1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 32 int zlib_compress_pages(struct list_head *ws, struct address_space *mapping, 33 u64 start, struct page **pages, unsigned long *out_pages, 34 unsigned long *total_in, unsigned long *total_out); 35 int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 36 int zlib_decompress(struct list_head *ws, unsigned char *data_in, 37 struct page *dest_page, unsigned long start_byte, size_t srclen, 38 size_t destlen); 39 struct list_head *zlib_alloc_workspace(unsigned int level); 40 void zlib_free_workspace(struct list_head *ws); 41 struct list_head *zlib_get_workspace(unsigned int level); 42 43 int lzo_compress_pages(struct list_head *ws, struct address_space *mapping, 44 u64 start, struct page **pages, unsigned long *out_pages, 45 unsigned long *total_in, unsigned long *total_out); 46 int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 47 int lzo_decompress(struct list_head *ws, unsigned char *data_in, 48 struct page *dest_page, unsigned long start_byte, size_t srclen, 49 size_t destlen); 50 struct list_head *lzo_alloc_workspace(unsigned int level); 51 void lzo_free_workspace(struct list_head *ws); 52 53 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping, 54 u64 start, struct page **pages, unsigned long *out_pages, 55 unsigned long *total_in, unsigned long *total_out); 56 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 57 int zstd_decompress(struct list_head *ws, unsigned char *data_in, 58 struct page *dest_page, unsigned long start_byte, size_t srclen, 59 size_t destlen); 60 void zstd_init_workspace_manager(void); 61 void zstd_cleanup_workspace_manager(void); 62 struct list_head *zstd_alloc_workspace(unsigned int level); 63 void zstd_free_workspace(struct list_head *ws); 64 struct list_head *zstd_get_workspace(unsigned int level); 65 void zstd_put_workspace(struct list_head *ws); 66 67 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 68 69 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 70 { 71 switch (type) { 72 case BTRFS_COMPRESS_ZLIB: 73 case BTRFS_COMPRESS_LZO: 74 case BTRFS_COMPRESS_ZSTD: 75 case BTRFS_COMPRESS_NONE: 76 return btrfs_compress_types[type]; 77 default: 78 break; 79 } 80 81 return NULL; 82 } 83 84 bool btrfs_compress_is_valid_type(const char *str, size_t len) 85 { 86 int i; 87 88 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 89 size_t comp_len = strlen(btrfs_compress_types[i]); 90 91 if (len < comp_len) 92 continue; 93 94 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 95 return true; 96 } 97 return false; 98 } 99 100 static int compression_compress_pages(int type, struct list_head *ws, 101 struct address_space *mapping, u64 start, struct page **pages, 102 unsigned long *out_pages, unsigned long *total_in, 103 unsigned long *total_out) 104 { 105 switch (type) { 106 case BTRFS_COMPRESS_ZLIB: 107 return zlib_compress_pages(ws, mapping, start, pages, 108 out_pages, total_in, total_out); 109 case BTRFS_COMPRESS_LZO: 110 return lzo_compress_pages(ws, mapping, start, pages, 111 out_pages, total_in, total_out); 112 case BTRFS_COMPRESS_ZSTD: 113 return zstd_compress_pages(ws, mapping, start, pages, 114 out_pages, total_in, total_out); 115 case BTRFS_COMPRESS_NONE: 116 default: 117 /* 118 * This can't happen, the type is validated several times 119 * before we get here. As a sane fallback, return what the 120 * callers will understand as 'no compression happened'. 121 */ 122 return -E2BIG; 123 } 124 } 125 126 static int compression_decompress_bio(int type, struct list_head *ws, 127 struct compressed_bio *cb) 128 { 129 switch (type) { 130 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 131 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 132 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 133 case BTRFS_COMPRESS_NONE: 134 default: 135 /* 136 * This can't happen, the type is validated several times 137 * before we get here. 138 */ 139 BUG(); 140 } 141 } 142 143 static int compression_decompress(int type, struct list_head *ws, 144 unsigned char *data_in, struct page *dest_page, 145 unsigned long start_byte, size_t srclen, size_t destlen) 146 { 147 switch (type) { 148 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 149 start_byte, srclen, destlen); 150 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 151 start_byte, srclen, destlen); 152 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 153 start_byte, srclen, destlen); 154 case BTRFS_COMPRESS_NONE: 155 default: 156 /* 157 * This can't happen, the type is validated several times 158 * before we get here. 159 */ 160 BUG(); 161 } 162 } 163 164 static int btrfs_decompress_bio(struct compressed_bio *cb); 165 166 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 167 unsigned long disk_size) 168 { 169 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 170 171 return sizeof(struct compressed_bio) + 172 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 173 } 174 175 static int check_compressed_csum(struct btrfs_inode *inode, 176 struct compressed_bio *cb, 177 u64 disk_start) 178 { 179 struct btrfs_fs_info *fs_info = inode->root->fs_info; 180 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 181 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 182 int ret; 183 struct page *page; 184 unsigned long i; 185 char *kaddr; 186 u8 csum[BTRFS_CSUM_SIZE]; 187 u8 *cb_sum = cb->sums; 188 189 if (inode->flags & BTRFS_INODE_NODATASUM) 190 return 0; 191 192 shash->tfm = fs_info->csum_shash; 193 194 for (i = 0; i < cb->nr_pages; i++) { 195 page = cb->compressed_pages[i]; 196 197 kaddr = kmap_atomic(page); 198 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum); 199 kunmap_atomic(kaddr); 200 201 if (memcmp(&csum, cb_sum, csum_size)) { 202 btrfs_print_data_csum_error(inode, disk_start, 203 csum, cb_sum, cb->mirror_num); 204 ret = -EIO; 205 goto fail; 206 } 207 cb_sum += csum_size; 208 209 } 210 ret = 0; 211 fail: 212 return ret; 213 } 214 215 /* when we finish reading compressed pages from the disk, we 216 * decompress them and then run the bio end_io routines on the 217 * decompressed pages (in the inode address space). 