1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 #include "tree-mod-log.h" 18 19 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 20 *root, struct btrfs_path *path, int level); 21 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 22 const struct btrfs_key *ins_key, struct btrfs_path *path, 23 int data_size, int extend); 24 static int push_node_left(struct btrfs_trans_handle *trans, 25 struct extent_buffer *dst, 26 struct extent_buffer *src, int empty); 27 static int balance_node_right(struct btrfs_trans_handle *trans, 28 struct extent_buffer *dst_buf, 29 struct extent_buffer *src_buf); 30 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 31 int level, int slot); 32 33 static const struct btrfs_csums { 34 u16 size; 35 const char name[10]; 36 const char driver[12]; 37 } btrfs_csums[] = { 38 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 39 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 40 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 41 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 42 .driver = "blake2b-256" }, 43 }; 44 45 int btrfs_super_csum_size(const struct btrfs_super_block *s) 46 { 47 u16 t = btrfs_super_csum_type(s); 48 /* 49 * csum type is validated at mount time 50 */ 51 return btrfs_csums[t].size; 52 } 53 54 const char *btrfs_super_csum_name(u16 csum_type) 55 { 56 /* csum type is validated at mount time */ 57 return btrfs_csums[csum_type].name; 58 } 59 60 /* 61 * Return driver name if defined, otherwise the name that's also a valid driver 62 * name 63 */ 64 const char *btrfs_super_csum_driver(u16 csum_type) 65 { 66 /* csum type is validated at mount time */ 67 return btrfs_csums[csum_type].driver[0] ? 68 btrfs_csums[csum_type].driver : 69 btrfs_csums[csum_type].name; 70 } 71 72 size_t __attribute_const__ btrfs_get_num_csums(void) 73 { 74 return ARRAY_SIZE(btrfs_csums); 75 } 76 77 struct btrfs_path *btrfs_alloc_path(void) 78 { 79 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 80 } 81 82 /* this also releases the path */ 83 void btrfs_free_path(struct btrfs_path *p) 84 { 85 if (!p) 86 return; 87 btrfs_release_path(p); 88 kmem_cache_free(btrfs_path_cachep, p); 89 } 90 91 /* 92 * path release drops references on the extent buffers in the path 93 * and it drops any locks held by this path 94 * 95 * It is safe to call this on paths that no locks or extent buffers held. 96 */ 97 noinline void btrfs_release_path(struct btrfs_path *p) 98 { 99 int i; 100 101 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 102 p->slots[i] = 0; 103 if (!p->nodes[i]) 104 continue; 105 if (p->locks[i]) { 106 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 107 p->locks[i] = 0; 108 } 109 free_extent_buffer(p->nodes[i]); 110 p->nodes[i] = NULL; 111 } 112 } 113 114 /* 115 * safely gets a reference on the root node of a tree. A lock 116 * is not taken, so a concurrent writer may put a different node 117 * at the root of the tree. See btrfs_lock_root_node for the 118 * looping required. 119 * 120 * The extent buffer returned by this has a reference taken, so 121 * it won't disappear. It may stop being the root of the tree 122 * at any time because there are no locks held. 123 */ 124 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 125 { 126 struct extent_buffer *eb; 127 128 while (1) { 129 rcu_read_lock(); 130 eb = rcu_dereference(root->node); 131 132 /* 133 * RCU really hurts here, we could free up the root node because 134 * it was COWed but we may not get the new root node yet so do 135 * the inc_not_zero dance and if it doesn't work then 136 * synchronize_rcu and try again. 137 */ 138 if (atomic_inc_not_zero(&eb->refs)) { 139 rcu_read_unlock(); 140 break; 141 } 142 rcu_read_unlock(); 143 synchronize_rcu(); 144 } 145 return eb; 146 } 147 148 /* 149 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 150 * just get put onto a simple dirty list. Transaction walks this list to make 151 * sure they get properly updated on disk. 152 */ 153 static void add_root_to_dirty_list(struct btrfs_root *root) 154 { 155 struct btrfs_fs_info *fs_info = root->fs_info; 156 157 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 158 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 159 return; 160 161 spin_lock(&fs_info->trans_lock); 162 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 163 /* Want the extent tree to be the last on the list */ 164 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 165 list_move_tail(&root->dirty_list, 166 &fs_info->dirty_cowonly_roots); 167 else 168 list_move(&root->dirty_list, 169 &fs_info->dirty_cowonly_roots); 170 } 171 spin_unlock(&fs_info->trans_lock); 172 } 173 174 /* 175 * used by snapshot creation to make a copy of a root for a tree with 176 * a given objectid. The buffer with the new root node is returned in 177 * cow_ret, and this func returns zero on success or a negative error code. 178 */ 179 int btrfs_copy_root(struct btrfs_trans_handle *trans, 180 struct btrfs_root *root, 181 struct extent_buffer *buf, 182 struct extent_buffer **cow_ret, u64 new_root_objectid) 183 { 184 struct btrfs_fs_info *fs_info = root->fs_info; 185 struct extent_buffer *cow; 186 int ret = 0; 187 int level; 188 struct btrfs_disk_key disk_key; 189 190 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 191 trans->transid != fs_info->running_transaction->transid); 192 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 193 trans->transid != root->last_trans); 194 195 level = btrfs_header_level(buf); 196 if (level == 0) 197 btrfs_item_key(buf, &disk_key, 0); 198 else 199 btrfs_node_key(buf, &disk_key, 0); 200 201 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 202 &disk_key, level, buf->start, 0, 203 BTRFS_NESTING_NEW_ROOT); 204 if (IS_ERR(cow)) 205 return PTR_ERR(cow); 206 207 copy_extent_buffer_full(cow, buf); 208 btrfs_set_header_bytenr(cow, cow->start); 209 btrfs_set_header_generation(cow, trans->transid); 210 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 211 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 212 BTRFS_HEADER_FLAG_RELOC); 213 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 214 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 215 else 216 btrfs_set_header_owner(cow, new_root_objectid); 217 218 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 219 220 WARN_ON(btrfs_header_generation(buf) > trans->transid); 221 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 222 ret = btrfs_inc_ref(trans, root, cow, 1); 223 else 224 ret = btrfs_inc_ref(trans, root, cow, 0); 225 if (ret) { 226 btrfs_tree_unlock(cow); 227 free_extent_buffer(cow); 228 btrfs_abort_transaction(trans, ret); 229 return ret; 230 } 231 232 btrfs_mark_buffer_dirty(cow); 233 *cow_ret = cow; 234 return 0; 235 } 236 237 /* 238 * check if the tree block can be shared by multiple trees 239 */ 240 int btrfs_block_can_be_shared(struct btrfs_root *root, 241 struct extent_buffer *buf) 242 { 243 /* 244 * Tree blocks not in shareable trees and tree roots are never shared. 245 * If a block was allocated after the last snapshot and the block was 246 * not allocated by tree relocation, we know the block is not shared. 247 */ 248 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 249 buf != root->node && buf != root->commit_root && 250 (btrfs_header_generation(buf) <= 251 btrfs_root_last_snapshot(&root->root_item) || 252 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 253 return 1; 254 255 return 0; 256 } 257 258 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 259 struct btrfs_root *root, 260 struct extent_buffer *buf, 261 struct extent_buffer *cow, 262 int *last_ref) 263 { 264 struct btrfs_fs_info *fs_info = root->fs_info; 265 u64 refs; 266 u64 owner; 267 u64 flags; 268 u64 new_flags = 0; 269 int ret; 270 271 /* 272 * Backrefs update rules: 273 * 274 * Always use full backrefs for extent pointers in tree block 275 * allocated by tree relocation. 276 * 277 * If a shared tree block is no longer referenced by its owner 278 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 279 * use full backrefs for extent pointers in tree block. 280 * 281 * If a tree block is been relocating 282 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 283 * use full backrefs for extent pointers in tree block. 284 * The reason for this is some operations (such as drop tree) 285 * are only allowed for blocks use full backrefs. 286 */ 287 288 if (btrfs_block_can_be_shared(root, buf)) { 289 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 290 btrfs_header_level(buf), 1, 291 &refs, &flags); 292 if (ret) 293 return ret; 294 if (refs == 0) { 295 ret = -EROFS; 296 btrfs_handle_fs_error(fs_info, ret, NULL); 297 return ret; 298 } 299 } else { 300 refs = 1; 301 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 302 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 303 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 304 else 305 flags = 0; 306 } 307 308 owner = btrfs_header_owner(buf); 309 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 310 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 311 312 if (refs > 1) { 313 if ((owner == root->root_key.objectid || 314 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 315 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 316 ret = btrfs_inc_ref(trans, root, buf, 1); 317 if (ret) 318 return ret; 319 320 if (root->root_key.objectid == 321 BTRFS_TREE_RELOC_OBJECTID) { 322 ret = btrfs_dec_ref(trans, root, buf, 0); 323 if (ret) 324 return ret; 325 ret = btrfs_inc_ref(trans, root, cow, 1); 326 if (ret) 327 return ret; 328 } 329 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 330 } else { 331 332 if (root->root_key.objectid == 333 BTRFS_TREE_RELOC_OBJECTID) 334 ret = btrfs_inc_ref(trans, root, cow, 1); 335 else 336 ret = btrfs_inc_ref(trans, root, cow, 0); 337 if (ret) 338 return ret; 339 } 340 if (new_flags != 0) { 341 int level = btrfs_header_level(buf); 342 343 ret = btrfs_set_disk_extent_flags(trans, buf, 344 new_flags, level, 0); 345 if (ret) 346 return ret; 347 } 348 } else { 349 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 350 if (root->root_key.objectid == 351 BTRFS_TREE_RELOC_OBJECTID) 352 ret = btrfs_inc_ref(trans, root, cow, 1); 353 else 354 ret = btrfs_inc_ref(trans, root, cow, 0); 355 if (ret) 356 return ret; 357 ret = btrfs_dec_ref(trans, root, buf, 1); 358 if (ret) 359 return ret; 360 } 361 btrfs_clean_tree_block(buf); 362 *last_ref = 1; 363 } 364 return 0; 365 } 366 367 /* 368 * does the dirty work in cow of a single block. The parent block (if 369 * supplied) is updated to point to the new cow copy. The new buffer is marked 370 * dirty and returned locked. If you modify the block it needs to be marked 371 * dirty again. 372 * 373 * search_start -- an allocation hint for the new block 374 * 375 * empty_size -- a hint that you plan on doing more cow. This is the size in 376 * bytes the allocator should try to find free next to the block it returns. 377 * This is just a hint and may be ignored by the allocator. 378 */ 379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 380 struct btrfs_root *root, 381 struct extent_buffer *buf, 382 struct extent_buffer *parent, int parent_slot, 383 struct extent_buffer **cow_ret, 384 u64 search_start, u64 empty_size, 385 enum btrfs_lock_nesting nest) 386 { 387 struct btrfs_fs_info *fs_info = root->fs_info; 388 struct btrfs_disk_key disk_key; 389 struct extent_buffer *cow; 390 int level, ret; 391 int last_ref = 0; 392 int unlock_orig = 0; 393 u64 parent_start = 0; 394 395 if (*cow_ret == buf) 396 unlock_orig = 1; 397 398 btrfs_assert_tree_locked(buf); 399 400 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 401 trans->transid != fs_info->running_transaction->transid); 402 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 403 trans->transid != root->last_trans); 404 405 level = btrfs_header_level(buf); 406 407 if (level == 0) 408 btrfs_item_key(buf, &disk_key, 0); 409 else 410 btrfs_node_key(buf, &disk_key, 0); 411 412 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 413 parent_start = parent->start; 414 415 cow = btrfs_alloc_tree_block(trans, root, parent_start, 416 root->root_key.objectid, &disk_key, level, 417 search_start, empty_size, nest); 418 if (IS_ERR(cow)) 419 return PTR_ERR(cow); 420 421 /* cow is set to blocking by btrfs_init_new_buffer */ 422 423 copy_extent_buffer_full(cow, buf); 424 btrfs_set_header_bytenr(cow, cow->start); 425 btrfs_set_header_generation(cow, trans->transid); 426 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 427 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 428 BTRFS_HEADER_FLAG_RELOC); 429 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 430 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 431 else 432 btrfs_set_header_owner(cow, root->root_key.objectid); 433 434 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 435 436 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 437 if (ret) { 438 btrfs_tree_unlock(cow); 439 free_extent_buffer(cow); 440 btrfs_abort_transaction(trans, ret); 441 return ret; 442 } 443 444 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 445 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 446 if (ret) { 447 btrfs_tree_unlock(cow); 448 free_extent_buffer(cow); 449 btrfs_abort_transaction(trans, ret); 450 return ret; 451 } 452 } 453 454 if (buf == root->node) { 455 WARN_ON(parent && parent != buf); 456 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 457 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 458 parent_start = buf->start; 459 460 atomic_inc(&cow->refs); 461 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); 462 BUG_ON(ret < 0); 463 rcu_assign_pointer(root->node, cow); 464 465 btrfs_free_tree_block(trans, root, buf, parent_start, 466 last_ref); 467 free_extent_buffer(buf); 468 add_root_to_dirty_list(root); 469 } else { 470 WARN_ON(trans->transid != btrfs_header_generation(parent)); 471 btrfs_tree_mod_log_insert_key(parent, parent_slot, 472 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 473 btrfs_set_node_blockptr(parent, parent_slot, 474 cow->start); 475 btrfs_set_node_ptr_generation(parent, parent_slot, 476 trans->transid); 477 btrfs_mark_buffer_dirty(parent); 478 if (last_ref) { 479 ret = btrfs_tree_mod_log_free_eb(buf); 480 if (ret) { 481 btrfs_tree_unlock(cow); 482 free_extent_buffer(cow); 483 btrfs_abort_transaction(trans, ret); 484 return ret; 485 } 486 } 487 btrfs_free_tree_block(trans, root, buf, parent_start, 488 last_ref); 489 } 490 if (unlock_orig) 491 btrfs_tree_unlock(buf); 492 free_extent_buffer_stale(buf); 493 btrfs_mark_buffer_dirty(cow); 494 *cow_ret = cow; 495 return 0; 496 } 497 498 static inline int should_cow_block(struct btrfs_trans_handle *trans, 499 struct btrfs_root *root, 500 struct extent_buffer *buf) 501 { 502 if (btrfs_is_testing(root->fs_info)) 503 return 0; 504 505 /* Ensure we can see the FORCE_COW bit */ 506 smp_mb__before_atomic(); 507 508 /* 509 * We do not need to cow a block if 510 * 1) this block is not created or changed in this transaction; 511 * 2) this block does not belong to TREE_RELOC tree; 512 * 3) the root is not forced COW. 513 * 514 * What is forced COW: 515 * when we create snapshot during committing the transaction, 516 * after we've finished copying src root, we must COW the shared 517 * block to ensure the metadata consistency. 518 */ 519 if (btrfs_header_generation(buf) == trans->transid && 520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 524 return 0; 525 return 1; 526 } 527 528 /* 529 * cows a single block, see __btrfs_cow_block for the real work. 530 * This version of it has extra checks so that a block isn't COWed more than 531 * once per transaction, as long as it hasn't been written yet 532 */ 533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 534 struct btrfs_root *root, struct extent_buffer *buf, 535 struct extent_buffer *parent, int parent_slot, 536 struct extent_buffer **cow_ret, 537 enum btrfs_lock_nesting nest) 538 { 539 struct btrfs_fs_info *fs_info = root->fs_info; 540 u64 search_start; 541 int ret; 542 543 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 544 btrfs_err(fs_info, 545 "COW'ing blocks on a fs root that's being dropped"); 546 547 if (trans->transaction != fs_info->running_transaction) 548 WARN(1, KERN_CRIT "trans %llu running %llu\n", 549 trans->transid, 550 fs_info->running_transaction->transid); 551 552 if (trans->transid != fs_info->generation) 553 WARN(1, KERN_CRIT "trans %llu running %llu\n", 554 trans->transid, fs_info->generation); 555 556 if (!should_cow_block(trans, root, buf)) { 557 *cow_ret = buf; 558 return 0; 559 } 560 561 search_start = buf->start & ~((u64)SZ_1G - 1); 562 563 /* 564 * Before CoWing this block for later modification, check if it's 565 * the subtree root and do the delayed subtree trace if needed. 