
2071 		if (ret2)
2072 			ret = ret2;
2073 	}
2074 
2075 	return ret;
2076 }
2077 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2078 
2079 /*
2080  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2081  * current state of the tree together with the operations recorded in the tree
2082  * modification log to search for the key in a previous version of this tree, as
2083  * denoted by the time_seq parameter.
2084  *
2085  * Naturally, there is no support for insert, delete or cow operations.
2086  *
2087  * The resulting path and return value will be set up as if we called
2088  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2089  */
2090 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2091 			  struct btrfs_path *p, u64 time_seq)
2092 {
2093 	struct btrfs_fs_info *fs_info = root->fs_info;
2094 	struct extent_buffer *b;
2095 	int slot;
2096 	int ret;
2097 	int err;
2098 	int level;
2099 	int lowest_unlock = 1;
2100 	u8 lowest_level = 0;
2101 
2102 	lowest_level = p->lowest_level;
2103 	WARN_ON(p->nodes[0] != NULL);
2104 
2105 	if (p->search_commit_root) {
2106 		BUG_ON(time_seq);
2107 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2108 	}
2109 
2110 again:
2111 	b = btrfs_get_old_root(root, time_seq);
2112 	if (!b) {
2113 		ret = -EIO;
2114 		goto done;
2115 	}
2116 	level = btrfs_header_level(b);
2117 	p->locks[level] = BTRFS_READ_LOCK;
2118 
2119 	while (b) {
2120 		int dec = 0;
2121 
2122 		level = btrfs_header_level(b);
2123 		p->nodes[level] = b;
2124 
2125 		/*
2126 		 * we have a lock on b and as long as we aren't changing
2127 		 * the tree, there is no way to for the items in b to change.
2128 		 * It is safe to drop the lock on our parent before we
2129 		 * go through the expensive btree search on b.
2130 		 */
2131 		btrfs_unlock_up_safe(p, level + 1);
2132 
2133 		ret = btrfs_bin_search(b, key, &slot);
2134 		if (ret < 0)
2135 			goto done;
2136 
2137 		if (level == 0) {
2138 			p->slots[level] = slot;
2139 			unlock_up(p, level, lowest_unlock, 0, NULL);
2140 			goto done;
2141 		}
2142 
2143 		if (ret && slot > 0) {
2144 			dec = 1;
2145 			slot--;
2146 		}
2147 		p->slots[level] = slot;
2148 		unlock_up(p, level, lowest_unlock, 0, NULL);
2149 
2150 		if (level == lowest_level) {
2151 			if (dec)
2152 				p->slots[level]++;
2153 			goto done;
2154 		}
2155 
2156 		err = read_block_for_search(root, p, &b, level, slot, key);
2157 		if (err == -EAGAIN)
2158 			goto again;
2159 		if (err) {
2160 			ret = err;
2161 			goto done;
2162 		}
2163 
2164 		level = btrfs_header_level(b);
2165 		btrfs_tree_read_lock(b);
2166 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2167 		if (!b) {
2168 			ret = -ENOMEM;
2169 			goto done;
2170 		}
2171 		p->locks[level] = BTRFS_READ_LOCK;
2172 		p->nodes[level] = b;
2173 	}
2174 	ret = 1;
2175 done:
2176 	if (ret < 0)
2177 		btrfs_release_path(p);
2178 
2179 	return ret;
2180 }
2181 
2182 /*
2183  * helper to use instead of search slot if no exact match is needed but
2184  * instead the next or previous item should be returned.
2185  * When find_higher is true, the next higher item is returned, the next lower
2186  * otherwise.
2187  * When return_any and find_higher are both true, and no higher item is found,
2188  * return the next lower instead.
2189  * When return_any is true and find_higher is false, and no lower item is found,
2190  * return the next higher instead.
2191  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2192  * < 0 on error
2193  */
2194 int btrfs_search_slot_for_read(struct btrfs_root *root,
2195 			       const struct btrfs_key *key,
2196 			       struct btrfs_path *p, int find_higher,
2197 			       int return_any)
2198 {
2199 	int ret;
2200 	struct extent_buffer *leaf;
2201 
2202 again:
2203 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2204 	if (ret <= 0)
2205 		return ret;
2206 	/*
2207 	 * a return value of 1 means the path is at the position where the
2208 	 * item should be inserted. Normally this is the next bigger item,
2209 	 * but in case the previous item is the last in a leaf, path points
2210 	 * to the first free slot in the previous leaf, i.e. at an invalid
2211 	 * item.
2212 	 */
2213 	leaf = p->nodes[0];
2214 
2215 	if (find_higher) {
2216 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2217 			ret = btrfs_next_leaf(root, p);
2218 			if (ret <= 0)
2219 				return ret;
2220 			if (!return_any)
2221 				return 1;
2222 			/*
2223 			 * no higher item found, return the next
2224 			 * lower instead
2225 			 */
2226 			return_any = 0;
2227 			find_higher = 0;
2228 			btrfs_release_path(p);
2229 			goto again;
2230 		}
2231 	} else {
2232 		if (p->slots[0] == 0) {
2233 			ret = btrfs_prev_leaf(root, p);
2234 			if (ret < 0)
2235 				return ret;
2236 			if (!ret) {
2237 				leaf = p->nodes[0];
2238 				if (p->slots[0] == btrfs_header_nritems(leaf))
2239 					p->slots[0]--;
2240 				return 0;
2241 			}
2242 			if (!return_any)
2243 				return 1;
2244 			/*
2245 			 * no lower item found, return the next
2246 			 * higher instead
2247 			 */
2248 			return_any = 0;
2249 			find_higher = 1;
2250 			btrfs_release_path(p);
2251 			goto again;
2252 		} else {
2253 			--p->slots[0];
2254 		}
2255 	}
2256 	return 0;
2257 }
2258 
2259 /*
2260  * Execute search and call btrfs_previous_item to traverse backwards if the item
2261  * was not found.
2262  *
2263  * Return 0 if found, 1 if not found and < 0 if error.
2264  */
2265 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2266 			   struct btrfs_path *path)
2267 {
2268 	int ret;
2269 
2270 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2271 	if (ret > 0)
2272 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2273 
2274 	if (ret == 0)
2275 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2276 
2277 	return ret;
2278 }
2279 
2280 /*
2281  * adjust the pointers going up the tree, starting at level
2282  * making sure the right key of each node is points to 'key'.
2283  * This is used after shifting pointers to the left, so it stops
2284  * fixing up pointers when a given leaf/node is not in slot 0 of the
2285  * higher levels
2286  *
2287  */
2288 static void fixup_low_keys(struct btrfs_path *path,
2289 			   struct btrfs_disk_key *key, int level)
2290 {
2291 	int i;
2292 	struct extent_buffer *t;
2293 	int ret;
2294 
2295 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2296 		int tslot = path->slots[i];
2297 
2298 		if (!path->nodes[i])
2299 			break;
2300 		t = path->nodes[i];
2301 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2302 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2303 		BUG_ON(ret < 0);
2304 		btrfs_set_node_key(t, key, tslot);
2305 		btrfs_mark_buffer_dirty(path->nodes[i]);
2306 		if (tslot != 0)
2307 			break;
2308 	}
2309 }
2310 
2311 /*
2312  * update item key.
2313  *
2314  * This function isn't completely safe. It's the caller's responsibility
2315  * that the new key won't break the order
2316  */
2317 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2318 			     struct btrfs_path *path,
2319 			     const struct btrfs_key *new_key)
2320 {
2321 	struct btrfs_disk_key disk_key;
2322 	struct extent_buffer *eb;
2323 	int slot;
2324 
2325 	eb = path->nodes[0];
2326 	slot = path->slots[0];
2327 	if (slot > 0) {
2328 		btrfs_item_key(eb, &disk_key, slot - 1);
2329 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2330 			btrfs_crit(fs_info,
2331 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2332 				   slot, btrfs_disk_key_objectid(&disk_key),
2333 				   btrfs_disk_key_type(&disk_key),
2334 				   btrfs_disk_key_offset(&disk_key),
2335 				   new_key->objectid, new_key->type,
2336 				   new_key->offset);
2337 			btrfs_print_leaf(eb);
2338 			BUG();
2339 		}
2340 	}
2341 	if (slot < btrfs_header_nritems(eb) - 1) {
2342 		btrfs_item_key(eb, &disk_key, slot + 1);
2343 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2344 			btrfs_crit(fs_info,
2345 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2346 				   slot, btrfs_disk_key_objectid(&disk_key),
2347 				   btrfs_disk_key_type(&disk_key),
2348 				   btrfs_disk_key_offset(&disk_key),
2349 				   new_key->objectid, new_key->type,
2350 				   new_key->offset);
2351 			btrfs_print_leaf(eb);
2352 			BUG();
2353 		}
2354 	}
2355 
2356 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2357 	btrfs_set_item_key(eb, &disk_key, slot);
2358 	btrfs_mark_buffer_dirty(eb);
2359 	if (slot == 0)
2360 		fixup_low_keys(path, &disk_key, 1);
2361 }
2362 
2363 /*
2364  * Check key order of two sibling extent buffers.
2365  *
2366  * Return true if something is wrong.
2367  * Return false if everything is fine.
2368  *
2369  * Tree-checker only works inside one tree block, thus the following
2370  * corruption can not be detected by tree-checker:
2371  *
2372  * Leaf @left			| Leaf @right
2373  * --------------------------------------------------------------
2374  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2375  *
2376  * Key f6 in leaf @left itself is valid, but not valid when the next
2377  * key in leaf @right is 7.
2378  * This can only be checked at tree block merge time.
2379  * And since tree checker has ensured all key order in each tree block
2380  * is correct, we only need to bother the last key of @left and the first
2381  * key of @right.
2382  */
2383 static bool check_sibling_keys(struct extent_buffer *left,
2384 			       struct extent_buffer *right)
2385 {
2386 	struct btrfs_key left_last;
2387 	struct btrfs_key right_first;
2388 	int level = btrfs_header_level(left);
2389 	int nr_left = btrfs_header_nritems(left);
2390 	int nr_right = btrfs_header_nritems(right);
2391 
2392 	/* No key to check in one of the tree blocks */
2393 	if (!nr_left || !nr_right)
2394 		return false;
2395 
2396 	if (level) {
2397 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2398 		btrfs_node_key_to_cpu(right, &right_first, 0);
2399 	} else {
2400 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2401 		btrfs_item_key_to_cpu(right, &right_first, 0);
2402 	}
2403 
2404 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2405 		btrfs_crit(left->fs_info,
2406 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2407 			   left_last.objectid, left_last.type,
2408 			   left_last.offset, right_first.objectid,
2409 			   right_first.type, right_first.offset);
2410 		return true;
2411 	}
2412 	return false;
2413 }
2414 
2415 /*
2416  * try to push data from one node into the next node left in the
2417  * tree.
2418  *
2419  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2420  * error, and > 0 if there was no room in the left hand block.