218 * 219 * This allows the checksumming and other IO error handling routines 220 * to work normally 221 * 222 * The compressed pages are freed here, and it must be run 223 * in process context 224 */ 225 static void end_compressed_bio_read(struct bio *bio) 226 { 227 struct compressed_bio *cb = bio->bi_private; 228 struct inode *inode; 229 struct page *page; 230 unsigned long index; 231 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 232 int ret = 0; 233 234 if (bio->bi_status) 235 cb->errors = 1; 236 237 /* if there are more bios still pending for this compressed 238 * extent, just exit 239 */ 240 if (!refcount_dec_and_test(&cb->pending_bios)) 241 goto out; 242 243 /* 244 * Record the correct mirror_num in cb->orig_bio so that 245 * read-repair can work properly. 246 */ 247 ASSERT(btrfs_io_bio(cb->orig_bio)); 248 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 249 cb->mirror_num = mirror; 250 251 /* 252 * Some IO in this cb have failed, just skip checksum as there 253 * is no way it could be correct. 254 */ 255 if (cb->errors == 1) 256 goto csum_failed; 257 258 inode = cb->inode; 259 ret = check_compressed_csum(BTRFS_I(inode), cb, 260 (u64)bio->bi_iter.bi_sector << 9); 261 if (ret) 262 goto csum_failed; 263 264 /* ok, we're the last bio for this extent, lets start 265 * the decompression. 266 */ 267 ret = btrfs_decompress_bio(cb); 268 269 csum_failed: 270 if (ret) 271 cb->errors = 1; 272 273 /* release the compressed pages */ 274 index = 0; 275 for (index = 0; index < cb->nr_pages; index++) { 276 page = cb->compressed_pages[index]; 277 page->mapping = NULL; 278 put_page(page); 279 } 280 281 /* do io completion on the original bio */ 282 if (cb->errors) { 283 bio_io_error(cb->orig_bio); 284 } else { 285 struct bio_vec *bvec; 286 struct bvec_iter_all iter_all; 287 288 /* 289 * we have verified the checksum already, set page 290 * checked so the end_io handlers know about it 291 */ 292 ASSERT(!bio_flagged(bio, BIO_CLONED)); 293 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 294 SetPageChecked(bvec->bv_page); 295 296 bio_endio(cb->orig_bio); 297 } 298 299 /* finally free the cb struct */ 300 kfree(cb->compressed_pages); 301 kfree(cb); 302 out: 303 bio_put(bio); 304 } 305 306 /* 307 * Clear the writeback bits on all of the file 308 * pages for a compressed write 309 */ 310 static noinline void end_compressed_writeback(struct inode *inode, 311 const struct compressed_bio *cb) 312 { 313 unsigned long index = cb->start >> PAGE_SHIFT; 314 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 315 struct page *pages[16]; 316 unsigned long nr_pages = end_index - index + 1; 317 int i; 318 int ret; 319 320 if (cb->errors) 321 mapping_set_error(inode->i_mapping, -EIO); 322 323 while (nr_pages > 0) { 324 ret = find_get_pages_contig(inode->i_mapping, index, 325 min_t(unsigned long, 326 nr_pages, ARRAY_SIZE(pages)), pages); 327 if (ret == 0) { 328 nr_pages -= 1; 329 index += 1; 330 continue; 331 } 332 for (i = 0; i < ret; i++) { 333 if (cb->errors) 334 SetPageError(pages[i]); 335 end_page_writeback(pages[i]); 336 put_page(pages[i]); 337 } 338 nr_pages -= ret; 339 index += ret; 340 } 341 /* the inode may be gone now */ 342 } 343 344 /* 345 * do the cleanup once all the compressed pages hit the disk. 346 * This will clear writeback on the file pages and free the compressed 347 * pages. 348 * 349 * This also calls the writeback end hooks for the file pages so that 350 * metadata and checksums can be updated in the file. 351 */ 352 static void end_compressed_bio_write(struct bio *bio) 353 { 354 struct compressed_bio *cb = bio->bi_private; 355 struct inode *inode; 356 struct page *page; 357 unsigned long index; 358 359 if (bio->bi_status) 360 cb->errors = 1; 361 362 /* if there are more bios still pending for this compressed 363 * extent, just exit 364 */ 365 if (!refcount_dec_and_test(&cb->pending_bios)) 366 goto out; 367 368 /* ok, we're the last bio for this extent, step one is to 369 * call back into the FS and do all the end_io operations 370 */ 371 inode = cb->inode; 372 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 373 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 374 cb->start, cb->start + cb->len - 1, 375 bio->bi_status == BLK_STS_OK); 376 cb->compressed_pages[0]->mapping = NULL; 377 378 end_compressed_writeback(inode, cb); 379 /* note, our inode could be gone now */ 380 381 /* 382 * release the compressed pages, these came from alloc_page and 383 * are not attached to the inode at all 384 */ 385 index = 0; 386 for (index = 0; index < cb->nr_pages; index++) { 387 page = cb->compressed_pages[index]; 388 page->mapping = NULL; 389 put_page(page); 390 } 391 392 /* finally free the cb struct */ 393 kfree(cb->compressed_pages); 394 kfree(cb); 395 out: 396 bio_put(bio); 397 } 398 399 /* 400 * worker function to build and submit bios for previously compressed pages. 401 * The corresponding pages in the inode should be marked for writeback 402 * and the compressed pages should have a reference on them for dropping 403 * when the IO is complete. 404 * 405 * This also checksums the file bytes and gets things ready for 406 * the end io hooks. 407 */ 408 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 409 unsigned long len, u64 disk_start, 410 unsigned long compressed_len, 411 struct page **compressed_pages, 412 unsigned long nr_pages, 413 unsigned int write_flags, 414 struct cgroup_subsys_state *blkcg_css) 415 { 416 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 417 struct bio *bio = NULL; 418 struct compressed_bio *cb; 419 unsigned long bytes_left; 420 int pg_index = 0; 421 struct page *page; 422 u64 first_byte = disk_start; 423 blk_status_t ret; 424 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 425 426 WARN_ON(!PAGE_ALIGNED(start)); 427 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 428 if (!cb) 429 return BLK_STS_RESOURCE; 430 refcount_set(&cb->pending_bios, 0); 431 cb->errors = 0; 432 cb->inode = inode; 433 cb->start = start; 434 cb->len = len; 435 cb->mirror_num = 0; 436 cb->compressed_pages = compressed_pages; 437 cb->compressed_len = compressed_len; 438 cb->orig_bio = NULL; 439 cb->nr_pages = nr_pages; 440 441 bio = btrfs_bio_alloc(first_byte); 442 bio->bi_opf = REQ_OP_WRITE | write_flags; 443 bio->bi_private = cb; 444 bio->bi_end_io = end_compressed_bio_write; 445 446 if (blkcg_css) { 447 bio->bi_opf |= REQ_CGROUP_PUNT; 448 kthread_associate_blkcg(blkcg_css); 449 } 450 refcount_set(&cb->pending_bios, 1); 451 452 /* create and submit bios for the compressed pages */ 453 bytes_left = compressed_len; 454 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 455 int submit = 0; 456 457 page = compressed_pages[pg_index]; 458 page->mapping = inode->i_mapping; 459 if (bio->bi_iter.bi_size) 460 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 461 0); 462 463 page->mapping = NULL; 464 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 465 PAGE_SIZE) { 466 /* 467 * inc the count before we submit the bio so 468 * we know the end IO handler won't happen before 469 * we inc the count. Otherwise, the cb might get 470 * freed before we're done setting it up 471 */ 472 refcount_inc(&cb->pending_bios); 473 ret = btrfs_bio_wq_end_io(fs_info, bio, 474 BTRFS_WQ_ENDIO_DATA); 475 BUG_ON(ret); /* -ENOMEM */ 476 477 if (!skip_sum) { 478 ret = btrfs_csum_one_bio(inode, bio, start, 1); 479 BUG_ON(ret); /* -ENOMEM */ 480 } 481 482 ret = btrfs_map_bio(fs_info, bio, 0); 483 if (ret) { 484 bio->bi_status = ret; 485 bio_endio(bio); 486 } 487 488 bio = btrfs_bio_alloc(first_byte); 489 bio->bi_opf = REQ_OP_WRITE | write_flags; 490 bio->bi_private = cb; 491 bio->bi_end_io = end_compressed_bio_write; 492 if (blkcg_css) 493 bio->bi_opf |= REQ_CGROUP_PUNT; 494 bio_add_page(bio, page, PAGE_SIZE, 0); 495 } 496 if (bytes_left < PAGE_SIZE) { 497 btrfs_info(fs_info, 498 "bytes left %lu compress len %lu nr %lu", 499 bytes_left, cb->compressed_len, cb->nr_pages); 500 } 501 bytes_left -= PAGE_SIZE; 502 first_byte += PAGE_SIZE; 503 cond_resched(); 504 } 505 506 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 507 BUG_ON(ret); /* -ENOMEM */ 508 509 if (!skip_sum) { 510 ret = btrfs_csum_one_bio(inode, bio, start, 1); 511 BUG_ON(ret); /* -ENOMEM */ 512 } 513 514 ret = btrfs_map_bio(fs_info, bio, 0); 515 if (ret) { 516 bio->bi_status = ret; 517 bio_endio(bio); 518 } 519 520 if (blkcg_css) 521 kthread_associate_blkcg(NULL); 522 523 return 0; 524 } 525 526 static u64 bio_end_offset(struct bio *bio) 527 { 528 struct bio_vec *last = bio_last_bvec_all(bio); 529 530 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 531 } 532 533 static noinline int add_ra_bio_pages(struct inode *inode, 534 u64 compressed_end, 535 struct compressed_bio *cb) 536 { 537 unsigned long end_index; 538 unsigned long pg_index; 539 u64 last_offset; 540 u64 isize = i_size_read(inode); 541 int ret; 542 struct page *page; 543 unsigned long nr_pages = 0; 544 struct extent_map *em; 545 struct address_space *mapping = inode->i_mapping; 546 struct extent_map_tree *em_tree; 547 struct extent_io_tree *tree; 548 u64 end; 549 int misses = 0; 550 551 last_offset = bio_end_offset(cb->orig_bio); 552 em_tree = &BTRFS_I(inode)->extent_tree; 553 tree = &BTRFS_I(inode)->io_tree; 554 555 if (isize == 0) 556 return 0; 557 558 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 559 560 while (last_offset < compressed_end) { 561 pg_index = last_offset >> PAGE_SHIFT; 562 563 if (pg_index > end_index) 564 break; 565 566 page = xa_load(&mapping->i_pages, pg_index); 567 if (page && !xa_is_value(page)) { 568 misses++; 569 if (misses > 4) 570 break; 571 goto next; 572 } 573 574 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 575 ~__GFP_FS)); 576 if (!page) 577 break; 578 579 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 580 put_page(page); 581 goto next; 582 } 583 584 end = last_offset + PAGE_SIZE - 1; 585 /* 586 * at this point, we have a locked page in the page cache 587 * for these bytes in the file. But, we have to make 588 * sure they map to this compressed extent on disk. 589 */ 590 set_page_extent_mapped(page); 591 lock_extent(tree, last_offset, end); 592 read_lock(&em_tree->lock); 593 em = lookup_extent_mapping(em_tree, last_offset, 594 PAGE_SIZE); 595 read_unlock(&em_tree->lock); 596 597 if (!em || last_offset < em->start || 598 (last_offset + PAGE_SIZE > extent_map_end(em)) || 599 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 600 free_extent_map(em); 601 unlock_extent(tree, last_offset, end); 602 unlock_page(page); 603 put_page(page); 604 break; 605 } 606 free_extent_map(em); 607 608 if (page->index == end_index) { 609 char *userpage; 610 size_t zero_offset = offset_in_page(isize); 611 612 if (zero_offset) { 613 int zeros; 614 zeros = PAGE_SIZE - zero_offset; 615 userpage = kmap_atomic(page); 616 memset(userpage + zero_offset, 0, zeros); 617 flush_dcache_page(page); 618 kunmap_atomic(userpage); 619 } 620 } 621 622 ret = bio_add_page(cb->orig_bio, page, 623 PAGE_SIZE, 0); 624 625 if (ret == PAGE_SIZE) { 626 nr_pages++; 627 put_page(page); 628 } else { 629 unlock_extent(tree, last_offset, end); 630 unlock_page(page); 631 put_page(page); 632 break; 633 } 634 next: 635 last_offset += PAGE_SIZE; 636 } 637 return 0; 638 } 639 640 /* 641 * for a compressed read, the bio we get passed has all the inode pages 642 * in it. We don't actually do IO on those pages but allocate new ones 643 * to hold the compressed pages on disk. 644 * 645 * bio->bi_iter.bi_sector points to the compressed extent on disk 646 * bio->bi_io_vec points to all of the inode pages 647 * 648 * After the compressed pages are read, we copy the bytes into the 649 * bio we were passed and then call the bio end_io calls 650 */ 651 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 652 int mirror_num, unsigned long bio_flags) 653 { 654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 655 struct extent_map_tree *em_tree; 656 struct compressed_bio *cb; 657 unsigned long compressed_len; 658 unsigned long nr_pages; 659 unsigned long pg_index; 660 struct page *page; 661 struct bio *comp_bio; 662 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 663 u64 em_len; 664 u64 em_start; 665 struct extent_map *em; 666 blk_status_t ret = BLK_STS_RESOURCE; 667 int faili = 0; 668 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 669 u8 *sums; 670 671 em_tree = &BTRFS_I(inode)->extent_tree; 672 673 /* we need the actual starting offset of this extent in the file */ 674 read_lock(&em_tree->lock); 675 em = lookup_extent_mapping(em_tree, 676 page_offset(bio_first_page_all(bio)), 677 PAGE_SIZE); 678 read_unlock(&em_tree->lock); 