1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "ordered-data.h" 41 #include "compression.h" 42 #include "extent_io.h" 43 #include "extent_map.h" 44 45 struct compressed_bio { 46 /* number of bios pending for this compressed extent */ 47 refcount_t pending_bios; 48 49 /* the pages with the compressed data on them */ 50 struct page **compressed_pages; 51 52 /* inode that owns this data */ 53 struct inode *inode; 54 55 /* starting offset in the inode for our pages */ 56 u64 start; 57 58 /* number of bytes in the inode we're working on */ 59 unsigned long len; 60 61 /* number of bytes on disk */ 62 unsigned long compressed_len; 63 64 /* the compression algorithm for this bio */ 65 int compress_type; 66 67 /* number of compressed pages in the array */ 68 unsigned long nr_pages; 69 70 /* IO errors */ 71 int errors; 72 int mirror_num; 73 74 /* for reads, this is the bio we are copying the data into */ 75 struct bio *orig_bio; 76 77 /* 78 * the start of a variable length array of checksums only 79 * used by reads 80 */ 81 u32 sums; 82 }; 83 84 static int btrfs_decompress_bio(int type, struct page **pages_in, 85 u64 disk_start, struct bio *orig_bio, 86 size_t srclen); 87 88 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 89 unsigned long disk_size) 90 { 91 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 92 93 return sizeof(struct compressed_bio) + 94 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 95 } 96 97 static struct bio *compressed_bio_alloc(struct block_device *bdev, 98 u64 first_byte, gfp_t gfp_flags) 99 { 100 return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags); 101 } 102 103 static int check_compressed_csum(struct btrfs_inode *inode, 104 struct compressed_bio *cb, 105 u64 disk_start) 106 { 107 int ret; 108 struct page *page; 109 unsigned long i; 110 char *kaddr; 111 u32 csum; 112 u32 *cb_sum = &cb->sums; 113 114 if (inode->flags & BTRFS_INODE_NODATASUM) 115 return 0; 116 117 for (i = 0; i < cb->nr_pages; i++) { 118 page = cb->compressed_pages[i]; 119 csum = ~(u32)0; 120 121 kaddr = kmap_atomic(page); 122 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 123 btrfs_csum_final(csum, (u8 *)&csum); 124 kunmap_atomic(kaddr); 125 126 if (csum != *cb_sum) { 127 btrfs_print_data_csum_error(inode, disk_start, csum, 128 *cb_sum, cb->mirror_num); 129 ret = -EIO; 130 goto fail; 131 } 132 cb_sum++; 133 134 } 135 ret = 0; 136 fail: 137 return ret; 138 } 139 140 /* when we finish reading compressed pages from the disk, we 141 * decompress them and then run the bio end_io routines on the 142 * decompressed pages (in the inode address space). 143 * 144 * This allows the checksumming and other IO error handling routines 145 * to work normally 146 * 147 * The compressed pages are freed here, and it must be run 148 * in process context 149 */ 150 static void end_compressed_bio_read(struct bio *bio) 151 { 152 struct compressed_bio *cb = bio->bi_private; 153 struct inode *inode; 154 struct page *page; 155 unsigned long index; 156 int ret; 157 158 if (bio->bi_error) 159 cb->errors = 1; 160 161 /* if there are more bios still pending for this compressed 162 * extent, just exit 163 */ 164 if (!refcount_dec_and_test(&cb->pending_bios)) 165 goto out; 166 167 inode = cb->inode; 168 ret = check_compressed_csum(BTRFS_I(inode), cb, 169 (u64)bio->bi_iter.bi_sector << 9); 170 if (ret) 171 goto csum_failed; 172 173 /* ok, we're the last bio for this extent, lets start 174 * the decompression. 