2421  */
2422 static int push_node_left(struct btrfs_trans_handle *trans,
2423 			  struct extent_buffer *dst,
2424 			  struct extent_buffer *src, int empty)
2425 {
2426 	struct btrfs_fs_info *fs_info = trans->fs_info;
2427 	int push_items = 0;
2428 	int src_nritems;
2429 	int dst_nritems;
2430 	int ret = 0;
2431 
2432 	src_nritems = btrfs_header_nritems(src);
2433 	dst_nritems = btrfs_header_nritems(dst);
2434 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2435 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2436 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2437 
2438 	if (!empty && src_nritems <= 8)
2439 		return 1;
2440 
2441 	if (push_items <= 0)
2442 		return 1;
2443 
2444 	if (empty) {
2445 		push_items = min(src_nritems, push_items);
2446 		if (push_items < src_nritems) {
2447 			/* leave at least 8 pointers in the node if
2448 			 * we aren't going to empty it
2449 			 */
2450 			if (src_nritems - push_items < 8) {
2451 				if (push_items <= 8)
2452 					return 1;
2453 				push_items -= 8;
2454 			}
2455 		}
2456 	} else
2457 		push_items = min(src_nritems - 8, push_items);
2458 
2459 	/* dst is the left eb, src is the middle eb */
2460 	if (check_sibling_keys(dst, src)) {
2461 		ret = -EUCLEAN;
2462 		btrfs_abort_transaction(trans, ret);
2463 		return ret;
2464 	}
2465 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2466 	if (ret) {
2467 		btrfs_abort_transaction(trans, ret);
2468 		return ret;
2469 	}
2470 	copy_extent_buffer(dst, src,
2471 			   btrfs_node_key_ptr_offset(dst_nritems),
2472 			   btrfs_node_key_ptr_offset(0),
2473 			   push_items * sizeof(struct btrfs_key_ptr));
2474 
2475 	if (push_items < src_nritems) {
2476 		/*
2477 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2478 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2479 		 */
2480 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2481 				      btrfs_node_key_ptr_offset(push_items),
2482 				      (src_nritems - push_items) *
2483 				      sizeof(struct btrfs_key_ptr));
2484 	}
2485 	btrfs_set_header_nritems(src, src_nritems - push_items);
2486 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2487 	btrfs_mark_buffer_dirty(src);
2488 	btrfs_mark_buffer_dirty(dst);
2489 
2490 	return ret;
2491 }
2492 
2493 /*
2494  * try to push data from one node into the next node right in the
2495  * tree.
2496  *
2497  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2498  * error, and > 0 if there was no room in the right hand block.
2499  *
2500  * this will  only push up to 1/2 the contents of the left node over
2501  */
2502 static int balance_node_right(struct btrfs_trans_handle *trans,
2503 			      struct extent_buffer *dst,
2504 			      struct extent_buffer *src)
2505 {
2506 	struct btrfs_fs_info *fs_info = trans->fs_info;
2507 	int push_items = 0;
2508 	int max_push;
2509 	int src_nritems;
2510 	int dst_nritems;
2511 	int ret = 0;
2512 
2513 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2514 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2515 
2516 	src_nritems = btrfs_header_nritems(src);
2517 	dst_nritems = btrfs_header_nritems(dst);
2518 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2519 	if (push_items <= 0)
2520 		return 1;
2521 
2522 	if (src_nritems < 4)
2523 		return 1;
2524 
2525 	max_push = src_nritems / 2 + 1;
2526 	/* don't try to empty the node */
2527 	if (max_push >= src_nritems)
2528 		return 1;
2529 
2530 	if (max_push < push_items)
2531 		push_items = max_push;
2532 
2533 	/* dst is the right eb, src is the middle eb */
2534 	if (check_sibling_keys(src, dst)) {
2535 		ret = -EUCLEAN;
2536 		btrfs_abort_transaction(trans, ret);
2537 		return ret;
2538 	}
2539 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2540 	BUG_ON(ret < 0);
2541 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2542 				      btrfs_node_key_ptr_offset(0),
2543 				      (dst_nritems) *
2544 				      sizeof(struct btrfs_key_ptr));
2545 
2546 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2547 					 push_items);
2548 	if (ret) {
2549 		btrfs_abort_transaction(trans, ret);
2550 		return ret;
2551 	}
2552 	copy_extent_buffer(dst, src,
2553 			   btrfs_node_key_ptr_offset(0),
2554 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2555 			   push_items * sizeof(struct btrfs_key_ptr));
2556 
2557 	btrfs_set_header_nritems(src, src_nritems - push_items);
2558 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2559 
2560 	btrfs_mark_buffer_dirty(src);
2561 	btrfs_mark_buffer_dirty(dst);
2562 
2563 	return ret;
2564 }
2565 
2566 /*
2567  * helper function to insert a new root level in the tree.
2568  * A new node is allocated, and a single item is inserted to
2569  * point to the existing root
2570  *
2571  * returns zero on success or < 0 on failure.
2572  */
2573 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2574 			   struct btrfs_root *root,
2575 			   struct btrfs_path *path, int level)
2576 {
2577 	struct btrfs_fs_info *fs_info = root->fs_info;
2578 	u64 lower_gen;
2579 	struct extent_buffer *lower;
2580 	struct extent_buffer *c;
2581 	struct extent_buffer *old;
2582 	struct btrfs_disk_key lower_key;
2583 	int ret;
2584 
2585 	BUG_ON(path->nodes[level]);
2586 	BUG_ON(path->nodes[level-1] != root->node);
2587 
2588 	lower = path->nodes[level-1];
2589 	if (level == 1)
2590 		btrfs_item_key(lower, &lower_key, 0);
2591 	else
2592 		btrfs_node_key(lower, &lower_key, 0);
2593 
2594 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2595 				   &lower_key, level, root->node->start, 0,
2596 				   BTRFS_NESTING_NEW_ROOT);
2597 	if (IS_ERR(c))
2598 		return PTR_ERR(c);
2599 
2600 	root_add_used(root, fs_info->nodesize);
2601 
2602 	btrfs_set_header_nritems(c, 1);
2603 	btrfs_set_node_key(c, &lower_key, 0);
2604 	btrfs_set_node_blockptr(c, 0, lower->start);
2605 	lower_gen = btrfs_header_generation(lower);
2606 	WARN_ON(lower_gen != trans->transid);
2607 
2608 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2609 
2610 	btrfs_mark_buffer_dirty(c);
2611 
2612 	old = root->node;
2613 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2614 	BUG_ON(ret < 0);
2615 	rcu_assign_pointer(root->node, c);
2616 
2617 	/* the super has an extra ref to root->node */
2618 	free_extent_buffer(old);
2619 
2620 	add_root_to_dirty_list(root);
2621 	atomic_inc(&c->refs);
2622 	path->nodes[level] = c;
2623 	path->locks[level] = BTRFS_WRITE_LOCK;
2624 	path->slots[level] = 0;
2625 	return 0;
2626 }
2627 
2628 /*
2629  * worker function to insert a single pointer in a node.
2630  * the node should have enough room for the pointer already
2631  *
2632  * slot and level indicate where you want the key to go, and
2633  * blocknr is the block the key points to.
2634  */
2635 static void insert_ptr(struct btrfs_trans_handle *trans,
2636 		       struct btrfs_path *path,
2637 		       struct btrfs_disk_key *key, u64 bytenr,
2638 		       int slot, int level)
2639 {
2640 	struct extent_buffer *lower;
2641 	int nritems;
2642 	int ret;
2643 
2644 	BUG_ON(!path->nodes[level]);
2645 	btrfs_assert_tree_write_locked(path->nodes[level]);
2646 	lower = path->nodes[level];
2647 	nritems = btrfs_header_nritems(lower);
2648 	BUG_ON(slot > nritems);
2649 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2650 	if (slot != nritems) {
2651 		if (level) {
2652 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2653 					slot, nritems - slot);
2654 			BUG_ON(ret < 0);
2655 		}
2656 		memmove_extent_buffer(lower,
2657 			      btrfs_node_key_ptr_offset(slot + 1),
2658 			      btrfs_node_key_ptr_offset(slot),
2659 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2660 	}
2661 	if (level) {
2662 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2663 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2664 		BUG_ON(ret < 0);
2665 	}
2666 	btrfs_set_node_key(lower, key, slot);
2667 	btrfs_set_node_blockptr(lower, slot, bytenr);
2668 	WARN_ON(trans->transid == 0);
2669 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2670 	btrfs_set_header_nritems(lower, nritems + 1);
2671 	btrfs_mark_buffer_dirty(lower);
2672 }
2673 
2674 /*
2675  * split the node at the specified level in path in two.
2676  * The path is corrected to point to the appropriate node after the split
2677  *
2678  * Before splitting this tries to make some room in the node by pushing
2679  * left and right, if either one works, it returns right away.
2680  *
2681  * returns 0 on success and < 0 on failure
2682  */
2683 static noinline int split_node(struct btrfs_trans_handle *trans,
2684 			       struct btrfs_root *root,
2685 			       struct btrfs_path *path, int level)
2686 {
2687 	struct btrfs_fs_info *fs_info = root->fs_info;
2688 	struct extent_buffer *c;
2689 	struct extent_buffer *split;
2690 	struct btrfs_disk_key disk_key;
2691 	int mid;
2692 	int ret;
2693 	u32 c_nritems;
2694 
2695 	c = path->nodes[level];
2696 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2697 	if (c == root->node) {
2698 		/*
2699 		 * trying to split the root, lets make a new one
2700 		 *
2701 		 * tree mod log: We don't log_removal old root in
2702 		 * insert_new_root, because that root buffer will be kept as a
2703 		 * normal node. We are going to log removal of half of the
2704 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2705 		 * holding a tree lock on the buffer, which is why we cannot
2706 		 * race with other tree_mod_log users.