566 * 567 * Also We don't care about the error, as it's handled internally. 568 */ 569 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 570 ret = __btrfs_cow_block(trans, root, buf, parent, 571 parent_slot, cow_ret, search_start, 0, nest); 572 573 trace_btrfs_cow_block(root, buf, *cow_ret); 574 575 return ret; 576 } 577 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 578 579 /* 580 * helper function for defrag to decide if two blocks pointed to by a 581 * node are actually close by 582 */ 583 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 584 { 585 if (blocknr < other && other - (blocknr + blocksize) < 32768) 586 return 1; 587 if (blocknr > other && blocknr - (other + blocksize) < 32768) 588 return 1; 589 return 0; 590 } 591 592 #ifdef __LITTLE_ENDIAN 593 594 /* 595 * Compare two keys, on little-endian the disk order is same as CPU order and 596 * we can avoid the conversion. 597 */ 598 static int comp_keys(const struct btrfs_disk_key *disk_key, 599 const struct btrfs_key *k2) 600 { 601 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 602 603 return btrfs_comp_cpu_keys(k1, k2); 604 } 605 606 #else 607 608 /* 609 * compare two keys in a memcmp fashion 610 */ 611 static int comp_keys(const struct btrfs_disk_key *disk, 612 const struct btrfs_key *k2) 613 { 614 struct btrfs_key k1; 615 616 btrfs_disk_key_to_cpu(&k1, disk); 617 618 return btrfs_comp_cpu_keys(&k1, k2); 619 } 620 #endif 621 622 /* 623 * same as comp_keys only with two btrfs_key's 624 */ 625 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 626 { 627 if (k1->objectid > k2->objectid) 628 return 1; 629 if (k1->objectid < k2->objectid) 630 return -1; 631 if (k1->type > k2->type) 632 return 1; 633 if (k1->type < k2->type) 634 return -1; 635 if (k1->offset > k2->offset) 636 return 1; 637 if (k1->offset < k2->offset) 638 return -1; 639 return 0; 640 } 641 642 /* 643 * this is used by the defrag code to go through all the 644 * leaves pointed to by a node and reallocate them so that 645 * disk order is close to key order 646 */ 647 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 648 struct btrfs_root *root, struct extent_buffer *parent, 649 int start_slot, u64 *last_ret, 650 struct btrfs_key *progress) 651 { 652 struct btrfs_fs_info *fs_info = root->fs_info; 653 struct extent_buffer *cur; 654 u64 blocknr; 655 u64 search_start = *last_ret; 656 u64 last_block = 0; 657 u64 other; 658 u32 parent_nritems; 659 int end_slot; 660 int i; 661 int err = 0; 662 u32 blocksize; 663 int progress_passed = 0; 664 struct btrfs_disk_key disk_key; 665 666 WARN_ON(trans->transaction != fs_info->running_transaction); 667 WARN_ON(trans->transid != fs_info->generation); 668 669 parent_nritems = btrfs_header_nritems(parent); 670 blocksize = fs_info->nodesize; 671 end_slot = parent_nritems - 1; 672 673 if (parent_nritems <= 1) 674 return 0; 675 676 for (i = start_slot; i <= end_slot; i++) { 677 int close = 1; 678 679 btrfs_node_key(parent, &disk_key, i); 680 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 681 continue; 682 683 progress_passed = 1; 684 blocknr = btrfs_node_blockptr(parent, i); 685 if (last_block == 0) 686 last_block = blocknr; 687 688 if (i > 0) { 689 other = btrfs_node_blockptr(parent, i - 1); 690 close = close_blocks(blocknr, other, blocksize); 691 } 692 if (!close && i < end_slot) { 693 other = btrfs_node_blockptr(parent, i + 1); 694 close = close_blocks(blocknr, other, blocksize); 695 } 696 if (close) { 697 last_block = blocknr; 698 continue; 699 } 700 701 cur = btrfs_read_node_slot(parent, i); 702 if (IS_ERR(cur)) 703 return PTR_ERR(cur); 704 if (search_start == 0) 705 search_start = last_block; 706 707 btrfs_tree_lock(cur); 708 err = __btrfs_cow_block(trans, root, cur, parent, i, 709 &cur, search_start, 710 min(16 * blocksize, 711 (end_slot - i) * blocksize), 712 BTRFS_NESTING_COW); 713 if (err) { 714 btrfs_tree_unlock(cur); 715 free_extent_buffer(cur); 716 break; 717 } 718 search_start = cur->start; 719 last_block = cur->start; 720 *last_ret = search_start; 721 btrfs_tree_unlock(cur); 722 free_extent_buffer(cur); 723 } 724 return err; 725 } 726 727 /* 728 * search for key in the extent_buffer. The items start at offset p, 729 * and they are item_size apart. There are 'max' items in p. 730 * 731 * the slot in the array is returned via slot, and it points to 732 * the place where you would insert key if it is not found in 733 * the array. 734 * 735 * slot may point to max if the key is bigger than all of the keys 736 */ 737 static noinline int generic_bin_search(struct extent_buffer *eb, 738 unsigned long p, int item_size, 739 const struct btrfs_key *key, 740 int max, int *slot) 741 { 742 int low = 0; 743 int high = max; 744 int ret; 745 const int key_size = sizeof(struct btrfs_disk_key); 746 747 if (low > high) { 748 btrfs_err(eb->fs_info, 749 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 750 __func__, low, high, eb->start, 751 btrfs_header_owner(eb), btrfs_header_level(eb)); 752 return -EINVAL; 753 } 754 755 while (low < high) { 756 unsigned long oip; 757 unsigned long offset; 758 struct btrfs_disk_key *tmp; 759 struct btrfs_disk_key unaligned; 760 int mid; 761 762 mid = (low + high) / 2; 763 offset = p + mid * item_size; 764 oip = offset_in_page(offset); 765 766 if (oip + key_size <= PAGE_SIZE) { 767 const unsigned long idx = get_eb_page_index(offset); 768 char *kaddr = page_address(eb->pages[idx]); 769 770 oip = get_eb_offset_in_page(eb, offset); 771 tmp = (struct btrfs_disk_key *)(kaddr + oip); 772 } else { 773 read_extent_buffer(eb, &unaligned, offset, key_size); 774 tmp = &unaligned; 775 } 776 777 ret = comp_keys(tmp, key); 778 779 if (ret < 0) 780 low = mid + 1; 781 else if (ret > 0) 782 high = mid; 783 else { 784 *slot = mid; 785 return 0; 786 } 787 } 788 *slot = low; 789 return 1; 790 } 791 792 /* 793 * simple bin_search frontend that does the right thing for 794 * leaves vs nodes 795 */ 796 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 797 int *slot) 798 { 799 if (btrfs_header_level(eb) == 0) 800 return generic_bin_search(eb, 801 offsetof(struct btrfs_leaf, items), 802 sizeof(struct btrfs_item), 803 key, btrfs_header_nritems(eb), 804 slot); 805 else 806 return generic_bin_search(eb, 807 offsetof(struct btrfs_node, ptrs), 808 sizeof(struct btrfs_key_ptr), 809 key, btrfs_header_nritems(eb), 810 slot); 811 } 812 813 static void root_add_used(struct btrfs_root *root, u32 size) 814 { 815 spin_lock(&root->accounting_lock); 816 btrfs_set_root_used(&root->root_item, 817 btrfs_root_used(&root->root_item) + size); 818 spin_unlock(&root->accounting_lock); 819 } 820 821 static void root_sub_used(struct btrfs_root *root, u32 size) 822 { 823 spin_lock(&root->accounting_lock); 824 btrfs_set_root_used(&root->root_item, 825 btrfs_root_used(&root->root_item) - size); 826 spin_unlock(&root->accounting_lock); 827 } 828 829 /* given a node and slot number, this reads the blocks it points to. The 830 * extent buffer is returned with a reference taken (but unlocked). 831 */ 832 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 833 int slot) 834 { 835 int level = btrfs_header_level(parent); 836 struct extent_buffer *eb; 837 struct btrfs_key first_key; 838 839 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 840 return ERR_PTR(-ENOENT); 841 842 BUG_ON(level == 0); 843 844 btrfs_node_key_to_cpu(parent, &first_key, slot); 845 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 846 btrfs_header_owner(parent), 847 btrfs_node_ptr_generation(parent, slot), 848 level - 1, &first_key); 849 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 850 free_extent_buffer(eb); 851 eb = ERR_PTR(-EIO); 852 } 853 854 return eb; 855 } 856 857 /* 858 * node level balancing, used to make sure nodes are in proper order for 859 * item deletion. We balance from the top down, so we have to make sure 860 * that a deletion won't leave an node completely empty later on. 861 */ 862 static noinline int balance_level(struct btrfs_trans_handle *trans, 863 struct btrfs_root *root, 864 struct btrfs_path *path, int level) 865 { 866 struct btrfs_fs_info *fs_info = root->fs_info; 867 struct extent_buffer *right = NULL; 868 struct extent_buffer *mid; 869 struct extent_buffer *left = NULL; 870 struct extent_buffer *parent = NULL; 871 int ret = 0; 872 int wret; 873 int pslot; 874 int orig_slot = path->slots[level]; 875 u64 orig_ptr; 876 877 ASSERT(level > 0); 878 879 mid = path->nodes[level]; 880 881 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 882 WARN_ON(btrfs_header_generation(mid) != trans->transid); 883 884 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 885 886 if (level < BTRFS_MAX_LEVEL - 1) { 887 parent = path->nodes[level + 1]; 888 pslot = path->slots[level + 1]; 889 } 890 891 /* 892 * deal with the case where there is only one pointer in the root 893 * by promoting the node below to a root 894 */ 895 if (!parent) { 896 struct extent_buffer *child; 897 898 if (btrfs_header_nritems(mid) != 1) 899 return 0; 900 901 /* promote the child to a root */ 902 child = btrfs_read_node_slot(mid, 0); 903 if (IS_ERR(child)) { 904 ret = PTR_ERR(child); 905 btrfs_handle_fs_error(fs_info, ret, NULL); 906 goto enospc; 907 } 908 909 btrfs_tree_lock(child); 910 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 911 BTRFS_NESTING_COW); 912 if (ret) { 913 btrfs_tree_unlock(child); 914 free_extent_buffer(child); 915 goto enospc; 916 } 917 918 ret = btrfs_tree_mod_log_insert_root(root->node, child, true); 919 BUG_ON(ret < 0); 920 rcu_assign_pointer(root->node, child); 921 922 add_root_to_dirty_list(root); 923 btrfs_tree_unlock(child); 924 925 path->locks[level] = 0; 926 path->nodes[level] = NULL; 927 btrfs_clean_tree_block(mid); 928 btrfs_tree_unlock(mid); 929 /* once for the path */ 930 free_extent_buffer(mid); 931 932 root_sub_used(root, mid->len); 933 btrfs_free_tree_block(trans, root, mid, 0, 1); 934 /* once for the root ptr */ 935 free_extent_buffer_stale(mid); 936 return 0; 937 } 938 if (btrfs_header_nritems(mid) > 939 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 940 return 0; 941 942 left = btrfs_read_node_slot(parent, pslot - 1); 943 if (IS_ERR(left)) 944 left = NULL; 945 946 if (left) { 947 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 948 wret = btrfs_cow_block(trans, root, left, 949 parent, pslot - 1, &left, 950 BTRFS_NESTING_LEFT_COW); 951 if (wret) { 952 ret = wret; 953 goto enospc; 954 } 955 } 956 957 right = btrfs_read_node_slot(parent, pslot + 1); 958 if (IS_ERR(right)) 959 right = NULL; 960 961 if (right) { 962 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 963 wret = btrfs_cow_block(trans, root, right, 964 parent, pslot + 1, &right, 965 BTRFS_NESTING_RIGHT_COW); 966 if (wret) { 967 ret = wret; 968 goto enospc; 969 } 970 } 971 972 /* first, try to make some room in the middle buffer */ 973 if (left) { 974 orig_slot += btrfs_header_nritems(left); 975 wret = push_node_left(trans, left, mid, 1); 976 if (wret < 0) 977 ret = wret; 978 } 979 980 /* 981 * then try to empty the right most buffer into the middle 982 */ 983 if (right) { 984 wret = push_node_left(trans, mid, right, 1); 985 if (wret < 0 && wret != -ENOSPC) 986 ret = wret; 987 if (btrfs_header_nritems(right) == 0) { 988 btrfs_clean_tree_block(right); 989 btrfs_tree_unlock(right); 990 del_ptr(root, path, level + 1, pslot + 1); 991 root_sub_used(root, right->len); 992 btrfs_free_tree_block(trans, root, right, 0, 1); 993 free_extent_buffer_stale(right); 994 right = NULL; 995 } else { 996 struct btrfs_disk_key right_key; 997 btrfs_node_key(right, &right_key, 0); 998 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 999 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1000 BUG_ON(ret < 0); 1001 btrfs_set_node_key(parent, &right_key, pslot + 1); 1002 btrfs_mark_buffer_dirty(parent); 1003 } 1004 } 1005 if (btrfs_header_nritems(mid) == 1) { 1006 /* 1007 * we're not allowed to leave a node with one item in the 1008 * tree during a delete. A deletion from lower in the tree 1009 * could try to delete the only pointer in this node. 1010 * So, pull some keys from the left. 1011 * There has to be a left pointer at this point because 1012 * otherwise we would have pulled some pointers from the 1013 * right 1014 */ 1015 if (!left) { 1016 ret = -EROFS; 1017 btrfs_handle_fs_error(fs_info, ret, NULL); 1018 goto enospc; 1019 } 1020 wret = balance_node_right(trans, mid, left); 1021 if (wret < 0) { 1022 ret = wret; 1023 goto enospc; 1024 } 1025 if (wret == 1) { 1026 wret = push_node_left(trans, left, mid, 1); 1027 if (wret < 0) 1028 ret = wret; 1029 } 1030 BUG_ON(wret == 1); 1031 } 1032 if (btrfs_header_nritems(mid) == 0) { 1033 btrfs_clean_tree_block(mid); 1034 btrfs_tree_unlock(mid); 1035 del_ptr(root, path, level + 1, pslot); 1036 root_sub_used(root, mid->len); 1037 btrfs_free_tree_block(trans, root, mid, 0, 1); 1038 free_extent_buffer_stale(mid); 1039 mid = NULL; 1040 } else { 1041 /* update the parent key to reflect our changes */ 1042 struct btrfs_disk_key mid_key; 1043 btrfs_node_key(mid, &mid_key, 0); 1044 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1045 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1046 BUG_ON(ret < 0); 1047 btrfs_set_node_key(parent, &mid_key, pslot); 1048 btrfs_mark_buffer_dirty(parent); 1049 } 1050 1051 /* update the path */ 1052 if (left) { 1053 if (btrfs_header_nritems(left) > orig_slot) { 1054 atomic_inc(&left->refs); 1055 /* left was locked after cow */ 1056 path->nodes[level] = left; 1057 path->slots[level + 1] -= 1; 1058 path->slots[level] = orig_slot; 1059 if (mid) { 1060 btrfs_tree_unlock(mid); 1061 free_extent_buffer(mid); 1062 } 1063 } else { 1064 orig_slot -= btrfs_header_nritems(left); 1065 path->slots[level] = orig_slot; 1066 } 1067 } 1068 /* double check we haven't messed things up */ 1069 if (orig_ptr != 1070 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1071 BUG(); 1072 enospc: 1073 if (right) { 1074 btrfs_tree_unlock(right); 1075 free_extent_buffer(right); 1076 } 1077 if (left) { 1078 if (path->nodes[level] != left) 1079 btrfs_tree_unlock(left); 1080 free_extent_buffer(left); 1081 } 1082 return ret; 1083 } 1084 1085 /* Node balancing for insertion. Here we only split or push nodes around 1086 * when they are completely full. This is also done top down, so we 1087 * have to be pessimistic. 