175 */ 176 ret = btrfs_decompress_bio(cb->compress_type, 177 cb->compressed_pages, 178 cb->start, 179 cb->orig_bio, 180 cb->compressed_len); 181 csum_failed: 182 if (ret) 183 cb->errors = 1; 184 185 /* release the compressed pages */ 186 index = 0; 187 for (index = 0; index < cb->nr_pages; index++) { 188 page = cb->compressed_pages[index]; 189 page->mapping = NULL; 190 put_page(page); 191 } 192 193 /* do io completion on the original bio */ 194 if (cb->errors) { 195 bio_io_error(cb->orig_bio); 196 } else { 197 int i; 198 struct bio_vec *bvec; 199 200 /* 201 * we have verified the checksum already, set page 202 * checked so the end_io handlers know about it 203 */ 204 bio_for_each_segment_all(bvec, cb->orig_bio, i) 205 SetPageChecked(bvec->bv_page); 206 207 bio_endio(cb->orig_bio); 208 } 209 210 /* finally free the cb struct */ 211 kfree(cb->compressed_pages); 212 kfree(cb); 213 out: 214 bio_put(bio); 215 } 216 217 /* 218 * Clear the writeback bits on all of the file 219 * pages for a compressed write 220 */ 221 static noinline void end_compressed_writeback(struct inode *inode, 222 const struct compressed_bio *cb) 223 { 224 unsigned long index = cb->start >> PAGE_SHIFT; 225 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 226 struct page *pages[16]; 227 unsigned long nr_pages = end_index - index + 1; 228 int i; 229 int ret; 230 231 if (cb->errors) 232 mapping_set_error(inode->i_mapping, -EIO); 233 234 while (nr_pages > 0) { 235 ret = find_get_pages_contig(inode->i_mapping, index, 236 min_t(unsigned long, 237 nr_pages, ARRAY_SIZE(pages)), pages); 238 if (ret == 0) { 239 nr_pages -= 1; 240 index += 1; 241 continue; 242 } 243 for (i = 0; i < ret; i++) { 244 if (cb->errors) 245 SetPageError(pages[i]); 246 end_page_writeback(pages[i]); 247 put_page(pages[i]); 248 } 249 nr_pages -= ret; 250 index += ret; 251 } 252 /* the inode may be gone now */ 253 } 254 255 /* 256 * do the cleanup once all the compressed pages hit the disk. 257 * This will clear writeback on the file pages and free the compressed 258 * pages. 259 * 260 * This also calls the writeback end hooks for the file pages so that 261 * metadata and checksums can be updated in the file. 262 */ 263 static void end_compressed_bio_write(struct bio *bio) 264 { 265 struct extent_io_tree *tree; 266 struct compressed_bio *cb = bio->bi_private; 267 struct inode *inode; 268 struct page *page; 269 unsigned long index; 270 271 if (bio->bi_error) 272 cb->errors = 1; 273 274 /* if there are more bios still pending for this compressed 275 * extent, just exit 276 */ 277 if (!refcount_dec_and_test(&cb->pending_bios)) 278 goto out; 279 280 /* ok, we're the last bio for this extent, step one is to 281 * call back into the FS and do all the end_io operations 282 */ 283 inode = cb->inode; 284 tree = &BTRFS_I(inode)->io_tree; 285 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 286 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 287 cb->start, 288 cb->start + cb->len - 1, 289 NULL, 290 bio->bi_error ? 0 : 1); 291 cb->compressed_pages[0]->mapping = NULL; 292 293 end_compressed_writeback(inode, cb); 294 /* note, our inode could be gone now */ 295 296 /* 297 * release the compressed pages, these came from alloc_page and 298 * are not attached to the inode at all 299 */ 300 index = 0; 301 for (index = 0; index < cb->nr_pages; index++) { 302 page = cb->compressed_pages[index]; 303 page->mapping = NULL; 304 put_page(page); 305 } 306 307 /* finally free the cb struct */ 308 kfree(cb->compressed_pages); 309 kfree(cb); 310 out: 311 bio_put(bio); 312 } 313 314 /* 315 * worker function to build and submit bios for previously compressed pages. 316 * The corresponding pages in the inode should be marked for writeback 317 * and the compressed pages should have a reference on them for dropping 318 * when the IO is complete. 319 * 320 * This also checksums the file bytes and gets things ready for 321 * the end io hooks. 