679 if (!em) 680 return BLK_STS_IOERR; 681 682 compressed_len = em->block_len; 683 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 684 if (!cb) 685 goto out; 686 687 refcount_set(&cb->pending_bios, 0); 688 cb->errors = 0; 689 cb->inode = inode; 690 cb->mirror_num = mirror_num; 691 sums = cb->sums; 692 693 cb->start = em->orig_start; 694 em_len = em->len; 695 em_start = em->start; 696 697 free_extent_map(em); 698 em = NULL; 699 700 cb->len = bio->bi_iter.bi_size; 701 cb->compressed_len = compressed_len; 702 cb->compress_type = extent_compress_type(bio_flags); 703 cb->orig_bio = bio; 704 705 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 706 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 707 GFP_NOFS); 708 if (!cb->compressed_pages) 709 goto fail1; 710 711 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 712 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 713 __GFP_HIGHMEM); 714 if (!cb->compressed_pages[pg_index]) { 715 faili = pg_index - 1; 716 ret = BLK_STS_RESOURCE; 717 goto fail2; 718 } 719 } 720 faili = nr_pages - 1; 721 cb->nr_pages = nr_pages; 722 723 add_ra_bio_pages(inode, em_start + em_len, cb); 724 725 /* include any pages we added in add_ra-bio_pages */ 726 cb->len = bio->bi_iter.bi_size; 727 728 comp_bio = btrfs_bio_alloc(cur_disk_byte); 729 comp_bio->bi_opf = REQ_OP_READ; 730 comp_bio->bi_private = cb; 731 comp_bio->bi_end_io = end_compressed_bio_read; 732 refcount_set(&cb->pending_bios, 1); 733 734 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 735 int submit = 0; 736 737 page = cb->compressed_pages[pg_index]; 738 page->mapping = inode->i_mapping; 739 page->index = em_start >> PAGE_SHIFT; 740 741 if (comp_bio->bi_iter.bi_size) 742 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, 743 comp_bio, 0); 744 745 page->mapping = NULL; 746 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 747 PAGE_SIZE) { 748 unsigned int nr_sectors; 749 750 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 751 BTRFS_WQ_ENDIO_DATA); 752 BUG_ON(ret); /* -ENOMEM */ 753 754 /* 755 * inc the count before we submit the bio so 756 * we know the end IO handler won't happen before 757 * we inc the count. Otherwise, the cb might get 758 * freed before we're done setting it up 759 */ 760 refcount_inc(&cb->pending_bios); 761 762 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 763 ret = btrfs_lookup_bio_sums(inode, comp_bio, 764 (u64)-1, sums); 765 BUG_ON(ret); /* -ENOMEM */ 766 } 767 768 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 769 fs_info->sectorsize); 770 sums += csum_size * nr_sectors; 771 772 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 773 if (ret) { 774 comp_bio->bi_status = ret; 775 bio_endio(comp_bio); 776 } 777 778 comp_bio = btrfs_bio_alloc(cur_disk_byte); 779 comp_bio->bi_opf = REQ_OP_READ; 780 comp_bio->bi_private = cb; 781 comp_bio->bi_end_io = end_compressed_bio_read; 782 783 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 784 } 785 cur_disk_byte += PAGE_SIZE; 786 } 787 788 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 789 BUG_ON(ret); /* -ENOMEM */ 790 791 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 792 ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums); 793 BUG_ON(ret); /* -ENOMEM */ 794 } 795 796 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 797 if (ret) { 798 comp_bio->bi_status = ret; 799 bio_endio(comp_bio); 800 } 801 802 return 0; 803 804 fail2: 805 while (faili >= 0) { 806 __free_page(cb->compressed_pages[faili]); 807 faili--; 808 } 809 810 kfree(cb->compressed_pages); 811 fail1: 812 kfree(cb); 813 out: 814 free_extent_map(em); 815 return ret; 816 } 817 818 /* 819 * Heuristic uses systematic sampling to collect data from the input data 820 * range, the logic can be tuned by the following constants: 821 * 822 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 823 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 824 */ 825 #define SAMPLING_READ_SIZE (16) 826 #define SAMPLING_INTERVAL (256) 827 828 /* 829 * For statistical analysis of the input data we consider bytes that form a 830 * Galois Field of 256 objects. Each object has an attribute count, ie. how 831 * many times the object appeared in the sample. 832 */ 833 #define BUCKET_SIZE (256) 834 835 /* 836 * The size of the sample is based on a statistical sampling rule of thumb. 837 * The common way is to perform sampling tests as long as the number of 838 * elements in each cell is at least 5. 839 * 840 * Instead of 5, we choose 32 to obtain more accurate results. 841 * If the data contain the maximum number of symbols, which is 256, we obtain a 842 * sample size bound by 8192. 843 * 844 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 845 * from up to 512 locations. 846 */ 847 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 848 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 849 850 struct bucket_item { 851 u32 count; 852 }; 853 854 struct heuristic_ws { 855 /* Partial copy of input data */ 856 u8 *sample; 857 u32 sample_size; 858 /* Buckets store counters for each byte value */ 859 struct bucket_item *bucket; 860 /* Sorting buffer */ 861 struct bucket_item *bucket_b; 862 struct list_head list; 863 }; 864 865 static struct workspace_manager heuristic_wsm; 866 867 static void free_heuristic_ws(struct list_head *ws) 868 { 869 struct heuristic_ws *workspace; 870 871 workspace = list_entry(ws, struct heuristic_ws, list); 872 873 kvfree(workspace->sample); 874 kfree(workspace->bucket); 875 kfree(workspace->bucket_b); 876 kfree(workspace); 877 } 878 879 static struct list_head *alloc_heuristic_ws(unsigned int level) 880 { 881 struct heuristic_ws *ws; 882 883 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 884 if (!ws) 885 return ERR_PTR(-ENOMEM); 886 887 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 888 if (!ws->sample) 889 goto fail; 890 891 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 892 if (!ws->bucket) 893 goto fail; 894 895 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 896 if (!ws->bucket_b) 897 goto fail; 898 899 INIT_LIST_HEAD(&ws->list); 900 return &ws->list; 901 fail: 902 free_heuristic_ws(&ws->list); 903 return ERR_PTR(-ENOMEM); 904 } 905 906 const struct btrfs_compress_op btrfs_heuristic_compress = { 907 .workspace_manager = &heuristic_wsm, 908 }; 909 910 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 911 /* The heuristic is represented as compression type 0 */ 912 &btrfs_heuristic_compress, 913 &btrfs_zlib_compress, 914 &btrfs_lzo_compress, 915 &btrfs_zstd_compress, 916 }; 917 918 static struct list_head *alloc_workspace(int type, unsigned int level) 919 { 920 switch (type) { 921 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 922 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 923 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 924 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 925 default: 926 /* 927 * This can't happen, the type is validated several times 928 * before we get here. 929 */ 930 BUG(); 931 } 932 } 933 934 static void free_workspace(int type, struct list_head *ws) 935 { 936 switch (type) { 937 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 938 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 939 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 940 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 941 default: 942 /* 943 * This can't happen, the type is validated several times 944 * before we get here. 945 */ 946 BUG(); 947 } 948 } 949 950 static void btrfs_init_workspace_manager(int type) 951 { 952 struct workspace_manager *wsm; 953 struct list_head *workspace; 954 955 wsm = btrfs_compress_op[type]->workspace_manager; 956 INIT_LIST_HEAD(&wsm->idle_ws); 957 spin_lock_init(&wsm->ws_lock); 958 atomic_set(&wsm->total_ws, 0); 959 init_waitqueue_head(&wsm->ws_wait); 960 961 /* 962 * Preallocate one workspace for each compression type so we can 963 * guarantee forward progress in the worst case 964 */ 965 workspace = alloc_workspace(type, 0); 966 if (IS_ERR(workspace)) { 967 pr_warn( 968 "BTRFS: cannot preallocate compression workspace, will try later\n"); 969 } else { 970 atomic_set(&wsm->total_ws, 1); 971 wsm->free_ws = 1; 972 list_add(workspace, &wsm->idle_ws); 973 } 974 } 975 976 static void btrfs_cleanup_workspace_manager(int type) 977 { 978 struct workspace_manager *wsman; 979 struct list_head *ws; 980 981 wsman = btrfs_compress_op[type]->workspace_manager; 982 while (!list_empty(&wsman->idle_ws)) { 983 ws = wsman->idle_ws.next; 984 list_del(ws); 985 free_workspace(type, ws); 986 atomic_dec(&wsman->total_ws); 987 } 988 } 989 990 /* 991 * This finds an available workspace or allocates a new one. 992 * If it's not possible to allocate a new one, waits until there's one. 993 * Preallocation makes a forward progress guarantees and we do not return 994 * errors. 995 */ 996 struct list_head *btrfs_get_workspace(int type, unsigned int level) 997 { 998 struct workspace_manager *wsm; 999 struct list_head *workspace; 1000 int cpus = num_online_cpus(); 1001 unsigned nofs_flag; 1002 struct list_head *idle_ws; 1003 spinlock_t *ws_lock; 1004 atomic_t *total_ws; 1005 wait_queue_head_t *ws_wait; 1006 int *free_ws; 1007 1008 wsm = btrfs_compress_op[type]->workspace_manager; 1009 idle_ws = &wsm->idle_ws; 1010 ws_lock = &wsm->ws_lock; 1011 total_ws = &wsm->total_ws; 1012 ws_wait = &wsm->ws_wait; 1013 free_ws = &wsm->free_ws; 1014 1015 again: 1016 spin_lock(ws_lock); 1017 if (!list_empty(idle_ws)) { 1018 workspace = idle_ws->next; 1019 list_del(workspace); 1020 (*free_ws)--; 1021 spin_unlock(ws_lock); 1022 return workspace; 1023 1024 } 1025 if (atomic_read(total_ws) > cpus) { 1026 DEFINE_WAIT(wait); 1027 1028 spin_unlock(ws_lock); 1029 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1030 if (atomic_read(total_ws) > cpus && !*free_ws) 1031 schedule(); 1032 finish_wait(ws_wait, &wait); 1033 goto again; 1034 } 1035 atomic_inc(total_ws); 1036 spin_unlock(ws_lock); 1037 1038 /* 1039 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1040 * to turn it off here because we might get called from the restricted 1041 * context of btrfs_compress_bio/btrfs_compress_pages 1042 */ 1043 nofs_flag = memalloc_nofs_save(); 1044 workspace = alloc_workspace(type, level); 1045 memalloc_nofs_restore(nofs_flag); 1046 1047 if (IS_ERR(workspace)) { 1048 atomic_dec(total_ws); 1049 wake_up(ws_wait); 1050 1051 /* 1052 * Do not return the error but go back to waiting. There's a 1053 * workspace preallocated for each type and the compression 1054 * time is bounded so we get to a workspace eventually. This 1055 * makes our caller's life easier. 1056 * 1057 * To prevent silent and low-probability deadlocks (when the 1058 * initial preallocation fails), check if there are any 1059 * workspaces at all. 1060 */ 1061 if (atomic_read(total_ws) == 0) { 1062 static DEFINE_RATELIMIT_STATE(_rs, 1063 /* once per minute */ 60 * HZ, 1064 /* no burst */ 1); 1065 1066 if (__ratelimit(&_rs)) { 1067 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1068 } 1069 } 1070 goto again; 1071 } 1072 return workspace; 1073 } 1074 1075 static struct list_head *get_workspace(int type, int level) 1076 { 1077 switch (type) { 1078 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1079 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1080 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1081 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1082 default: 1083 /* 1084 * This can't happen, the type is validated several times 1085 * before we get here. 1086 */ 1087 BUG(); 1088 } 1089 } 1090 1091 /* 1092 * put a workspace struct back on the list or free it if we have enough 1093 * idle ones sitting around 1094 */ 1095 void btrfs_put_workspace(int type, struct list_head *ws) 1096 { 1097 struct workspace_manager *wsm; 1098 struct list_head *idle_ws; 1099 spinlock_t *ws_lock; 1100 atomic_t *total_ws; 1101 wait_queue_head_t *ws_wait; 1102 int *free_ws; 1103 1104 wsm = btrfs_compress_op[type]->workspace_manager; 1105 idle_ws = &wsm->idle_ws; 1106 ws_lock = &wsm->ws_lock; 1107 total_ws = &wsm->total_ws; 1108 ws_wait = &wsm->ws_wait; 1109 free_ws = &wsm->free_ws; 1110 1111 spin_lock(ws_lock); 1112 if (*free_ws <= num_online_cpus()) { 1113 list_add(ws, idle_ws); 1114 (*free_ws)++; 1115 spin_unlock(ws_lock); 1116 goto wake; 1117 } 1118 spin_unlock(ws_lock); 1119 1120 free_workspace(type, ws); 1121 atomic_dec(total_ws); 1122 wake: 1123 cond_wake_up(ws_wait); 1124 } 1125 1126 static void put_workspace(int