1088 */ 1089 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1090 struct btrfs_root *root, 1091 struct btrfs_path *path, int level) 1092 { 1093 struct btrfs_fs_info *fs_info = root->fs_info; 1094 struct extent_buffer *right = NULL; 1095 struct extent_buffer *mid; 1096 struct extent_buffer *left = NULL; 1097 struct extent_buffer *parent = NULL; 1098 int ret = 0; 1099 int wret; 1100 int pslot; 1101 int orig_slot = path->slots[level]; 1102 1103 if (level == 0) 1104 return 1; 1105 1106 mid = path->nodes[level]; 1107 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1108 1109 if (level < BTRFS_MAX_LEVEL - 1) { 1110 parent = path->nodes[level + 1]; 1111 pslot = path->slots[level + 1]; 1112 } 1113 1114 if (!parent) 1115 return 1; 1116 1117 left = btrfs_read_node_slot(parent, pslot - 1); 1118 if (IS_ERR(left)) 1119 left = NULL; 1120 1121 /* first, try to make some room in the middle buffer */ 1122 if (left) { 1123 u32 left_nr; 1124 1125 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1126 1127 left_nr = btrfs_header_nritems(left); 1128 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1129 wret = 1; 1130 } else { 1131 ret = btrfs_cow_block(trans, root, left, parent, 1132 pslot - 1, &left, 1133 BTRFS_NESTING_LEFT_COW); 1134 if (ret) 1135 wret = 1; 1136 else { 1137 wret = push_node_left(trans, left, mid, 0); 1138 } 1139 } 1140 if (wret < 0) 1141 ret = wret; 1142 if (wret == 0) { 1143 struct btrfs_disk_key disk_key; 1144 orig_slot += left_nr; 1145 btrfs_node_key(mid, &disk_key, 0); 1146 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1147 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1148 BUG_ON(ret < 0); 1149 btrfs_set_node_key(parent, &disk_key, pslot); 1150 btrfs_mark_buffer_dirty(parent); 1151 if (btrfs_header_nritems(left) > orig_slot) { 1152 path->nodes[level] = left; 1153 path->slots[level + 1] -= 1; 1154 path->slots[level] = orig_slot; 1155 btrfs_tree_unlock(mid); 1156 free_extent_buffer(mid); 1157 } else { 1158 orig_slot -= 1159 btrfs_header_nritems(left); 1160 path->slots[level] = orig_slot; 1161 btrfs_tree_unlock(left); 1162 free_extent_buffer(left); 1163 } 1164 return 0; 1165 } 1166 btrfs_tree_unlock(left); 1167 free_extent_buffer(left); 1168 } 1169 right = btrfs_read_node_slot(parent, pslot + 1); 1170 if (IS_ERR(right)) 1171 right = NULL; 1172 1173 /* 1174 * then try to empty the right most buffer into the middle 1175 */ 1176 if (right) { 1177 u32 right_nr; 1178 1179 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1180 1181 right_nr = btrfs_header_nritems(right); 1182 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1183 wret = 1; 1184 } else { 1185 ret = btrfs_cow_block(trans, root, right, 1186 parent, pslot + 1, 1187 &right, BTRFS_NESTING_RIGHT_COW); 1188 if (ret) 1189 wret = 1; 1190 else { 1191 wret = balance_node_right(trans, right, mid); 1192 } 1193 } 1194 if (wret < 0) 1195 ret = wret; 1196 if (wret == 0) { 1197 struct btrfs_disk_key disk_key; 1198 1199 btrfs_node_key(right, &disk_key, 0); 1200 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1201 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1202 BUG_ON(ret < 0); 1203 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1204 btrfs_mark_buffer_dirty(parent); 1205 1206 if (btrfs_header_nritems(mid) <= orig_slot) { 1207 path->nodes[level] = right; 1208 path->slots[level + 1] += 1; 1209 path->slots[level] = orig_slot - 1210 btrfs_header_nritems(mid); 1211 btrfs_tree_unlock(mid); 1212 free_extent_buffer(mid); 1213 } else { 1214 btrfs_tree_unlock(right); 1215 free_extent_buffer(right); 1216 } 1217 return 0; 1218 } 1219 btrfs_tree_unlock(right); 1220 free_extent_buffer(right); 1221 } 1222 return 1; 1223 } 1224 1225 /* 1226 * readahead one full node of leaves, finding things that are close 1227 * to the block in 'slot', and triggering ra on them. 1228 */ 1229 static void reada_for_search(struct btrfs_fs_info *fs_info, 1230 struct btrfs_path *path, 1231 int level, int slot, u64 objectid) 1232 { 1233 struct extent_buffer *node; 1234 struct btrfs_disk_key disk_key; 1235 u32 nritems; 1236 u64 search; 1237 u64 target; 1238 u64 nread = 0; 1239 u64 nread_max; 1240 struct extent_buffer *eb; 1241 u32 nr; 1242 u32 blocksize; 1243 u32 nscan = 0; 1244 1245 if (level != 1 && path->reada != READA_FORWARD_ALWAYS) 1246 return; 1247 1248 if (!path->nodes[level]) 1249 return; 1250 1251 node = path->nodes[level]; 1252 1253 /* 1254 * Since the time between visiting leaves is much shorter than the time 1255 * between visiting nodes, limit read ahead of nodes to 1, to avoid too 1256 * much IO at once (possibly random). 1257 */ 1258 if (path->reada == READA_FORWARD_ALWAYS) { 1259 if (level > 1) 1260 nread_max = node->fs_info->nodesize; 1261 else 1262 nread_max = SZ_128K; 1263 } else { 1264 nread_max = SZ_64K; 1265 } 1266 1267 search = btrfs_node_blockptr(node, slot); 1268 blocksize = fs_info->nodesize; 1269 eb = find_extent_buffer(fs_info, search); 1270 if (eb) { 1271 free_extent_buffer(eb); 1272 return; 1273 } 1274 1275 target = search; 1276 1277 nritems = btrfs_header_nritems(node); 1278 nr = slot; 1279 1280 while (1) { 1281 if (path->reada == READA_BACK) { 1282 if (nr == 0) 1283 break; 1284 nr--; 1285 } else if (path->reada == READA_FORWARD || 1286 path->reada == READA_FORWARD_ALWAYS) { 1287 nr++; 1288 if (nr >= nritems) 1289 break; 1290 } 1291 if (path->reada == READA_BACK && objectid) { 1292 btrfs_node_key(node, &disk_key, nr); 1293 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1294 break; 1295 } 1296 search = btrfs_node_blockptr(node, nr); 1297 if (path->reada == READA_FORWARD_ALWAYS || 1298 (search <= target && target - search <= 65536) || 1299 (search > target && search - target <= 65536)) { 1300 btrfs_readahead_node_child(node, nr); 1301 nread += blocksize; 1302 } 1303 nscan++; 1304 if (nread > nread_max || nscan > 32) 1305 break; 1306 } 1307 } 1308 1309 static noinline void reada_for_balance(struct btrfs_path *path, int level) 1310 { 1311 struct extent_buffer *parent; 1312 int slot; 1313 int nritems; 1314 1315 parent = path->nodes[level + 1]; 1316 if (!parent) 1317 return; 1318 1319 nritems = btrfs_header_nritems(parent); 1320 slot = path->slots[level + 1]; 1321 1322 if (slot > 0) 1323 btrfs_readahead_node_child(parent, slot - 1); 1324 if (slot + 1 < nritems) 1325 btrfs_readahead_node_child(parent, slot + 1); 1326 } 1327 1328 1329 /* 1330 * when we walk down the tree, it is usually safe to unlock the higher layers 1331 * in the tree. The exceptions are when our path goes through slot 0, because 1332 * operations on the tree might require changing key pointers higher up in the 1333 * tree. 1334 * 1335 * callers might also have set path->keep_locks, which tells this code to keep 1336 * the lock if the path points to the last slot in the block. This is part of 1337 * walking through the tree, and selecting the next slot in the higher block. 1338 * 1339 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1340 * if lowest_unlock is 1, level 0 won't be unlocked 1341 */ 1342 static noinline void unlock_up(struct btrfs_path *path, int level, 1343 int lowest_unlock, int min_write_lock_level, 1344 int *write_lock_level) 1345 { 1346 int i; 1347 int skip_level = level; 1348 int no_skips = 0; 1349 struct extent_buffer *t; 1350 1351 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1352 if (!path->nodes[i]) 1353 break; 1354 if (!path->locks[i]) 1355 break; 1356 if (!no_skips && path->slots[i] == 0) { 1357 skip_level = i + 1; 1358 continue; 1359 } 1360 if (!no_skips && path->keep_locks) { 1361 u32 nritems; 1362 t = path->nodes[i]; 1363 nritems = btrfs_header_nritems(t); 1364 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1365 skip_level = i + 1; 1366 continue; 1367 } 1368 } 1369 if (skip_level < i && i >= lowest_unlock) 1370 no_skips = 1; 1371 1372 t = path->nodes[i]; 1373 if (i >= lowest_unlock && i > skip_level) { 1374 btrfs_tree_unlock_rw(t, path->locks[i]); 1375 path->locks[i] = 0; 1376 if (write_lock_level && 1377 i > min_write_lock_level && 1378 i <= *write_lock_level) { 1379 *write_lock_level = i - 1; 1380 } 1381 } 1382 } 1383 } 1384 1385 /* 1386 * helper function for btrfs_search_slot. The goal is to find a block 1387 * in cache without setting the path to blocking. If we find the block 1388 * we return zero and the path is unchanged. 1389 * 1390 * If we can't find the block, we set the path blocking and do some 1391 * reada. -EAGAIN is returned and the search must be repeated. 1392 */ 1393 static int 1394 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 1395 struct extent_buffer **eb_ret, int level, int slot, 1396 const struct btrfs_key *key) 1397 { 1398 struct btrfs_fs_info *fs_info = root->fs_info; 1399 u64 blocknr; 1400 u64 gen; 1401 struct extent_buffer *tmp; 1402 struct btrfs_key first_key; 1403 int ret; 1404 int parent_level; 1405 1406 blocknr = btrfs_node_blockptr(*eb_ret, slot); 1407 gen = btrfs_node_ptr_generation(*eb_ret, slot); 1408 parent_level = btrfs_header_level(*eb_ret); 1409 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 1410 1411 tmp = find_extent_buffer(fs_info, blocknr); 1412 if (tmp) { 1413 if (p->reada == READA_FORWARD_ALWAYS) 1414 reada_for_search(fs_info, p, level, slot, key->objectid); 1415 1416 /* first we do an atomic uptodate check */ 1417 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 1418 /* 1419 * Do extra check for first_key, eb can be stale due to 1420 * being cached, read from scrub, or have multiple 1421 * parents (shared tree blocks). 1422 */ 1423 if (btrfs_verify_level_key(tmp, 1424 parent_level - 1, &first_key, gen)) { 1425 free_extent_buffer(tmp); 1426 return -EUCLEAN; 1427 } 1428 *eb_ret = tmp; 1429 return 0; 1430 } 1431 1432 /* now we're allowed to do a blocking uptodate check */ 1433 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 1434 if (!ret) { 1435 *eb_ret = tmp; 1436 return 0; 1437 } 1438 free_extent_buffer(tmp); 1439 btrfs_release_path(p); 1440 return -EIO; 1441 } 1442 1443 /* 1444 * reduce lock contention at high levels 1445 * of the btree by dropping locks before 1446 * we read. Don't release the lock on the current 1447 * level because we need to walk this node to figure 1448 * out which blocks to read. 1449 */ 1450 btrfs_unlock_up_safe(p, level + 1); 1451 1452 if (p->reada != READA_NONE) 1453 reada_for_search(fs_info, p, level, slot, key->objectid); 1454 1455 ret = -EAGAIN; 1456 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid, 1457 gen, parent_level - 1, &first_key); 1458 if (!IS_ERR(tmp)) { 1459 /* 1460 * If the read above didn't mark this buffer up to date, 1461 * it will never end up being up to date. Set ret to EIO now 1462 * and give up so that our caller doesn't loop forever 1463 * on our EAGAINs. 1464 */ 1465 if (!extent_buffer_uptodate(tmp)) 1466 ret = -EIO; 1467 free_extent_buffer(tmp); 1468 } else { 1469 ret = PTR_ERR(tmp); 1470 } 1471 1472 btrfs_release_path(p); 1473 return ret; 1474 } 1475 1476 /* 1477 * helper function for btrfs_search_slot. This does all of the checks 1478 * for node-level blocks and does any balancing required based on 1479 * the ins_len. 1480 * 1481 * If no extra work was required, zero is returned. If we had to 1482 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1483 * start over 1484 */ 1485 static int 1486 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1487 struct btrfs_root *root, struct btrfs_path *p, 1488 struct extent_buffer *b, int level, int ins_len, 1489 int *write_lock_level) 1490 { 1491 struct btrfs_fs_info *fs_info = root->fs_info; 1492 int ret = 0; 1493 1494 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1495 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 1496 1497 if (*write_lock_level < level + 1) { 1498 *write_lock_level = level + 1; 1499 btrfs_release_path(p); 1500 return -EAGAIN; 1501 } 1502 1503 reada_for_balance(p, level); 1504 ret = split_node(trans, root, p, level); 1505 1506 b = p->nodes[level]; 1507 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1508 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 1509 1510 if (*write_lock_level < level + 1) { 1511 *write_lock_level = level + 1; 1512 btrfs_release_path(p); 1513 return -EAGAIN; 1514 } 1515 1516 reada_for_balance(p, level); 1517 ret = balance_level(trans, root, p, level); 1518 if (ret) 1519 return ret; 1520 1521 b = p->nodes[level]; 1522 if (!b) { 1523 btrfs_release_path(p); 1524 return -EAGAIN; 1525 } 1526 BUG_ON(btrfs_header_nritems(b) == 1); 1527 } 1528 return ret; 1529 } 1530 1531 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 1532 u64 iobjectid, u64 ioff, u8 key_type, 1533 struct btrfs_key *found_key) 1534 { 1535 int ret; 1536 struct btrfs_key key; 1537 struct extent_buffer *eb; 1538 1539 ASSERT(path); 1540 ASSERT(found_key); 1541 1542 key.type = key_type; 1543 key.objectid = iobjectid; 1544 key.offset = ioff; 1545 1546 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1547 if (ret < 0) 1548 return ret; 1549 1550 eb = path->nodes[0]; 1551 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1552 ret = btrfs_next_leaf(fs_root, path); 1553 if (ret) 1554 return ret; 1555 eb = path->nodes[0]; 1556 } 1557 1558 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1559 if (found_key->type != key.type || 1560 found_key->objectid != key.objectid) 1561 return 1; 1562 1563 return 0; 1564 } 1565 1566 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 1567 struct btrfs_path *p, 1568 int write_lock_level) 1569 { 1570 struct btrfs_fs_info *fs_info = root->fs_info; 1571 struct extent_buffer *b; 1572 int root_lock; 1573 int level = 0; 1574 1575 /* We try very hard to do read locks on the root */ 1576 root_lock = BTRFS_READ_LOCK; 1577 1578 if (p->search_commit_root) { 1579 /* 1580 * The commit roots are read only so we always do read locks, 1581 * and we always must hold the commit_root_sem when doing 1582 * searches on them, the only exception is send where we don't 1583 * want to block transaction commits for a long time, so 1584 * we need to clone the commit root in order to avoid races 1585 * with transaction commits that create a snapshot of one of 1586 * the roots used by a send operation. 1587 */ 1588 if (p->need_commit_sem) { 1589 down_read(&fs_info->commit_root_sem); 1590 b = btrfs_clone_extent_buffer(root->commit_root); 1591 up_read(&fs_info->commit_root_sem); 1592 if (!b) 1593 return ERR_PTR(-ENOMEM); 1594 1595 } else { 1596 b = root->commit_root; 1597 atomic_inc(&b->refs); 1598 } 1599 level = btrfs_header_level(b); 1600 /* 1601 * Ensure that all callers have set skip_locking when 1602 * p->search_commit_root = 1. 1603 */ 1604 ASSERT(p->skip_locking == 1); 1605 1606 goto out; 1607 } 1608 1609 if (p->skip_locking) { 1610 b = btrfs_root_node(root); 1611 level = btrfs_header_level(b); 1612 goto out; 1613 } 1614 1615 /* 1616 * If the level is set to maximum, we can skip trying to get the read 1617 * lock. 1618 */ 1619 if (write_lock_level < BTRFS_MAX_LEVEL) { 1620 /* 1621 * We don't know the level of the root node until we actually 1622 * have it read locked 1623 */ 1624 b = btrfs_read_lock_root_node(root); 1625 level = btrfs_header_level(b); 1626 if (level > write_lock_level) 1627 goto out; 1628 1629 /* Whoops, must trade for write lock */ 1630 btrfs_tree_read_unlock(b); 1631 free_extent_buffer(b); 1632 } 1633 1634 b = btrfs_lock_root_node(root); 1635 root_lock = BTRFS_WRITE_LOCK; 1636 1637 /* The level might have changed, check again */ 1638 level = btrfs_header_level(b); 1639 1640 out: 1641 p->nodes[level] = b; 1642 if (!p->skip_locking) 1643 p->locks[level] = root_lock; 1644 /* 1645 * Callers are responsible for dropping b's references. 1646 */ 1647 return b; 1648 } 1649 1650 1651 /* 1652 * btrfs_search_slot - look for a key in a tree and perform necessary 1653 * modifications to preserve tree invariants. 1654 * 1655 * @trans: Handle of transaction, used when modifying the tree 1656 * @p: Holds all btree nodes along the search path 1657 * @root: The root node of the tree 1658 * @key: The key we are looking for 1659 * @ins_len: Indicates purpose of search: 1660 * >0 for inserts it's size of item inserted (*) 1661 * <0 for deletions 1662 * 0 for plain searches, not modifying the tree 1663 * 1664 * (*) If size of item inserted doesn't include 1665 * sizeof(struct btrfs_item), then p->search_for_extension must 1666 * be set. 1667 * @cow: boolean should CoW operations be performed. Must always be 1 1668 * when modifying the tree. 1669 * 1670 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 1671 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 1672 * 1673 * If @key is found, 0 is returned and you can find the item in the leaf level 1674 * of the path (level 0) 1675 * 1676 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 1677 * points to the slot where it should be inserted 1678 * 1679 * If an error is encountered while searching the tree a negative error number 1680 * is returned 1681 */ 1682 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1683 const struct btrfs_key *key, struct btrfs_path *p, 1684 int ins_len, int cow) 1685 { 1686 struct extent_buffer *b; 1687 int slot; 1688 int ret; 1689 int err; 1690 int level; 1691 int lowest_unlock = 1; 1692 /* everything at write_lock_level or lower must be write locked */ 1693 int write_lock_level = 0; 1694 u8 lowest_level = 0; 1695 int min_write_lock_level; 1696 int prev_cmp; 1697 1698 lowest_level = p->lowest_level; 1699 WARN_ON(lowest_level && ins_len > 0); 1700 WARN_ON(p->nodes[0] != NULL); 1701 BUG_ON(!cow && ins_len); 1702 1703 if (ins_len < 0) { 1704 lowest_unlock = 2; 1705 1706 /* when we are removing items, we might have to go up to level 1707 * two as we update tree pointers Make sure we keep write 1708 * for those levels as well 1709 */ 1710 write_lock_level = 2; 1711 } else if (ins_len > 0) { 1712 /* 1713 * for inserting items, make sure we have a write lock on 1714 * level 1 so we can update keys 1715 */ 1716 write_lock_level = 1; 1717 } 1718 1719 if (!cow) 1720 write_lock_level = -1; 1721 1722 if (cow && (p->keep_locks || p->lowest_level)) 1723 write_lock_level = BTRFS_MAX_LEVEL; 1724 1725 min_write_lock_level = write_lock_level; 1726 1727 again: 1728 prev_cmp = -1; 1729 b = btrfs_search_slot_get_root(root, p, write_lock_level); 1730 if (IS_ERR(b)) { 1731 ret = PTR_ERR(b); 1732 goto done; 1733 } 1734 1735 while (b) { 1736 int dec = 0; 1737 1738 level = btrfs_header_level(b); 1739 1740 if (cow) { 1741 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 1742 1743 /* 1744 * if we don't really need to cow this block 1745 * then we don't want to set the path blocking, 1746 * so we test it here 1747 */ 1748 if (!should_cow_block(trans, root, b)) 1749 goto cow_done; 1750 1751 /* 1752 * must have write locks on this node and the 1753 * parent 1754 */ 1755 if (level > write_lock_level || 1756 (level + 1 > write_lock_level && 1757 level + 1 < BTRFS_MAX_LEVEL && 1758 p->nodes[level + 1])) { 1759 write_lock_level = level + 1; 1760 btrfs_release_path(p); 1761 goto again; 1762 } 1763 1764 if (last_level) 1765 err = btrfs_cow_block(trans, root, b, NULL, 0, 1766 &b, 1767 BTRFS_NESTING_COW); 1768 else 1769 err = btrfs_cow_block(trans, root, b, 1770 p->nodes[level + 1], 1771 p->slots[level + 1], &b, 1772 BTRFS_NESTING_COW); 1773 if (err) { 1774 ret = err; 1775 goto done; 1776 } 1777 } 1778 cow_done: 1779 p->nodes[level] = b; 1780 /* 1781 * Leave path with blocking locks to avoid massive 1782 * lock context switch, this is made on purpose. 