322 */ 323 int btrfs_submit_compressed_write(struct inode *inode, u64 start, 324 unsigned long len, u64 disk_start, 325 unsigned long compressed_len, 326 struct page **compressed_pages, 327 unsigned long nr_pages) 328 { 329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 330 struct bio *bio = NULL; 331 struct compressed_bio *cb; 332 unsigned long bytes_left; 333 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 334 int pg_index = 0; 335 struct page *page; 336 u64 first_byte = disk_start; 337 struct block_device *bdev; 338 int ret; 339 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 340 341 WARN_ON(start & ((u64)PAGE_SIZE - 1)); 342 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 343 if (!cb) 344 return -ENOMEM; 345 refcount_set(&cb->pending_bios, 0); 346 cb->errors = 0; 347 cb->inode = inode; 348 cb->start = start; 349 cb->len = len; 350 cb->mirror_num = 0; 351 cb->compressed_pages = compressed_pages; 352 cb->compressed_len = compressed_len; 353 cb->orig_bio = NULL; 354 cb->nr_pages = nr_pages; 355 356 bdev = fs_info->fs_devices->latest_bdev; 357 358 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 359 if (!bio) { 360 kfree(cb); 361 return -ENOMEM; 362 } 363 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 364 bio->bi_private = cb; 365 bio->bi_end_io = end_compressed_bio_write; 366 refcount_set(&cb->pending_bios, 1); 367 368 /* create and submit bios for the compressed pages */ 369 bytes_left = compressed_len; 370 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 371 page = compressed_pages[pg_index]; 372 page->mapping = inode->i_mapping; 373 if (bio->bi_iter.bi_size) 374 ret = io_tree->ops->merge_bio_hook(page, 0, 375 PAGE_SIZE, 376 bio, 0); 377 else 378 ret = 0; 379 380 page->mapping = NULL; 381 if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) < 382 PAGE_SIZE) { 383 bio_get(bio); 384 385 /* 386 * inc the count before we submit the bio so 387 * we know the end IO handler won't happen before 388 * we inc the count. Otherwise, the cb might get 389 * freed before we're done setting it up 390 */ 391 refcount_inc(&cb->pending_bios); 392 ret = btrfs_bio_wq_end_io(fs_info, bio, 393 BTRFS_WQ_ENDIO_DATA); 394 BUG_ON(ret); /* -ENOMEM */ 395 396 if (!skip_sum) { 397 ret = btrfs_csum_one_bio(inode, bio, start, 1); 398 BUG_ON(ret); /* -ENOMEM */ 399 } 400 401 ret = btrfs_map_bio(fs_info, bio, 0, 1); 402 if (ret) { 403 bio->bi_error = ret; 404 bio_endio(bio); 405 } 406 407 bio_put(bio); 408 409 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 410 BUG_ON(!bio); 411 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 412 bio->bi_private = cb; 413 bio->bi_end_io = end_compressed_bio_write; 414 bio_add_page(bio, page, PAGE_SIZE, 0); 415 } 416 if (bytes_left < PAGE_SIZE) { 417 btrfs_info(fs_info, 418 "bytes left %lu compress len %lu nr %lu", 419 bytes_left, cb->compressed_len, cb->nr_pages); 420 } 421 bytes_left -= PAGE_SIZE; 422 first_byte += PAGE_SIZE; 423 cond_resched(); 424 } 425 bio_get(bio); 426 427 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 428 BUG_ON(ret); /* -ENOMEM */ 429 430 if (!skip_sum) { 431 ret = btrfs_csum_one_bio(inode, bio, start, 1); 432 BUG_ON(ret); /* -ENOMEM */ 433 } 434 435 ret = btrfs_map_bio(fs_info, bio, 0, 1); 436 if (ret) { 437 bio->bi_error = ret; 438 bio_endio(bio); 439 } 440 441 bio_put(bio); 442 return 0; 443 } 444 445 static u64 bio_end_offset(struct bio *bio) 446 { 447 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1]; 448 449 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 450 } 451 452 static noinline int add_ra_bio_pages(struct inode *inode, 453 u64 compressed_end, 454 struct compressed_bio *cb) 455 { 456 unsigned long end_index; 457 unsigned long pg_index; 458 u64 last_offset; 459 u64 isize = i_size_read(inode); 460 int ret; 461 struct page *page; 462 unsigned long nr_pages = 0; 463 struct extent_map *em; 464 struct address_space *mapping = inode->i_mapping; 465 struct extent_map_tree *em_tree; 466 struct extent_io_tree *tree; 467 u64 end; 468 int misses = 0; 469 470 last_offset = bio_end_offset(cb->orig_bio); 471 em_tree = &BTRFS_I(inode)->extent_tree; 472 tree = &BTRFS_I(inode)->io_tree; 473 474 if (isize == 0) 475 return 0; 476 477 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 