xref: /openbmc/linux/fs/btrfs/compression.c (revision faf69551)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/kthread.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sched/mm.h>
20 #include <linux/log2.h>
21 #include <crypto/hash.h>
22 #include "misc.h"
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "ordered-data.h"
29 #include "compression.h"
30 #include "extent_io.h"
31 #include "extent_map.h"
32 #include "subpage.h"
33 #include "zoned.h"
34 
35 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
36 
37 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
38 {
39 	switch (type) {
40 	case BTRFS_COMPRESS_ZLIB:
41 	case BTRFS_COMPRESS_LZO:
42 	case BTRFS_COMPRESS_ZSTD:
43 	case BTRFS_COMPRESS_NONE:
44 		return btrfs_compress_types[type];
45 	default:
46 		break;
47 	}
48 
49 	return NULL;
50 }
51 
52 bool btrfs_compress_is_valid_type(const char *str, size_t len)
53 {
54 	int i;
55 
56 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
57 		size_t comp_len = strlen(btrfs_compress_types[i]);
58 
59 		if (len < comp_len)
60 			continue;
61 
62 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
63 			return true;
64 	}
65 	return false;
66 }
67 
68 static int compression_compress_pages(int type, struct list_head *ws,
69                struct address_space *mapping, u64 start, struct page **pages,
70                unsigned long *out_pages, unsigned long *total_in,
71                unsigned long *total_out)
72 {
73 	switch (type) {
74 	case BTRFS_COMPRESS_ZLIB:
75 		return zlib_compress_pages(ws, mapping, start, pages,
76 				out_pages, total_in, total_out);
77 	case BTRFS_COMPRESS_LZO:
78 		return lzo_compress_pages(ws, mapping, start, pages,
79 				out_pages, total_in, total_out);
80 	case BTRFS_COMPRESS_ZSTD:
81 		return zstd_compress_pages(ws, mapping, start, pages,
82 				out_pages, total_in, total_out);
83 	case BTRFS_COMPRESS_NONE:
84 	default:
85 		/*
86 		 * This can happen when compression races with remount setting
87 		 * it to 'no compress', while caller doesn't call
88 		 * inode_need_compress() to check if we really need to
89 		 * compress.
90 		 *
91 		 * Not a big deal, just need to inform caller that we
92 		 * haven't allocated any pages yet.
93 		 */
94 		*out_pages = 0;
95 		return -E2BIG;
96 	}
97 }
98 
99 static int compression_decompress_bio(int type, struct list_head *ws,
100 		struct compressed_bio *cb)
101 {
102 	switch (type) {
103 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
104 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
105 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
106 	case BTRFS_COMPRESS_NONE:
107 	default:
108 		/*
109 		 * This can't happen, the type is validated several times
110 		 * before we get here.
111 		 */
112 		BUG();
113 	}
114 }
115 
116 static int compression_decompress(int type, struct list_head *ws,
117                unsigned char *data_in, struct page *dest_page,
118                unsigned long start_byte, size_t srclen, size_t destlen)
119 {
120 	switch (type) {
121 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
122 						start_byte, srclen, destlen);
123 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
124 						start_byte, srclen, destlen);
125 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
126 						start_byte, srclen, destlen);
127 	case BTRFS_COMPRESS_NONE:
128 	default:
129 		/*
130 		 * This can't happen, the type is validated several times
131 		 * before we get here.
132 		 */
133 		BUG();
134 	}
135 }
136 
137 static int btrfs_decompress_bio(struct compressed_bio *cb);
138 
139 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 				      unsigned long disk_size)
141 {
142 	return sizeof(struct compressed_bio) +
143 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
144 }
145 
146 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
147 				 u64 disk_start)
148 {
149 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
150 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
151 	const u32 csum_size = fs_info->csum_size;
152 	const u32 sectorsize = fs_info->sectorsize;
153 	struct page *page;
154 	unsigned int i;
155 	char *kaddr;
156 	u8 csum[BTRFS_CSUM_SIZE];
157 	struct compressed_bio *cb = bio->bi_private;
158 	u8 *cb_sum = cb->sums;
159 
160 	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
161 		return 0;
162 
163 	shash->tfm = fs_info->csum_shash;
164 
165 	for (i = 0; i < cb->nr_pages; i++) {
166 		u32 pg_offset;
167 		u32 bytes_left = PAGE_SIZE;
168 		page = cb->compressed_pages[i];
169 
170 		/* Determine the remaining bytes inside the page first */
171 		if (i == cb->nr_pages - 1)
172 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
173 
174 		/* Hash through the page sector by sector */
175 		for (pg_offset = 0; pg_offset < bytes_left;
176 		     pg_offset += sectorsize) {
177 			kaddr = kmap_atomic(page);
178 			crypto_shash_digest(shash, kaddr + pg_offset,
179 					    sectorsize, csum);
180 			kunmap_atomic(kaddr);
181 
182 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
183 				btrfs_print_data_csum_error(inode, disk_start,
184 						csum, cb_sum, cb->mirror_num);
185 				if (btrfs_bio(bio)->device)
186 					btrfs_dev_stat_inc_and_print(
187 						btrfs_bio(bio)->device,
188 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
189 				return -EIO;
190 			}
191 			cb_sum += csum_size;
192 			disk_start += sectorsize;
193 		}
194 	}
195 	return 0;
196 }
197 
198 /*
199  * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
200  *
201  * Return true if there is no pending bio nor io.
202  * Return false otherwise.
203  */
204 static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
205 {
206 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
207 	unsigned int bi_size = 0;
208 	bool last_io = false;
209 	struct bio_vec *bvec;
210 	struct bvec_iter_all iter_all;
211 
212 	/*
213 	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
214 	 * Thus here we have to iterate through all segments to grab correct
215 	 * bio size.
216 	 */
217 	bio_for_each_segment_all(bvec, bio, iter_all)
218 		bi_size += bvec->bv_len;
219 
220 	if (bio->bi_status)
221 		cb->errors = 1;
222 
223 	ASSERT(bi_size && bi_size <= cb->compressed_len);
224 	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
225 					&cb->pending_sectors);
226 	/*
227 	 * Here we must wake up the possible error handler after all other
228 	 * operations on @cb finished, or we can race with
229 	 * finish_compressed_bio_*() which may free @cb.
230 	 */
231 	wake_up_var(cb);
232 
233 	return last_io;
234 }
235 
236 static void finish_compressed_bio_read(struct compressed_bio *cb, struct bio *bio)
237 {
238 	unsigned int index;
239 	struct page *page;
240 
241 	/* Release the compressed pages */
242 	for (index = 0; index < cb->nr_pages; index++) {
243 		page = cb->compressed_pages[index];
244 		page->mapping = NULL;
245 		put_page(page);
246 	}
247 
248 	/* Do io completion on the original bio */
249 	if (cb->errors) {
250 		bio_io_error(cb->orig_bio);
251 	} else {
252 		struct bio_vec *bvec;
253 		struct bvec_iter_all iter_all;
254 
255 		ASSERT(bio);
256 		ASSERT(!bio->bi_status);
257 		/*
258 		 * We have verified the checksum already, set page checked so
259 		 * the end_io handlers know about it
260 		 */
261 		ASSERT(!bio_flagged(bio, BIO_CLONED));
262 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
263 			u64 bvec_start = page_offset(bvec->bv_page) +
264 					 bvec->bv_offset;
265 
266 			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
267 					bvec->bv_page, bvec_start,
268 					bvec->bv_len);
269 		}
270 
271 		bio_endio(cb->orig_bio);
272 	}
273 
274 	/* Finally free the cb struct */
275 	kfree(cb->compressed_pages);
276 	kfree(cb);
277 }
278 
279 /* when we finish reading compressed pages from the disk, we
280  * decompress them and then run the bio end_io routines on the
281  * decompressed pages (in the inode address space).