1783 */ 1784 1785 /* 1786 * we have a lock on b and as long as we aren't changing 1787 * the tree, there is no way to for the items in b to change. 1788 * It is safe to drop the lock on our parent before we 1789 * go through the expensive btree search on b. 1790 * 1791 * If we're inserting or deleting (ins_len != 0), then we might 1792 * be changing slot zero, which may require changing the parent. 1793 * So, we can't drop the lock until after we know which slot 1794 * we're operating on. 1795 */ 1796 if (!ins_len && !p->keep_locks) { 1797 int u = level + 1; 1798 1799 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 1800 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 1801 p->locks[u] = 0; 1802 } 1803 } 1804 1805 /* 1806 * If btrfs_bin_search returns an exact match (prev_cmp == 0) 1807 * we can safely assume the target key will always be in slot 0 1808 * on lower levels due to the invariants BTRFS' btree provides, 1809 * namely that a btrfs_key_ptr entry always points to the 1810 * lowest key in the child node, thus we can skip searching 1811 * lower levels 1812 */ 1813 if (prev_cmp == 0) { 1814 slot = 0; 1815 ret = 0; 1816 } else { 1817 ret = btrfs_bin_search(b, key, &slot); 1818 prev_cmp = ret; 1819 if (ret < 0) 1820 goto done; 1821 } 1822 1823 if (level == 0) { 1824 p->slots[level] = slot; 1825 /* 1826 * Item key already exists. In this case, if we are 1827 * allowed to insert the item (for example, in dir_item 1828 * case, item key collision is allowed), it will be 1829 * merged with the original item. Only the item size 1830 * grows, no new btrfs item will be added. If 1831 * search_for_extension is not set, ins_len already 1832 * accounts the size btrfs_item, deduct it here so leaf 1833 * space check will be correct. 1834 */ 1835 if (ret == 0 && ins_len > 0 && !p->search_for_extension) { 1836 ASSERT(ins_len >= sizeof(struct btrfs_item)); 1837 ins_len -= sizeof(struct btrfs_item); 1838 } 1839 if (ins_len > 0 && 1840 btrfs_leaf_free_space(b) < ins_len) { 1841 if (write_lock_level < 1) { 1842 write_lock_level = 1; 1843 btrfs_release_path(p); 1844 goto again; 1845 } 1846 1847 err = split_leaf(trans, root, key, 1848 p, ins_len, ret == 0); 1849 1850 BUG_ON(err > 0); 1851 if (err) { 1852 ret = err; 1853 goto done; 1854 } 1855 } 1856 if (!p->search_for_split) 1857 unlock_up(p, level, lowest_unlock, 1858 min_write_lock_level, NULL); 1859 goto done; 1860 } 1861 if (ret && slot > 0) { 1862 dec = 1; 1863 slot--; 1864 } 1865 p->slots[level] = slot; 1866 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 1867 &write_lock_level); 1868 if (err == -EAGAIN) 1869 goto again; 1870 if (err) { 1871 ret = err; 1872 goto done; 1873 } 1874 b = p->nodes[level]; 1875 slot = p->slots[level]; 1876 1877 /* 1878 * Slot 0 is special, if we change the key we have to update 1879 * the parent pointer which means we must have a write lock on 1880 * the parent 1881 */ 1882 if (slot == 0 && ins_len && write_lock_level < level + 1) { 1883 write_lock_level = level + 1; 1884 btrfs_release_path(p); 1885 goto again; 1886 } 1887 1888 unlock_up(p, level, lowest_unlock, min_write_lock_level, 1889 &write_lock_level); 1890 1891 if (level == lowest_level) { 1892 if (dec) 1893 p->slots[level]++; 1894 goto done; 1895 } 1896 1897 err = read_block_for_search(root, p, &b, level, slot, key); 1898 if (err == -EAGAIN) 1899 goto again; 1900 if (err) { 1901 ret = err; 1902 goto done; 1903 } 1904 1905 if (!p->skip_locking) { 1906 level = btrfs_header_level(b); 1907 if (level <= write_lock_level) { 1908 btrfs_tree_lock(b); 1909 p->locks[level] = BTRFS_WRITE_LOCK; 1910 } else { 1911 btrfs_tree_read_lock(b); 1912 p->locks[level] = BTRFS_READ_LOCK; 1913 } 1914 p->nodes[level] = b; 1915 } 1916 } 1917 ret = 1; 1918 done: 1919 if (ret < 0 && !p->skip_release_on_error) 1920 btrfs_release_path(p); 1921 return ret; 1922 } 1923 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 1924 1925 /* 1926 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 1927 * current state of the tree together with the operations recorded in the tree 1928 * modification log to search for the key in a previous version of this tree, as 1929 * denoted by the time_seq parameter. 1930 * 1931 * Naturally, there is no support for insert, delete or cow operations. 1932 * 1933 * The resulting path and return value will be set up as if we called 1934 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 1935 */ 1936 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 1937 struct btrfs_path *p, u64 time_seq) 1938 { 1939 struct btrfs_fs_info *fs_info = root->fs_info; 1940 struct extent_buffer *b; 1941 int slot; 1942 int ret; 1943 int err; 1944 int level; 1945 int lowest_unlock = 1; 1946 u8 lowest_level = 0; 1947 1948 lowest_level = p->lowest_level; 1949 WARN_ON(p->nodes[0] != NULL); 1950 1951 if (p->search_commit_root) { 1952 BUG_ON(time_seq); 1953 return btrfs_search_slot(NULL, root, key, p, 0, 0); 1954 } 1955 1956 again: 1957 b = btrfs_get_old_root(root, time_seq); 1958 if (!b) { 1959 ret = -EIO; 1960 goto done; 1961 } 1962 level = btrfs_header_level(b); 1963 p->locks[level] = BTRFS_READ_LOCK; 1964 1965 while (b) { 1966 int dec = 0; 1967 1968 level = btrfs_header_level(b); 1969 p->nodes[level] = b; 1970 1971 /* 1972 * we have a lock on b and as long as we aren't changing 1973 * the tree, there is no way to for the items in b to change. 1974 * It is safe to drop the lock on our parent before we 1975 * go through the expensive btree search on b. 1976 */ 1977 btrfs_unlock_up_safe(p, level + 1); 1978 1979 ret = btrfs_bin_search(b, key, &slot); 1980 if (ret < 0) 1981 goto done; 1982 1983 if (level == 0) { 1984 p->slots[level] = slot; 1985 unlock_up(p, level, lowest_unlock, 0, NULL); 1986 goto done; 1987 } 1988 1989 if (ret && slot > 0) { 1990 dec = 1; 1991 slot--; 1992 } 1993 p->slots[level] = slot; 1994 unlock_up(p, level, lowest_unlock, 0, NULL); 1995 1996 if (level == lowest_level) { 1997 if (dec) 1998 p->slots[level]++; 1999 goto done; 2000 } 2001 2002 err = read_block_for_search(root, p, &b, level, slot, key); 2003 if (err == -EAGAIN) 2004 goto again; 2005 if (err) { 2006 ret = err; 2007 goto done; 2008 } 2009 2010 level = btrfs_header_level(b); 2011 btrfs_tree_read_lock(b); 2012 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq); 2013 if (!b) { 2014 ret = -ENOMEM; 2015 goto done; 2016 } 2017 p->locks[level] = BTRFS_READ_LOCK; 2018 p->nodes[level] = b; 2019 } 2020 ret = 1; 2021 done: 2022 if (ret < 0) 2023 btrfs_release_path(p); 2024 2025 return ret; 2026 } 2027 2028 /* 2029 * helper to use instead of search slot if no exact match is needed but 2030 * instead the next or previous item should be returned. 2031 * When find_higher is true, the next higher item is returned, the next lower 2032 * otherwise. 2033 * When return_any and find_higher are both true, and no higher item is found, 2034 * return the next lower instead. 2035 * When return_any is true and find_higher is false, and no lower item is found, 2036 * return the next higher instead. 2037 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2038 * < 0 on error 2039 */ 2040 int btrfs_search_slot_for_read(struct btrfs_root *root, 2041 const struct btrfs_key *key, 2042 struct btrfs_path *p, int find_higher, 2043 int return_any) 2044 { 2045 int ret; 2046 struct extent_buffer *leaf; 2047 2048 again: 2049 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2050 if (ret <= 0) 2051 return ret; 2052 /* 2053 * a return value of 1 means the path is at the position where the 2054 * item should be inserted. Normally this is the next bigger item, 2055 * but in case the previous item is the last in a leaf, path points 2056 * to the first free slot in the previous leaf, i.e. at an invalid 2057 * item. 2058 */ 2059 leaf = p->nodes[0]; 2060 2061 if (find_higher) { 2062 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2063 ret = btrfs_next_leaf(root, p); 2064 if (ret <= 0) 2065 return ret; 2066 if (!return_any) 2067 return 1; 2068 /* 2069 * no higher item found, return the next 2070 * lower instead 2071 */ 2072 return_any = 0; 2073 find_higher = 0; 2074 btrfs_release_path(p); 2075 goto again; 2076 } 2077 } else { 2078 if (p->slots[0] == 0) { 2079 ret = btrfs_prev_leaf(root, p); 2080 if (ret < 0) 2081 return ret; 2082 if (!ret) { 2083 leaf = p->nodes[0]; 2084 if (p->slots[0] == btrfs_header_nritems(leaf)) 2085 p->slots[0]--; 2086 return 0; 2087 } 2088 if (!return_any) 2089 return 1; 2090 /* 2091 * no lower item found, return the next 2092 * higher instead 2093 */ 2094 return_any = 0; 2095 find_higher = 1; 2096 btrfs_release_path(p); 2097 goto again; 2098 } else { 2099 --p->slots[0]; 2100 } 2101 } 2102 return 0; 2103 } 2104 2105 /* 2106 * adjust the pointers going up the tree, starting at level 2107 * making sure the right key of each node is points to 'key'. 2108 * This is used after shifting pointers to the left, so it stops 2109 * fixing up pointers when a given leaf/node is not in slot 0 of the 2110 * higher levels 2111 * 2112 */ 2113 static void fixup_low_keys(struct btrfs_path *path, 2114 struct btrfs_disk_key *key, int level) 2115 { 2116 int i; 2117 struct extent_buffer *t; 2118 int ret; 2119 2120 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2121 int tslot = path->slots[i]; 2122 2123 if (!path->nodes[i]) 2124 break; 2125 t = path->nodes[i]; 2126 ret = btrfs_tree_mod_log_insert_key(t, tslot, 2127 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC); 2128 BUG_ON(ret < 0); 2129 btrfs_set_node_key(t, key, tslot); 2130 btrfs_mark_buffer_dirty(path->nodes[i]); 2131 if (tslot != 0) 2132 break; 2133 } 2134 } 2135 2136 /* 2137 * update item key. 2138 * 2139 * This function isn't completely safe. It's the caller's responsibility 2140 * that the new key won't break the order 2141 */ 2142 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2143 struct btrfs_path *path, 2144 const struct btrfs_key *new_key) 2145 { 2146 struct btrfs_disk_key disk_key; 2147 struct extent_buffer *eb; 2148 int slot; 2149 2150 eb = path->nodes[0]; 2151 slot = path->slots[0]; 2152 if (slot > 0) { 2153 btrfs_item_key(eb, &disk_key, slot - 1); 2154 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 2155 btrfs_crit(fs_info, 2156 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2157 slot, btrfs_disk_key_objectid(&disk_key), 2158 btrfs_disk_key_type(&disk_key), 2159 btrfs_disk_key_offset(&disk_key), 2160 new_key->objectid, new_key->type, 2161 new_key->offset); 2162 btrfs_print_leaf(eb); 2163 BUG(); 2164 } 2165 } 2166 if (slot < btrfs_header_nritems(eb) - 1) { 2167 btrfs_item_key(eb, &disk_key, slot + 1); 2168 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 2169 btrfs_crit(fs_info, 2170 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2171 slot, btrfs_disk_key_objectid(&disk_key), 2172 btrfs_disk_key_type(&disk_key), 2173 btrfs_disk_key_offset(&disk_key), 2174 new_key->objectid, new_key->type, 2175 new_key->offset); 2176 btrfs_print_leaf(eb); 2177 BUG(); 2178 } 2179 } 2180 2181 btrfs_cpu_key_to_disk(&disk_key, new_key); 2182 btrfs_set_item_key(eb, &disk_key, slot); 2183 btrfs_mark_buffer_dirty(eb); 2184 if (slot == 0) 2185 fixup_low_keys(path, &disk_key, 1); 2186 } 2187 2188 /* 2189 * Check key order of two sibling extent buffers. 2190 * 2191 * Return true if something is wrong. 2192 * Return false if everything is fine. 2193 * 2194 * Tree-checker only works inside one tree block, thus the following 2195 * corruption can not be detected by tree-checker: 2196 * 2197 * Leaf @left | Leaf @right 2198 * -------------------------------------------------------------- 2199 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 2200 * 2201 * Key f6 in leaf @left itself is valid, but not valid when the next 2202 * key in leaf @right is 7. 2203 * This can only be checked at tree block merge time. 2204 * And since tree checker has ensured all key order in each tree block 2205 * is correct, we only need to bother the last key of @left and the first 2206 * key of @right. 2207 */ 2208 static bool check_sibling_keys(struct extent_buffer *left, 2209 struct extent_buffer *right) 2210 { 2211 struct btrfs_key left_last; 2212 struct btrfs_key right_first; 2213 int level = btrfs_header_level(left); 2214 int nr_left = btrfs_header_nritems(left); 2215 int nr_right = btrfs_header_nritems(right); 2216 2217 /* No key to check in one of the tree blocks */ 2218 if (!nr_left || !nr_right) 2219 return false; 2220 2221 if (level) { 2222 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 2223 btrfs_node_key_to_cpu(right, &right_first, 0); 2224 } else { 2225 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 2226 btrfs_item_key_to_cpu(right, &right_first, 0); 2227 } 2228 2229 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { 2230 btrfs_crit(left->fs_info, 2231 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 2232 left_last.objectid, left_last.type, 2233 left_last.offset, right_first.objectid, 2234 right_first.type, right_first.offset); 2235 return true; 2236 } 2237 return false; 2238 } 2239 2240 /* 2241 * try to push data from one node into the next node left in the 2242 * tree. 2243 * 2244 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2245 * error, and > 0 if there was no room in the left hand block. 2246 */ 2247 static int push_node_left(struct btrfs_trans_handle *trans, 2248 struct extent_buffer *dst, 2249 struct extent_buffer *src, int empty) 2250 { 2251 struct btrfs_fs_info *fs_info = trans->fs_info; 2252 int push_items = 0; 2253 int src_nritems; 2254 int dst_nritems; 2255 int ret = 0; 2256 2257 src_nritems = btrfs_header_nritems(src); 2258 dst_nritems = btrfs_header_nritems(dst); 2259 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2260 WARN_ON(btrfs_header_generation(src) != trans->transid); 2261 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2262 2263 if (!empty && src_nritems <= 8) 2264 return 1; 2265 2266 if (push_items <= 0) 2267 return 1; 2268 2269 if (empty) { 2270 push_items = min(src_nritems, push_items); 2271 if (push_items < src_nritems) { 2272 /* leave at least 8 pointers in the node if 2273 * we aren't going to empty it 2274 */ 2275 if (src_nritems - push_items < 8) { 2276 if (push_items <= 8) 2277 return 1; 2278 push_items -= 8; 2279 } 2280 } 2281 } else 2282 push_items = min(src_nritems - 8, push_items); 2283 2284 /* dst is the left eb, src is the middle eb */ 2285 if (check_sibling_keys(dst, src)) { 2286 ret = -EUCLEAN; 2287 btrfs_abort_transaction(trans, ret); 2288 return ret; 2289 } 2290 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 2291 if (ret) { 2292 btrfs_abort_transaction(trans, ret); 2293 return ret; 2294 } 2295 copy_extent_buffer(dst, src, 2296 btrfs_node_key_ptr_offset(dst_nritems), 2297 btrfs_node_key_ptr_offset(0), 2298 push_items * sizeof(struct btrfs_key_ptr)); 2299 2300 if (push_items < src_nritems) { 2301 /* 2302 * Don't call btrfs_tree_mod_log_insert_move() here, key removal 2303 * was already fully logged by btrfs_tree_mod_log_eb_copy() above. 2304 */ 2305 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2306 btrfs_node_key_ptr_offset(push_items), 2307 (src_nritems - push_items) * 2308 sizeof(struct btrfs_key_ptr)); 2309 } 2310 btrfs_set_header_nritems(src, src_nritems - push_items); 2311 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2312 btrfs_mark_buffer_dirty(src); 2313 btrfs_mark_buffer_dirty(dst); 2314 2315 return ret; 2316 } 2317 2318 /* 2319 * try to push data from one node into the next node right in the 2320 * tree. 2321 * 2322 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2323 * error, and > 0 if there was no room in the right hand block. 