478 479 while (last_offset < compressed_end) { 480 pg_index = last_offset >> PAGE_SHIFT; 481 482 if (pg_index > end_index) 483 break; 484 485 rcu_read_lock(); 486 page = radix_tree_lookup(&mapping->page_tree, pg_index); 487 rcu_read_unlock(); 488 if (page && !radix_tree_exceptional_entry(page)) { 489 misses++; 490 if (misses > 4) 491 break; 492 goto next; 493 } 494 495 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 496 ~__GFP_FS)); 497 if (!page) 498 break; 499 500 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 501 put_page(page); 502 goto next; 503 } 504 505 end = last_offset + PAGE_SIZE - 1; 506 /* 507 * at this point, we have a locked page in the page cache 508 * for these bytes in the file. But, we have to make 509 * sure they map to this compressed extent on disk. 510 */ 511 set_page_extent_mapped(page); 512 lock_extent(tree, last_offset, end); 513 read_lock(&em_tree->lock); 514 em = lookup_extent_mapping(em_tree, last_offset, 515 PAGE_SIZE); 516 read_unlock(&em_tree->lock); 517 518 if (!em || last_offset < em->start || 519 (last_offset + PAGE_SIZE > extent_map_end(em)) || 520 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 521 free_extent_map(em); 522 unlock_extent(tree, last_offset, end); 523 unlock_page(page); 524 put_page(page); 525 break; 526 } 527 free_extent_map(em); 528 529 if (page->index == end_index) { 530 char *userpage; 531 size_t zero_offset = isize & (PAGE_SIZE - 1); 532 533 if (zero_offset) { 534 int zeros; 535 zeros = PAGE_SIZE - zero_offset; 536 userpage = kmap_atomic(page); 537 memset(userpage + zero_offset, 0, zeros); 538 flush_dcache_page(page); 539 kunmap_atomic(userpage); 540 } 541 } 542 543 ret = bio_add_page(cb->orig_bio, page, 544 PAGE_SIZE, 0); 545 546 if (ret == PAGE_SIZE) { 547 nr_pages++; 548 put_page(page); 549 } else { 550 unlock_extent(tree, last_offset, end); 551 unlock_page(page); 552 put_page(page); 553 break; 554 } 555 next: 556 last_offset += PAGE_SIZE; 557 } 558 return 0; 559 } 560 561 /* 562 * for a compressed read, the bio we get passed has all the inode pages 563 * in it. We don't actually do IO on those pages but allocate new ones 564 * to hold the compressed pages on disk. 565 * 566 * bio->bi_iter.bi_sector points to the compressed extent on disk 567 * bio->bi_io_vec points to all of the inode pages 568 * 569 * After the compressed pages are read, we copy the bytes into the 570 * bio we were passed and then call the bio end_io calls 571 */ 572 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 573 int mirror_num, unsigned long bio_flags) 574 { 575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 576 struct extent_io_tree *tree; 577 struct extent_map_tree *em_tree; 578 struct compressed_bio *cb; 579 unsigned long compressed_len; 580 unsigned long nr_pages; 581 unsigned long pg_index; 582 struct page *page; 583 struct block_device *bdev; 584 struct bio *comp_bio; 585 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 586 u64 em_len; 587 u64 em_start; 588 struct extent_map *em; 589 int ret = -ENOMEM; 590 int faili = 0; 591 u32 *sums; 592 593 tree = &BTRFS_I(inode)->io_tree; 594 em_tree = &BTRFS_I(inode)->extent_tree; 595 596 /* we need the actual starting offset of this extent in the file */ 597 read_lock(&em_tree->lock); 598 em = lookup_extent_mapping(em_tree, 599 page_offset(bio->bi_io_vec->bv_page), 600 PAGE_SIZE); 601 read_unlock(&em_tree->lock); 602 if (!em) 603 return -EIO; 604 605 compressed_len = em->block_len; 606 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 607 if (!cb) 608 goto out; 609 610 refcount_set(&cb->pending_bios, 0); 611 cb->errors = 0; 612 cb->inode = inode; 613 cb->mirror_num = mirror_num; 614 sums = &cb->sums; 615 616 cb->start = em->orig_start; 617 em_len = em->len; 618 em_start = em->start; 619 620 free_extent_map(em); 621 em = NULL; 622 623 cb->len = bio->bi_iter.bi_size; 624 