282  *
283  * This allows the checksumming and other IO error handling routines
284  * to work normally
285  *
286  * The compressed pages are freed here, and it must be run
287  * in process context
288  */
289 static void end_compressed_bio_read(struct bio *bio)
290 {
291 	struct compressed_bio *cb = bio->bi_private;
292 	struct inode *inode;
293 	unsigned int mirror = btrfs_bio(bio)->mirror_num;
294 	int ret = 0;
295 
296 	if (!dec_and_test_compressed_bio(cb, bio))
297 		goto out;
298 
299 	/*
300 	 * Record the correct mirror_num in cb->orig_bio so that
301 	 * read-repair can work properly.
302 	 */
303 	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
304 	cb->mirror_num = mirror;
305 
306 	/*
307 	 * Some IO in this cb have failed, just skip checksum as there
308 	 * is no way it could be correct.
309 	 */
310 	if (cb->errors == 1)
311 		goto csum_failed;
312 
313 	inode = cb->inode;
314 	ret = check_compressed_csum(BTRFS_I(inode), bio,
315 				    bio->bi_iter.bi_sector << 9);
316 	if (ret)
317 		goto csum_failed;
318 
319 	/* ok, we're the last bio for this extent, lets start
320 	 * the decompression.
321 	 */
322 	ret = btrfs_decompress_bio(cb);
323 
324 csum_failed:
325 	if (ret)
326 		cb->errors = 1;
327 	finish_compressed_bio_read(cb, bio);
328 out:
329 	bio_put(bio);
330 }
331 
332 /*
333  * Clear the writeback bits on all of the file
334  * pages for a compressed write
335  */
336 static noinline void end_compressed_writeback(struct inode *inode,
337 					      const struct compressed_bio *cb)
338 {
339 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
340 	unsigned long index = cb->start >> PAGE_SHIFT;
341 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
342 	struct page *pages[16];
343 	unsigned long nr_pages = end_index - index + 1;
344 	int i;
345 	int ret;
346 
347 	if (cb->errors)
348 		mapping_set_error(inode->i_mapping, -EIO);
349 
350 	while (nr_pages > 0) {
351 		ret = find_get_pages_contig(inode->i_mapping, index,
352 				     min_t(unsigned long,
353 				     nr_pages, ARRAY_SIZE(pages)), pages);
354 		if (ret == 0) {
355 			nr_pages -= 1;
356 			index += 1;
357 			continue;
358 		}
359 		for (i = 0; i < ret; i++) {
360 			if (cb->errors)
361 				SetPageError(pages[i]);
362 			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
363 							 cb->start, cb->len);
364 			put_page(pages[i]);
365 		}
366 		nr_pages -= ret;
367 		index += ret;
368 	}
369 	/* the inode may be gone now */
370 }
371 
372 static void finish_compressed_bio_write(struct compressed_bio *cb)
373 {
374 	struct inode *inode = cb->inode;
375 	unsigned int index;
376 
377 	/*
378 	 * Ok, we're the last bio for this extent, step one is to call back
379 	 * into the FS and do all the end_io operations.
380 	 */
381 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
382 			cb->start, cb->start + cb->len - 1,
383 			!cb->errors);
384 
385 	end_compressed_writeback(inode, cb);
386 	/* Note, our inode could be gone now */
387 
388 	/*
389 	 * Release the compressed pages, these came from alloc_page and
390 	 * are not attached to the inode at all
391 	 */
392 	for (index = 0; index < cb->nr_pages; index++) {
393 		struct page *page = cb->compressed_pages[index];
394 
395 		page->mapping = NULL;
396 		put_page(page);
397 	}
398 
399 	/* Finally free the cb struct */
400 	kfree(cb->compressed_pages);
401 	kfree(cb);
402 }
403 
404 /*
405  * Do the cleanup once all the compressed pages hit the disk.  This will clear
406  * writeback on the file pages and free the compressed pages.
407  *
408  * This also calls the writeback end hooks for the file pages so that metadata
409  * and checksums can be updated in the file.
410  */
411 static void end_compressed_bio_write(struct bio *bio)
412 {
413 	struct compressed_bio *cb = bio->bi_private;
414 
415 	if (!dec_and_test_compressed_bio(cb, bio))
416 		goto out;
417 
418 	btrfs_record_physical_zoned(cb->inode, cb->start, bio);
419 
420 	finish_compressed_bio_write(cb);
421 out:
422 	bio_put(bio);
423 }
424 
425 static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
426 					  struct compressed_bio *cb,
427 					  struct bio *bio, int mirror_num)
428 {
429 	blk_status_t ret;
430 
431 	ASSERT(bio->bi_iter.bi_size);
432 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
433 	if (ret)
434 		return ret;
435 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
436 	return ret;
437 }
438 
439 /*
440  * Allocate a compressed_bio, which will be used to read/write on-disk
441  * (aka, compressed) * data.
442  *
443  * @cb:                 The compressed_bio structure, which records all the needed
444  *                      information to bind the compressed data to the uncompressed
445  *                      page cache.
446  * @disk_byten:         The logical bytenr where the compressed data will be read
447  *                      from or written to.
448  * @endio_func:         The endio function to call after the IO for compressed data
449  *                      is finished.
450  * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
451  *                      Let the caller know to only fill the bio up to the stripe
452  *                      boundary.
453  */
454 
455 
456 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
457 					unsigned int opf, bio_end_io_t endio_func,
458 					u64 *next_stripe_start)
459 {
460 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
461 	struct btrfs_io_geometry geom;
462 	struct extent_map *em;
463 	struct bio *bio;
464 	int ret;
465 
466 	bio = btrfs_bio_alloc(BIO_MAX_VECS);
467 
468 	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
469 	bio->bi_opf = opf;
470 	bio->bi_private = cb;
471 	bio->bi_end_io = endio_func;
472 
473 	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
474 	if (IS_ERR(em)) {
475 		bio_put(bio);
476 		return ERR_CAST(em);
477 	}
478 
479 	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
480 		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
481 
482 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
483 	free_extent_map(em);
484 	if (ret < 0) {
485 		bio_put(bio);
486 		return ERR_PTR(ret);
487 	}
488 	*next_stripe_start = disk_bytenr + geom.len;
489 
490 	return bio;
491 }
492 
493 /*
494  * worker function to build and submit bios for previously compressed pages.
495  * The corresponding pages in the inode should be marked for writeback
496  * and the compressed pages should have a reference on them for dropping
497  * when the IO is complete.
498  *
499  * This also checksums the file bytes and gets things ready for
500  * the end io hooks.