2707 		 */
2708 		ret = insert_new_root(trans, root, path, level + 1);
2709 		if (ret)
2710 			return ret;
2711 	} else {
2712 		ret = push_nodes_for_insert(trans, root, path, level);
2713 		c = path->nodes[level];
2714 		if (!ret && btrfs_header_nritems(c) <
2715 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2716 			return 0;
2717 		if (ret < 0)
2718 			return ret;
2719 	}
2720 
2721 	c_nritems = btrfs_header_nritems(c);
2722 	mid = (c_nritems + 1) / 2;
2723 	btrfs_node_key(c, &disk_key, mid);
2724 
2725 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2726 				       &disk_key, level, c->start, 0,
2727 				       BTRFS_NESTING_SPLIT);
2728 	if (IS_ERR(split))
2729 		return PTR_ERR(split);
2730 
2731 	root_add_used(root, fs_info->nodesize);
2732 	ASSERT(btrfs_header_level(c) == level);
2733 
2734 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2735 	if (ret) {
2736 		btrfs_abort_transaction(trans, ret);
2737 		return ret;
2738 	}
2739 	copy_extent_buffer(split, c,
2740 			   btrfs_node_key_ptr_offset(0),
2741 			   btrfs_node_key_ptr_offset(mid),
2742 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2743 	btrfs_set_header_nritems(split, c_nritems - mid);
2744 	btrfs_set_header_nritems(c, mid);
2745 
2746 	btrfs_mark_buffer_dirty(c);
2747 	btrfs_mark_buffer_dirty(split);
2748 
2749 	insert_ptr(trans, path, &disk_key, split->start,
2750 		   path->slots[level + 1] + 1, level + 1);
2751 
2752 	if (path->slots[level] >= mid) {
2753 		path->slots[level] -= mid;
2754 		btrfs_tree_unlock(c);
2755 		free_extent_buffer(c);
2756 		path->nodes[level] = split;
2757 		path->slots[level + 1] += 1;
2758 	} else {
2759 		btrfs_tree_unlock(split);
2760 		free_extent_buffer(split);
2761 	}
2762 	return 0;
2763 }
2764 
2765 /*
2766  * how many bytes are required to store the items in a leaf.  start
2767  * and nr indicate which items in the leaf to check.  This totals up the
2768  * space used both by the item structs and the item data
2769  */
2770 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2771 {
2772 	int data_len;
2773 	int nritems = btrfs_header_nritems(l);
2774 	int end = min(nritems, start + nr) - 1;
2775 
2776 	if (!nr)
2777 		return 0;
2778 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
2779 	data_len = data_len - btrfs_item_offset(l, end);
2780 	data_len += sizeof(struct btrfs_item) * nr;
2781 	WARN_ON(data_len < 0);
2782 	return data_len;
2783 }
2784 
2785 /*
2786  * The space between the end of the leaf items and
2787  * the start of the leaf data.  IOW, how much room
2788  * the leaf has left for both items and data
2789  */
2790 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2791 {
2792 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2793 	int nritems = btrfs_header_nritems(leaf);
2794 	int ret;
2795 
2796 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2797 	if (ret < 0) {
2798 		btrfs_crit(fs_info,
2799 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2800 			   ret,
2801 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2802 			   leaf_space_used(leaf, 0, nritems), nritems);
2803 	}
2804 	return ret;
2805 }
2806 
2807 /*
2808  * min slot controls the lowest index we're willing to push to the
2809  * right.  We'll push up to and including min_slot, but no lower
2810  */
2811 static noinline int __push_leaf_right(struct btrfs_path *path,
2812 				      int data_size, int empty,
2813 				      struct extent_buffer *right,
2814 				      int free_space, u32 left_nritems,
2815 				      u32 min_slot)
2816 {
2817 	struct btrfs_fs_info *fs_info = right->fs_info;
2818 	struct extent_buffer *left = path->nodes[0];
2819 	struct extent_buffer *upper = path->nodes[1];
2820 	struct btrfs_map_token token;
2821 	struct btrfs_disk_key disk_key;
2822 	int slot;
2823 	u32 i;
2824 	int push_space = 0;
2825 	int push_items = 0;
2826 	u32 nr;
2827 	u32 right_nritems;
2828 	u32 data_end;
2829 	u32 this_item_size;
2830 
2831 	if (empty)
2832 		nr = 0;
2833 	else
2834 		nr = max_t(u32, 1, min_slot);
2835 
2836 	if (path->slots[0] >= left_nritems)
2837 		push_space += data_size;
2838 
2839 	slot = path->slots[1];
2840 	i = left_nritems - 1;
2841 	while (i >= nr) {
2842 		if (!empty && push_items > 0) {
2843 			if (path->slots[0] > i)
2844 				break;
2845 			if (path->slots[0] == i) {
2846 				int space = btrfs_leaf_free_space(left);
2847 
2848 				if (space + push_space * 2 > free_space)
2849 					break;
2850 			}
2851 		}
2852 
2853 		if (path->slots[0] == i)
2854 			push_space += data_size;
2855 
2856 		this_item_size = btrfs_item_size(left, i);
2857 		if (this_item_size + sizeof(struct btrfs_item) +
2858 		    push_space > free_space)
2859 			break;
2860 
2861 		push_items++;
2862 		push_space += this_item_size + sizeof(struct btrfs_item);
2863 		if (i == 0)
2864 			break;
2865 		i--;
2866 	}
2867 
2868 	if (push_items == 0)
2869 		goto out_unlock;
2870 
2871 	WARN_ON(!empty && push_items == left_nritems);
2872 
2873 	/* push left to right */
2874 	right_nritems = btrfs_header_nritems(right);
2875 
2876 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
2877 	push_space -= leaf_data_end(left);
2878 
2879 	/* make room in the right data area */
2880 	data_end = leaf_data_end(right);
2881 	memmove_extent_buffer(right,
2882 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2883 			      BTRFS_LEAF_DATA_OFFSET + data_end,
2884 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2885 
2886 	/* copy from the left data area */
2887 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2888 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2889 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2890 		     push_space);
2891 
2892 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2893 			      btrfs_item_nr_offset(0),
2894 			      right_nritems * sizeof(struct btrfs_item));
2895 
2896 	/* copy the items from left to right */
2897 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2898 		   btrfs_item_nr_offset(left_nritems - push_items),
2899 		   push_items * sizeof(struct btrfs_item));
2900 
2901 	/* update the item pointers */
2902 	btrfs_init_map_token(&token, right);
2903 	right_nritems += push_items;
2904 	btrfs_set_header_nritems(right, right_nritems);
2905 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2906 	for (i = 0; i < right_nritems; i++) {
2907 		push_space -= btrfs_token_item_size(&token, i);
2908 		btrfs_set_token_item_offset(&token, i, push_space);
2909 	}
2910 
2911 	left_nritems -= push_items;
2912 	btrfs_set_header_nritems(left, left_nritems);
2913 
2914 	if (left_nritems)
2915 		btrfs_mark_buffer_dirty(left);
2916 	else
2917 		btrfs_clean_tree_block(left);
2918 
2919 	btrfs_mark_buffer_dirty(right);
2920 
2921 	btrfs_item_key(right, &disk_key, 0);
2922 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2923 	btrfs_mark_buffer_dirty(upper);
2924 
2925 	/* then fixup the leaf pointer in the path */
2926 	if (path->slots[0] >= left_nritems) {
2927 		path->slots[0] -= left_nritems;
2928 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2929 			btrfs_clean_tree_block(path->nodes[0]);
2930 		btrfs_tree_unlock(path->nodes[0]);
2931 		free_extent_buffer(path->nodes[0]);
2932 		path->nodes[0] = right;
2933 		path->slots[1] += 1;
2934 	} else {
2935 		btrfs_tree_unlock(right);
2936 		free_extent_buffer(right);
2937 	}
2938 	return 0;
2939 
2940 out_unlock:
2941 	btrfs_tree_unlock(right);
2942 	free_extent_buffer(right);
2943 	return 1;
2944 }
2945 
2946 /*
2947  * push some data in the path leaf to the right, trying to free up at
2948  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2949  *
2950  * returns 1 if the push failed because the other node didn't have enough
2951  * room, 0 if everything worked out and < 0 if there were major errors.
2952  *
2953  * this will push starting from min_slot to the end of the leaf.  It won't
2954  * push any slot lower than min_slot
2955  */
2956 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2957 			   *root, struct btrfs_path *path,
2958 			   int min_data_size, int data_size,
2959 			   int empty, u32 min_slot)
2960 {
2961 	struct extent_buffer *left = path->nodes[0];
2962 	struct extent_buffer *right;
2963 	struct extent_buffer *upper;
2964 	int slot;
2965 	int free_space;
2966 	u32 left_nritems;
2967 	int ret;
2968 
2969 	if (!path->nodes[1])
2970 		return 1;
2971 
2972 	slot = path->slots[1];
2973 	upper = path->nodes[1];
2974 	if (slot >= btrfs_header_nritems(upper) - 1)
2975 		return 1;
2976 
2977 	btrfs_assert_tree_write_locked(path->nodes[1]);
2978 
2979 	right = btrfs_read_node_slot(upper, slot + 1);
2980 	/*
2981 	 * slot + 1 is not valid or we fail to read the right node,
2982 	 * no big deal, just return.