2324 * 2325 * this will only push up to 1/2 the contents of the left node over 2326 */ 2327 static int balance_node_right(struct btrfs_trans_handle *trans, 2328 struct extent_buffer *dst, 2329 struct extent_buffer *src) 2330 { 2331 struct btrfs_fs_info *fs_info = trans->fs_info; 2332 int push_items = 0; 2333 int max_push; 2334 int src_nritems; 2335 int dst_nritems; 2336 int ret = 0; 2337 2338 WARN_ON(btrfs_header_generation(src) != trans->transid); 2339 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2340 2341 src_nritems = btrfs_header_nritems(src); 2342 dst_nritems = btrfs_header_nritems(dst); 2343 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2344 if (push_items <= 0) 2345 return 1; 2346 2347 if (src_nritems < 4) 2348 return 1; 2349 2350 max_push = src_nritems / 2 + 1; 2351 /* don't try to empty the node */ 2352 if (max_push >= src_nritems) 2353 return 1; 2354 2355 if (max_push < push_items) 2356 push_items = max_push; 2357 2358 /* dst is the right eb, src is the middle eb */ 2359 if (check_sibling_keys(src, dst)) { 2360 ret = -EUCLEAN; 2361 btrfs_abort_transaction(trans, ret); 2362 return ret; 2363 } 2364 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 2365 BUG_ON(ret < 0); 2366 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2367 btrfs_node_key_ptr_offset(0), 2368 (dst_nritems) * 2369 sizeof(struct btrfs_key_ptr)); 2370 2371 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 2372 push_items); 2373 if (ret) { 2374 btrfs_abort_transaction(trans, ret); 2375 return ret; 2376 } 2377 copy_extent_buffer(dst, src, 2378 btrfs_node_key_ptr_offset(0), 2379 btrfs_node_key_ptr_offset(src_nritems - push_items), 2380 push_items * sizeof(struct btrfs_key_ptr)); 2381 2382 btrfs_set_header_nritems(src, src_nritems - push_items); 2383 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2384 2385 btrfs_mark_buffer_dirty(src); 2386 btrfs_mark_buffer_dirty(dst); 2387 2388 return ret; 2389 } 2390 2391 /* 2392 * helper function to insert a new root level in the tree. 2393 * A new node is allocated, and a single item is inserted to 2394 * point to the existing root 2395 * 2396 * returns zero on success or < 0 on failure. 2397 */ 2398 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2399 struct btrfs_root *root, 2400 struct btrfs_path *path, int level) 2401 { 2402 struct btrfs_fs_info *fs_info = root->fs_info; 2403 u64 lower_gen; 2404 struct extent_buffer *lower; 2405 struct extent_buffer *c; 2406 struct extent_buffer *old; 2407 struct btrfs_disk_key lower_key; 2408 int ret; 2409 2410 BUG_ON(path->nodes[level]); 2411 BUG_ON(path->nodes[level-1] != root->node); 2412 2413 lower = path->nodes[level-1]; 2414 if (level == 1) 2415 btrfs_item_key(lower, &lower_key, 0); 2416 else 2417 btrfs_node_key(lower, &lower_key, 0); 2418 2419 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2420 &lower_key, level, root->node->start, 0, 2421 BTRFS_NESTING_NEW_ROOT); 2422 if (IS_ERR(c)) 2423 return PTR_ERR(c); 2424 2425 root_add_used(root, fs_info->nodesize); 2426 2427 btrfs_set_header_nritems(c, 1); 2428 btrfs_set_node_key(c, &lower_key, 0); 2429 btrfs_set_node_blockptr(c, 0, lower->start); 2430 lower_gen = btrfs_header_generation(lower); 2431 WARN_ON(lower_gen != trans->transid); 2432 2433 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2434 2435 btrfs_mark_buffer_dirty(c); 2436 2437 old = root->node; 2438 ret = btrfs_tree_mod_log_insert_root(root->node, c, false); 2439 BUG_ON(ret < 0); 2440 rcu_assign_pointer(root->node, c); 2441 2442 /* the super has an extra ref to root->node */ 2443 free_extent_buffer(old); 2444 2445 add_root_to_dirty_list(root); 2446 atomic_inc(&c->refs); 2447 path->nodes[level] = c; 2448 path->locks[level] = BTRFS_WRITE_LOCK; 2449 path->slots[level] = 0; 2450 return 0; 2451 } 2452 2453 /* 2454 * worker function to insert a single pointer in a node. 2455 * the node should have enough room for the pointer already 2456 * 2457 * slot and level indicate where you want the key to go, and 2458 * blocknr is the block the key points to. 2459 */ 2460 static void insert_ptr(struct btrfs_trans_handle *trans, 2461 struct btrfs_path *path, 2462 struct btrfs_disk_key *key, u64 bytenr, 2463 int slot, int level) 2464 { 2465 struct extent_buffer *lower; 2466 int nritems; 2467 int ret; 2468 2469 BUG_ON(!path->nodes[level]); 2470 btrfs_assert_tree_locked(path->nodes[level]); 2471 lower = path->nodes[level]; 2472 nritems = btrfs_header_nritems(lower); 2473 BUG_ON(slot > nritems); 2474 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 2475 if (slot != nritems) { 2476 if (level) { 2477 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, 2478 slot, nritems - slot); 2479 BUG_ON(ret < 0); 2480 } 2481 memmove_extent_buffer(lower, 2482 btrfs_node_key_ptr_offset(slot + 1), 2483 btrfs_node_key_ptr_offset(slot), 2484 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2485 } 2486 if (level) { 2487 ret = btrfs_tree_mod_log_insert_key(lower, slot, 2488 BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS); 2489 BUG_ON(ret < 0); 2490 } 2491 btrfs_set_node_key(lower, key, slot); 2492 btrfs_set_node_blockptr(lower, slot, bytenr); 2493 WARN_ON(trans->transid == 0); 2494 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2495 btrfs_set_header_nritems(lower, nritems + 1); 2496 btrfs_mark_buffer_dirty(lower); 2497 } 2498 2499 /* 2500 * split the node at the specified level in path in two. 2501 * The path is corrected to point to the appropriate node after the split 2502 * 2503 * Before splitting this tries to make some room in the node by pushing 2504 * left and right, if either one works, it returns right away. 2505 * 2506 * returns 0 on success and < 0 on failure 2507 */ 2508 static noinline int split_node(struct btrfs_trans_handle *trans, 2509 struct btrfs_root *root, 2510 struct btrfs_path *path, int level) 2511 { 2512 struct btrfs_fs_info *fs_info = root->fs_info; 2513 struct extent_buffer *c; 2514 struct extent_buffer *split; 2515 struct btrfs_disk_key disk_key; 2516 int mid; 2517 int ret; 2518 u32 c_nritems; 2519 2520 c = path->nodes[level]; 2521 WARN_ON(btrfs_header_generation(c) != trans->transid); 2522 if (c == root->node) { 2523 /* 2524 * trying to split the root, lets make a new one 2525 * 2526 * tree mod log: We don't log_removal old root in 2527 * insert_new_root, because that root buffer will be kept as a 2528 * normal node. We are going to log removal of half of the 2529 * elements below with btrfs_tree_mod_log_eb_copy(). We're 2530 * holding a tree lock on the buffer, which is why we cannot 2531 * race with other tree_mod_log users. 2532 */ 2533 ret = insert_new_root(trans, root, path, level + 1); 2534 if (ret) 2535 return ret; 2536 } else { 2537 ret = push_nodes_for_insert(trans, root, path, level); 2538 c = path->nodes[level]; 2539 if (!ret && btrfs_header_nritems(c) < 2540 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 2541 return 0; 2542 if (ret < 0) 2543 return ret; 2544 } 2545 2546 c_nritems = btrfs_header_nritems(c); 2547 mid = (c_nritems + 1) / 2; 2548 btrfs_node_key(c, &disk_key, mid); 2549 2550 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2551 &disk_key, level, c->start, 0, 2552 BTRFS_NESTING_SPLIT); 2553 if (IS_ERR(split)) 2554 return PTR_ERR(split); 2555 2556 root_add_used(root, fs_info->nodesize); 2557 ASSERT(btrfs_header_level(c) == level); 2558 2559 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 2560 if (ret) { 2561 btrfs_abort_transaction(trans, ret); 2562 return ret; 2563 } 2564 copy_extent_buffer(split, c, 2565 btrfs_node_key_ptr_offset(0), 2566 btrfs_node_key_ptr_offset(mid), 2567 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2568 btrfs_set_header_nritems(split, c_nritems - mid); 2569 btrfs_set_header_nritems(c, mid); 2570 2571 btrfs_mark_buffer_dirty(c); 2572 btrfs_mark_buffer_dirty(split); 2573 2574 insert_ptr(trans, path, &disk_key, split->start, 2575 path->slots[level + 1] + 1, level + 1); 2576 2577 if (path->slots[level] >= mid) { 2578 path->slots[level] -= mid; 2579 btrfs_tree_unlock(c); 2580 free_extent_buffer(c); 2581 path->nodes[level] = split; 2582 path->slots[level + 1] += 1; 2583 } else { 2584 btrfs_tree_unlock(split); 2585 free_extent_buffer(split); 2586 } 2587 return 0; 2588 } 2589 2590 /* 2591 * how many bytes are required to store the items in a leaf. start 2592 * and nr indicate which items in the leaf to check. This totals up the 2593 * space used both by the item structs and the item data 2594 */ 2595 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2596 { 2597 struct btrfs_item *start_item; 2598 struct btrfs_item *end_item; 2599 int data_len; 2600 int nritems = btrfs_header_nritems(l); 2601 int end = min(nritems, start + nr) - 1; 2602 2603 if (!nr) 2604 return 0; 2605 start_item = btrfs_item_nr(start); 2606 end_item = btrfs_item_nr(end); 2607 data_len = btrfs_item_offset(l, start_item) + 2608 btrfs_item_size(l, start_item); 2609 data_len = data_len - btrfs_item_offset(l, end_item); 2610 data_len += sizeof(struct btrfs_item) * nr; 2611 WARN_ON(data_len < 0); 2612 return data_len; 2613 } 2614 2615 /* 2616 * The space between the end of the leaf items and 2617 * the start of the leaf data. IOW, how much room 2618 * the leaf has left for both items and data 2619 */ 2620 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 2621 { 2622 struct btrfs_fs_info *fs_info = leaf->fs_info; 2623 int nritems = btrfs_header_nritems(leaf); 2624 int ret; 2625 2626 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 2627 if (ret < 0) { 2628 btrfs_crit(fs_info, 2629 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 2630 ret, 2631 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 2632 leaf_space_used(leaf, 0, nritems), nritems); 2633 } 2634 return ret; 2635 } 2636 2637 /* 2638 * min slot controls the lowest index we're willing to push to the 2639 * right. We'll push up to and including min_slot, but no lower 2640 */ 2641 static noinline int __push_leaf_right(struct btrfs_path *path, 2642 int data_size, int empty, 2643 struct extent_buffer *right, 2644 int free_space, u32 left_nritems, 2645 u32 min_slot) 2646 { 2647 struct btrfs_fs_info *fs_info = right->fs_info; 2648 struct extent_buffer *left = path->nodes[0]; 2649 struct extent_buffer *upper = path->nodes[1]; 2650 struct btrfs_map_token token; 2651 struct btrfs_disk_key disk_key; 2652 int slot; 2653 u32 i; 2654 int push_space = 0; 2655 int push_items = 0; 2656 struct btrfs_item *item; 2657 u32 nr; 2658 u32 right_nritems; 2659 u32 data_end; 2660 u32 this_item_size; 2661 2662 if (empty) 2663 nr = 0; 2664 else 2665 nr = max_t(u32, 1, min_slot); 2666 2667 if (path->slots[0] >= left_nritems) 2668 push_space += data_size; 2669 2670 slot = path->slots[1]; 2671 i = left_nritems - 1; 2672 while (i >= nr) { 2673 item = btrfs_item_nr(i); 2674 2675 if (!empty && push_items > 0) { 2676 if (path->slots[0] > i) 2677 break; 2678 if (path->slots[0] == i) { 2679 int space = btrfs_leaf_free_space(left); 2680 2681 if (space + push_space * 2 > free_space) 2682 break; 2683 } 2684 } 2685 2686 if (path->slots[0] == i) 2687 push_space += data_size; 2688 2689 this_item_size = btrfs_item_size(left, item); 2690 if (this_item_size + sizeof(*item) + push_space > free_space) 2691 break; 2692 2693 push_items++; 2694 push_space += this_item_size + sizeof(*item); 2695 if (i == 0) 2696 break; 2697 i--; 2698 } 2699 2700 if (push_items == 0) 2701 goto out_unlock; 2702 2703 WARN_ON(!empty && push_items == left_nritems); 2704 2705 /* push left to right */ 2706 right_nritems = btrfs_header_nritems(right); 2707 2708 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2709 push_space -= leaf_data_end(left); 2710 2711 /* make room in the right data area */ 2712 data_end = leaf_data_end(right); 2713 memmove_extent_buffer(right, 2714 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 2715 BTRFS_LEAF_DATA_OFFSET + data_end, 2716 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 2717 2718 /* copy from the left data area */ 2719 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 2720 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 2721 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 2722 push_space); 2723 2724 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2725 btrfs_item_nr_offset(0), 2726 right_nritems * sizeof(struct btrfs_item)); 2727 2728 /* copy the items from left to right */ 2729 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2730 btrfs_item_nr_offset(left_nritems - push_items), 2731 push_items * sizeof(struct btrfs_item)); 2732 2733 /* update the item pointers */ 2734 btrfs_init_map_token(&token, right); 2735 right_nritems += push_items; 2736 btrfs_set_header_nritems(right, right_nritems); 2737 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 2738 for (i = 0; i < right_nritems; i++) { 2739 item = btrfs_item_nr(i); 2740 push_space -= btrfs_token_item_size(&token, item); 2741 btrfs_set_token_item_offset(&token, item, push_space); 2742 } 2743 2744 left_nritems -= push_items; 2745 btrfs_set_header_nritems(left, left_nritems); 2746 2747 if (left_nritems) 2748 btrfs_mark_buffer_dirty(left); 2749 else 2750 btrfs_clean_tree_block(left); 2751 2752 btrfs_mark_buffer_dirty(right); 2753 2754 btrfs_item_key(right, &disk_key, 0); 2755 btrfs_set_node_key(upper, &disk_key, slot + 1); 2756 btrfs_mark_buffer_dirty(upper); 2757 2758 /* then fixup the leaf pointer in the path */ 2759 if (path->slots[0] >= left_nritems) { 2760 path->slots[0] -= left_nritems; 2761 if (btrfs_header_nritems(path->nodes[0]) == 0) 2762 btrfs_clean_tree_block(path->nodes[0]); 2763 btrfs_tree_unlock(path->nodes[0]); 2764 free_extent_buffer(path->nodes[0]); 2765 path->nodes[0] = right; 2766 path->slots[1] += 1; 2767 } else { 2768 btrfs_tree_unlock(right); 2769 free_extent_buffer(right); 2770 } 2771 return 0; 2772 2773 out_unlock: 2774 btrfs_tree_unlock(right); 2775 free_extent_buffer(right); 2776 return 1; 2777 } 2778 2779 /* 2780 * push some data in the path leaf to the right, trying to free up at 2781 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2782 * 2783 * returns 1 if the push failed because the other node didn't have enough 2784 * room, 0 if everything worked out and < 0 if there were major errors. 2785 * 2786 * this will push starting from min_slot to the end of the leaf. It won't 2787 * push any slot lower than min_slot 2788 */ 2789 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2790 *root, struct btrfs_path *path, 2791 int min_data_size, int data_size, 2792 int empty, u32 min_slot) 2793 { 2794 struct extent_buffer *left = path->nodes[0]; 2795 struct extent_buffer *right; 2796 struct extent_buffer *upper; 2797 int slot; 2798 int free_space; 2799 u32 left_nritems; 2800 int ret; 2801 2802 if (!path->nodes[1]) 2803 return 1; 2804 2805 slot = path->slots[1]; 2806 upper = path->nodes[1]; 2807 if (slot >= btrfs_header_nritems(upper) - 1) 2808 return 1; 2809 2810 btrfs_assert_tree_locked(path->nodes[1]); 2811 2812 right = btrfs_read_node_slot(upper, slot + 1); 2813 /* 2814 * slot + 1 is not valid or we fail to read the right node, 2815 * no big deal, just return. 