501  */
502 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
503 				 unsigned int len, u64 disk_start,
504 				 unsigned int compressed_len,
505 				 struct page **compressed_pages,
506 				 unsigned int nr_pages,
507 				 unsigned int write_flags,
508 				 struct cgroup_subsys_state *blkcg_css)
509 {
510 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
511 	struct bio *bio = NULL;
512 	struct compressed_bio *cb;
513 	u64 cur_disk_bytenr = disk_start;
514 	u64 next_stripe_start;
515 	blk_status_t ret;
516 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
517 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
518 	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
519 
520 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
521 	       IS_ALIGNED(len, fs_info->sectorsize));
522 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
523 	if (!cb)
524 		return BLK_STS_RESOURCE;
525 	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
526 	cb->errors = 0;
527 	cb->inode = &inode->vfs_inode;
528 	cb->start = start;
529 	cb->len = len;
530 	cb->mirror_num = 0;
531 	cb->compressed_pages = compressed_pages;
532 	cb->compressed_len = compressed_len;
533 	cb->orig_bio = NULL;
534 	cb->nr_pages = nr_pages;
535 
536 	while (cur_disk_bytenr < disk_start + compressed_len) {
537 		u64 offset = cur_disk_bytenr - disk_start;
538 		unsigned int index = offset >> PAGE_SHIFT;
539 		unsigned int real_size;
540 		unsigned int added;
541 		struct page *page = compressed_pages[index];
542 		bool submit = false;
543 
544 		/* Allocate new bio if submitted or not yet allocated */
545 		if (!bio) {
546 			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
547 				bio_op | write_flags, end_compressed_bio_write,
548 				&next_stripe_start);
549 			if (IS_ERR(bio)) {
550 				ret = errno_to_blk_status(PTR_ERR(bio));
551 				bio = NULL;
552 				goto finish_cb;
553 			}
554 		}
555 		/*
556 		 * We should never reach next_stripe_start start as we will
557 		 * submit comp_bio when reach the boundary immediately.
558 		 */
559 		ASSERT(cur_disk_bytenr != next_stripe_start);
560 
561 		/*
562 		 * We have various limits on the real read size:
563 		 * - stripe boundary
564 		 * - page boundary
565 		 * - compressed length boundary
566 		 */
567 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
568 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
569 		real_size = min_t(u64, real_size, compressed_len - offset);
570 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
571 
572 		if (use_append)
573 			added = bio_add_zone_append_page(bio, page, real_size,
574 					offset_in_page(offset));
575 		else
576 			added = bio_add_page(bio, page, real_size,
577 					offset_in_page(offset));
578 		/* Reached zoned boundary */
579 		if (added == 0)
580 			submit = true;
581 
582 		cur_disk_bytenr += added;
583 		/* Reached stripe boundary */
584 		if (cur_disk_bytenr == next_stripe_start)
585 			submit = true;
586 
587 		/* Finished the range */
588 		if (cur_disk_bytenr == disk_start + compressed_len)
589 			submit = true;
590 
591 		if (submit) {
592 			if (!skip_sum) {
593 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
594 				if (ret)
595 					goto finish_cb;
596 			}
597 
598 			ret = submit_compressed_bio(fs_info, cb, bio, 0);
599 			if (ret)
600 				goto finish_cb;
601 			bio = NULL;
602 		}
603 		cond_resched();
604 	}
605 	if (blkcg_css)
606 		kthread_associate_blkcg(NULL);
607 
608 	return 0;
609 
610 finish_cb:
611 	if (bio) {
612 		bio->bi_status = ret;
613 		bio_endio(bio);
614 	}
615 	/* Last byte of @cb is submitted, endio will free @cb */
616 	if (cur_disk_bytenr == disk_start + compressed_len)
617 		return ret;
618 
619 	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
620 			   (disk_start + compressed_len - cur_disk_bytenr) >>
621 			   fs_info->sectorsize_bits);
622 	/*
623 	 * Even with previous bio ended, we should still have io not yet
624 	 * submitted, thus need to finish manually.
625 	 */
626 	ASSERT(refcount_read(&cb->pending_sectors));
627 	/* Now we are the only one referring @cb, can finish it safely. */
628 	finish_compressed_bio_write(cb);
629 	return ret;
630 }
631 
632 static u64 bio_end_offset(struct bio *bio)
633 {
634 	struct bio_vec *last = bio_last_bvec_all(bio);
635 
636 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
637 }
638 
639 /*
640  * Add extra pages in the same compressed file extent so that we don't need to
641  * re-read the same extent again and again.
642  *
643  * NOTE: this won't work well for subpage, as for subpage read, we lock the
644  * full page then submit bio for each compressed/regular extents.
645  *
646  * This means, if we have several sectors in the same page points to the same
647  * on-disk compressed data, we will re-read the same extent many times and
648  * this function can only help for the next page.
649  */
650 static noinline int add_ra_bio_pages(struct inode *inode,
651 				     u64 compressed_end,
652 				     struct compressed_bio *cb)
653 {
654 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
655 	unsigned long end_index;
656 	u64 cur = bio_end_offset(cb->orig_bio);
657 	u64 isize = i_size_read(inode);
658 	int ret;
659 	struct page *page;
660 	struct extent_map *em;
661 	struct address_space *mapping = inode->i_mapping;
662 	struct extent_map_tree *em_tree;
663 	struct extent_io_tree *tree;
664 	int sectors_missed = 0;
665 
666 	em_tree = &BTRFS_I(inode)->extent_tree;
667 	tree = &BTRFS_I(inode)->io_tree;
668 
669 	if (isize == 0)
670 		return 0;
671 
672 	/*
673 	 * For current subpage support, we only support 64K page size,
674 	 * which means maximum compressed extent size (128K) is just 2x page
675 	 * size.
676 	 * This makes readahead less effective, so here disable readahead for
677 	 * subpage for now, until full compressed write is supported.
678 	 */
679 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
680 		return 0;
681 
682 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
683 
684 	while (cur < compressed_end) {
685 		u64 page_end;
686 		u64 pg_index = cur >> PAGE_SHIFT;
687 		u32 add_size;
688 
689 		if (pg_index > end_index)
690 			break;
691 
692 		page = xa_load(&mapping->i_pages, pg_index);
693 		if (page && !xa_is_value(page)) {
694 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
695 					  fs_info->sectorsize_bits;
696 
697 			/* Beyond threshold, no need to continue */
698 			if (sectors_missed > 4)
699 				break;
700 
701 			/*
702 			 * Jump to next page start as we already have page for
703 			 * current offset.
704 			 */
705 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
706 			continue;
707 		}
708 
709 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
710 								 ~__GFP_FS));
711 		if (!page)
712 			break;
713 
714 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
715 			put_page(page);
716 			/* There is already a page, skip to page end */
717 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
718 			continue;
719 		}
720 
721 		ret = set_page_extent_mapped(page);
722 		if (ret < 0) {
723 			unlock_page(page);
724 			put_page(page);
725 			break;
726 		}
727 
728 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
729 		lock_extent(tree, cur, page_end);
730 		read_lock(&em_tree->lock);
731 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
732 		read_unlock(&em_tree->lock);
733 
734 		/*
735 		 * At this point, we have a locked page in the page cache for
736 		 * these bytes in the file.  But, we have to make sure they map
737 		 * to this compressed extent on disk.