cb->compressed_len = compressed_len; 625 cb->compress_type = extent_compress_type(bio_flags); 626 cb->orig_bio = bio; 627 628 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 629 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 630 GFP_NOFS); 631 if (!cb->compressed_pages) 632 goto fail1; 633 634 bdev = fs_info->fs_devices->latest_bdev; 635 636 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 637 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 638 __GFP_HIGHMEM); 639 if (!cb->compressed_pages[pg_index]) { 640 faili = pg_index - 1; 641 ret = -ENOMEM; 642 goto fail2; 643 } 644 } 645 faili = nr_pages - 1; 646 cb->nr_pages = nr_pages; 647 648 add_ra_bio_pages(inode, em_start + em_len, cb); 649 650 /* include any pages we added in add_ra-bio_pages */ 651 cb->len = bio->bi_iter.bi_size; 652 653 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); 654 if (!comp_bio) 655 goto fail2; 656 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0); 657 comp_bio->bi_private = cb; 658 comp_bio->bi_end_io = end_compressed_bio_read; 659 refcount_set(&cb->pending_bios, 1); 660 661 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 662 page = cb->compressed_pages[pg_index]; 663 page->mapping = inode->i_mapping; 664 page->index = em_start >> PAGE_SHIFT; 665 666 if (comp_bio->bi_iter.bi_size) 667 ret = tree->ops->merge_bio_hook(page, 0, 668 PAGE_SIZE, 669 comp_bio, 0); 670 else 671 ret = 0; 672 673 page->mapping = NULL; 674 if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 675 PAGE_SIZE) { 676 bio_get(comp_bio); 677 678 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 679 BTRFS_WQ_ENDIO_DATA); 680 BUG_ON(ret); /* -ENOMEM */ 681 682 /* 683 * inc the count before we submit the bio so 684 * we know the end IO handler won't happen before 685 * we inc the count. Otherwise, the cb might get 686 * freed before we're done setting it up 687 */ 688 refcount_inc(&cb->pending_bios); 689 690 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 691 ret = btrfs_lookup_bio_sums(inode, comp_bio, 692 sums); 693 BUG_ON(ret); /* -ENOMEM */ 694 } 695 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 696 fs_info->sectorsize); 697 698 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 699 if (ret) { 700 comp_bio->bi_error = ret; 701 bio_endio(comp_bio); 702 } 703 704 bio_put(comp_bio); 705 706 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, 707 GFP_NOFS); 708 BUG_ON(!comp_bio); 709 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0); 710 comp_bio->bi_private = cb; 711 comp_bio->bi_end_io = end_compressed_bio_read; 712 713 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 714 } 715 cur_disk_byte += PAGE_SIZE; 716 } 717 bio_get(comp_bio); 718 719 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 720 BUG_ON(ret); /* -ENOMEM */ 721 722 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 723 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 724 BUG_ON(ret); /* -ENOMEM */ 725 } 726 727 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 728 if (ret) { 729 comp_bio->bi_error = ret; 730 bio_endio(comp_bio); 731 } 732 733 bio_put(comp_bio); 734 return 0; 735 736 fail2: 737 while (faili >= 0) { 738 __free_page(cb->compressed_pages[faili]); 739 faili--; 740 } 741 742 kfree(cb->compressed_pages); 743 fail1: 744 kfree(cb); 745 out: 746 free_extent_map(em); 747 return ret; 748 } 749 750 static struct { 751 struct list_head idle_ws; 752 spinlock_t ws_lock; 753 /* Number of free workspaces */ 754 int free_ws; 755 /* Total number of allocated workspaces */ 756 atomic_t total_ws; 757 /* Waiters for a free workspace */ 758 wait_queue_head_t ws_wait; 759 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 760 761 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 762 &btrfs_zlib_compress, 763 &btrfs_lzo_compress, 764 }; 765 766 void __init btrfs_init_compress(void) 767 { 768 int i; 769 770 