2983 	 */
2984 	if (IS_ERR(right))
2985 		return 1;
2986 
2987 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2988 
2989 	free_space = btrfs_leaf_free_space(right);
2990 	if (free_space < data_size)
2991 		goto out_unlock;
2992 
2993 	/* cow and double check */
2994 	ret = btrfs_cow_block(trans, root, right, upper,
2995 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2996 	if (ret)
2997 		goto out_unlock;
2998 
2999 	free_space = btrfs_leaf_free_space(right);
3000 	if (free_space < data_size)
3001 		goto out_unlock;
3002 
3003 	left_nritems = btrfs_header_nritems(left);
3004 	if (left_nritems == 0)
3005 		goto out_unlock;
3006 
3007 	if (check_sibling_keys(left, right)) {
3008 		ret = -EUCLEAN;
3009 		btrfs_tree_unlock(right);
3010 		free_extent_buffer(right);
3011 		return ret;
3012 	}
3013 	if (path->slots[0] == left_nritems && !empty) {
3014 		/* Key greater than all keys in the leaf, right neighbor has
3015 		 * enough room for it and we're not emptying our leaf to delete
3016 		 * it, therefore use right neighbor to insert the new item and
3017 		 * no need to touch/dirty our left leaf. */
3018 		btrfs_tree_unlock(left);
3019 		free_extent_buffer(left);
3020 		path->nodes[0] = right;
3021 		path->slots[0] = 0;
3022 		path->slots[1]++;
3023 		return 0;
3024 	}
3025 
3026 	return __push_leaf_right(path, min_data_size, empty,
3027 				right, free_space, left_nritems, min_slot);
3028 out_unlock:
3029 	btrfs_tree_unlock(right);
3030 	free_extent_buffer(right);
3031 	return 1;
3032 }
3033 
3034 /*
3035  * push some data in the path leaf to the left, trying to free up at
3036  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3037  *
3038  * max_slot can put a limit on how far into the leaf we'll push items.  The
3039  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3040  * items
3041  */
3042 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3043 				     int empty, struct extent_buffer *left,
3044 				     int free_space, u32 right_nritems,
3045 				     u32 max_slot)
3046 {
3047 	struct btrfs_fs_info *fs_info = left->fs_info;
3048 	struct btrfs_disk_key disk_key;
3049 	struct extent_buffer *right = path->nodes[0];
3050 	int i;
3051 	int push_space = 0;
3052 	int push_items = 0;
3053 	u32 old_left_nritems;
3054 	u32 nr;
3055 	int ret = 0;
3056 	u32 this_item_size;
3057 	u32 old_left_item_size;
3058 	struct btrfs_map_token token;
3059 
3060 	if (empty)
3061 		nr = min(right_nritems, max_slot);
3062 	else
3063 		nr = min(right_nritems - 1, max_slot);
3064 
3065 	for (i = 0; i < nr; i++) {
3066 		if (!empty && push_items > 0) {
3067 			if (path->slots[0] < i)
3068 				break;
3069 			if (path->slots[0] == i) {
3070 				int space = btrfs_leaf_free_space(right);
3071 
3072 				if (space + push_space * 2 > free_space)
3073 					break;
3074 			}
3075 		}
3076 
3077 		if (path->slots[0] == i)
3078 			push_space += data_size;
3079 
3080 		this_item_size = btrfs_item_size(right, i);
3081 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3082 		    free_space)
3083 			break;
3084 
3085 		push_items++;
3086 		push_space += this_item_size + sizeof(struct btrfs_item);
3087 	}
3088 
3089 	if (push_items == 0) {
3090 		ret = 1;
3091 		goto out;
3092 	}
3093 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3094 
3095 	/* push data from right to left */
3096 	copy_extent_buffer(left, right,
3097 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3098 			   btrfs_item_nr_offset(0),
3099 			   push_items * sizeof(struct btrfs_item));
3100 
3101 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3102 		     btrfs_item_offset(right, push_items - 1);
3103 
3104 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3105 		     leaf_data_end(left) - push_space,
3106 		     BTRFS_LEAF_DATA_OFFSET +
3107 		     btrfs_item_offset(right, push_items - 1),
3108 		     push_space);
3109 	old_left_nritems = btrfs_header_nritems(left);
3110 	BUG_ON(old_left_nritems <= 0);
3111 
3112 	btrfs_init_map_token(&token, left);
3113 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3114 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3115 		u32 ioff;
3116 
3117 		ioff = btrfs_token_item_offset(&token, i);
3118 		btrfs_set_token_item_offset(&token, i,
3119 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3120 	}
3121 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3122 
3123 	/* fixup right node */
3124 	if (push_items > right_nritems)
3125 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3126 		       right_nritems);
3127 
3128 	if (push_items < right_nritems) {
3129 		push_space = btrfs_item_offset(right, push_items - 1) -
3130 						  leaf_data_end(right);
3131 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3132 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3133 				      BTRFS_LEAF_DATA_OFFSET +
3134 				      leaf_data_end(right), push_space);
3135 
3136 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3137 			      btrfs_item_nr_offset(push_items),
3138 			     (btrfs_header_nritems(right) - push_items) *
3139 			     sizeof(struct btrfs_item));
3140 	}
3141 
3142 	btrfs_init_map_token(&token, right);
3143 	right_nritems -= push_items;
3144 	btrfs_set_header_nritems(right, right_nritems);
3145 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3146 	for (i = 0; i < right_nritems; i++) {
3147 		push_space = push_space - btrfs_token_item_size(&token, i);
3148 		btrfs_set_token_item_offset(&token, i, push_space);
3149 	}
3150 
3151 	btrfs_mark_buffer_dirty(left);
3152 	if (right_nritems)
3153 		btrfs_mark_buffer_dirty(right);
3154 	else
3155 		btrfs_clean_tree_block(right);
3156 
3157 	btrfs_item_key(right, &disk_key, 0);
3158 	fixup_low_keys(path, &disk_key, 1);
3159 
3160 	/* then fixup the leaf pointer in the path */
3161 	if (path->slots[0] < push_items) {
3162 		path->slots[0] += old_left_nritems;
3163 		btrfs_tree_unlock(path->nodes[0]);
3164 		free_extent_buffer(path->nodes[0]);
3165 		path->nodes[0] = left;
3166 		path->slots[1] -= 1;
3167 	} else {
3168 		btrfs_tree_unlock(left);
3169 		free_extent_buffer(left);
3170 		path->slots[0] -= push_items;
3171 	}
3172 	BUG_ON(path->slots[0] < 0);
3173 	return ret;
3174 out:
3175 	btrfs_tree_unlock(left);
3176 	free_extent_buffer(left);
3177 	return ret;
3178 }
3179 
3180 /*
3181  * push some data in the path leaf to the left, trying to free up at
3182  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3183  *
3184  * max_slot can put a limit on how far into the leaf we'll push items.  The
3185  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3186  * items
3187  */
3188 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3189 			  *root, struct btrfs_path *path, int min_data_size,
3190 			  int data_size, int empty, u32 max_slot)
3191 {
3192 	struct extent_buffer *right = path->nodes[0];
3193 	struct extent_buffer *left;
3194 	int slot;
3195 	int free_space;
3196 	u32 right_nritems;
3197 	int ret = 0;
3198 
3199 	slot = path->slots[1];
3200 	if (slot == 0)
3201 		return 1;
3202 	if (!path->nodes[1])
3203 		return 1;
3204 
3205 	right_nritems = btrfs_header_nritems(right);
3206 	if (right_nritems == 0)
3207 		return 1;
3208 
3209 	btrfs_assert_tree_write_locked(path->nodes[1]);
3210 
3211 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3212 	/*
3213 	 * slot - 1 is not valid or we fail to read the left node,
3214 	 * no big deal, just return.
3215 	 */
3216 	if (IS_ERR(left))
3217 		return 1;
3218 
3219 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3220 
3221 	free_space = btrfs_leaf_free_space(left);
3222 	if (free_space < data_size) {
3223 		ret = 1;
3224 		goto out;
3225 	}
3226 
3227 	/* cow and double check */
3228 	ret = btrfs_cow_block(trans, root, left,
3229 			      path->nodes[1], slot - 1, &left,
3230 			      BTRFS_NESTING_LEFT_COW);
3231 	if (ret) {
3232 		/* we hit -ENOSPC, but it isn't fatal here */
3233 		if (ret == -ENOSPC)
3234 			ret = 1;
3235 		goto out;
3236 	}
3237 
3238 	free_space = btrfs_leaf_free_space(left);
3239 	if (free_space < data_size) {
3240 		ret = 1;
3241 		goto out;
3242 	}
3243 
3244 	if (check_sibling_keys(left, right)) {
3245 		ret = -EUCLEAN;
3246 		goto out;
3247 	}
3248 	return __push_leaf_left(path, min_data_size,
3249 			       empty, left, free_space, right_nritems,
3250 			       max_slot);
3251 out:
3252 	btrfs_tree_unlock(left);
3253 	free_extent_buffer(left);
3254 	return ret;
3255 }
3256 
3257 /*
3258  * split the path's leaf in two, making sure there is at least data_size
3259  * available for the resulting leaf level of the path.
3260  */
3261 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3262 				    struct btrfs_path *path,
3263 				    struct extent_buffer *l,
3264 				    struct extent_buffer *right,
3265 				    int slot, int mid, int nritems)
3266 {
3267 	struct btrfs_fs_info *fs_info = trans->fs_info;
3268 	int data_copy_size;
3269 	int rt_data_off;
3270 	int i;
3271 	struct btrfs_disk_key disk_key;
3272 	struct btrfs_map_token token;
3273 
3274 	nritems = nritems - mid;
3275 	btrfs_set_header_nritems(right, nritems);
3276 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3277 
3278 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3279 			   btrfs_item_nr_offset(mid),
3280 			   nritems * sizeof(struct btrfs_item));
3281 
3282 	copy_extent_buffer(right, l,
3283 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3284 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3285 		     leaf_data_end(l), data_copy_size);
3286 
3287 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3288 
3289 	btrfs_init_map_token(&token, right);
3290 	for (i = 0; i < nritems; i++) {
3291 		u32 ioff;
3292 
3293 		ioff = btrfs_token_item_offset(&token, i);
3294 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3295 	}
3296 
3297 	btrfs_set_header_nritems(l, mid);
3298 	btrfs_item_key(right, &disk_key, 0);
3299 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3300 
3301 	btrfs_mark_buffer_dirty(right);
3302 	btrfs_mark_buffer_dirty(l);
3303 	BUG_ON(path->slots[0] != slot);
3304 
3305 	if (mid <= slot) {
3306 		btrfs_tree_unlock(path->nodes[0]);
3307 		free_extent_buffer(path->nodes[0]);
3308 		path->nodes[0] = right;
3309 		path->slots[0] -= mid;
3310 		path->slots[1] += 1;
3311 	} else {
3312 		btrfs_tree_unlock(right);
3313 		free_extent_buffer(right);
3314 	}
3315 
3316 	BUG_ON(path->slots[0] < 0);
3317 }
3318 
3319 /*
3320  * double splits happen when we need to insert a big item in the middle
3321  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3322  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3323  *          A                 B                 C
3324  *
3325  * We avoid this by trying to push the items on either side of our target
3326  * into the adjacent leaves.  If all goes well we can avoid the double split
3327  * completely.
3328  */
3329 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3330 					  struct btrfs_root *root,
3331 					  struct btrfs_path *path,
3332 					  int data_size)
3333 {
3334 	int ret;
3335 	int progress = 0;
3336 	int slot;
3337 	u32 nritems;
3338 	int space_needed = data_size;
3339 
3340 	slot = path->slots[0];
3341 	if (slot < btrfs_header_nritems(path->nodes[0]))
3342 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3343 
3344 	/*
3345 	 * try to push all the items after our slot into the
3346 	 * right leaf
3347 	 */
3348 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3349 	if (ret < 0)
3350 		return ret;
3351 
3352 	if (ret == 0)
3353 		progress++;
3354 
3355 	nritems = btrfs_header_nritems(path->nodes[0]);
3356 	/*
3357 	 * our goal is to get our slot at the start or end of a leaf.  If
3358 	 * we've done so we're done
3359 	 */
3360 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3361 		return 0;
3362 
3363 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3364 		return 0;
3365 
3366 	/* try to push all the items before our slot into the next leaf */
3367 	slot = path->slots[0];
3368 	space_needed = data_size;
3369 	if (slot > 0)
3370 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3371 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3372 	if (ret < 0)
3373 		return ret;
3374 
3375 	if (ret == 0)
3376 		progress++;
3377 
3378 	if (progress)
3379 		return 0;
3380 	return 1;
3381 }
3382 
3383 /*
3384  * split the path's leaf in two, making sure there is at least data_size
3385  * available for the resulting leaf level of the path.
3386  *
3387  * returns 0 if all went well and < 0 on failure.