738 		 */
739 		if (!em || cur < em->start ||
740 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
741 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
742 			free_extent_map(em);
743 			unlock_extent(tree, cur, page_end);
744 			unlock_page(page);
745 			put_page(page);
746 			break;
747 		}
748 		free_extent_map(em);
749 
750 		if (page->index == end_index) {
751 			size_t zero_offset = offset_in_page(isize);
752 
753 			if (zero_offset) {
754 				int zeros;
755 				zeros = PAGE_SIZE - zero_offset;
756 				memzero_page(page, zero_offset, zeros);
757 				flush_dcache_page(page);
758 			}
759 		}
760 
761 		add_size = min(em->start + em->len, page_end + 1) - cur;
762 		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
763 		if (ret != add_size) {
764 			unlock_extent(tree, cur, page_end);
765 			unlock_page(page);
766 			put_page(page);
767 			break;
768 		}
769 		/*
770 		 * If it's subpage, we also need to increase its
771 		 * subpage::readers number, as at endio we will decrease
772 		 * subpage::readers and to unlock the page.
773 		 */
774 		if (fs_info->sectorsize < PAGE_SIZE)
775 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
776 		put_page(page);
777 		cur += add_size;
778 	}
779 	return 0;
780 }
781 
782 /*
783  * for a compressed read, the bio we get passed has all the inode pages
784  * in it.  We don't actually do IO on those pages but allocate new ones
785  * to hold the compressed pages on disk.
786  *
787  * bio->bi_iter.bi_sector points to the compressed extent on disk
788  * bio->bi_io_vec points to all of the inode pages
789  *
790  * After the compressed pages are read, we copy the bytes into the
791  * bio we were passed and then call the bio end_io calls
792  */
793 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
794 				 int mirror_num, unsigned long bio_flags)
795 {
796 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
797 	struct extent_map_tree *em_tree;
798 	struct compressed_bio *cb;
799 	unsigned int compressed_len;
800 	unsigned int nr_pages;
801 	unsigned int pg_index;
802 	struct bio *comp_bio = NULL;
803 	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
804 	u64 cur_disk_byte = disk_bytenr;
805 	u64 next_stripe_start;
806 	u64 file_offset;
807 	u64 em_len;
808 	u64 em_start;
809 	struct extent_map *em;
810 	blk_status_t ret = BLK_STS_RESOURCE;
811 	int faili = 0;
812 	u8 *sums;
813 
814 	em_tree = &BTRFS_I(inode)->extent_tree;
815 
816 	file_offset = bio_first_bvec_all(bio)->bv_offset +
817 		      page_offset(bio_first_page_all(bio));
818 
819 	/* we need the actual starting offset of this extent in the file */
820 	read_lock(&em_tree->lock);
821 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
822 	read_unlock(&em_tree->lock);
823 	if (!em)
824 		return BLK_STS_IOERR;
825 
826 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
827 	compressed_len = em->block_len;
828 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
829 	if (!cb)
830 		goto out;
831 
832 	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
833 	cb->errors = 0;
834 	cb->inode = inode;
835 	cb->mirror_num = mirror_num;
836 	sums = cb->sums;
837 
838 	cb->start = em->orig_start;
839 	em_len = em->len;
840 	em_start = em->start;
841 
842 	free_extent_map(em);
843 	em = NULL;
844 
845 	cb->len = bio->bi_iter.bi_size;
846 	cb->compressed_len = compressed_len;
847 	cb->compress_type = extent_compress_type(bio_flags);
848 	cb->orig_bio = bio;
849 
850 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
851 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
852 				       GFP_NOFS);
853 	if (!cb->compressed_pages)
854 		goto fail1;
855 
856 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
857 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
858 		if (!cb->compressed_pages[pg_index]) {
859 			faili = pg_index - 1;
860 			ret = BLK_STS_RESOURCE;
861 			goto fail2;
862 		}
863 	}
864 	faili = nr_pages - 1;
865 	cb->nr_pages = nr_pages;
866 
867 	add_ra_bio_pages(inode, em_start + em_len, cb);
868 
869 	/* include any pages we added in add_ra-bio_pages */
870 	cb->len = bio->bi_iter.bi_size;
871 
872 	while (cur_disk_byte < disk_bytenr + compressed_len) {
873 		u64 offset = cur_disk_byte - disk_bytenr;
874 		unsigned int index = offset >> PAGE_SHIFT;
875 		unsigned int real_size;
876 		unsigned int added;
877 		struct page *page = cb->compressed_pages[index];
878 		bool submit = false;
879 
880 		/* Allocate new bio if submitted or not yet allocated */
881 		if (!comp_bio) {
882 			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
883 					REQ_OP_READ, end_compressed_bio_read,
884 					&next_stripe_start);
885 			if (IS_ERR(comp_bio)) {
886 				ret = errno_to_blk_status(PTR_ERR(comp_bio));
887 				comp_bio = NULL;
888 				goto finish_cb;
889 			}
890 		}
891 		/*
892 		 * We should never reach next_stripe_start start as we will
893 		 * submit comp_bio when reach the boundary immediately.
894 		 */
895 		ASSERT(cur_disk_byte != next_stripe_start);
896 		/*
897 		 * We have various limit on the real read size:
898 		 * - stripe boundary
899 		 * - page boundary
900 		 * - compressed length boundary
901 		 */
902 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
903 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
904 		real_size = min_t(u64, real_size, compressed_len - offset);
905 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
906 
907 		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
908 		/*
909 		 * Maximum compressed extent is smaller than bio size limit,
910 		 * thus bio_add_page() should always success.
911 		 */
912 		ASSERT(added == real_size);
913 		cur_disk_byte += added;
914 
915 		/* Reached stripe boundary, need to submit */
916 		if (cur_disk_byte == next_stripe_start)
917 			submit = true;
918 
919 		/* Has finished the range, need to submit */
920 		if (cur_disk_byte == disk_bytenr + compressed_len)
921 			submit = true;
922 
923 		if (submit) {
924 			unsigned int nr_sectors;
925 
926 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
927 			if (ret)
928 				goto finish_cb;
929 
930 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
931 						  fs_info->sectorsize);
932 			sums += fs_info->csum_size * nr_sectors;
933 
934 			ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
935 			if (ret)
936 				goto finish_cb;
937 			comp_bio = NULL;
938 		}
939 	}
940 	return 0;
941 
942 fail2:
943 	while (faili >= 0) {
944 		__free_page(cb->compressed_pages[faili]);
945 		faili--;
946 	}
947 
948 	kfree(cb->compressed_pages);
949 fail1:
950 	kfree(cb);
951 out:
952 	free_extent_map(em);
953 	return ret;
954 finish_cb:
955 	if (comp_bio) {
956 		comp_bio->bi_status = ret;
957 		bio_endio(comp_bio);
958 	}
959 	/* All bytes of @cb is submitted, endio will free @cb */
960 	if (cur_disk_byte == disk_bytenr + compressed_len)
961 		return ret;
962 
963 	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
964 			   (disk_bytenr + compressed_len - cur_disk_byte) >>
965 			   fs_info->sectorsize_bits);
966 	/*
967 	 * Even with previous bio ended, we should still have io not yet
968 	 * submitted, thus need to finish @cb manually.