type, struct list_head *ws) 1127 { 1128 switch (type) { 1129 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1130 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1131 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1132 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1133 default: 1134 /* 1135 * This can't happen, the type is validated several times 1136 * before we get here. 1137 */ 1138 BUG(); 1139 } 1140 } 1141 1142 /* 1143 * Adjust @level according to the limits of the compression algorithm or 1144 * fallback to default 1145 */ 1146 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1147 { 1148 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1149 1150 if (level == 0) 1151 level = ops->default_level; 1152 else 1153 level = min(level, ops->max_level); 1154 1155 return level; 1156 } 1157 1158 /* 1159 * Given an address space and start and length, compress the bytes into @pages 1160 * that are allocated on demand. 1161 * 1162 * @type_level is encoded algorithm and level, where level 0 means whatever 1163 * default the algorithm chooses and is opaque here; 1164 * - compression algo are 0-3 1165 * - the level are bits 4-7 1166 * 1167 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1168 * and returns number of actually allocated pages 1169 * 1170 * @total_in is used to return the number of bytes actually read. It 1171 * may be smaller than the input length if we had to exit early because we 1172 * ran out of room in the pages array or because we cross the 1173 * max_out threshold. 1174 * 1175 * @total_out is an in/out parameter, must be set to the input length and will 1176 * be also used to return the total number of compressed bytes 1177 * 1178 * @max_out tells us the max number of bytes that we're allowed to 1179 * stuff into pages 1180 */ 1181 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1182 u64 start, struct page **pages, 1183 unsigned long *out_pages, 1184 unsigned long *total_in, 1185 unsigned long *total_out) 1186 { 1187 int type = btrfs_compress_type(type_level); 1188 int level = btrfs_compress_level(type_level); 1189 struct list_head *workspace; 1190 int ret; 1191 1192 level = btrfs_compress_set_level(type, level); 1193 workspace = get_workspace(type, level); 1194 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1195 out_pages, total_in, total_out); 1196 put_workspace(type, workspace); 1197 return ret; 1198 } 1199 1200 /* 1201 * pages_in is an array of pages with compressed data. 1202 * 1203 * disk_start is the starting logical offset of this array in the file 1204 * 1205 * orig_bio contains the pages from the file that we want to decompress into 1206 * 1207 * srclen is the number of bytes in pages_in 1208 * 1209 * The basic idea is that we have a bio that was created by readpages. 1210 * The pages in the bio are for the uncompressed data, and they may not 1211 * be contiguous. They all correspond to the range of bytes covered by 1212 * the compressed extent. 1213 */ 1214 static int btrfs_decompress_bio(struct compressed_bio *cb) 1215 { 1216 struct list_head *workspace; 1217 int ret; 1218 int type = cb->compress_type; 1219 1220 workspace = get_workspace(type, 0); 1221 ret = compression_decompress_bio(type, workspace, cb); 1222 put_workspace(type, workspace); 1223 1224 return ret; 1225 } 1226 1227 /* 1228 * a less complex decompression routine. Our compressed data fits in a 1229 * single page, and we want to read a single page out of it. 1230 * start_byte tells us the offset into the compressed data we're interested in 1231 */ 1232 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1233 unsigned long start_byte, size_t srclen, size_t destlen) 1234 { 1235 struct list_head *workspace; 1236 int ret; 1237 1238 workspace = get_workspace(type, 0); 1239 ret = compression_decompress(type, workspace, data_in, dest_page, 1240 start_byte, srclen, destlen); 1241 put_workspace(type, workspace); 1242 1243 return ret; 1244 } 1245 1246 void __init btrfs_init_compress(void) 1247 { 1248 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1249 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1250 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1251 zstd_init_workspace_manager(); 1252 } 1253 1254 void __cold btrfs_exit_compress(void) 1255 { 1256 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1257 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1258 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1259 zstd_cleanup_workspace_manager(); 1260 } 1261 1262 /* 1263 * Copy uncompressed data from working buffer to pages. 1264 * 1265 * buf_start is the byte offset we're of the start of our workspace buffer. 1266 * 1267 * total_out is the last byte of the buffer 1268 */ 1269 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1270 unsigned long total_out, u64 disk_start, 1271 struct bio *bio) 1272 { 1273 unsigned long buf_offset; 1274 unsigned long current_buf_start; 1275 unsigned long start_byte; 1276 unsigned long prev_start_byte; 1277 unsigned long working_bytes = total_out - buf_start; 1278 unsigned long bytes; 1279 char *kaddr; 1280 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1281 1282 /* 1283 * start byte is the first byte of the page we're currently 1284 * copying into relative to the start of the compressed data. 1285 */ 1286 start_byte = page_offset(bvec.bv_page) - disk_start; 1287 1288 /* we haven't yet hit data corresponding to this page */ 1289 if (total_out <= start_byte) 1290 return 1; 1291 1292 /* 1293 * the start of the data we care about is offset into 1294 * the middle of our working buffer 1295 */ 1296 if (total_out > start_byte && buf_start < start_byte) { 1297 buf_offset = start_byte - buf_start; 1298 working_bytes -= buf_offset; 1299 } else { 1300 buf_offset = 0; 1301 } 1302 current_buf_start = buf_start; 1303 1304 /* copy bytes from the working buffer into the pages */ 1305 while (working_bytes > 0) { 1306 bytes = min_t(unsigned long, bvec.bv_len, 1307 PAGE_SIZE - (buf_offset % PAGE_SIZE)); 1308 bytes = min(bytes, working_bytes); 1309 1310 kaddr = kmap_atomic(bvec.bv_page); 1311 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1312 kunmap_atomic(kaddr); 1313 flush_dcache_page(bvec.bv_page); 1314 1315 buf_offset += bytes; 1316 working_bytes -= bytes; 1317 current_buf_start += bytes; 1318 1319 /* check if we need to pick another page */ 1320 bio_advance(bio, bytes); 1321 if (!bio->bi_iter.bi_size) 1322 return 0; 1323 bvec = bio_iter_iovec(bio, bio->bi_iter); 1324 prev_start_byte = start_byte; 1325 start_byte = page_offset(bvec.bv_page) - disk_start; 1326 1327 /* 1328 * We need to make sure we're only adjusting 1329 * our offset into compression working buffer when 1330 * we're switching pages. Otherwise we can incorrectly 1331 * keep copying when we were actually done. 1332 */ 1333 if (start_byte != prev_start_byte) { 1334 /* 1335 * make sure our new page is covered by this 1336 * working buffer 1337 */ 1338 if (total_out <= start_byte) 1339 return 1; 1340 1341 /* 1342 * the next page in the biovec might not be adjacent 1343 * to the last page, but it might still be found 1344 * inside this working buffer. bump our offset pointer 1345 */ 1346 if (total_out > start_byte && 1347 current_buf_start < start_byte) { 1348 buf_offset = start_byte - buf_start; 1349 working_bytes = total_out - start_byte; 1350 current_buf_start = buf_start + buf_offset; 1351 } 1352 } 1353 } 1354 1355 return 1; 1356 } 1357 1358 /* 1359 * Shannon Entropy calculation 1360 * 1361 * Pure byte distribution analysis fails to determine compressibility of data. 1362 * Try calculating entropy to estimate the average minimum number of bits 1363 * needed to encode the sampled data. 1364 * 1365 * For convenience, return the percentage of needed bits, instead of amount of 1366 * bits directly. 1367 * 1368 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1369 * and can be compressible with high probability 1370 * 1371 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1372 * 1373 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1374 */ 1375 #define ENTROPY_LVL_ACEPTABLE (65) 1376 #define ENTROPY_LVL_HIGH (80) 1377 1378 /* 1379 * For increasead precision in shannon_entropy calculation, 1380 * let's do pow(n, M) to save more digits after comma: 1381 * 1382 * - maximum int bit length is 64 1383 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1384 * - 13 * 4 = 52 < 64 -> M = 4 1385 * 1386 * So use pow(n, 4). 1387 */ 1388 static inline u32 ilog2_w(u64 n) 1389 { 1390 return ilog2(n * n * n * n); 1391 } 1392 1393 static u32 shannon_entropy(struct heuristic_ws *ws) 1394 { 1395 const u32 entropy_max = 8 * ilog2_w(2); 1396 u32 entropy_sum = 0; 1397 u32 p, p_base, sz_base; 1398 u32 i; 1399 1400 sz_base = ilog2_w(ws->sample_size); 1401 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1402 p = ws->bucket[i].count; 1403 p_base = ilog2_w(p); 1404 entropy_sum += p * (sz_base - p_base); 1405 } 1406 1407 entropy_sum /= ws->sample_size; 1408 return entropy_sum * 100 / entropy_max; 1409 } 1410 1411 #define RADIX_BASE 4U 1412 #define COUNTERS_SIZE (1U << RADIX_BASE) 1413 1414 static u8 get4bits(u64 num, int shift) { 1415 u8 low4bits; 1416 1417 num >>= shift; 1418 /* Reverse order */ 1419 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1420 return low4bits; 1421 } 1422 1423 /* 1424 * Use 4 bits as radix base 1425 * Use 16 u32 counters for calculating new position in buf array 1426 * 1427 * @array - array that will be sorted 1428 * @array_buf - buffer array to store sorting results 1429 * must be equal in size to @array 1430 * @num - array size 1431 */ 1432 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1433 int num) 1434 { 1435 u64 max_num; 1436 u64 buf_num; 1437 u32 counters[COUNTERS_SIZE]; 1438 u32 new_addr; 1439 u32 addr; 1440 int bitlen; 1441 int shift; 1442 int i; 1443 1444 /* 1445 * Try avoid useless loop iterations for small numbers stored in big 1446 * counters. Example: 48 33 4 ... in 64bit array 1447 */ 1448 max_num = array[0].count; 1449 for (i = 1; i < num; i++) { 1450 buf_num = array[i].count; 1451 if (buf_num > max_num) 1452 max_num = buf_num; 1453 } 1454 1455 buf_num = ilog2(max_num); 1456 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1457 1458 shift = 0; 1459 while (shift < bitlen) { 1460 memset(counters, 0, sizeof(counters)); 1461 1462 for (i = 0; i < num; i++) { 1463 buf_num = array[i].count; 1464 addr = get4bits(buf_num, shift); 1465 counters[addr]++; 1466 } 1467 1468 for (i = 1; i < COUNTERS_SIZE; i++) 1469 counters[i] += counters[i - 1]; 1470 1471 for (i = num - 1; i >= 0; i--) { 1472 buf_num = array[i].count; 1473 addr = get4bits(buf_num, shift); 1474 counters[addr]--; 1475 new_addr = counters[addr]; 1476 array_buf[new_addr] = array[i]; 1477 } 1478 1479 shift += RADIX_BASE; 1480 1481 /* 1482 * Normal radix expects to move data from a temporary array, to 1483 * the main one. But that requires some CPU time. Avoid that 1484 * by doing another sort iteration to original array instead of 1485 * memcpy() 1486 */ 1487 memset(counters, 0, sizeof(counters)); 1488 1489 for (i = 0; i < num; i ++) { 1490 buf_num = array_buf[i].count; 1491 addr = get4bits(buf_num, shift); 1492 counters[addr]++; 1493 } 1494 1495 for (i = 1; i < COUNTERS_SIZE; i++) 1496 counters[i] += counters[i - 1]; 1497 1498 for (i = num - 1; i >= 0; i--) { 1499 buf_num = array_buf[i].count; 1500 addr = get4bits(buf_num, shift); 1501 counters[addr]--; 1502 new_addr = counters[addr]; 1503 array[new_addr] = array_buf[i]; 1504 } 1505 1506 shift += RADIX_BASE; 1507 } 1508 } 1509 1510 /* 1511 * Size of the core byte set - how many bytes cover 90% of the sample 1512 * 1513 * There are several types of structured binary data that use nearly all byte 1514 * values. The distribution can be uniform and counts in all buckets will be 1515 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1516 * 1517 * Other possibility is normal (Gaussian) distribution, where the data could 1518 * be potentially compressible, but we have to take a few more steps to decide 1519 * how much. 1520 * 1521 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1522 * compression algo can easy fix that 1523 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1524 * probability is not compressible 1525 */ 1526 #define BYTE_CORE_SET_LOW (64) 1527 #define BYTE_CORE_SET_HIGH (200) 1528 1529 static int byte_core_set_size(struct heuristic_ws *ws) 1530 { 1531 u32 i; 1532 u32 coreset_sum = 0; 1533 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1534 struct bucket_item *bucket = ws->bucket; 1535 1536 /* Sort in reverse order */ 1537 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1538 1539 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1540 coreset_sum += bucket[i].count; 1541 1542 if (coreset_sum > core_set_threshold) 1543 return i; 1544 1545 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1546 coreset_sum += bucket[i].count; 1547 if (coreset_sum > core_set_threshold) 1548 break; 1549 } 1550 1551 return i; 1552 } 1553 1554 /* 1555 * Count byte values in buckets. 