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 771 struct list_head *workspace; 772 773 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 774 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 775 atomic_set(&btrfs_comp_ws[i].total_ws, 0); 776 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 777 778 /* 779 * Preallocate one workspace for each compression type so 780 * we can guarantee forward progress in the worst case 781 */ 782 workspace = btrfs_compress_op[i]->alloc_workspace(); 783 if (IS_ERR(workspace)) { 784 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n"); 785 } else { 786 atomic_set(&btrfs_comp_ws[i].total_ws, 1); 787 btrfs_comp_ws[i].free_ws = 1; 788 list_add(workspace, &btrfs_comp_ws[i].idle_ws); 789 } 790 } 791 } 792 793 /* 794 * This finds an available workspace or allocates a new one. 795 * If it's not possible to allocate a new one, waits until there's one. 796 * Preallocation makes a forward progress guarantees and we do not return 797 * errors. 798 */ 799 static struct list_head *find_workspace(int type) 800 { 801 struct list_head *workspace; 802 int cpus = num_online_cpus(); 803 int idx = type - 1; 804 805 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; 806 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; 807 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws; 808 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; 809 int *free_ws = &btrfs_comp_ws[idx].free_ws; 810 again: 811 spin_lock(ws_lock); 812 if (!list_empty(idle_ws)) { 813 workspace = idle_ws->next; 814 list_del(workspace); 815 (*free_ws)--; 816 spin_unlock(ws_lock); 817 return workspace; 818 819 } 820 if (atomic_read(total_ws) > cpus) { 821 DEFINE_WAIT(wait); 822 823 spin_unlock(ws_lock); 824 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 825 if (atomic_read(total_ws) > cpus && !*free_ws) 826 schedule(); 827 finish_wait(ws_wait, &wait); 828 goto again; 829 } 830 atomic_inc(total_ws); 831 spin_unlock(ws_lock); 832 833 workspace = btrfs_compress_op[idx]->alloc_workspace(); 834 if (IS_ERR(workspace)) { 835 atomic_dec(total_ws); 836 wake_up(ws_wait); 837 838 /* 839 * Do not return the error but go back to waiting. There's a 840 * workspace preallocated for each type and the compression 841 * time is bounded so we get to a workspace eventually. This 842 * makes our caller's life easier. 843 * 844 * To prevent silent and low-probability deadlocks (when the 845 * initial preallocation fails), check if there are any 846 * workspaces at all. 847 */ 848 if (atomic_read(total_ws) == 0) { 849 static DEFINE_RATELIMIT_STATE(_rs, 850 /* once per minute */ 60 * HZ, 851 /* no burst */ 1); 852 853 if (__ratelimit(&_rs)) { 854 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 855 } 856 } 857 goto again; 858 } 859 return workspace; 860 } 861 862 /* 863 * put a workspace struct back on the list or free it if we have enough 864 * idle ones sitting around 865 */ 866 static void free_workspace(int type, struct list_head *workspace) 867 { 868 int idx = type - 1; 869 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; 870 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; 871 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws; 872 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; 873 int *free_ws = &btrfs_comp_ws[idx].free_ws; 874 875 spin_lock(ws_lock); 876 if (*free_ws < num_online_cpus()) { 877 list_add(workspace, idle_ws); 878 (*free_ws)++; 879 spin_unlock(ws_lock); 880 goto wake; 881 } 882 spin_unlock(ws_lock); 883 884 btrfs_compress_op[idx]->free_workspace(workspace); 885 atomic_dec(total_ws); 886 wake: 887 /* 888 * Make sure counter is updated before we wake up waiters. 