969 	 */
970 	ASSERT(refcount_read(&cb->pending_sectors));
971 	/* Now we are the only one referring @cb, can finish it safely. */
972 	finish_compressed_bio_read(cb, NULL);
973 	return ret;
974 }
975 
976 /*
977  * Heuristic uses systematic sampling to collect data from the input data
978  * range, the logic can be tuned by the following constants:
979  *
980  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
981  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
982  */
983 #define SAMPLING_READ_SIZE	(16)
984 #define SAMPLING_INTERVAL	(256)
985 
986 /*
987  * For statistical analysis of the input data we consider bytes that form a
988  * Galois Field of 256 objects. Each object has an attribute count, ie. how
989  * many times the object appeared in the sample.
990  */
991 #define BUCKET_SIZE		(256)
992 
993 /*
994  * The size of the sample is based on a statistical sampling rule of thumb.
995  * The common way is to perform sampling tests as long as the number of
996  * elements in each cell is at least 5.
997  *
998  * Instead of 5, we choose 32 to obtain more accurate results.
999  * If the data contain the maximum number of symbols, which is 256, we obtain a
1000  * sample size bound by 8192.
1001  *
1002  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
1003  * from up to 512 locations.
1004  */
1005 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
1006 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
1007 
1008 struct bucket_item {
1009 	u32 count;
1010 };
1011 
1012 struct heuristic_ws {
1013 	/* Partial copy of input data */
1014 	u8 *sample;
1015 	u32 sample_size;
1016 	/* Buckets store counters for each byte value */
1017 	struct bucket_item *bucket;
1018 	/* Sorting buffer */
1019 	struct bucket_item *bucket_b;
1020 	struct list_head list;
1021 };
1022 
1023 static struct workspace_manager heuristic_wsm;
1024 
1025 static void free_heuristic_ws(struct list_head *ws)
1026 {
1027 	struct heuristic_ws *workspace;
1028 
1029 	workspace = list_entry(ws, struct heuristic_ws, list);
1030 
1031 	kvfree(workspace->sample);
1032 	kfree(workspace->bucket);
1033 	kfree(workspace->bucket_b);
1034 	kfree(workspace);
1035 }
1036 
1037 static struct list_head *alloc_heuristic_ws(unsigned int level)
1038 {
1039 	struct heuristic_ws *ws;
1040 
1041 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
1042 	if (!ws)
1043 		return ERR_PTR(-ENOMEM);
1044 
1045 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
1046 	if (!ws->sample)
1047 		goto fail;
1048 
1049 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
1050 	if (!ws->bucket)
1051 		goto fail;
1052 
1053 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
1054 	if (!ws->bucket_b)
1055 		goto fail;
1056 
1057 	INIT_LIST_HEAD(&ws->list);
1058 	return &ws->list;
1059 fail:
1060 	free_heuristic_ws(&ws->list);
1061 	return ERR_PTR(-ENOMEM);
1062 }
1063 
1064 const struct btrfs_compress_op btrfs_heuristic_compress = {
1065 	.workspace_manager = &heuristic_wsm,
1066 };
1067 
1068 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1069 	/* The heuristic is represented as compression type 0 */
1070 	&btrfs_heuristic_compress,
1071 	&btrfs_zlib_compress,
1072 	&btrfs_lzo_compress,
1073 	&btrfs_zstd_compress,
1074 };
1075 
1076 static struct list_head *alloc_workspace(int type, unsigned int level)
1077 {
1078 	switch (type) {
1079 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
1080 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
1081 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
1082 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
1083 	default:
1084 		/*
1085 		 * This can't happen, the type is validated several times
1086 		 * before we get here.
1087 		 */
1088 		BUG();
1089 	}
1090 }
1091 
1092 static void free_workspace(int type, struct list_head *ws)
1093 {
1094 	switch (type) {
1095 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
1096 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
1097 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
1098 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
1099 	default:
1100 		/*
1101 		 * This can't happen, the type is validated several times
1102 		 * before we get here.
1103 		 */
1104 		BUG();
1105 	}
1106 }
1107 
1108 static void btrfs_init_workspace_manager(int type)
1109 {
1110 	struct workspace_manager *wsm;
1111 	struct list_head *workspace;
1112 
1113 	wsm = btrfs_compress_op[type]->workspace_manager;
1114 	INIT_LIST_HEAD(&wsm->idle_ws);
1115 	spin_lock_init(&wsm->ws_lock);
1116 	atomic_set(&wsm->total_ws, 0);
1117 	init_waitqueue_head(&wsm->ws_wait);
1118 
1119 	/*
1120 	 * Preallocate one workspace for each compression type so we can
1121 	 * guarantee forward progress in the worst case
1122 	 */
1123 	workspace = alloc_workspace(type, 0);
1124 	if (IS_ERR(workspace)) {
1125 		pr_warn(
1126 	"BTRFS: cannot preallocate compression workspace, will try later\n");
1127 	} else {
1128 		atomic_set(&wsm->total_ws, 1);
1129 		wsm->free_ws = 1;
1130 		list_add(workspace, &wsm->idle_ws);
1131 	}
1132 }
1133 
1134 static void btrfs_cleanup_workspace_manager(int type)
1135 {
1136 	struct workspace_manager *wsman;
1137 	struct list_head *ws;
1138 
1139 	wsman = btrfs_compress_op[type]->workspace_manager;
1140 	while (!list_empty(&wsman->idle_ws)) {
1141 		ws = wsman->idle_ws.next;
1142 		list_del(ws);
1143 		free_workspace(type, ws);
1144 		atomic_dec(&wsman->total_ws);
1145 	}
1146 }
1147 
1148 /*
1149  * This finds an available workspace or allocates a new one.
1150  * If it's not possible to allocate a new one, waits until there's one.
1151  * Preallocation makes a forward progress guarantees and we do not return
1152  * errors.
1153  */
1154 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1155 {
1156 	struct workspace_manager *wsm;
1157 	struct list_head *workspace;
1158 	int cpus = num_online_cpus();
1159 	unsigned nofs_flag;
1160 	struct list_head *idle_ws;
1161 	spinlock_t *ws_lock;
1162 	atomic_t *total_ws;
1163 	wait_queue_head_t *ws_wait;
1164 	int *free_ws;
1165 
1166 	wsm = btrfs_compress_op[type]->workspace_manager;
1167 	idle_ws	 = &wsm->idle_ws;
1168 	ws_lock	 = &wsm->ws_lock;
1169 	total_ws = &wsm->total_ws;
1170 	ws_wait	 = &wsm->ws_wait;
1171 	free_ws	 = &wsm->free_ws;
1172 
1173 again:
1174 	spin_lock(ws_lock);
1175 	if (!list_empty(idle_ws)) {
1176 		workspace = idle_ws->next;
1177 		list_del(workspace);
1178 		(*free_ws)--;
1179 		spin_unlock(ws_lock);
1180 		return workspace;
1181 
1182 	}
1183 	if (atomic_read(total_ws) > cpus) {
1184 		DEFINE_WAIT(wait);
1185 
1186 		spin_unlock(ws_lock);
1187 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1188 		if (atomic_read(total_ws) > cpus && !*free_ws)
1189 			schedule();
1190 		finish_wait(ws_wait, &wait);
1191 		goto again;
1192 	}
1193 	atomic_inc(total_ws);
1194 	spin_unlock(ws_lock);
1195 
1196 	/*
1197 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1198 	 * to turn it off here because we might get called from the restricted
1199 	 * context of btrfs_compress_bio/btrfs_compress_pages
1200 	 */
1201 	nofs_flag = memalloc_nofs_save();
1202 	workspace = alloc_workspace(type, level);
1203 	memalloc_nofs_restore(nofs_flag);
1204 
1205 	if (IS_ERR(workspace)) {
1206 		atomic_dec(total_ws);
1207 		wake_up(ws_wait);
1208 
1209 		/*
1210 		 * Do not return the error but go back to waiting. There's a
1211 		 * workspace preallocated for each type and the compression
1212 		 * time is bounded so we get to a workspace eventually. This
1213 		 * makes our caller's life easier.