2816 */ 2817 if (IS_ERR(right)) 2818 return 1; 2819 2820 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 2821 2822 free_space = btrfs_leaf_free_space(right); 2823 if (free_space < data_size) 2824 goto out_unlock; 2825 2826 /* cow and double check */ 2827 ret = btrfs_cow_block(trans, root, right, upper, 2828 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 2829 if (ret) 2830 goto out_unlock; 2831 2832 free_space = btrfs_leaf_free_space(right); 2833 if (free_space < data_size) 2834 goto out_unlock; 2835 2836 left_nritems = btrfs_header_nritems(left); 2837 if (left_nritems == 0) 2838 goto out_unlock; 2839 2840 if (check_sibling_keys(left, right)) { 2841 ret = -EUCLEAN; 2842 btrfs_tree_unlock(right); 2843 free_extent_buffer(right); 2844 return ret; 2845 } 2846 if (path->slots[0] == left_nritems && !empty) { 2847 /* Key greater than all keys in the leaf, right neighbor has 2848 * enough room for it and we're not emptying our leaf to delete 2849 * it, therefore use right neighbor to insert the new item and 2850 * no need to touch/dirty our left leaf. */ 2851 btrfs_tree_unlock(left); 2852 free_extent_buffer(left); 2853 path->nodes[0] = right; 2854 path->slots[0] = 0; 2855 path->slots[1]++; 2856 return 0; 2857 } 2858 2859 return __push_leaf_right(path, min_data_size, empty, 2860 right, free_space, left_nritems, min_slot); 2861 out_unlock: 2862 btrfs_tree_unlock(right); 2863 free_extent_buffer(right); 2864 return 1; 2865 } 2866 2867 /* 2868 * push some data in the path leaf to the left, trying to free up at 2869 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2870 * 2871 * max_slot can put a limit on how far into the leaf we'll push items. The 2872 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 2873 * items 2874 */ 2875 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 2876 int empty, struct extent_buffer *left, 2877 int free_space, u32 right_nritems, 2878 u32 max_slot) 2879 { 2880 struct btrfs_fs_info *fs_info = left->fs_info; 2881 struct btrfs_disk_key disk_key; 2882 struct extent_buffer *right = path->nodes[0]; 2883 int i; 2884 int push_space = 0; 2885 int push_items = 0; 2886 struct btrfs_item *item; 2887 u32 old_left_nritems; 2888 u32 nr; 2889 int ret = 0; 2890 u32 this_item_size; 2891 u32 old_left_item_size; 2892 struct btrfs_map_token token; 2893 2894 if (empty) 2895 nr = min(right_nritems, max_slot); 2896 else 2897 nr = min(right_nritems - 1, max_slot); 2898 2899 for (i = 0; i < nr; i++) { 2900 item = btrfs_item_nr(i); 2901 2902 if (!empty && push_items > 0) { 2903 if (path->slots[0] < i) 2904 break; 2905 if (path->slots[0] == i) { 2906 int space = btrfs_leaf_free_space(right); 2907 2908 if (space + push_space * 2 > free_space) 2909 break; 2910 } 2911 } 2912 2913 if (path->slots[0] == i) 2914 push_space += data_size; 2915 2916 this_item_size = btrfs_item_size(right, item); 2917 if (this_item_size + sizeof(*item) + push_space > free_space) 2918 break; 2919 2920 push_items++; 2921 push_space += this_item_size + sizeof(*item); 2922 } 2923 2924 if (push_items == 0) { 2925 ret = 1; 2926 goto out; 2927 } 2928 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 2929 2930 /* push data from right to left */ 2931 copy_extent_buffer(left, right, 2932 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2933 btrfs_item_nr_offset(0), 2934 push_items * sizeof(struct btrfs_item)); 2935 2936 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 2937 btrfs_item_offset_nr(right, push_items - 1); 2938 2939 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 2940 leaf_data_end(left) - push_space, 2941 BTRFS_LEAF_DATA_OFFSET + 2942 btrfs_item_offset_nr(right, push_items - 1), 2943 push_space); 2944 old_left_nritems = btrfs_header_nritems(left); 2945 BUG_ON(old_left_nritems <= 0); 2946 2947 btrfs_init_map_token(&token, left); 2948 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2949 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2950 u32 ioff; 2951 2952 item = btrfs_item_nr(i); 2953 2954 ioff = btrfs_token_item_offset(&token, item); 2955 btrfs_set_token_item_offset(&token, item, 2956 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 2957 } 2958 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2959 2960 /* fixup right node */ 2961 if (push_items > right_nritems) 2962 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 2963 right_nritems); 2964 2965 if (push_items < right_nritems) { 2966 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2967 leaf_data_end(right); 2968 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 2969 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 2970 BTRFS_LEAF_DATA_OFFSET + 2971 leaf_data_end(right), push_space); 2972 2973 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2974 btrfs_item_nr_offset(push_items), 2975 (btrfs_header_nritems(right) - push_items) * 2976 sizeof(struct btrfs_item)); 2977 } 2978 2979 btrfs_init_map_token(&token, right); 2980 right_nritems -= push_items; 2981 btrfs_set_header_nritems(right, right_nritems); 2982 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 2983 for (i = 0; i < right_nritems; i++) { 2984 item = btrfs_item_nr(i); 2985 2986 push_space = push_space - btrfs_token_item_size(&token, item); 2987 btrfs_set_token_item_offset(&token, item, push_space); 2988 } 2989 2990 btrfs_mark_buffer_dirty(left); 2991 if (right_nritems) 2992 btrfs_mark_buffer_dirty(right); 2993 else 2994 btrfs_clean_tree_block(right); 2995 2996 btrfs_item_key(right, &disk_key, 0); 2997 fixup_low_keys(path, &disk_key, 1); 2998 2999 /* then fixup the leaf pointer in the path */ 3000 if (path->slots[0] < push_items) { 3001 path->slots[0] += old_left_nritems; 3002 btrfs_tree_unlock(path->nodes[0]); 3003 free_extent_buffer(path->nodes[0]); 3004 path->nodes[0] = left; 3005 path->slots[1] -= 1; 3006 } else { 3007 btrfs_tree_unlock(left); 3008 free_extent_buffer(left); 3009 path->slots[0] -= push_items; 3010 } 3011 BUG_ON(path->slots[0] < 0); 3012 return ret; 3013 out: 3014 btrfs_tree_unlock(left); 3015 free_extent_buffer(left); 3016 return ret; 3017 } 3018 3019 /* 3020 * push some data in the path leaf to the left, trying to free up at 3021 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3022 * 3023 * max_slot can put a limit on how far into the leaf we'll push items. The 3024 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3025 * items 3026 */ 3027 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3028 *root, struct btrfs_path *path, int min_data_size, 3029 int data_size, int empty, u32 max_slot) 3030 { 3031 struct extent_buffer *right = path->nodes[0]; 3032 struct extent_buffer *left; 3033 int slot; 3034 int free_space; 3035 u32 right_nritems; 3036 int ret = 0; 3037 3038 slot = path->slots[1]; 3039 if (slot == 0) 3040 return 1; 3041 if (!path->nodes[1]) 3042 return 1; 3043 3044 right_nritems = btrfs_header_nritems(right); 3045 if (right_nritems == 0) 3046 return 1; 3047 3048 btrfs_assert_tree_locked(path->nodes[1]); 3049 3050 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3051 /* 3052 * slot - 1 is not valid or we fail to read the left node, 3053 * no big deal, just return. 3054 */ 3055 if (IS_ERR(left)) 3056 return 1; 3057 3058 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 3059 3060 free_space = btrfs_leaf_free_space(left); 3061 if (free_space < data_size) { 3062 ret = 1; 3063 goto out; 3064 } 3065 3066 /* cow and double check */ 3067 ret = btrfs_cow_block(trans, root, left, 3068 path->nodes[1], slot - 1, &left, 3069 BTRFS_NESTING_LEFT_COW); 3070 if (ret) { 3071 /* we hit -ENOSPC, but it isn't fatal here */ 3072 if (ret == -ENOSPC) 3073 ret = 1; 3074 goto out; 3075 } 3076 3077 free_space = btrfs_leaf_free_space(left); 3078 if (free_space < data_size) { 3079 ret = 1; 3080 goto out; 3081 } 3082 3083 if (check_sibling_keys(left, right)) { 3084 ret = -EUCLEAN; 3085 goto out; 3086 } 3087 return __push_leaf_left(path, min_data_size, 3088 empty, left, free_space, right_nritems, 3089 max_slot); 3090 out: 3091 btrfs_tree_unlock(left); 3092 free_extent_buffer(left); 3093 return ret; 3094 } 3095 3096 /* 3097 * split the path's leaf in two, making sure there is at least data_size 3098 * available for the resulting leaf level of the path. 3099 */ 3100 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3101 struct btrfs_path *path, 3102 struct extent_buffer *l, 3103 struct extent_buffer *right, 3104 int slot, int mid, int nritems) 3105 { 3106 struct btrfs_fs_info *fs_info = trans->fs_info; 3107 int data_copy_size; 3108 int rt_data_off; 3109 int i; 3110 struct btrfs_disk_key disk_key; 3111 struct btrfs_map_token token; 3112 3113 nritems = nritems - mid; 3114 btrfs_set_header_nritems(right, nritems); 3115 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 3116 3117 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3118 btrfs_item_nr_offset(mid), 3119 nritems * sizeof(struct btrfs_item)); 3120 3121 copy_extent_buffer(right, l, 3122 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 3123 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 3124 leaf_data_end(l), data_copy_size); 3125 3126 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 3127 3128 btrfs_init_map_token(&token, right); 3129 for (i = 0; i < nritems; i++) { 3130 struct btrfs_item *item = btrfs_item_nr(i); 3131 u32 ioff; 3132 3133 ioff = btrfs_token_item_offset(&token, item); 3134 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off); 3135 } 3136 3137 btrfs_set_header_nritems(l, mid); 3138 btrfs_item_key(right, &disk_key, 0); 3139 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 3140 3141 btrfs_mark_buffer_dirty(right); 3142 btrfs_mark_buffer_dirty(l); 3143 BUG_ON(path->slots[0] != slot); 3144 3145 if (mid <= slot) { 3146 btrfs_tree_unlock(path->nodes[0]); 3147 free_extent_buffer(path->nodes[0]); 3148 path->nodes[0] = right; 3149 path->slots[0] -= mid; 3150 path->slots[1] += 1; 3151 } else { 3152 btrfs_tree_unlock(right); 3153 free_extent_buffer(right); 3154 } 3155 3156 BUG_ON(path->slots[0] < 0); 3157 } 3158 3159 /* 3160 * double splits happen when we need to insert a big item in the middle 3161 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3162 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3163 * A B C 3164 * 3165 * We avoid this by trying to push the items on either side of our target 3166 * into the adjacent leaves. If all goes well we can avoid the double split 3167 * completely. 3168 */ 3169 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3170 struct btrfs_root *root, 3171 struct btrfs_path *path, 3172 int data_size) 3173 { 3174 int ret; 3175 int progress = 0; 3176 int slot; 3177 u32 nritems; 3178 int space_needed = data_size; 3179 3180 slot = path->slots[0]; 3181 if (slot < btrfs_header_nritems(path->nodes[0])) 3182 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3183 3184 /* 3185 * try to push all the items after our slot into the 3186 * right leaf 3187 */ 3188 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 3189 if (ret < 0) 3190 return ret; 3191 3192 if (ret == 0) 3193 progress++; 3194 3195 nritems = btrfs_header_nritems(path->nodes[0]); 3196 /* 3197 * our goal is to get our slot at the start or end of a leaf. If 3198 * we've done so we're done 3199 */ 3200 if (path->slots[0] == 0 || path->slots[0] == nritems) 3201 return 0; 3202 3203 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3204 return 0; 3205 3206 /* try to push all the items before our slot into the next leaf */ 3207 slot = path->slots[0]; 3208 space_needed = data_size; 3209 if (slot > 0) 3210 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3211 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 3212 if (ret < 0) 3213 return ret; 3214 3215 if (ret == 0) 3216 progress++; 3217 3218 if (progress) 3219 return 0; 3220 return 1; 3221 } 3222 3223 /* 3224 * split the path's leaf in two, making sure there is at least data_size 3225 * available for the resulting leaf level of the path. 3226 * 3227 * returns 0 if all went well and < 0 on failure. 3228 */ 3229 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3230 struct btrfs_root *root, 3231 const struct btrfs_key *ins_key, 3232 struct btrfs_path *path, int data_size, 3233 int extend) 3234 { 3235 struct btrfs_disk_key disk_key; 3236 struct extent_buffer *l; 3237 u32 nritems; 3238 int mid; 3239 int slot; 3240 struct extent_buffer *right; 3241 struct btrfs_fs_info *fs_info = root->fs_info; 3242 int ret = 0; 3243 int wret; 3244 int split; 3245 int num_doubles = 0; 3246 int tried_avoid_double = 0; 3247 3248 l = path->nodes[0]; 3249 slot = path->slots[0]; 3250 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3251 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 3252 return -EOVERFLOW; 3253 3254 /* first try to make some room by pushing left and right */ 3255 if (data_size && path->nodes[1]) { 3256 int space_needed = data_size; 3257 3258 if (slot < btrfs_header_nritems(l)) 3259 space_needed -= btrfs_leaf_free_space(l); 3260 3261 wret = push_leaf_right(trans, root, path, space_needed, 3262 space_needed, 0, 0); 3263 if (wret < 0) 3264 return wret; 3265 if (wret) { 3266 space_needed = data_size; 3267 if (slot > 0) 3268 space_needed -= btrfs_leaf_free_space(l); 3269 wret = push_leaf_left(trans, root, path, space_needed, 3270 space_needed, 0, (u32)-1); 3271 if (wret < 0) 3272 return wret; 3273 } 3274 l = path->nodes[0]; 3275 3276 /* did the pushes work? */ 3277 if (btrfs_leaf_free_space(l) >= data_size) 3278 return 0; 3279 } 3280 3281 if (!path->nodes[1]) { 3282 ret = insert_new_root(trans, root, path, 1); 3283 if (ret) 3284 return ret; 3285 } 3286 again: 3287 split = 1; 3288 l = path->nodes[0]; 3289 slot = path->slots[0]; 3290 nritems = btrfs_header_nritems(l); 3291 mid = (nritems + 1) / 2; 3292 3293 if (mid <= slot) { 3294 if (nritems == 1 || 3295 leaf_space_used(l, mid, nritems - mid) + data_size > 3296 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3297 if (slot >= nritems) { 3298 split = 0; 3299 } else { 3300 mid = slot; 3301 if (mid != nritems && 3302 leaf_space_used(l, mid, nritems - mid) + 3303 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3304 if (data_size && !tried_avoid_double) 3305 goto push_for_double; 3306 split = 2; 3307 } 3308 } 3309 } 3310 } else { 3311 if (leaf_space_used(l, 0, mid) + data_size > 3312 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3313 if (!extend && data_size && slot == 0) { 3314 split = 0; 3315 } else if ((extend || !data_size) && slot == 0) { 3316 mid = 1; 3317 } else { 3318 mid = slot; 3319 if (mid != nritems && 3320 leaf_space_used(l, mid, nritems - mid) + 3321 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3322 if (data_size && !tried_avoid_double) 3323 goto push_for_double; 3324 split = 2; 3325 } 3326 } 3327 } 3328 } 3329 3330 if (split == 0) 3331 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3332 else 3333 btrfs_item_key(l, &disk_key, mid); 3334 3335 /* 3336 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 3337 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 3338 * subclasses, which is 8 at the time of this patch, and we've maxed it 3339 * out. In the future we could add a 3340 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 3341 * use BTRFS_NESTING_NEW_ROOT. 3342 */ 3343 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3344 &disk_key, 0, l->start, 0, 3345 num_doubles ? BTRFS_NESTING_NEW_ROOT : 3346 BTRFS_NESTING_SPLIT); 3347 if (IS_ERR(right)) 3348 return PTR_ERR(right); 3349 3350 root_add_used(root, fs_info->nodesize); 3351 3352 if (split == 0) { 3353 if (mid <= slot) { 3354 btrfs_set_header_nritems(right, 0); 3355 insert_ptr(trans, path, &disk_key, 3356 right->start, path->slots[1] + 1, 1); 3357 btrfs_tree_unlock(path->nodes[0]); 3358 free_extent_buffer(path->nodes[0]); 3359 path->nodes[0] = right; 3360 path->slots[0] = 0; 3361 path->slots[1] += 1; 3362 } else { 3363 btrfs_set_header_nritems(right, 0); 3364 insert_ptr(trans, path, &disk_key, 3365 right->start, path->slots[1], 1); 3366 btrfs_tree_unlock(path->nodes[0]); 3367 free_extent_buffer(path->nodes[0]); 3368 path->nodes[0] = right; 3369 path->slots[0] = 0; 3370 if (path->slots[1] == 0) 3371 fixup_low_keys(path, &disk_key, 1); 3372 } 3373 /* 3374 * We create a new leaf 'right' for the required ins_len and 3375 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 3376 * the content of ins_len to 'right'. 