1556 * This heuristic can detect textual data (configs, xml, json, html, etc). 1557 * Because in most text-like data byte set is restricted to limited number of 1558 * possible characters, and that restriction in most cases makes data easy to 1559 * compress. 1560 * 1561 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1562 * less - compressible 1563 * more - need additional analysis 1564 */ 1565 #define BYTE_SET_THRESHOLD (64) 1566 1567 static u32 byte_set_size(const struct heuristic_ws *ws) 1568 { 1569 u32 i; 1570 u32 byte_set_size = 0; 1571 1572 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1573 if (ws->bucket[i].count > 0) 1574 byte_set_size++; 1575 } 1576 1577 /* 1578 * Continue collecting count of byte values in buckets. If the byte 1579 * set size is bigger then the threshold, it's pointless to continue, 1580 * the detection technique would fail for this type of data. 1581 */ 1582 for (; i < BUCKET_SIZE; i++) { 1583 if (ws->bucket[i].count > 0) { 1584 byte_set_size++; 1585 if (byte_set_size > BYTE_SET_THRESHOLD) 1586 return byte_set_size; 1587 } 1588 } 1589 1590 return byte_set_size; 1591 } 1592 1593 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1594 { 1595 const u32 half_of_sample = ws->sample_size / 2; 1596 const u8 *data = ws->sample; 1597 1598 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1599 } 1600 1601 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1602 struct heuristic_ws *ws) 1603 { 1604 struct page *page; 1605 u64 index, index_end; 1606 u32 i, curr_sample_pos; 1607 u8 *in_data; 1608 1609 /* 1610 * Compression handles the input data by chunks of 128KiB 1611 * (defined by BTRFS_MAX_UNCOMPRESSED) 1612 * 1613 * We do the same for the heuristic and loop over the whole range. 1614 * 1615 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1616 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1617 */ 1618 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1619 end = start + BTRFS_MAX_UNCOMPRESSED; 1620 1621 index = start >> PAGE_SHIFT; 1622 index_end = end >> PAGE_SHIFT; 1623 1624 /* Don't miss unaligned end */ 1625 if (!IS_ALIGNED(end, PAGE_SIZE)) 1626 index_end++; 1627 1628 curr_sample_pos = 0; 1629 while (index < index_end) { 1630 page = find_get_page(inode->i_mapping, index); 1631 in_data = kmap(page); 1632 /* Handle case where the start is not aligned to PAGE_SIZE */ 1633 i = start % PAGE_SIZE; 1634 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1635 /* Don't sample any garbage from the last page */ 1636 if (start > end - SAMPLING_READ_SIZE) 1637 break; 1638 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1639 SAMPLING_READ_SIZE); 1640 i += SAMPLING_INTERVAL; 1641 start += SAMPLING_INTERVAL; 1642 curr_sample_pos += SAMPLING_READ_SIZE; 1643 } 1644 kunmap(page); 1645 put_page(page); 1646 1647 index++; 1648 } 1649 1650 ws->sample_size = curr_sample_pos; 1651 } 1652 1653 /* 1654 * Compression heuristic. 1655 * 1656 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1657 * quickly (compared to direct compression) detect data characteristics 1658 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1659 * data. 1660 * 1661 * The following types of analysis can be performed: 1662 * - detect mostly zero data 1663 * - detect data with low "byte set" size (text, etc) 1664 * - detect data with low/high "core byte" set 1665 * 1666 * Return non-zero if the compression should be done, 0 otherwise. 1667 */ 1668 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1669 { 1670 struct list_head *ws_list = get_workspace(0, 0); 1671 struct heuristic_ws *ws; 1672 u32 i; 1673 u8 byte; 1674 int ret = 0; 1675 1676 ws = list_entry(ws_list, struct heuristic_ws, list); 1677 1678 heuristic_collect_sample(inode, start, end, ws); 1679 1680 if (sample_repeated_patterns(ws)) { 1681 ret = 1; 1682 goto out; 1683 } 1684 1685 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1686 1687 for (i = 0; i < ws->sample_size; i++) { 1688 byte = ws->sample[i]; 1689 ws->bucket[byte].count++; 1690 } 1691 1692 i = byte_set_size(ws); 1693 if (i < BYTE_SET_THRESHOLD) { 1694 ret = 2; 1695 goto out; 1696 } 1697 1698 i = byte_core_set_size(ws); 1699 if (i <= BYTE_CORE_SET_LOW) { 1700 ret = 3; 1701 goto out; 1702 } 1703 1704 if (i >= BYTE_CORE_SET_HIGH) { 1705 ret = 0; 1706 goto out; 1707 } 1708 1709 i = shannon_entropy(ws); 1710 if (i <= ENTROPY_LVL_ACEPTABLE) { 1711 ret = 4; 1712 goto out; 1713 } 1714 1715 /* 1716 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1717 * needed to give green light to compression. 1718 * 1719 * For now just assume that compression at that level is not worth the 1720 * resources because: 1721 * 1722 * 1. it is possible to defrag the data later 1723 * 1724 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1725 * values, every bucket has counter at level ~54. The heuristic would 1726 * be confused. This can happen when data have some internal repeated 1727 * patterns like "abbacbbc...". This can be detected by analyzing 1728 * pairs of bytes, which is too costly. 1729 */ 1730 if (i < ENTROPY_LVL_HIGH) { 1731 ret = 5; 1732 goto out; 1733 } else { 1734 ret = 0; 1735 goto out; 1736 } 1737 1738 out: 1739 put_workspace(0, ws_list); 1740 return ret; 1741 } 1742 1743 /* 1744 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1745 * level, unrecognized string will set the default level 1746 */ 1747 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1748 { 1749 unsigned int level = 0; 1750 int ret; 1751 1752 if (!type) 1753 return 0; 1754 1755 if (str[0] == ':') { 1756 ret = kstrtouint(str + 1, 10, &level); 1757 if (ret) 1758 level = 0; 1759 } 1760 1761 level = btrfs_compress_set_level(type, level); 1762 1763 return level; 1764 } 1765