1214 		 *
1215 		 * To prevent silent and low-probability deadlocks (when the
1216 		 * initial preallocation fails), check if there are any
1217 		 * workspaces at all.
1218 		 */
1219 		if (atomic_read(total_ws) == 0) {
1220 			static DEFINE_RATELIMIT_STATE(_rs,
1221 					/* once per minute */ 60 * HZ,
1222 					/* no burst */ 1);
1223 
1224 			if (__ratelimit(&_rs)) {
1225 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1226 			}
1227 		}
1228 		goto again;
1229 	}
1230 	return workspace;
1231 }
1232 
1233 static struct list_head *get_workspace(int type, int level)
1234 {
1235 	switch (type) {
1236 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1237 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1238 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1239 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1240 	default:
1241 		/*
1242 		 * This can't happen, the type is validated several times
1243 		 * before we get here.
1244 		 */
1245 		BUG();
1246 	}
1247 }
1248 
1249 /*
1250  * put a workspace struct back on the list or free it if we have enough
1251  * idle ones sitting around
1252  */
1253 void btrfs_put_workspace(int type, struct list_head *ws)
1254 {
1255 	struct workspace_manager *wsm;
1256 	struct list_head *idle_ws;
1257 	spinlock_t *ws_lock;
1258 	atomic_t *total_ws;
1259 	wait_queue_head_t *ws_wait;
1260 	int *free_ws;
1261 
1262 	wsm = btrfs_compress_op[type]->workspace_manager;
1263 	idle_ws	 = &wsm->idle_ws;
1264 	ws_lock	 = &wsm->ws_lock;
1265 	total_ws = &wsm->total_ws;
1266 	ws_wait	 = &wsm->ws_wait;
1267 	free_ws	 = &wsm->free_ws;
1268 
1269 	spin_lock(ws_lock);
1270 	if (*free_ws <= num_online_cpus()) {
1271 		list_add(ws, idle_ws);
1272 		(*free_ws)++;
1273 		spin_unlock(ws_lock);
1274 		goto wake;
1275 	}
1276 	spin_unlock(ws_lock);
1277 
1278 	free_workspace(type, ws);
1279 	atomic_dec(total_ws);
1280 wake:
1281 	cond_wake_up(ws_wait);
1282 }
1283 
1284 static void put_workspace(int type, struct list_head *ws)
1285 {
1286 	switch (type) {
1287 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1288 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1289 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1290 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1291 	default:
1292 		/*
1293 		 * This can't happen, the type is validated several times
1294 		 * before we get here.
1295 		 */
1296 		BUG();
1297 	}
1298 }
1299 
1300 /*
1301  * Adjust @level according to the limits of the compression algorithm or
1302  * fallback to default
1303  */
1304 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1305 {
1306 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1307 
1308 	if (level == 0)
1309 		level = ops->default_level;
1310 	else
1311 		level = min(level, ops->max_level);
1312 
1313 	return level;
1314 }
1315 
1316 /*
1317  * Given an address space and start and length, compress the bytes into @pages
1318  * that are allocated on demand.
1319  *
1320  * @type_level is encoded algorithm and level, where level 0 means whatever
1321  * default the algorithm chooses and is opaque here;
1322  * - compression algo are 0-3
1323  * - the level are bits 4-7
1324  *
1325  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1326  * and returns number of actually allocated pages
1327  *
1328  * @total_in is used to return the number of bytes actually read.  It
1329  * may be smaller than the input length if we had to exit early because we
1330  * ran out of room in the pages array or because we cross the
1331  * max_out threshold.
1332  *
1333  * @total_out is an in/out parameter, must be set to the input length and will
1334  * be also used to return the total number of compressed bytes
1335  */
1336 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1337 			 u64 start, struct page **pages,
1338 			 unsigned long *out_pages,
1339 			 unsigned long *total_in,
1340 			 unsigned long *total_out)
1341 {
1342 	int type = btrfs_compress_type(type_level);
1343 	int level = btrfs_compress_level(type_level);
1344 	struct list_head *workspace;
1345 	int ret;
1346 
1347 	level = btrfs_compress_set_level(type, level);
1348 	workspace = get_workspace(type, level);
1349 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1350 					 out_pages, total_in, total_out);
1351 	put_workspace(type, workspace);
1352 	return ret;
1353 }
1354 
1355 static int btrfs_decompress_bio(struct compressed_bio *cb)
1356 {
1357 	struct list_head *workspace;
1358 	int ret;
1359 	int type = cb->compress_type;
1360 
1361 	workspace = get_workspace(type, 0);
1362 	ret = compression_decompress_bio(type, workspace, cb);
1363 	put_workspace(type, workspace);
1364 
1365 	return ret;
1366 }
1367 
1368 /*
1369  * a less complex decompression routine.  Our compressed data fits in a
1370  * single page, and we want to read a single page out of it.
1371  * start_byte tells us the offset into the compressed data we're interested in
1372  */
1373 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1374 		     unsigned long start_byte, size_t srclen, size_t destlen)
1375 {
1376 	struct list_head *workspace;
1377 	int ret;
1378 
1379 	workspace = get_workspace(type, 0);
1380 	ret = compression_decompress(type, workspace, data_in, dest_page,
1381 				     start_byte, srclen, destlen);
1382 	put_workspace(type, workspace);
1383 
1384 	return ret;
1385 }
1386 
1387 void __init btrfs_init_compress(void)
1388 {
1389 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1390 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1391 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1392 	zstd_init_workspace_manager();
1393 }
1394 
1395 void __cold btrfs_exit_compress(void)
1396 {
1397 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1398 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1399 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1400 	zstd_cleanup_workspace_manager();
1401 }
1402 
1403 /*
1404  * Copy decompressed data from working buffer to pages.
1405  *
1406  * @buf:		The decompressed data buffer
1407  * @buf_len:		The decompressed data length
1408  * @decompressed:	Number of bytes that are already decompressed inside the
1409  * 			compressed extent
1410  * @cb:			The compressed extent descriptor
1411  * @orig_bio:		The original bio that the caller wants to read for
1412  *
1413  * An easier to understand graph is like below:
1414  *
1415  * 		|<- orig_bio ->|     |<- orig_bio->|
1416  * 	|<-------      full decompressed extent      ----->|
1417  * 	|<-----------    @cb range   ---->|
1418  * 	|			|<-- @buf_len -->|
1419  * 	|<--- @decompressed --->|
1420  *
1421  * Note that, @cb can be a subpage of the full decompressed extent, but
1422  * @cb->start always has the same as the orig_file_offset value of the full
1423  * decompressed extent.
1424  *
1425  * When reading compressed extent, we have to read the full compressed extent,
1426  * while @orig_bio may only want part of the range.