3388  */
3389 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3390 			       struct btrfs_root *root,
3391 			       const struct btrfs_key *ins_key,
3392 			       struct btrfs_path *path, int data_size,
3393 			       int extend)
3394 {
3395 	struct btrfs_disk_key disk_key;
3396 	struct extent_buffer *l;
3397 	u32 nritems;
3398 	int mid;
3399 	int slot;
3400 	struct extent_buffer *right;
3401 	struct btrfs_fs_info *fs_info = root->fs_info;
3402 	int ret = 0;
3403 	int wret;
3404 	int split;
3405 	int num_doubles = 0;
3406 	int tried_avoid_double = 0;
3407 
3408 	l = path->nodes[0];
3409 	slot = path->slots[0];
3410 	if (extend && data_size + btrfs_item_size(l, slot) +
3411 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3412 		return -EOVERFLOW;
3413 
3414 	/* first try to make some room by pushing left and right */
3415 	if (data_size && path->nodes[1]) {
3416 		int space_needed = data_size;
3417 
3418 		if (slot < btrfs_header_nritems(l))
3419 			space_needed -= btrfs_leaf_free_space(l);
3420 
3421 		wret = push_leaf_right(trans, root, path, space_needed,
3422 				       space_needed, 0, 0);
3423 		if (wret < 0)
3424 			return wret;
3425 		if (wret) {
3426 			space_needed = data_size;
3427 			if (slot > 0)
3428 				space_needed -= btrfs_leaf_free_space(l);
3429 			wret = push_leaf_left(trans, root, path, space_needed,
3430 					      space_needed, 0, (u32)-1);
3431 			if (wret < 0)
3432 				return wret;
3433 		}
3434 		l = path->nodes[0];
3435 
3436 		/* did the pushes work? */
3437 		if (btrfs_leaf_free_space(l) >= data_size)
3438 			return 0;
3439 	}
3440 
3441 	if (!path->nodes[1]) {
3442 		ret = insert_new_root(trans, root, path, 1);
3443 		if (ret)
3444 			return ret;
3445 	}
3446 again:
3447 	split = 1;
3448 	l = path->nodes[0];
3449 	slot = path->slots[0];
3450 	nritems = btrfs_header_nritems(l);
3451 	mid = (nritems + 1) / 2;
3452 
3453 	if (mid <= slot) {
3454 		if (nritems == 1 ||
3455 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3456 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3457 			if (slot >= nritems) {
3458 				split = 0;
3459 			} else {
3460 				mid = slot;
3461 				if (mid != nritems &&
3462 				    leaf_space_used(l, mid, nritems - mid) +
3463 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3464 					if (data_size && !tried_avoid_double)
3465 						goto push_for_double;
3466 					split = 2;
3467 				}
3468 			}
3469 		}
3470 	} else {
3471 		if (leaf_space_used(l, 0, mid) + data_size >
3472 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3473 			if (!extend && data_size && slot == 0) {
3474 				split = 0;
3475 			} else if ((extend || !data_size) && slot == 0) {
3476 				mid = 1;
3477 			} else {
3478 				mid = slot;
3479 				if (mid != nritems &&
3480 				    leaf_space_used(l, mid, nritems - mid) +
3481 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3482 					if (data_size && !tried_avoid_double)
3483 						goto push_for_double;
3484 					split = 2;
3485 				}
3486 			}
3487 		}
3488 	}
3489 
3490 	if (split == 0)
3491 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3492 	else
3493 		btrfs_item_key(l, &disk_key, mid);
3494 
3495 	/*
3496 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3497 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3498 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3499 	 * out.  In the future we could add a
3500 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3501 	 * use BTRFS_NESTING_NEW_ROOT.
3502 	 */
3503 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3504 				       &disk_key, 0, l->start, 0,
3505 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3506 				       BTRFS_NESTING_SPLIT);
3507 	if (IS_ERR(right))
3508 		return PTR_ERR(right);
3509 
3510 	root_add_used(root, fs_info->nodesize);
3511 
3512 	if (split == 0) {
3513 		if (mid <= slot) {
3514 			btrfs_set_header_nritems(right, 0);
3515 			insert_ptr(trans, path, &disk_key,
3516 				   right->start, path->slots[1] + 1, 1);
3517 			btrfs_tree_unlock(path->nodes[0]);
3518 			free_extent_buffer(path->nodes[0]);
3519 			path->nodes[0] = right;
3520 			path->slots[0] = 0;
3521 			path->slots[1] += 1;
3522 		} else {
3523 			btrfs_set_header_nritems(right, 0);
3524 			insert_ptr(trans, path, &disk_key,
3525 				   right->start, path->slots[1], 1);
3526 			btrfs_tree_unlock(path->nodes[0]);
3527 			free_extent_buffer(path->nodes[0]);
3528 			path->nodes[0] = right;
3529 			path->slots[0] = 0;
3530 			if (path->slots[1] == 0)
3531 				fixup_low_keys(path, &disk_key, 1);
3532 		}
3533 		/*
3534 		 * We create a new leaf 'right' for the required ins_len and
3535 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3536 		 * the content of ins_len to 'right'.
3537 		 */
3538 		return ret;
3539 	}
3540 
3541 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3542 
3543 	if (split == 2) {
3544 		BUG_ON(num_doubles != 0);
3545 		num_doubles++;
3546 		goto again;
3547 	}
3548 
3549 	return 0;
3550 
3551 push_for_double:
3552 	push_for_double_split(trans, root, path, data_size);
3553 	tried_avoid_double = 1;
3554 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3555 		return 0;
3556 	goto again;
3557 }
3558 
3559 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3560 					 struct btrfs_root *root,
3561 					 struct btrfs_path *path, int ins_len)
3562 {
3563 	struct btrfs_key key;
3564 	struct extent_buffer *leaf;
3565 	struct btrfs_file_extent_item *fi;
3566 	u64 extent_len = 0;
3567 	u32 item_size;
3568 	int ret;
3569 
3570 	leaf = path->nodes[0];
3571 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3572 
3573 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3574 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3575 
3576 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3577 		return 0;
3578 
3579 	item_size = btrfs_item_size(leaf, path->slots[0]);
3580 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3581 		fi = btrfs_item_ptr(leaf, path->slots[0],
3582 				    struct btrfs_file_extent_item);
3583 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3584 	}
3585 	btrfs_release_path(path);
3586 
3587 	path->keep_locks = 1;
3588 	path->search_for_split = 1;
3589 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3590 	path->search_for_split = 0;
3591 	if (ret > 0)
3592 		ret = -EAGAIN;
3593 	if (ret < 0)
3594 		goto err;
3595 
3596 	ret = -EAGAIN;
3597 	leaf = path->nodes[0];
3598 	/* if our item isn't there, return now */
3599 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3600 		goto err;
3601 
3602 	/* the leaf has  changed, it now has room.  return now */
3603 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3604 		goto err;
3605 
3606 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3607 		fi = btrfs_item_ptr(leaf, path->slots[0],
3608 				    struct btrfs_file_extent_item);
3609 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3610 			goto err;
3611 	}
3612 
3613 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3614 	if (ret)
3615 		goto err;
3616 
3617 	path->keep_locks = 0;
3618 	btrfs_unlock_up_safe(path, 1);
3619 	return 0;
3620 err:
3621 	path->keep_locks = 0;
3622 	return ret;
3623 }
3624 
3625 static noinline int split_item(struct btrfs_path *path,
3626 			       const struct btrfs_key *new_key,
3627 			       unsigned long split_offset)
3628 {
3629 	struct extent_buffer *leaf;
3630 	int orig_slot, slot;
3631 	char *buf;
3632 	u32 nritems;
3633 	u32 item_size;
3634 	u32 orig_offset;
3635 	struct btrfs_disk_key disk_key;
3636 
3637 	leaf = path->nodes[0];
3638 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3639 
3640 	orig_slot = path->slots[0];
3641 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3642 	item_size = btrfs_item_size(leaf, path->slots[0]);
3643 
3644 	buf = kmalloc(item_size, GFP_NOFS);
3645 	if (!buf)
3646 		return -ENOMEM;
3647 
3648 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3649 			    path->slots[0]), item_size);
3650 
3651 	slot = path->slots[0] + 1;
3652 	nritems = btrfs_header_nritems(leaf);
3653 	if (slot != nritems) {
3654 		/* shift the items */
3655 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3656 				btrfs_item_nr_offset(slot),
3657 				(nritems - slot) * sizeof(struct btrfs_item));
3658 	}
3659 
3660 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3661 	btrfs_set_item_key(leaf, &disk_key, slot);
3662 
3663 	btrfs_set_item_offset(leaf, slot, orig_offset);
3664 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3665 
3666 	btrfs_set_item_offset(leaf, orig_slot,
3667 				 orig_offset + item_size - split_offset);
3668 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3669 
3670 	btrfs_set_header_nritems(leaf, nritems + 1);
3671 
3672 	/* write the data for the start of the original item */
3673 	write_extent_buffer(leaf, buf,
3674 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3675 			    split_offset);
3676 
3677 	/* write the data for the new item */
3678 	write_extent_buffer(leaf, buf + split_offset,
3679 			    btrfs_item_ptr_offset(leaf, slot),
3680 			    item_size - split_offset);
3681 	btrfs_mark_buffer_dirty(leaf);
3682 
3683 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3684 	kfree(buf);
3685 	return 0;
3686 }
3687 
3688 /*
3689  * This function splits a single item into two items,
3690  * giving 'new_key' to the new item and splitting the
3691  * old one at split_offset (from the start of the item).
3692  *
3693  * The path may be released by this operation.  After
3694  * the split, the path is pointing to the old item.  The
3695  * new item is going to be in the same node as the old one.
3696  *
3697  * Note, the item being split must be smaller enough to live alone on
3698  * a tree block with room for one extra struct btrfs_item
3699  *
3700  * This allows us to split the item in place, keeping a lock on the
3701  * leaf the entire time.
3702  */
3703 int btrfs_split_item(struct btrfs_trans_handle *trans,
3704 		     struct btrfs_root *root,
3705 		     struct btrfs_path *path,
3706 		     const struct btrfs_key *new_key,
3707 		     unsigned long split_offset)
3708 {
3709 	int ret;
3710 	ret = setup_leaf_for_split(trans, root, path,
3711 				   sizeof(struct btrfs_item));
3712 	if (ret)
3713 		return ret;
3714 
3715 	ret = split_item(path, new_key, split_offset);
3716 	return ret;
3717 }
3718 
3719 /*
3720  * make the item pointed to by the path smaller.  new_size indicates
3721  * how small to make it, and from_end tells us if we just chop bytes
3722  * off the end of the item or if we shift the item to chop bytes off
3723  * the front.