3377 */ 3378 return ret; 3379 } 3380 3381 copy_for_split(trans, path, l, right, slot, mid, nritems); 3382 3383 if (split == 2) { 3384 BUG_ON(num_doubles != 0); 3385 num_doubles++; 3386 goto again; 3387 } 3388 3389 return 0; 3390 3391 push_for_double: 3392 push_for_double_split(trans, root, path, data_size); 3393 tried_avoid_double = 1; 3394 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3395 return 0; 3396 goto again; 3397 } 3398 3399 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3400 struct btrfs_root *root, 3401 struct btrfs_path *path, int ins_len) 3402 { 3403 struct btrfs_key key; 3404 struct extent_buffer *leaf; 3405 struct btrfs_file_extent_item *fi; 3406 u64 extent_len = 0; 3407 u32 item_size; 3408 int ret; 3409 3410 leaf = path->nodes[0]; 3411 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3412 3413 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3414 key.type != BTRFS_EXTENT_CSUM_KEY); 3415 3416 if (btrfs_leaf_free_space(leaf) >= ins_len) 3417 return 0; 3418 3419 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3420 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3421 fi = btrfs_item_ptr(leaf, path->slots[0], 3422 struct btrfs_file_extent_item); 3423 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3424 } 3425 btrfs_release_path(path); 3426 3427 path->keep_locks = 1; 3428 path->search_for_split = 1; 3429 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3430 path->search_for_split = 0; 3431 if (ret > 0) 3432 ret = -EAGAIN; 3433 if (ret < 0) 3434 goto err; 3435 3436 ret = -EAGAIN; 3437 leaf = path->nodes[0]; 3438 /* if our item isn't there, return now */ 3439 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3440 goto err; 3441 3442 /* the leaf has changed, it now has room. return now */ 3443 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 3444 goto err; 3445 3446 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3447 fi = btrfs_item_ptr(leaf, path->slots[0], 3448 struct btrfs_file_extent_item); 3449 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3450 goto err; 3451 } 3452 3453 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3454 if (ret) 3455 goto err; 3456 3457 path->keep_locks = 0; 3458 btrfs_unlock_up_safe(path, 1); 3459 return 0; 3460 err: 3461 path->keep_locks = 0; 3462 return ret; 3463 } 3464 3465 static noinline int split_item(struct btrfs_path *path, 3466 const struct btrfs_key *new_key, 3467 unsigned long split_offset) 3468 { 3469 struct extent_buffer *leaf; 3470 struct btrfs_item *item; 3471 struct btrfs_item *new_item; 3472 int slot; 3473 char *buf; 3474 u32 nritems; 3475 u32 item_size; 3476 u32 orig_offset; 3477 struct btrfs_disk_key disk_key; 3478 3479 leaf = path->nodes[0]; 3480 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 3481 3482 item = btrfs_item_nr(path->slots[0]); 3483 orig_offset = btrfs_item_offset(leaf, item); 3484 item_size = btrfs_item_size(leaf, item); 3485 3486 buf = kmalloc(item_size, GFP_NOFS); 3487 if (!buf) 3488 return -ENOMEM; 3489 3490 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3491 path->slots[0]), item_size); 3492 3493 slot = path->slots[0] + 1; 3494 nritems = btrfs_header_nritems(leaf); 3495 if (slot != nritems) { 3496 /* shift the items */ 3497 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3498 btrfs_item_nr_offset(slot), 3499 (nritems - slot) * sizeof(struct btrfs_item)); 3500 } 3501 3502 btrfs_cpu_key_to_disk(&disk_key, new_key); 3503 btrfs_set_item_key(leaf, &disk_key, slot); 3504 3505 new_item = btrfs_item_nr(slot); 3506 3507 btrfs_set_item_offset(leaf, new_item, orig_offset); 3508 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3509 3510 btrfs_set_item_offset(leaf, item, 3511 orig_offset + item_size - split_offset); 3512 btrfs_set_item_size(leaf, item, split_offset); 3513 3514 btrfs_set_header_nritems(leaf, nritems + 1); 3515 3516 /* write the data for the start of the original item */ 3517 write_extent_buffer(leaf, buf, 3518 btrfs_item_ptr_offset(leaf, path->slots[0]), 3519 split_offset); 3520 3521 /* write the data for the new item */ 3522 write_extent_buffer(leaf, buf + split_offset, 3523 btrfs_item_ptr_offset(leaf, slot), 3524 item_size - split_offset); 3525 btrfs_mark_buffer_dirty(leaf); 3526 3527 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 3528 kfree(buf); 3529 return 0; 3530 } 3531 3532 /* 3533 * This function splits a single item into two items, 3534 * giving 'new_key' to the new item and splitting the 3535 * old one at split_offset (from the start of the item). 3536 * 3537 * The path may be released by this operation. After 3538 * the split, the path is pointing to the old item. The 3539 * new item is going to be in the same node as the old one. 3540 * 3541 * Note, the item being split must be smaller enough to live alone on 3542 * a tree block with room for one extra struct btrfs_item 3543 * 3544 * This allows us to split the item in place, keeping a lock on the 3545 * leaf the entire time. 3546 */ 3547 int btrfs_split_item(struct btrfs_trans_handle *trans, 3548 struct btrfs_root *root, 3549 struct btrfs_path *path, 3550 const struct btrfs_key *new_key, 3551 unsigned long split_offset) 3552 { 3553 int ret; 3554 ret = setup_leaf_for_split(trans, root, path, 3555 sizeof(struct btrfs_item)); 3556 if (ret) 3557 return ret; 3558 3559 ret = split_item(path, new_key, split_offset); 3560 return ret; 3561 } 3562 3563 /* 3564 * This function duplicate a item, giving 'new_key' to the new item. 3565 * It guarantees both items live in the same tree leaf and the new item 3566 * is contiguous with the original item. 3567 * 3568 * This allows us to split file extent in place, keeping a lock on the 3569 * leaf the entire time. 3570 */ 3571 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3572 struct btrfs_root *root, 3573 struct btrfs_path *path, 3574 const struct btrfs_key *new_key) 3575 { 3576 struct extent_buffer *leaf; 3577 int ret; 3578 u32 item_size; 3579 3580 leaf = path->nodes[0]; 3581 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3582 ret = setup_leaf_for_split(trans, root, path, 3583 item_size + sizeof(struct btrfs_item)); 3584 if (ret) 3585 return ret; 3586 3587 path->slots[0]++; 3588 setup_items_for_insert(root, path, new_key, &item_size, 1); 3589 leaf = path->nodes[0]; 3590 memcpy_extent_buffer(leaf, 3591 btrfs_item_ptr_offset(leaf, path->slots[0]), 3592 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3593 item_size); 3594 return 0; 3595 } 3596 3597 /* 3598 * make the item pointed to by the path smaller. new_size indicates 3599 * how small to make it, and from_end tells us if we just chop bytes 3600 * off the end of the item or if we shift the item to chop bytes off 3601 * the front. 3602 */ 3603 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 3604 { 3605 int slot; 3606 struct extent_buffer *leaf; 3607 struct btrfs_item *item; 3608 u32 nritems; 3609 unsigned int data_end; 3610 unsigned int old_data_start; 3611 unsigned int old_size; 3612 unsigned int size_diff; 3613 int i; 3614 struct btrfs_map_token token; 3615 3616 leaf = path->nodes[0]; 3617 slot = path->slots[0]; 3618 3619 old_size = btrfs_item_size_nr(leaf, slot); 3620 if (old_size == new_size) 3621 return; 3622 3623 nritems = btrfs_header_nritems(leaf); 3624 data_end = leaf_data_end(leaf); 3625 3626 old_data_start = btrfs_item_offset_nr(leaf, slot); 3627 3628 size_diff = old_size - new_size; 3629 3630 BUG_ON(slot < 0); 3631 BUG_ON(slot >= nritems); 3632 3633 /* 3634 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3635 */ 3636 /* first correct the data pointers */ 3637 btrfs_init_map_token(&token, leaf); 3638 for (i = slot; i < nritems; i++) { 3639 u32 ioff; 3640 item = btrfs_item_nr(i); 3641 3642 ioff = btrfs_token_item_offset(&token, item); 3643 btrfs_set_token_item_offset(&token, item, ioff + size_diff); 3644 } 3645 3646 /* shift the data */ 3647 if (from_end) { 3648 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3649 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 3650 data_end, old_data_start + new_size - data_end); 3651 } else { 3652 struct btrfs_disk_key disk_key; 3653 u64 offset; 3654 3655 btrfs_item_key(leaf, &disk_key, slot); 3656 3657 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3658 unsigned long ptr; 3659 struct btrfs_file_extent_item *fi; 3660 3661 fi = btrfs_item_ptr(leaf, slot, 3662 struct btrfs_file_extent_item); 3663 fi = (struct btrfs_file_extent_item *)( 3664 (unsigned long)fi - size_diff); 3665 3666 if (btrfs_file_extent_type(leaf, fi) == 3667 BTRFS_FILE_EXTENT_INLINE) { 3668 ptr = btrfs_item_ptr_offset(leaf, slot); 3669 memmove_extent_buffer(leaf, ptr, 3670 (unsigned long)fi, 3671 BTRFS_FILE_EXTENT_INLINE_DATA_START); 3672 } 3673 } 3674 3675 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3676 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 3677 data_end, old_data_start - data_end); 3678 3679 offset = btrfs_disk_key_offset(&disk_key); 3680 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3681 btrfs_set_item_key(leaf, &disk_key, slot); 3682 if (slot == 0) 3683 fixup_low_keys(path, &disk_key, 1); 3684 } 3685 3686 item = btrfs_item_nr(slot); 3687 btrfs_set_item_size(leaf, item, new_size); 3688 btrfs_mark_buffer_dirty(leaf); 3689 3690 if (btrfs_leaf_free_space(leaf) < 0) { 3691 btrfs_print_leaf(leaf); 3692 BUG(); 3693 } 3694 } 3695 3696 /* 3697 * make the item pointed to by the path bigger, data_size is the added size. 3698 */ 3699 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 3700 { 3701 int slot; 3702 struct extent_buffer *leaf; 3703 struct btrfs_item *item; 3704 u32 nritems; 3705 unsigned int data_end; 3706 unsigned int old_data; 3707 unsigned int old_size; 3708 int i; 3709 struct btrfs_map_token token; 3710 3711 leaf = path->nodes[0]; 3712 3713 nritems = btrfs_header_nritems(leaf); 3714 data_end = leaf_data_end(leaf); 3715 3716 if (btrfs_leaf_free_space(leaf) < data_size) { 3717 btrfs_print_leaf(leaf); 3718 BUG(); 3719 } 3720 slot = path->slots[0]; 3721 old_data = btrfs_item_end_nr(leaf, slot); 3722 3723 BUG_ON(slot < 0); 3724 if (slot >= nritems) { 3725 btrfs_print_leaf(leaf); 3726 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 3727 slot, nritems); 3728 BUG(); 3729 } 3730 3731 /* 3732 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3733 */ 3734 /* first correct the data pointers */ 3735 btrfs_init_map_token(&token, leaf); 3736 for (i = slot; i < nritems; i++) { 3737 u32 ioff; 3738 item = btrfs_item_nr(i); 3739 3740 ioff = btrfs_token_item_offset(&token, item); 3741 btrfs_set_token_item_offset(&token, item, ioff - data_size); 3742 } 3743 3744 /* shift the data */ 3745 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3746 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 3747 data_end, old_data - data_end); 3748 3749 data_end = old_data; 3750 old_size = btrfs_item_size_nr(leaf, slot); 3751 item = btrfs_item_nr(slot); 3752 btrfs_set_item_size(leaf, item, old_size + data_size); 3753 btrfs_mark_buffer_dirty(leaf); 3754 3755 if (btrfs_leaf_free_space(leaf) < 0) { 3756 btrfs_print_leaf(leaf); 3757 BUG(); 3758 } 3759 } 3760 3761 /** 3762 * setup_items_for_insert - Helper called before inserting one or more items 3763 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work 3764 * in a function that doesn't call btrfs_search_slot 3765 * 3766 * @root: root we are inserting items to 3767 * @path: points to the leaf/slot where we are going to insert new items 3768 * @cpu_key: array of keys for items to be inserted 3769 * @data_size: size of the body of each item we are going to insert 3770 * @nr: size of @cpu_key/@data_size arrays 3771 */ 3772 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 3773 const struct btrfs_key *cpu_key, u32 *data_size, 3774 int nr) 3775 { 3776 struct btrfs_fs_info *fs_info = root->fs_info; 3777 struct btrfs_item *item; 3778 int i; 3779 u32 nritems; 3780 unsigned int data_end; 3781 struct btrfs_disk_key disk_key; 3782 struct extent_buffer *leaf; 3783 int slot; 3784 struct btrfs_map_token token; 3785 u32 total_size; 3786 u32 total_data = 0; 3787 3788 for (i = 0; i < nr; i++) 3789 total_data += data_size[i]; 3790 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3791 3792 if (path->slots[0] == 0) { 3793 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3794 fixup_low_keys(path, &disk_key, 1); 3795 } 3796 btrfs_unlock_up_safe(path, 1); 3797 3798 leaf = path->nodes[0]; 3799 slot = path->slots[0]; 3800 3801 nritems = btrfs_header_nritems(leaf); 3802 data_end = leaf_data_end(leaf); 3803 3804 if (btrfs_leaf_free_space(leaf) < total_size) { 3805 btrfs_print_leaf(leaf); 3806 btrfs_crit(fs_info, "not enough freespace need %u have %d", 3807 total_size, btrfs_leaf_free_space(leaf)); 3808 BUG(); 3809 } 3810 3811 btrfs_init_map_token(&token, leaf); 3812 if (slot != nritems) { 3813 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3814 3815 if (old_data < data_end) { 3816 btrfs_print_leaf(leaf); 3817 btrfs_crit(fs_info, 3818 "item at slot %d with data offset %u beyond data end of leaf %u", 3819 slot, old_data, data_end); 3820 BUG(); 3821 } 3822 /* 3823 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3824 */ 3825 /* first correct the data pointers */ 3826 for (i = slot; i < nritems; i++) { 3827 u32 ioff; 3828 3829 item = btrfs_item_nr(i); 3830 ioff = btrfs_token_item_offset(&token, item); 3831 btrfs_set_token_item_offset(&token, item, 3832 ioff - total_data); 3833 } 3834 /* shift the items */ 3835 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3836 btrfs_item_nr_offset(slot), 3837 (nritems - slot) * sizeof(struct btrfs_item)); 3838 3839 /* shift the data */ 3840 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3841 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 3842 data_end, old_data - data_end); 3843 data_end = old_data; 3844 } 3845 3846 /* setup the item for the new data */ 3847 for (i = 0; i < nr; i++) { 3848 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3849 btrfs_set_item_key(leaf, &disk_key, slot + i); 3850 item = btrfs_item_nr(slot + i); 3851 data_end -= data_size[i]; 3852 btrfs_set_token_item_offset(&token, item, data_end); 3853 btrfs_set_token_item_size(&token, item, data_size[i]); 3854 } 3855 3856 btrfs_set_header_nritems(leaf, nritems + nr); 3857 btrfs_mark_buffer_dirty(leaf); 3858 3859 if (btrfs_leaf_free_space(leaf) < 0) { 3860 btrfs_print_leaf(leaf); 3861 BUG(); 3862 } 3863 } 3864 3865 /* 3866 * Given a key and some data, insert items into the tree. 3867 * This does all the path init required, making room in the tree if needed. 3868 */ 3869 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3870 struct btrfs_root *root, 3871 struct btrfs_path *path, 3872 const struct btrfs_key *cpu_key, u32 *data_size, 3873 int nr) 3874 { 3875 int ret = 0; 3876 int slot; 3877 int i; 3878 u32 total_size = 0; 3879 u32 total_data = 0; 3880 3881 for (i = 0; i < nr; i++) 3882 total_data += data_size[i]; 3883 3884 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3885 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3886 if (ret == 0) 3887 return -EEXIST; 3888 if (ret < 0) 3889 return ret; 3890 3891 slot = path->slots[0]; 3892 BUG_ON(slot < 0); 3893 3894 setup_items_for_insert(root, path, cpu_key, data_size, nr); 3895 return 0; 3896 } 3897 3898 /* 3899 * Given a key and some data, insert an item into the tree. 3900 * This does all the path init required, making room in the tree if needed. 3901 */ 3902 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3903 const struct btrfs_key *cpu_key, void *data, 3904 u32 data_size) 3905 { 3906 int ret = 0; 3907 struct btrfs_path *path; 3908 struct extent_buffer *leaf; 3909 unsigned long ptr; 3910 3911 path = btrfs_alloc_path(); 3912 if (!path) 3913 return -ENOMEM; 3914 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3915 if (!ret) { 3916 leaf = path->nodes[0]; 3917 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3918 write_extent_buffer(leaf, data, ptr, data_size); 3919 btrfs_mark_buffer_dirty(leaf); 3920 } 3921 btrfs_free_path(path); 3922 return ret; 3923 } 3924 3925 /* 3926 * delete the pointer from a given node. 3927 * 3928 * the tree should have been previously balanced so the deletion does not 3929 * empty a node. 3930 */ 3931 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 3932 int level, int slot) 3933 { 3934 struct extent_buffer *parent = path->nodes[level]; 3935 u32 nritems; 3936 int ret; 3937 3938 nritems = btrfs_header_nritems(parent); 3939 if (slot != nritems - 1) { 3940 if (level) { 3941 ret = btrfs_tree_mod_log_insert_move(parent, slot, 3942 slot + 1, nritems - slot - 1); 3943 BUG_ON(ret < 0); 3944 } 3945 memmove_extent_buffer(parent, 3946 btrfs_node_key_ptr_offset(slot), 3947 btrfs_node_key_ptr_offset(slot + 1), 3948 sizeof(struct btrfs_key_ptr) * 3949 (nritems - slot - 1)); 3950 } else if (level) { 3951 ret = btrfs_tree_mod_log_insert_key(parent, slot, 3952 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS); 3953 BUG_ON(ret < 0); 3954 } 3955 3956 nritems--; 3957 btrfs_set_header_nritems(parent, nritems); 3958 if (nritems == 0 && parent == root->node) { 3959 BUG_ON(btrfs_header_level(root->node) != 1); 3960 /* just turn the root into a leaf and break */ 3961 btrfs_set_header_level(root->node, 0); 3962 } else if (slot == 0) { 3963 struct btrfs_disk_key disk_key; 3964 3965 btrfs_node_key(parent, &disk_key, 0); 3966 fixup_low_keys(path, &disk_key, level + 1); 3967 } 3968 btrfs_mark_buffer_dirty(parent); 3969 } 3970 3971 /* 3972 * a helper function to delete the leaf pointed to by path->slots[1] and 3973 * path->nodes[1]. 3974 * 3975 * This deletes the pointer in path->nodes[1] and frees the leaf 3976 * block extent. zero is returned if it all worked out, < 0 otherwise. 3977 * 3978 * The path must have already been setup for deleting the leaf, including 3979 * all the proper balancing. path->nodes[1] must be locked. 