1427  * Thus this function will ensure only data covered by @orig_bio will be copied
1428  * to.
1429  *
1430  * Return 0 if we have copied all needed contents for @orig_bio.
1431  * Return >0 if we need continue decompress.
1432  */
1433 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1434 			      struct compressed_bio *cb, u32 decompressed)
1435 {
1436 	struct bio *orig_bio = cb->orig_bio;
1437 	/* Offset inside the full decompressed extent */
1438 	u32 cur_offset;
1439 
1440 	cur_offset = decompressed;
1441 	/* The main loop to do the copy */
1442 	while (cur_offset < decompressed + buf_len) {
1443 		struct bio_vec bvec;
1444 		size_t copy_len;
1445 		u32 copy_start;
1446 		/* Offset inside the full decompressed extent */
1447 		u32 bvec_offset;
1448 
1449 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1450 		/*
1451 		 * cb->start may underflow, but subtracting that value can still
1452 		 * give us correct offset inside the full decompressed extent.
1453 		 */
1454 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1455 
1456 		/* Haven't reached the bvec range, exit */
1457 		if (decompressed + buf_len <= bvec_offset)
1458 			return 1;
1459 
1460 		copy_start = max(cur_offset, bvec_offset);
1461 		copy_len = min(bvec_offset + bvec.bv_len,
1462 			       decompressed + buf_len) - copy_start;
1463 		ASSERT(copy_len);
1464 
1465 		/*
1466 		 * Extra range check to ensure we didn't go beyond
1467 		 * @buf + @buf_len.
1468 		 */
1469 		ASSERT(copy_start - decompressed < buf_len);
1470 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1471 			       buf + copy_start - decompressed, copy_len);
1472 		flush_dcache_page(bvec.bv_page);
1473 		cur_offset += copy_len;
1474 
1475 		bio_advance(orig_bio, copy_len);
1476 		/* Finished the bio */
1477 		if (!orig_bio->bi_iter.bi_size)
1478 			return 0;
1479 	}
1480 	return 1;
1481 }
1482 
1483 /*
1484  * Shannon Entropy calculation
1485  *
1486  * Pure byte distribution analysis fails to determine compressibility of data.
1487  * Try calculating entropy to estimate the average minimum number of bits
1488  * needed to encode the sampled data.
1489  *
1490  * For convenience, return the percentage of needed bits, instead of amount of
1491  * bits directly.
1492  *
1493  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1494  *			    and can be compressible with high probability
1495  *
1496  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1497  *
1498  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1499  */
1500 #define ENTROPY_LVL_ACEPTABLE		(65)
1501 #define ENTROPY_LVL_HIGH		(80)
1502 
1503 /*
1504  * For increasead precision in shannon_entropy calculation,
1505  * let's do pow(n, M) to save more digits after comma:
1506  *
1507  * - maximum int bit length is 64
1508  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1509  * - 13 * 4 = 52 < 64		-> M = 4
1510  *
1511  * So use pow(n, 4).
1512  */
1513 static inline u32 ilog2_w(u64 n)
1514 {
1515 	return ilog2(n * n * n * n);
1516 }
1517 
1518 static u32 shannon_entropy(struct heuristic_ws *ws)
1519 {
1520 	const u32 entropy_max = 8 * ilog2_w(2);
1521 	u32 entropy_sum = 0;
1522 	u32 p, p_base, sz_base;
1523 	u32 i;
1524 
1525 	sz_base = ilog2_w(ws->sample_size);
1526 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1527 		p = ws->bucket[i].count;
1528 		p_base = ilog2_w(p);
1529 		entropy_sum += p * (sz_base - p_base);
1530 	}
1531 
1532 	entropy_sum /= ws->sample_size;
1533 	return entropy_sum * 100 / entropy_max;
1534 }
1535 
1536 #define RADIX_BASE		4U
1537 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1538 
1539 static u8 get4bits(u64 num, int shift) {
1540 	u8 low4bits;
1541 
1542 	num >>= shift;
1543 	/* Reverse order */
1544 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1545 	return low4bits;
1546 }
1547 
1548 /*
1549  * Use 4 bits as radix base
1550  * Use 16 u32 counters for calculating new position in buf array
1551  *
1552  * @array     - array that will be sorted
1553  * @array_buf - buffer array to store sorting results
1554  *              must be equal in size to @array
1555  * @num       - array size
1556  */
1557 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1558 		       int num)
1559 {
1560 	u64 max_num;
1561 	u64 buf_num;
1562 	u32 counters[COUNTERS_SIZE];
1563 	u32 new_addr;
1564 	u32 addr;
1565 	int bitlen;
1566 	int shift;
1567 	int i;
1568 
1569 	/*
1570 	 * Try avoid useless loop iterations for small numbers stored in big
1571 	 * counters.  Example: 48 33 4 ... in 64bit array
1572 	 */
1573 	max_num = array[0].count;
1574 	for (i = 1; i < num; i++) {
1575 		buf_num = array[i].count;
1576 		if (buf_num > max_num)
1577 			max_num = buf_num;
1578 	}
1579 
1580 	buf_num = ilog2(max_num);
1581 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1582 
1583 	shift = 0;
1584 	while (shift < bitlen) {
1585 		memset(counters, 0, sizeof(counters));
1586 
1587 		for (i = 0; i < num; i++) {
1588 			buf_num = array[i].count;
1589 			addr = get4bits(buf_num, shift);
1590 			counters[addr]++;
1591 		}
1592 
1593 		for (i = 1; i < COUNTERS_SIZE; i++)
1594 			counters[i] += counters[i - 1];
1595 
1596 		for (i = num - 1; i >= 0; i--) {
1597 			buf_num = array[i].count;
1598 			addr = get4bits(buf_num, shift);
1599 			counters[addr]--;
1600 			new_addr = counters[addr];
1601 			array_buf[new_addr] = array[i];
1602 		}
1603 
1604 		shift += RADIX_BASE;
1605 
1606 		/*
1607 		 * Normal radix expects to move data from a temporary array, to
1608 		 * the main one.  But that requires some CPU time. Avoid that
1609 		 * by doing another sort iteration to original array instead of
1610 		 * memcpy()
1611 		 */
1612 		memset(counters, 0, sizeof(counters));
1613 
1614 		for (i = 0; i < num; i ++) {
1615 			buf_num = array_buf[i].count;
1616 			addr = get4bits(buf_num, shift);
1617 			counters[addr]++;
1618 		}
1619 
1620 		for (i = 1; i < COUNTERS_SIZE; i++)
1621 			counters[i] += counters[i - 1];
1622 
1623 		for (i = num - 1; i >= 0; i--) {
1624 			buf_num = array_buf[i].count;
1625 			addr = get4bits(buf_num, shift);
1626 			counters[addr]--;
1627 			new_addr = counters[addr];
1628 			array[new_addr] = array_buf[i];
1629 		}
1630 
1631 		shift += RADIX_BASE;
1632 	}
1633 }
1634 
1635 /*
1636  * Size of the core byte set - how many bytes cover 90% of the sample
1637  *
1638  * There are several types of structured binary data that use nearly all byte
1639  * values. The distribution can be uniform and counts in all buckets will be
1640  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1641  *
1642  * Other possibility is normal (Gaussian) distribution, where the data could
1643  * be potentially compressible, but we have to take a few more steps to decide
1644  * how much.