3724  */
3725 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3726 {
3727 	int slot;
3728 	struct extent_buffer *leaf;
3729 	u32 nritems;
3730 	unsigned int data_end;
3731 	unsigned int old_data_start;
3732 	unsigned int old_size;
3733 	unsigned int size_diff;
3734 	int i;
3735 	struct btrfs_map_token token;
3736 
3737 	leaf = path->nodes[0];
3738 	slot = path->slots[0];
3739 
3740 	old_size = btrfs_item_size(leaf, slot);
3741 	if (old_size == new_size)
3742 		return;
3743 
3744 	nritems = btrfs_header_nritems(leaf);
3745 	data_end = leaf_data_end(leaf);
3746 
3747 	old_data_start = btrfs_item_offset(leaf, slot);
3748 
3749 	size_diff = old_size - new_size;
3750 
3751 	BUG_ON(slot < 0);
3752 	BUG_ON(slot >= nritems);
3753 
3754 	/*
3755 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3756 	 */
3757 	/* first correct the data pointers */
3758 	btrfs_init_map_token(&token, leaf);
3759 	for (i = slot; i < nritems; i++) {
3760 		u32 ioff;
3761 
3762 		ioff = btrfs_token_item_offset(&token, i);
3763 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3764 	}
3765 
3766 	/* shift the data */
3767 	if (from_end) {
3768 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3769 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3770 			      data_end, old_data_start + new_size - data_end);
3771 	} else {
3772 		struct btrfs_disk_key disk_key;
3773 		u64 offset;
3774 
3775 		btrfs_item_key(leaf, &disk_key, slot);
3776 
3777 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3778 			unsigned long ptr;
3779 			struct btrfs_file_extent_item *fi;
3780 
3781 			fi = btrfs_item_ptr(leaf, slot,
3782 					    struct btrfs_file_extent_item);
3783 			fi = (struct btrfs_file_extent_item *)(
3784 			     (unsigned long)fi - size_diff);
3785 
3786 			if (btrfs_file_extent_type(leaf, fi) ==
3787 			    BTRFS_FILE_EXTENT_INLINE) {
3788 				ptr = btrfs_item_ptr_offset(leaf, slot);
3789 				memmove_extent_buffer(leaf, ptr,
3790 				      (unsigned long)fi,
3791 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3792 			}
3793 		}
3794 
3795 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3796 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3797 			      data_end, old_data_start - data_end);
3798 
3799 		offset = btrfs_disk_key_offset(&disk_key);
3800 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3801 		btrfs_set_item_key(leaf, &disk_key, slot);
3802 		if (slot == 0)
3803 			fixup_low_keys(path, &disk_key, 1);
3804 	}
3805 
3806 	btrfs_set_item_size(leaf, slot, new_size);
3807 	btrfs_mark_buffer_dirty(leaf);
3808 
3809 	if (btrfs_leaf_free_space(leaf) < 0) {
3810 		btrfs_print_leaf(leaf);
3811 		BUG();
3812 	}
3813 }
3814 
3815 /*
3816  * make the item pointed to by the path bigger, data_size is the added size.
3817  */
3818 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3819 {
3820 	int slot;
3821 	struct extent_buffer *leaf;
3822 	u32 nritems;
3823 	unsigned int data_end;
3824 	unsigned int old_data;
3825 	unsigned int old_size;
3826 	int i;
3827 	struct btrfs_map_token token;
3828 
3829 	leaf = path->nodes[0];
3830 
3831 	nritems = btrfs_header_nritems(leaf);
3832 	data_end = leaf_data_end(leaf);
3833 
3834 	if (btrfs_leaf_free_space(leaf) < data_size) {
3835 		btrfs_print_leaf(leaf);
3836 		BUG();
3837 	}
3838 	slot = path->slots[0];
3839 	old_data = btrfs_item_data_end(leaf, slot);
3840 
3841 	BUG_ON(slot < 0);
3842 	if (slot >= nritems) {
3843 		btrfs_print_leaf(leaf);
3844 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3845 			   slot, nritems);
3846 		BUG();
3847 	}
3848 
3849 	/*
3850 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3851 	 */
3852 	/* first correct the data pointers */
3853 	btrfs_init_map_token(&token, leaf);
3854 	for (i = slot; i < nritems; i++) {
3855 		u32 ioff;
3856 
3857 		ioff = btrfs_token_item_offset(&token, i);
3858 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
3859 	}
3860 
3861 	/* shift the data */
3862 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3863 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3864 		      data_end, old_data - data_end);
3865 
3866 	data_end = old_data;
3867 	old_size = btrfs_item_size(leaf, slot);
3868 	btrfs_set_item_size(leaf, slot, old_size + data_size);
3869 	btrfs_mark_buffer_dirty(leaf);
3870 
3871 	if (btrfs_leaf_free_space(leaf) < 0) {
3872 		btrfs_print_leaf(leaf);
3873 		BUG();
3874 	}
3875 }
3876 
3877 /**
3878  * setup_items_for_insert - Helper called before inserting one or more items
3879  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3880  * in a function that doesn't call btrfs_search_slot
3881  *
3882  * @root:	root we are inserting items to
3883  * @path:	points to the leaf/slot where we are going to insert new items
3884  * @batch:      information about the batch of items to insert
3885  */
3886 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3887 				   const struct btrfs_item_batch *batch)
3888 {
3889 	struct btrfs_fs_info *fs_info = root->fs_info;
3890 	int i;
3891 	u32 nritems;
3892 	unsigned int data_end;
3893 	struct btrfs_disk_key disk_key;
3894 	struct extent_buffer *leaf;
3895 	int slot;
3896 	struct btrfs_map_token token;
3897 	u32 total_size;
3898 
3899 	/*
3900 	 * Before anything else, update keys in the parent and other ancestors
3901 	 * if needed, then release the write locks on them, so that other tasks
3902 	 * can use them while we modify the leaf.
3903 	 */
3904 	if (path->slots[0] == 0) {
3905 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3906 		fixup_low_keys(path, &disk_key, 1);
3907 	}
3908 	btrfs_unlock_up_safe(path, 1);
3909 
3910 	leaf = path->nodes[0];
3911 	slot = path->slots[0];
3912 
3913 	nritems = btrfs_header_nritems(leaf);
3914 	data_end = leaf_data_end(leaf);
3915 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3916 
3917 	if (btrfs_leaf_free_space(leaf) < total_size) {
3918 		btrfs_print_leaf(leaf);
3919 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
3920 			   total_size, btrfs_leaf_free_space(leaf));
3921 		BUG();
3922 	}
3923 
3924 	btrfs_init_map_token(&token, leaf);
3925 	if (slot != nritems) {
3926 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
3927 
3928 		if (old_data < data_end) {
3929 			btrfs_print_leaf(leaf);
3930 			btrfs_crit(fs_info,
3931 		"item at slot %d with data offset %u beyond data end of leaf %u",
3932 				   slot, old_data, data_end);
3933 			BUG();
3934 		}
3935 		/*
3936 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3937 		 */
3938 		/* first correct the data pointers */
3939 		for (i = slot; i < nritems; i++) {
3940 			u32 ioff;
3941 
3942 			ioff = btrfs_token_item_offset(&token, i);
3943 			btrfs_set_token_item_offset(&token, i,
3944 						       ioff - batch->total_data_size);
3945 		}
3946 		/* shift the items */
3947 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
3948 			      btrfs_item_nr_offset(slot),
3949 			      (nritems - slot) * sizeof(struct btrfs_item));
3950 
3951 		/* shift the data */
3952 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3953 				      data_end - batch->total_data_size,
3954 				      BTRFS_LEAF_DATA_OFFSET + data_end,
3955 				      old_data - data_end);
3956 		data_end = old_data;
3957 	}
3958 
3959 	/* setup the item for the new data */
3960 	for (i = 0; i < batch->nr; i++) {
3961 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
3962 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3963 		data_end -= batch->data_sizes[i];
3964 		btrfs_set_token_item_offset(&token, slot + i, data_end);
3965 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
3966 	}
3967 
3968 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
3969 	btrfs_mark_buffer_dirty(leaf);
3970 
3971 	if (btrfs_leaf_free_space(leaf) < 0) {
3972 		btrfs_print_leaf(leaf);
3973 		BUG();
3974 	}
3975 }
3976 
3977 /*
3978  * Insert a new item into a leaf.
3979  *
3980  * @root:      The root of the btree.
3981  * @path:      A path pointing to the target leaf and slot.
3982  * @key:       The key of the new item.
3983  * @data_size: The size of the data associated with the new key.
3984  */
3985 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3986 				 struct btrfs_path *path,
3987 				 const struct btrfs_key *key,
3988 				 u32 data_size)
3989 {
3990 	struct btrfs_item_batch batch;
3991 
3992 	batch.keys = key;
3993 	batch.data_sizes = &data_size;
3994 	batch.total_data_size = data_size;
3995 	batch.nr = 1;
3996 
3997 	setup_items_for_insert(root, path, &batch);
3998 }
3999 
4000 /*
4001  * Given a key and some data, insert items into the tree.
4002  * This does all the path init required, making room in the tree if needed.
4003  */
4004 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4005 			    struct btrfs_root *root,
4006 			    struct btrfs_path *path,
4007 			    const struct btrfs_item_batch *batch)
4008 {
4009 	int ret = 0;
4010 	int slot;
4011 	u32 total_size;
4012 
4013 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4014 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4015 	if (ret == 0)
4016 		return -EEXIST;
4017 	if (ret < 0)
4018 		return ret;
4019 
4020 	slot = path->slots[0];
4021 	BUG_ON(slot < 0);
4022 
4023 	setup_items_for_insert(root, path, batch);
4024 	return 0;
4025 }
4026 
4027 /*
4028  * Given a key and some data, insert an item into the tree.
4029  * This does all the path init required, making room in the tree if needed.
4030  */
4031 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4032 		      const struct btrfs_key *cpu_key, void *data,
4033 		      u32 data_size)
4034 {
4035 	int ret = 0;
4036 	struct btrfs_path *path;
4037 	struct extent_buffer *leaf;
4038 	unsigned long ptr;
4039 
4040 	path = btrfs_alloc_path();
4041 	if (!path)
4042 		return -ENOMEM;
4043 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4044 	if (!ret) {
4045 		leaf = path->nodes[0];
4046 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4047 		write_extent_buffer(leaf, data, ptr, data_size);
4048 		btrfs_mark_buffer_dirty(leaf);
4049 	}
4050 	btrfs_free_path(path);
4051 	return ret;
4052 }
4053 
4054 /*
4055  * This function duplicates an item, giving 'new_key' to the new item.
4056  * It guarantees both items live in the same tree leaf and the new item is
4057  * contiguous with the original item.
4058  *
4059  * This allows us to split a file extent in place, keeping a lock on the leaf
4060  * the entire time.
4061  */
4062 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4063 			 struct btrfs_root *root,
4064 			 struct btrfs_path *path,
4065 			 const struct btrfs_key *new_key)
4066 {
4067 	struct extent_buffer *leaf;
4068 	int ret;
4069 	u32 item_size;
4070 
4071 	leaf = path->nodes[0];
4072 	item_size = btrfs_item_size(leaf, path->slots[0]);
4073 	ret = setup_leaf_for_split(trans, root, path,
4074 				   item_size + sizeof(struct btrfs_item));
4075 	if (ret)
4076 		return ret;
4077 
4078 	path->slots[0]++;
4079 	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4080 	leaf = path->nodes[0];
4081 	memcpy_extent_buffer(leaf,
4082 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4083 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4084 			     item_size);
4085 	return 0;
4086 }
4087 
4088 /*
4089  * delete the pointer from a given node.
4090  *
4091  * the tree should have been previously balanced so the deletion does not
4092  * empty a node.