3980 */ 3981 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 3982 struct btrfs_root *root, 3983 struct btrfs_path *path, 3984 struct extent_buffer *leaf) 3985 { 3986 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 3987 del_ptr(root, path, 1, path->slots[1]); 3988 3989 /* 3990 * btrfs_free_extent is expensive, we want to make sure we 3991 * aren't holding any locks when we call it 3992 */ 3993 btrfs_unlock_up_safe(path, 0); 3994 3995 root_sub_used(root, leaf->len); 3996 3997 atomic_inc(&leaf->refs); 3998 btrfs_free_tree_block(trans, root, leaf, 0, 1); 3999 free_extent_buffer_stale(leaf); 4000 } 4001 /* 4002 * delete the item at the leaf level in path. If that empties 4003 * the leaf, remove it from the tree 4004 */ 4005 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4006 struct btrfs_path *path, int slot, int nr) 4007 { 4008 struct btrfs_fs_info *fs_info = root->fs_info; 4009 struct extent_buffer *leaf; 4010 struct btrfs_item *item; 4011 u32 last_off; 4012 u32 dsize = 0; 4013 int ret = 0; 4014 int wret; 4015 int i; 4016 u32 nritems; 4017 4018 leaf = path->nodes[0]; 4019 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4020 4021 for (i = 0; i < nr; i++) 4022 dsize += btrfs_item_size_nr(leaf, slot + i); 4023 4024 nritems = btrfs_header_nritems(leaf); 4025 4026 if (slot + nr != nritems) { 4027 int data_end = leaf_data_end(leaf); 4028 struct btrfs_map_token token; 4029 4030 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4031 data_end + dsize, 4032 BTRFS_LEAF_DATA_OFFSET + data_end, 4033 last_off - data_end); 4034 4035 btrfs_init_map_token(&token, leaf); 4036 for (i = slot + nr; i < nritems; i++) { 4037 u32 ioff; 4038 4039 item = btrfs_item_nr(i); 4040 ioff = btrfs_token_item_offset(&token, item); 4041 btrfs_set_token_item_offset(&token, item, ioff + dsize); 4042 } 4043 4044 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4045 btrfs_item_nr_offset(slot + nr), 4046 sizeof(struct btrfs_item) * 4047 (nritems - slot - nr)); 4048 } 4049 btrfs_set_header_nritems(leaf, nritems - nr); 4050 nritems -= nr; 4051 4052 /* delete the leaf if we've emptied it */ 4053 if (nritems == 0) { 4054 if (leaf == root->node) { 4055 btrfs_set_header_level(leaf, 0); 4056 } else { 4057 btrfs_clean_tree_block(leaf); 4058 btrfs_del_leaf(trans, root, path, leaf); 4059 } 4060 } else { 4061 int used = leaf_space_used(leaf, 0, nritems); 4062 if (slot == 0) { 4063 struct btrfs_disk_key disk_key; 4064 4065 btrfs_item_key(leaf, &disk_key, 0); 4066 fixup_low_keys(path, &disk_key, 1); 4067 } 4068 4069 /* delete the leaf if it is mostly empty */ 4070 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4071 /* push_leaf_left fixes the path. 4072 * make sure the path still points to our leaf 4073 * for possible call to del_ptr below 4074 */ 4075 slot = path->slots[1]; 4076 atomic_inc(&leaf->refs); 4077 4078 wret = push_leaf_left(trans, root, path, 1, 1, 4079 1, (u32)-1); 4080 if (wret < 0 && wret != -ENOSPC) 4081 ret = wret; 4082 4083 if (path->nodes[0] == leaf && 4084 btrfs_header_nritems(leaf)) { 4085 wret = push_leaf_right(trans, root, path, 1, 4086 1, 1, 0); 4087 if (wret < 0 && wret != -ENOSPC) 4088 ret = wret; 4089 } 4090 4091 if (btrfs_header_nritems(leaf) == 0) { 4092 path->slots[1] = slot; 4093 btrfs_del_leaf(trans, root, path, leaf); 4094 free_extent_buffer(leaf); 4095 ret = 0; 4096 } else { 4097 /* if we're still in the path, make sure 4098 * we're dirty. Otherwise, one of the 4099 * push_leaf functions must have already 4100 * dirtied this buffer 4101 */ 4102 if (path->nodes[0] == leaf) 4103 btrfs_mark_buffer_dirty(leaf); 4104 free_extent_buffer(leaf); 4105 } 4106 } else { 4107 btrfs_mark_buffer_dirty(leaf); 4108 } 4109 } 4110 return ret; 4111 } 4112 4113 /* 4114 * search the tree again to find a leaf with lesser keys 4115 * returns 0 if it found something or 1 if there are no lesser leaves. 4116 * returns < 0 on io errors. 4117 * 4118 * This may release the path, and so you may lose any locks held at the 4119 * time you call it. 4120 */ 4121 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4122 { 4123 struct btrfs_key key; 4124 struct btrfs_disk_key found_key; 4125 int ret; 4126 4127 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4128 4129 if (key.offset > 0) { 4130 key.offset--; 4131 } else if (key.type > 0) { 4132 key.type--; 4133 key.offset = (u64)-1; 4134 } else if (key.objectid > 0) { 4135 key.objectid--; 4136 key.type = (u8)-1; 4137 key.offset = (u64)-1; 4138 } else { 4139 return 1; 4140 } 4141 4142 btrfs_release_path(path); 4143 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4144 if (ret < 0) 4145 return ret; 4146 btrfs_item_key(path->nodes[0], &found_key, 0); 4147 ret = comp_keys(&found_key, &key); 4148 /* 4149 * We might have had an item with the previous key in the tree right 4150 * before we released our path. And after we released our path, that 4151 * item might have been pushed to the first slot (0) of the leaf we 4152 * were holding due to a tree balance. Alternatively, an item with the 4153 * previous key can exist as the only element of a leaf (big fat item). 4154 * Therefore account for these 2 cases, so that our callers (like 4155 * btrfs_previous_item) don't miss an existing item with a key matching 4156 * the previous key we computed above. 4157 */ 4158 if (ret <= 0) 4159 return 0; 4160 return 1; 4161 } 4162 4163 /* 4164 * A helper function to walk down the tree starting at min_key, and looking 4165 * for nodes or leaves that are have a minimum transaction id. 4166 * This is used by the btree defrag code, and tree logging 4167 * 4168 * This does not cow, but it does stuff the starting key it finds back 4169 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4170 * key and get a writable path. 4171 * 4172 * This honors path->lowest_level to prevent descent past a given level 4173 * of the tree. 4174 * 4175 * min_trans indicates the oldest transaction that you are interested 4176 * in walking through. Any nodes or leaves older than min_trans are 4177 * skipped over (without reading them). 4178 * 4179 * returns zero if something useful was found, < 0 on error and 1 if there 4180 * was nothing in the tree that matched the search criteria. 4181 */ 4182 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4183 struct btrfs_path *path, 4184 u64 min_trans) 4185 { 4186 struct extent_buffer *cur; 4187 struct btrfs_key found_key; 4188 int slot; 4189 int sret; 4190 u32 nritems; 4191 int level; 4192 int ret = 1; 4193 int keep_locks = path->keep_locks; 4194 4195 path->keep_locks = 1; 4196 again: 4197 cur = btrfs_read_lock_root_node(root); 4198 level = btrfs_header_level(cur); 4199 WARN_ON(path->nodes[level]); 4200 path->nodes[level] = cur; 4201 path->locks[level] = BTRFS_READ_LOCK; 4202 4203 if (btrfs_header_generation(cur) < min_trans) { 4204 ret = 1; 4205 goto out; 4206 } 4207 while (1) { 4208 nritems = btrfs_header_nritems(cur); 4209 level = btrfs_header_level(cur); 4210 sret = btrfs_bin_search(cur, min_key, &slot); 4211 if (sret < 0) { 4212 ret = sret; 4213 goto out; 4214 } 4215 4216 /* at the lowest level, we're done, setup the path and exit */ 4217 if (level == path->lowest_level) { 4218 if (slot >= nritems) 4219 goto find_next_key; 4220 ret = 0; 4221 path->slots[level] = slot; 4222 btrfs_item_key_to_cpu(cur, &found_key, slot); 4223 goto out; 4224 } 4225 if (sret && slot > 0) 4226 slot--; 4227 /* 4228 * check this node pointer against the min_trans parameters. 4229 * If it is too old, skip to the next one. 4230 */ 4231 while (slot < nritems) { 4232 u64 gen; 4233 4234 gen = btrfs_node_ptr_generation(cur, slot); 4235 if (gen < min_trans) { 4236 slot++; 4237 continue; 4238 } 4239 break; 4240 } 4241 find_next_key: 4242 /* 4243 * we didn't find a candidate key in this node, walk forward 4244 * and find another one 4245 */ 4246 if (slot >= nritems) { 4247 path->slots[level] = slot; 4248 sret = btrfs_find_next_key(root, path, min_key, level, 4249 min_trans); 4250 if (sret == 0) { 4251 btrfs_release_path(path); 4252 goto again; 4253 } else { 4254 goto out; 4255 } 4256 } 4257 /* save our key for returning back */ 4258 btrfs_node_key_to_cpu(cur, &found_key, slot); 4259 path->slots[level] = slot; 4260 if (level == path->lowest_level) { 4261 ret = 0; 4262 goto out; 4263 } 4264 cur = btrfs_read_node_slot(cur, slot); 4265 if (IS_ERR(cur)) { 4266 ret = PTR_ERR(cur); 4267 goto out; 4268 } 4269 4270 btrfs_tree_read_lock(cur); 4271 4272 path->locks[level - 1] = BTRFS_READ_LOCK; 4273 path->nodes[level - 1] = cur; 4274 unlock_up(path, level, 1, 0, NULL); 4275 } 4276 out: 4277 path->keep_locks = keep_locks; 4278 if (ret == 0) { 4279 btrfs_unlock_up_safe(path, path->lowest_level + 1); 4280 memcpy(min_key, &found_key, sizeof(found_key)); 4281 } 4282 return ret; 4283 } 4284 4285 /* 4286 * this is similar to btrfs_next_leaf, but does not try to preserve 4287 * and fixup the path. It looks for and returns the next key in the 4288 * tree based on the current path and the min_trans parameters. 4289 * 4290 * 0 is returned if another key is found, < 0 if there are any errors 4291 * and 1 is returned if there are no higher keys in the tree 4292 * 4293 * path->keep_locks should be set to 1 on the search made before 4294 * calling this function. 4295 */ 4296 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4297 struct btrfs_key *key, int level, u64 min_trans) 4298 { 4299 int slot; 4300 struct extent_buffer *c; 4301 4302 WARN_ON(!path->keep_locks && !path->skip_locking); 4303 while (level < BTRFS_MAX_LEVEL) { 4304 if (!path->nodes[level]) 4305 return 1; 4306 4307 slot = path->slots[level] + 1; 4308 c = path->nodes[level]; 4309 next: 4310 if (slot >= btrfs_header_nritems(c)) { 4311 int ret; 4312 int orig_lowest; 4313 struct btrfs_key cur_key; 4314 if (level + 1 >= BTRFS_MAX_LEVEL || 4315 !path->nodes[level + 1]) 4316 return 1; 4317 4318 if (path->locks[level + 1] || path->skip_locking) { 4319 level++; 4320 continue; 4321 } 4322 4323 slot = btrfs_header_nritems(c) - 1; 4324 if (level == 0) 4325 btrfs_item_key_to_cpu(c, &cur_key, slot); 4326 else 4327 btrfs_node_key_to_cpu(c, &cur_key, slot); 4328 4329 orig_lowest = path->lowest_level; 4330 btrfs_release_path(path); 4331 path->lowest_level = level; 4332 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4333 0, 0); 4334 path->lowest_level = orig_lowest; 4335 if (ret < 0) 4336 return ret; 4337 4338 c = path->nodes[level]; 4339 slot = path->slots[level]; 4340 if (ret == 0) 4341 slot++; 4342 goto next; 4343 } 4344 4345 if (level == 0) 4346 btrfs_item_key_to_cpu(c, key, slot); 4347 else { 4348 u64 gen = btrfs_node_ptr_generation(c, slot); 4349 4350 if (gen < min_trans) { 4351 slot++; 4352 goto next; 4353 } 4354 btrfs_node_key_to_cpu(c, key, slot); 4355 } 4356 return 0; 4357 } 4358 return 1; 4359 } 4360 4361 /* 4362 * search the tree again to find a leaf with greater keys 4363 * returns 0 if it found something or 1 if there are no greater leaves. 4364 * returns < 0 on io errors. 4365 */ 4366 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4367 { 4368 return btrfs_next_old_leaf(root, path, 0); 4369 } 4370 4371 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 4372 u64 time_seq) 4373 { 4374 int slot; 4375 int level; 4376 struct extent_buffer *c; 4377 struct extent_buffer *next; 4378 struct btrfs_key key; 4379 u32 nritems; 4380 int ret; 4381 int i; 4382 4383 nritems = btrfs_header_nritems(path->nodes[0]); 4384 if (nritems == 0) 4385 return 1; 4386 4387 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4388 again: 4389 level = 1; 4390 next = NULL; 4391 btrfs_release_path(path); 4392 4393 path->keep_locks = 1; 4394 4395 if (time_seq) 4396 ret = btrfs_search_old_slot(root, &key, path, time_seq); 4397 else 4398 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4399 path->keep_locks = 0; 4400 4401 if (ret < 0) 4402 return ret; 4403 4404 nritems = btrfs_header_nritems(path->nodes[0]); 4405 /* 4406 * by releasing the path above we dropped all our locks. A balance 4407 * could have added more items next to the key that used to be 4408 * at the very end of the block. So, check again here and 4409 * advance the path if there are now more items available. 4410 */ 4411 if (nritems > 0 && path->slots[0] < nritems - 1) { 4412 if (ret == 0) 4413 path->slots[0]++; 4414 ret = 0; 4415 goto done; 4416 } 4417 /* 4418 * So the above check misses one case: 4419 * - after releasing the path above, someone has removed the item that 4420 * used to be at the very end of the block, and balance between leafs 4421 * gets another one with bigger key.offset to replace it. 4422 * 4423 * This one should be returned as well, or we can get leaf corruption 4424 * later(esp. in __btrfs_drop_extents()). 4425 * 4426 * And a bit more explanation about this check, 4427 * with ret > 0, the key isn't found, the path points to the slot 4428 * where it should be inserted, so the path->slots[0] item must be the 4429 * bigger one. 4430 */ 4431 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 4432 ret = 0; 4433 goto done; 4434 } 4435 4436 while (level < BTRFS_MAX_LEVEL) { 4437 if (!path->nodes[level]) { 4438 ret = 1; 4439 goto done; 4440 } 4441 4442 slot = path->slots[level] + 1; 4443 c = path->nodes[level]; 4444 if (slot >= btrfs_header_nritems(c)) { 4445 level++; 4446 if (level == BTRFS_MAX_LEVEL) { 4447 ret = 1; 4448 goto done; 4449 } 4450 continue; 4451 } 4452 4453 4454 /* 4455 * Our current level is where we're going to start from, and to 4456 * make sure lockdep doesn't complain we need to drop our locks 4457 * and nodes from 0 to our current level. 4458 */ 4459 for (i = 0; i < level; i++) { 4460 if (path->locks[level]) { 4461 btrfs_tree_read_unlock(path->nodes[i]); 4462 path->locks[i] = 0; 4463 } 4464 free_extent_buffer(path->nodes[i]); 4465 path->nodes[i] = NULL; 4466 } 4467 4468 next = c; 4469 ret = read_block_for_search(root, path, &next, level, 4470 slot, &key); 4471 if (ret == -EAGAIN) 4472 goto again; 4473 4474 if (ret < 0) { 4475 btrfs_release_path(path); 4476 goto done; 4477 } 4478 4479 if (!path->skip_locking) { 4480 ret = btrfs_try_tree_read_lock(next); 4481 if (!ret && time_seq) { 4482 /* 4483 * If we don't get the lock, we may be racing 4484 * with push_leaf_left, holding that lock while 4485 * itself waiting for the leaf we've currently 4486 * locked. To solve this situation, we give up 4487 * on our lock and cycle. 4488 */ 4489 free_extent_buffer(next); 4490 btrfs_release_path(path); 4491 cond_resched(); 4492 goto again; 4493 } 4494 if (!ret) 4495 btrfs_tree_read_lock(next); 4496 } 4497 break; 4498 } 4499 path->slots[level] = slot; 4500 while (1) { 4501 level--; 4502 path->nodes[level] = next; 4503 path->slots[level] = 0; 4504 if (!path->skip_locking) 4505 path->locks[level] = BTRFS_READ_LOCK; 4506 if (!level) 4507 break; 4508 4509 ret = read_block_for_search(root, path, &next, level, 4510 0, &key); 4511 if (ret == -EAGAIN) 4512 goto again; 4513 4514 if (ret < 0) { 4515 btrfs_release_path(path); 4516 goto done; 4517 } 4518 4519 if (!path->skip_locking) 4520 btrfs_tree_read_lock(next); 4521 } 4522 ret = 0; 4523 done: 4524 unlock_up(path, 0, 1, 0, NULL); 4525 4526 return ret; 4527 } 4528 4529 /* 4530 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4531 * searching until it gets past min_objectid or finds an item of 'type' 4532 * 4533 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4534 */ 4535 int btrfs_previous_item(struct btrfs_root *root, 4536 struct btrfs_path *path, u64 min_objectid, 4537 int type) 4538 { 4539 struct btrfs_key found_key; 4540 struct extent_buffer *leaf; 4541 u32 nritems; 4542 int ret; 4543 4544 while (1) { 4545 if (path->slots[0] == 0) { 4546 ret = btrfs_prev_leaf(root, path); 4547 if (ret != 0) 4548 return ret; 4549 } else { 4550 path->slots[0]--; 4551 } 4552 leaf = path->nodes[0]; 4553 nritems = btrfs_header_nritems(leaf); 4554 if (nritems == 0) 4555 return 1; 4556 if (path->slots[0] == nritems) 4557 path->slots[0]--; 4558 4559 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4560 if (found_key.objectid < min_objectid) 4561 break; 4562 if (found_key.type == type) 4563 return 0; 4564 if (found_key.objectid == min_objectid && 4565 found_key.type < type) 4566 break; 4567 } 4568 return 1; 4569 } 4570 4571 /* 4572 * search in extent tree to find a previous Metadata/Data extent item with 4573 * min objecitd. 4574 * 4575 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4576 */ 4577 int btrfs_previous_extent_item(struct btrfs_root *root, 4578 struct btrfs_path *path, u64 min_objectid) 4579 { 4580 struct btrfs_key found_key; 4581 struct extent_buffer *leaf; 4582 u32 nritems; 4583 int ret; 4584 4585 while (1) { 4586 if (path->slots[0] == 0) { 4587 ret = btrfs_prev_leaf(root, path); 4588 if (ret != 0) 4589 return ret; 4590 } else { 4591 path->slots[0]--; 4592 } 4593 leaf = path->nodes[0]; 4594 nritems = btrfs_header_nritems(leaf); 4595 if (nritems == 0) 4596 return 1; 4597 if (path->slots[0] == nritems) 4598 path->slots[0]--; 4599 4600 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4601 if (found_key.objectid < min_objectid) 4602 break; 4603 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 4604 found_key.type == BTRFS_METADATA_ITEM_KEY) 4605 return 0; 4606 if (found_key.objectid == min_objectid && 4607 found_key.type < BTRFS_EXTENT_ITEM_KEY) 4608 break; 4609 } 4610 return 1; 4611 } 4612