1645  *
1646  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1647  *                       compression algo can easy fix that
1648  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1649  *                       probability is not compressible
1650  */
1651 #define BYTE_CORE_SET_LOW		(64)
1652 #define BYTE_CORE_SET_HIGH		(200)
1653 
1654 static int byte_core_set_size(struct heuristic_ws *ws)
1655 {
1656 	u32 i;
1657 	u32 coreset_sum = 0;
1658 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1659 	struct bucket_item *bucket = ws->bucket;
1660 
1661 	/* Sort in reverse order */
1662 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1663 
1664 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1665 		coreset_sum += bucket[i].count;
1666 
1667 	if (coreset_sum > core_set_threshold)
1668 		return i;
1669 
1670 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1671 		coreset_sum += bucket[i].count;
1672 		if (coreset_sum > core_set_threshold)
1673 			break;
1674 	}
1675 
1676 	return i;
1677 }
1678 
1679 /*
1680  * Count byte values in buckets.
1681  * This heuristic can detect textual data (configs, xml, json, html, etc).
1682  * Because in most text-like data byte set is restricted to limited number of
1683  * possible characters, and that restriction in most cases makes data easy to
1684  * compress.
1685  *
1686  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1687  *	less - compressible
1688  *	more - need additional analysis
1689  */
1690 #define BYTE_SET_THRESHOLD		(64)
1691 
1692 static u32 byte_set_size(const struct heuristic_ws *ws)
1693 {
1694 	u32 i;
1695 	u32 byte_set_size = 0;
1696 
1697 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1698 		if (ws->bucket[i].count > 0)
1699 			byte_set_size++;
1700 	}
1701 
1702 	/*
1703 	 * Continue collecting count of byte values in buckets.  If the byte
1704 	 * set size is bigger then the threshold, it's pointless to continue,
1705 	 * the detection technique would fail for this type of data.
1706 	 */
1707 	for (; i < BUCKET_SIZE; i++) {
1708 		if (ws->bucket[i].count > 0) {
1709 			byte_set_size++;
1710 			if (byte_set_size > BYTE_SET_THRESHOLD)
1711 				return byte_set_size;
1712 		}
1713 	}
1714 
1715 	return byte_set_size;
1716 }
1717 
1718 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1719 {
1720 	const u32 half_of_sample = ws->sample_size / 2;
1721 	const u8 *data = ws->sample;
1722 
1723 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1724 }
1725 
1726 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1727 				     struct heuristic_ws *ws)
1728 {
1729 	struct page *page;
1730 	u64 index, index_end;
1731 	u32 i, curr_sample_pos;
1732 	u8 *in_data;
1733 
1734 	/*
1735 	 * Compression handles the input data by chunks of 128KiB
1736 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1737 	 *
1738 	 * We do the same for the heuristic and loop over the whole range.
1739 	 *
1740 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1741 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1742 	 */
1743 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1744 		end = start + BTRFS_MAX_UNCOMPRESSED;
1745 
1746 	index = start >> PAGE_SHIFT;
1747 	index_end = end >> PAGE_SHIFT;
1748 
1749 	/* Don't miss unaligned end */
1750 	if (!IS_ALIGNED(end, PAGE_SIZE))
1751 		index_end++;
1752 
1753 	curr_sample_pos = 0;
1754 	while (index < index_end) {
1755 		page = find_get_page(inode->i_mapping, index);
1756 		in_data = kmap_local_page(page);
1757 		/* Handle case where the start is not aligned to PAGE_SIZE */
1758 		i = start % PAGE_SIZE;
1759 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1760 			/* Don't sample any garbage from the last page */
1761 			if (start > end - SAMPLING_READ_SIZE)
1762 				break;
1763 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1764 					SAMPLING_READ_SIZE);
1765 			i += SAMPLING_INTERVAL;
1766 			start += SAMPLING_INTERVAL;
1767 			curr_sample_pos += SAMPLING_READ_SIZE;
1768 		}
1769 		kunmap_local(in_data);
1770 		put_page(page);
1771 
1772 		index++;
1773 	}
1774 
1775 	ws->sample_size = curr_sample_pos;
1776 }
1777 
1778 /*
1779  * Compression heuristic.
1780  *
1781  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1782  * quickly (compared to direct compression) detect data characteristics
1783  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1784  * data.
1785  *
1786  * The following types of analysis can be performed:
1787  * - detect mostly zero data
1788  * - detect data with low "byte set" size (text, etc)
1789  * - detect data with low/high "core byte" set
1790  *
1791  * Return non-zero if the compression should be done, 0 otherwise.
1792  */
1793 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1794 {
1795 	struct list_head *ws_list = get_workspace(0, 0);
1796 	struct heuristic_ws *ws;
1797 	u32 i;
1798 	u8 byte;
1799 	int ret = 0;
1800 
1801 	ws = list_entry(ws_list, struct heuristic_ws, list);
1802 
1803 	heuristic_collect_sample(inode, start, end, ws);
1804 
1805 	if (sample_repeated_patterns(ws)) {
1806 		ret = 1;
1807 		goto out;
1808 	}
1809 
1810 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1811 
1812 	for (i = 0; i < ws->sample_size; i++) {
1813 		byte = ws->sample[i];
1814 		ws->bucket[byte].count++;
1815 	}
1816 
1817 	i = byte_set_size(ws);
1818 	if (i < BYTE_SET_THRESHOLD) {
1819 		ret = 2;
1820 		goto out;
1821 	}
1822 
1823 	i = byte_core_set_size(ws);
1824 	if (i <= BYTE_CORE_SET_LOW) {
1825 		ret = 3;
1826 		goto out;
1827 	}
1828 
1829 	if (i >= BYTE_CORE_SET_HIGH) {
1830 		ret = 0;
1831 		goto out;
1832 	}
1833 
1834 	i = shannon_entropy(ws);
1835 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1836 		ret = 4;
1837 		goto out;
1838 	}
1839 
1840 	/*
1841 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1842 	 * needed to give green light to compression.
1843 	 *
1844 	 * For now just assume that compression at that level is not worth the
1845 	 * resources because:
1846 	 *
1847 	 * 1. it is possible to defrag the data later
1848 	 *
1849 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1850 	 * values, every bucket has counter at level ~54. The heuristic would
1851 	 * be confused. This can happen when data have some internal repeated
1852 	 * patterns like "abbacbbc...". This can be detected by analyzing
1853 	 * pairs of bytes, which is too costly.
1854 	 */
1855 	if (i < ENTROPY_LVL_HIGH) {
1856 		ret = 5;
1857 		goto out;
1858 	} else {
1859 		ret = 0;
1860 		goto out;
1861 	}
1862 
1863 out:
1864 	put_workspace(0, ws_list);
1865 	return ret;
1866 }
1867 
1868 /*
1869  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1870  * level, unrecognized string will set the default level
1871  */
1872 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1873 {
1874 	unsigned int level = 0;
1875 	int ret;
1876 
1877 	if (!type)
1878 		return 0;
1879 
1880 	if (str[0] == ':') {
1881 		ret = kstrtouint(str + 1, 10, &level);
1882 		if (ret)
1883 			level = 0;
1884 	}
1885 
1886 	level = btrfs_compress_set_level(type, level);
1887 
1888 	return level;
1889 }
1890