4093  */
4094 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4095 		    int level, int slot)
4096 {
4097 	struct extent_buffer *parent = path->nodes[level];
4098 	u32 nritems;
4099 	int ret;
4100 
4101 	nritems = btrfs_header_nritems(parent);
4102 	if (slot != nritems - 1) {
4103 		if (level) {
4104 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4105 					slot + 1, nritems - slot - 1);
4106 			BUG_ON(ret < 0);
4107 		}
4108 		memmove_extent_buffer(parent,
4109 			      btrfs_node_key_ptr_offset(slot),
4110 			      btrfs_node_key_ptr_offset(slot + 1),
4111 			      sizeof(struct btrfs_key_ptr) *
4112 			      (nritems - slot - 1));
4113 	} else if (level) {
4114 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4115 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4116 		BUG_ON(ret < 0);
4117 	}
4118 
4119 	nritems--;
4120 	btrfs_set_header_nritems(parent, nritems);
4121 	if (nritems == 0 && parent == root->node) {
4122 		BUG_ON(btrfs_header_level(root->node) != 1);
4123 		/* just turn the root into a leaf and break */
4124 		btrfs_set_header_level(root->node, 0);
4125 	} else if (slot == 0) {
4126 		struct btrfs_disk_key disk_key;
4127 
4128 		btrfs_node_key(parent, &disk_key, 0);
4129 		fixup_low_keys(path, &disk_key, level + 1);
4130 	}
4131 	btrfs_mark_buffer_dirty(parent);
4132 }
4133 
4134 /*
4135  * a helper function to delete the leaf pointed to by path->slots[1] and
4136  * path->nodes[1].
4137  *
4138  * This deletes the pointer in path->nodes[1] and frees the leaf
4139  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4140  *
4141  * The path must have already been setup for deleting the leaf, including
4142  * all the proper balancing.  path->nodes[1] must be locked.
4143  */
4144 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4145 				    struct btrfs_root *root,
4146 				    struct btrfs_path *path,
4147 				    struct extent_buffer *leaf)
4148 {
4149 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4150 	del_ptr(root, path, 1, path->slots[1]);
4151 
4152 	/*
4153 	 * btrfs_free_extent is expensive, we want to make sure we
4154 	 * aren't holding any locks when we call it
4155 	 */
4156 	btrfs_unlock_up_safe(path, 0);
4157 
4158 	root_sub_used(root, leaf->len);
4159 
4160 	atomic_inc(&leaf->refs);
4161 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4162 	free_extent_buffer_stale(leaf);
4163 }
4164 /*
4165  * delete the item at the leaf level in path.  If that empties
4166  * the leaf, remove it from the tree
4167  */
4168 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4169 		    struct btrfs_path *path, int slot, int nr)
4170 {
4171 	struct btrfs_fs_info *fs_info = root->fs_info;
4172 	struct extent_buffer *leaf;
4173 	u32 last_off;
4174 	u32 dsize = 0;
4175 	int ret = 0;
4176 	int wret;
4177 	int i;
4178 	u32 nritems;
4179 
4180 	leaf = path->nodes[0];
4181 	last_off = btrfs_item_offset(leaf, slot + nr - 1);
4182 
4183 	for (i = 0; i < nr; i++)
4184 		dsize += btrfs_item_size(leaf, slot + i);
4185 
4186 	nritems = btrfs_header_nritems(leaf);
4187 
4188 	if (slot + nr != nritems) {
4189 		int data_end = leaf_data_end(leaf);
4190 		struct btrfs_map_token token;
4191 
4192 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4193 			      data_end + dsize,
4194 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4195 			      last_off - data_end);
4196 
4197 		btrfs_init_map_token(&token, leaf);
4198 		for (i = slot + nr; i < nritems; i++) {
4199 			u32 ioff;
4200 
4201 			ioff = btrfs_token_item_offset(&token, i);
4202 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4203 		}
4204 
4205 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4206 			      btrfs_item_nr_offset(slot + nr),
4207 			      sizeof(struct btrfs_item) *
4208 			      (nritems - slot - nr));
4209 	}
4210 	btrfs_set_header_nritems(leaf, nritems - nr);
4211 	nritems -= nr;
4212 
4213 	/* delete the leaf if we've emptied it */
4214 	if (nritems == 0) {
4215 		if (leaf == root->node) {
4216 			btrfs_set_header_level(leaf, 0);
4217 		} else {
4218 			btrfs_clean_tree_block(leaf);
4219 			btrfs_del_leaf(trans, root, path, leaf);
4220 		}
4221 	} else {
4222 		int used = leaf_space_used(leaf, 0, nritems);
4223 		if (slot == 0) {
4224 			struct btrfs_disk_key disk_key;
4225 
4226 			btrfs_item_key(leaf, &disk_key, 0);
4227 			fixup_low_keys(path, &disk_key, 1);
4228 		}
4229 
4230 		/* delete the leaf if it is mostly empty */
4231 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4232 			/* push_leaf_left fixes the path.
4233 			 * make sure the path still points to our leaf
4234 			 * for possible call to del_ptr below
4235 			 */
4236 			slot = path->slots[1];
4237 			atomic_inc(&leaf->refs);
4238 
4239 			wret = push_leaf_left(trans, root, path, 1, 1,
4240 					      1, (u32)-1);
4241 			if (wret < 0 && wret != -ENOSPC)
4242 				ret = wret;
4243 
4244 			if (path->nodes[0] == leaf &&
4245 			    btrfs_header_nritems(leaf)) {
4246 				wret = push_leaf_right(trans, root, path, 1,
4247 						       1, 1, 0);
4248 				if (wret < 0 && wret != -ENOSPC)
4249 					ret = wret;
4250 			}
4251 
4252 			if (btrfs_header_nritems(leaf) == 0) {
4253 				path->slots[1] = slot;
4254 				btrfs_del_leaf(trans, root, path, leaf);
4255 				free_extent_buffer(leaf);
4256 				ret = 0;
4257 			} else {
4258 				/* if we're still in the path, make sure
4259 				 * we're dirty.  Otherwise, one of the
4260 				 * push_leaf functions must have already
4261 				 * dirtied this buffer
4262 				 */
4263 				if (path->nodes[0] == leaf)
4264 					btrfs_mark_buffer_dirty(leaf);
4265 				free_extent_buffer(leaf);
4266 			}
4267 		} else {
4268 			btrfs_mark_buffer_dirty(leaf);
4269 		}
4270 	}
4271 	return ret;
4272 }
4273 
4274 /*
4275  * search the tree again to find a leaf with lesser keys
4276  * returns 0 if it found something or 1 if there are no lesser leaves.
4277  * returns < 0 on io errors.
4278  *
4279  * This may release the path, and so you may lose any locks held at the
4280  * time you call it.
4281  */
4282 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4283 {
4284 	struct btrfs_key key;
4285 	struct btrfs_disk_key found_key;
4286 	int ret;
4287 
4288 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4289 
4290 	if (key.offset > 0) {
4291 		key.offset--;
4292 	} else if (key.type > 0) {
4293 		key.type--;
4294 		key.offset = (u64)-1;
4295 	} else if (key.objectid > 0) {
4296 		key.objectid--;
4297 		key.type = (u8)-1;
4298 		key.offset = (u64)-1;
4299 	} else {
4300 		return 1;
4301 	}
4302 
4303 	btrfs_release_path(path);
4304 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4305 	if (ret < 0)
4306 		return ret;
4307 	btrfs_item_key(path->nodes[0], &found_key, 0);
4308 	ret = comp_keys(&found_key, &key);
4309 	/*
4310 	 * We might have had an item with the previous key in the tree right
4311 	 * before we released our path. And after we released our path, that
4312 	 * item might have been pushed to the first slot (0) of the leaf we
4313 	 * were holding due to a tree balance. Alternatively, an item with the
4314 	 * previous key can exist as the only element of a leaf (big fat item).
4315 	 * Therefore account for these 2 cases, so that our callers (like
4316 	 * btrfs_previous_item) don't miss an existing item with a key matching
4317 	 * the previous key we computed above.
4318 	 */
4319 	if (ret <= 0)
4320 		return 0;
4321 	return 1;
4322 }
4323 
4324 /*
4325  * A helper function to walk down the tree starting at min_key, and looking
4326  * for nodes or leaves that are have a minimum transaction id.
4327  * This is used by the btree defrag code, and tree logging
4328  *
4329  * This does not cow, but it does stuff the starting key it finds back
4330  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4331  * key and get a writable path.
4332  *
4333  * This honors path->lowest_level to prevent descent past a given level
4334  * of the tree.
4335  *
4336  * min_trans indicates the oldest transaction that you are interested
4337  * in walking through.  Any nodes or leaves older than min_trans are
4338  * skipped over (without reading them).
4339  *
4340  * returns zero if something useful was found, < 0 on error and 1 if there
4341  * was nothing in the tree that matched the search criteria.
4342  */
4343 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4344 			 struct btrfs_path *path,
4345 			 u64 min_trans)
4346 {
4347 	struct extent_buffer *cur;
4348 	struct btrfs_key found_key;
4349 	int slot;
4350 	int sret;
4351 	u32 nritems;
4352 	int level;
4353 	int ret = 1;
4354 	int keep_locks = path->keep_locks;
4355 
4356 	path->keep_locks = 1;
4357 again:
4358 	cur = btrfs_read_lock_root_node(root);
4359 	level = btrfs_header_level(cur);
4360 	WARN_ON(path->nodes[level]);
4361 	path->nodes[level] = cur;
4362 	path->locks[level] = BTRFS_READ_LOCK;
4363 
4364 	if (btrfs_header_generation(cur) < min_trans) {
4365 		ret = 1;
4366 		goto out;
4367 	}
4368 	while (1) {
4369 		nritems = btrfs_header_nritems(cur);
4370 		level = btrfs_header_level(cur);
4371 		sret = btrfs_bin_search(cur, min_key, &slot);
4372 		if (sret < 0) {
4373 			ret = sret;
4374 			goto out;
4375 		}
4376 
4377 		/* at the lowest level, we're done, setup the path and exit */
4378 		if (level == path->lowest_level) {
4379 			if (slot >= nritems)
4380 				goto find_next_key;
4381 			ret = 0;
4382 			path->slots[level] = slot;
4383 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4384 			goto out;
4385 		}
4386 		if (sret && slot > 0)
4387 			slot--;
4388 		/*
4389 		 * check this node pointer against the min_trans parameters.
4390 		 * If it is too old, skip to the next one.
4391 		 */
4392 		while (slot < nritems) {
4393 			u64 gen;
4394 
4395 			gen = btrfs_node_ptr_generation(cur, slot);
4396 			if (gen < min_trans) {
4397 				slot++;
4398 				continue;
4399 			}
4400 			break;
4401 		}
4402 find_next_key:
4403 		/*
4404 		 * we didn't find a candidate key in this node, walk forward
4405 		 * and find another one
4406 		 */
4407 		if (slot >= nritems) {
4408 			path->slots[level] = slot;
4409 			sret = btrfs_find_next_key(root, path, min_key, level,
4410 						  min_trans);
4411 			if (sret == 0) {
4412 				btrfs_release_path(path);
4413 				goto again;
4414 			} else {
4415 				goto out;
4416 			}
4417 		}
4418 		/* save our key for returning back */
4419 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4420 		path->slots[level] = slot;
4421 		if (level == path->lowest_level) {
4422 			ret = 0;
4423 			goto out;
4424 		}
4425 		cur = btrfs_read_node_slot(cur, slot);
4426 		if (IS_ERR(cur)) {
4427 			ret = PTR_ERR(cur);
4428 			goto out;
4429 		}
4430 
4431 		btrfs_tree_read_lock(cur);
4432 
4433 		path->locks[level - 1] = BTRFS_READ_LOCK;
4434 		path->nodes[level - 1] = cur;
4435 		unlock_up(path, level, 1, 0, NULL);
4436 	}
4437 out:
4438 	path->keep_locks = keep_locks;
4439 	if (ret == 0) {
4440 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4441 		memcpy(min_key, &found_key, sizeof(found_key));
4442 	}
4443 	return ret;
4444 }
4445 
4446 /*
4447  * this is similar to btrfs_next_leaf, but does not try to preserve
4448  * and fixup the path.  It looks for and returns the next key in the
4449  * tree based on the current path and the min_trans parameters.
4450  *
4451  * 0 is returned if another key is found, < 0 if there are any errors
4452  * and 1 is returned if there are no higher keys in the tree
4453  *
4454  * path->keep_locks should be set to 1 on the search made before
4455  * calling this function.
4456  */
4457 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4458 			struct btrfs_key *key, int level, u64 min_trans)
4459 {
4460 	int slot;
4461 	struct extent_buffer *c;
4462 
4463 	WARN_ON(!path->keep_locks && !path->skip_locking);
4464 	while (level < BTRFS_MAX_LEVEL) {
4465 		if (!path->nodes[level])
4466 			return 1;
4467 
4468 		slot = path->slots[level] + 1;
4469 		c = path->nodes[level];
4470 next:
4471 		if (slot >= btrfs_header_nritems(c)) {
4472 			int ret;
4473 			int orig_lowest;
4474 			struct btrfs_key cur_key;
4475 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4476 			    !path->nodes[level + 1])
4477 				return 1;
4478 
4479 			if (path->locks[level + 1] || path->skip_locking) {
4480 				level++;
4481 				continue;
4482 			}
4483 
4484 			slot = btrfs_header_nritems(c) - 1;
4485 			if (level == 0)
4486 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4487 			else
4488 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4489 
4490 			orig_lowest = path->lowest_level;
4491 			btrfs_release_path(path);
4492 			path->lowest_level = level;
4493 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4494 						0, 0);
4495 			path->lowest_level = orig_lowest;
4496 			if (ret < 0)
4497 				return ret;
4498 
4499 			c = path->nodes[level];
4500 			slot = path->slots[level];
4501 			if (ret == 0)
4502 				slot++;
4503 			goto next;
4504 		}
4505 
4506 		if (level == 0)
4507 			btrfs_item_key_to_cpu(c, key, slot);
4508 		else {
4509 			u64 gen = btrfs_node_ptr_generation(c, slot);
4510 
4511 			if (gen < min_trans) {
4512 				slot++;
4513 				goto next;
4514 			}
4515 			btrfs_node_key_to_cpu(c, key, slot);
4516 		}
4517 		return 0;
4518 	}
4519 	return 1;
4520 }
4521 
4522 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4523 			u64 time_seq)
4524 {
4525 	int slot;
4526 	int level;
4527 	struct extent_buffer *c;
4528 	struct extent_buffer *next;
4529 	struct btrfs_fs_info *fs_info = root->fs_info;
4530 	struct btrfs_key key;
4531 	bool need_commit_sem = false;
4532 	u32 nritems;
4533 	int ret;
4534 	int i;
4535 
4536 	nritems = btrfs_header_nritems(path->nodes[0]);
4537 	if (nritems == 0)
4538 		return 1;
4539 
4540 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4541 again:
4542 	level = 1;
4543 	next = NULL;
4544 	btrfs_release_path(path);
4545 
4546 	path->keep_locks = 1;
4547 
4548 	if (time_seq) {
4549 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4550 	} else {
4551 		if (path->need_commit_sem) {
4552 			path->need_commit_sem = 0;
4553 			need_commit_sem = true;
4554 			down_read(&fs_info->commit_root_sem);
4555 		}
4556 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4557 	}
4558 	path->keep_locks = 0;
4559 
4560 	if (ret < 0)
4561 		goto done;
4562 
4563 	nritems = btrfs_header_nritems(path->nodes[0]);
4564 	/*
4565 	 * by releasing the path above we dropped all our locks.  A balance
4566 	 * could have added more items next to the key that used to be
4567 	 * at the very end of the block.  So, check again here and
4568 	 * advance the path if there are now more items available.
4569 	 */
4570 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4571 		if (ret == 0)
4572 			path->slots[0]++;
4573 		ret = 0;
4574 		goto done;
4575 	}
4576 	/*
4577 	 * So the above check misses one case:
4578 	 * - after releasing the path above, someone has removed the item that
4579 	 *   used to be at the very end of the block, and balance between leafs
4580 	 *   gets another one with bigger key.offset to replace it.
4581 	 *
4582 	 * This one should be returned as well, or we can get leaf corruption
4583 	 * later(esp. in __btrfs_drop_extents()).
4584 	 *
4585 	 * And a bit more explanation about this check,
4586 	 * with ret > 0, the key isn't found, the path points to the slot
4587 	 * where it should be inserted, so the path->slots[0] item must be the
4588 	 * bigger one.
4589 	 */
4590 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4591 		ret = 0;
4592 		goto done;
4593 	}
4594 
4595 	while (level < BTRFS_MAX_LEVEL) {
4596 		if (!path->nodes[level]) {
4597 			ret = 1;
4598 			goto done;
4599 		}
4600 
4601 		slot = path->slots[level] + 1;
4602 		c = path->nodes[level];
4603 		if (slot >= btrfs_header_nritems(c)) {
4604 			level++;
4605 			if (level == BTRFS_MAX_LEVEL) {
4606 				ret = 1;
4607 				goto done;
4608 			}
4609 			continue;
4610 		}
4611 
4612 
4613 		/*
4614 		 * Our current level is where we're going to start from, and to
4615 		 * make sure lockdep doesn't complain we need to drop our locks
4616 		 * and nodes from 0 to our current level.
4617 		 */
4618 		for (i = 0; i < level; i++) {
4619 			if (path->locks[level]) {
4620 				btrfs_tree_read_unlock(path->nodes[i]);
4621 				path->locks[i] = 0;
4622 			}
4623 			free_extent_buffer(path->nodes[i]);
4624 			path->nodes[i] = NULL;
4625 		}
4626 
4627 		next = c;
4628 		ret = read_block_for_search(root, path, &next, level,
4629 					    slot, &key);
4630 		if (ret == -EAGAIN)
4631 			goto again;
4632 
4633 		if (ret < 0) {
4634 			btrfs_release_path(path);
4635 			goto done;
4636 		}
4637 
4638 		if (!path->skip_locking) {
4639 			ret = btrfs_try_tree_read_lock(next);
4640 			if (!ret && time_seq) {
4641 				/*
4642 				 * If we don't get the lock, we may be racing
4643 				 * with push_leaf_left, holding that lock while
4644 				 * itself waiting for the leaf we've currently
4645 				 * locked. To solve this situation, we give up
4646 				 * on our lock and cycle.
4647 				 */
4648 				free_extent_buffer(next);
4649 				btrfs_release_path(path);
4650 				cond_resched();
4651 				goto again;
4652 			}
4653 			if (!ret)
4654 				btrfs_tree_read_lock(next);
4655 		}
4656 		break;
4657 	}
4658 	path->slots[level] = slot;
4659 	while (1) {
4660 		level--;
4661 		path->nodes[level] = next;
4662 		path->slots[level] = 0;
4663 		if (!path->skip_locking)
4664 			path->locks[level] = BTRFS_READ_LOCK;
4665 		if (!level)
4666 			break;
4667 
4668 		ret = read_block_for_search(root, path, &next, level,
4669 					    0, &key);
4670 		if (ret == -EAGAIN)
4671 			goto again;
4672 
4673 		if (ret < 0) {
4674 			btrfs_release_path(path);
4675 			goto done;
4676 		}
4677 
4678 		if (!path->skip_locking)
4679 			btrfs_tree_read_lock(next);
4680 	}
4681 	ret = 0;
4682 done:
4683 	unlock_up(path, 0, 1, 0, NULL);
4684 	if (need_commit_sem) {
4685 		int ret2;
4686 
4687 		path->need_commit_sem = 1;
4688 		ret2 = finish_need_commit_sem_search(path);
4689 		up_read(&fs_info->commit_root_sem);
4690 		if (ret2)
4691 			ret = ret2;
4692 	}
4693 
4694 	return ret;
4695 }
4696 
4697 /*
4698  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4699  * searching until it gets past min_objectid or finds an item of 'type'
4700  *
4701  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4702  */
4703 int btrfs_previous_item(struct btrfs_root *root,
4704 			struct btrfs_path *path, u64 min_objectid,
4705 			int type)
4706 {
4707 	struct btrfs_key found_key;
4708 	struct extent_buffer *leaf;
4709 	u32 nritems;
4710 	int ret;
4711 
4712 	while (1) {
4713 		if (path->slots[0] == 0) {
4714 			ret = btrfs_prev_leaf(root, path);
4715 			if (ret != 0)
4716 				return ret;
4717 		} else {
4718 			path->slots[0]--;
4719 		}
4720 		leaf = path->nodes[0];
4721 		nritems = btrfs_header_nritems(leaf);
4722 		if (nritems == 0)
4723 			return 1;
4724 		if (path->slots[0] == nritems)
4725 			path->slots[0]--;
4726 
4727 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4728 		if (found_key.objectid < min_objectid)
4729 			break;
4730 		if (found_key.type == type)
4731 			return 0;
4732 		if (found_key.objectid == min_objectid &&
4733 		    found_key.type < type)
4734 			break;
4735 	}
4736 	return 1;
4737 }
4738 
4739 /*
4740  * search in extent tree to find a previous Metadata/Data extent item with
4741  * min objecitd.
4742  *
4743  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4744  */
4745 int btrfs_previous_extent_item(struct btrfs_root *root,
4746 			struct btrfs_path *path, u64 min_objectid)
4747 {
4748 	struct btrfs_key found_key;
4749 	struct extent_buffer *leaf;
4750 	u32 nritems;
4751 	int ret;
4752 
4753 	while (1) {
4754 		if (path->slots[0] == 0) {
4755 			ret = btrfs_prev_leaf(root, path);
4756 			if (ret != 0)
4757 				return ret;
4758 		} else {
4759 			path->slots[0]--;
4760 		}
4761 		leaf = path->nodes[0];
4762 		nritems = btrfs_header_nritems(leaf);
4763 		if (nritems == 0)
4764 			return 1;
4765 		if (path->slots[0] == nritems)
4766 			path->slots[0]--;
4767 
4768 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4769 		if (found_key.objectid < min_objectid)
4770 			break;
4771 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4772 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
4773 			return 0;
4774 		if (found_key.objectid == min_objectid &&
4775 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4776 			break;
4777 	}
4778 	return 1;
4779 }
4780