889 */ 890 smp_mb(); 891 if (waitqueue_active(ws_wait)) 892 wake_up(ws_wait); 893 } 894 895 /* 896 * cleanup function for module exit 897 */ 898 static void free_workspaces(void) 899 { 900 struct list_head *workspace; 901 int i; 902 903 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 904 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 905 workspace = btrfs_comp_ws[i].idle_ws.next; 906 list_del(workspace); 907 btrfs_compress_op[i]->free_workspace(workspace); 908 atomic_dec(&btrfs_comp_ws[i].total_ws); 909 } 910 } 911 } 912 913 /* 914 * Given an address space and start and length, compress the bytes into @pages 915 * that are allocated on demand. 916 * 917 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 918 * and returns number of actually allocated pages 919 * 920 * @total_in is used to return the number of bytes actually read. It 921 * may be smaller than the input length if we had to exit early because we 922 * ran out of room in the pages array or because we cross the 923 * max_out threshold. 924 * 925 * @total_out is an in/out parameter, must be set to the input length and will 926 * be also used to return the total number of compressed bytes 927 * 928 * @max_out tells us the max number of bytes that we're allowed to 929 * stuff into pages 930 */ 931 int btrfs_compress_pages(int type, struct address_space *mapping, 932 u64 start, struct page **pages, 933 unsigned long *out_pages, 934 unsigned long *total_in, 935 unsigned long *total_out) 936 { 937 struct list_head *workspace; 938 int ret; 939 940 workspace = find_workspace(type); 941 942 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 943 start, pages, 944 out_pages, 945 total_in, total_out); 946 free_workspace(type, workspace); 947 return ret; 948 } 949 950 /* 951 * pages_in is an array of pages with compressed data. 952 * 953 * disk_start is the starting logical offset of this array in the file 954 * 955 * orig_bio contains the pages from the file that we want to decompress into 956 * 957 * srclen is the number of bytes in pages_in 958 * 959 * The basic idea is that we have a bio that was created by readpages. 960 * The pages in the bio are for the uncompressed data, and they may not 961 * be contiguous. They all correspond to the range of bytes covered by 962 * the compressed extent. 963 */ 964 static int btrfs_decompress_bio(int type, struct page **pages_in, 965 u64 disk_start, struct bio *orig_bio, 966 size_t srclen) 967 { 968 struct list_head *workspace; 969 int ret; 970 971 workspace = find_workspace(type); 972 973 ret = btrfs_compress_op[type-1]->decompress_bio(workspace, pages_in, 974 disk_start, orig_bio, 975 srclen); 976 free_workspace(type, workspace); 977 return ret; 978 } 979 980 /* 981 * a less complex decompression routine. Our compressed data fits in a 982 * single page, and we want to read a single page out of it. 983 * start_byte tells us the offset into the compressed data we're interested in 984 */ 985 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 986 unsigned long start_byte, size_t srclen, size_t destlen) 987 { 988 struct list_head *workspace; 989 int ret; 990 991 workspace = find_workspace(type); 992 993 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 994 dest_page, start_byte, 995 srclen, destlen); 996 997 free_workspace(type, workspace); 998 return ret; 999 } 1000 1001 void btrfs_exit_compress(void) 1002 { 1003 free_workspaces(); 1004 } 1005 1006 /* 1007 * Copy uncompressed data from working buffer to pages. 1008 * 1009 * buf_start is the byte offset we're of the start of our workspace buffer. 1010 * 1011 * total_out is the last byte of the buffer 1012 */ 1013 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1014 unsigned long total_out, u64 disk_start, 1015 struct bio *bio) 1016 { 1017 unsigned long buf_offset; 1018 unsigned long current_buf_start; 1019 unsigned long start_byte; 1020 unsigned long prev_start_byte; 1021 unsigned long working_bytes = total_out - buf_start; 1022 unsigned long bytes; 1023 char *kaddr; 1024 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1025 1026 /* 1027 * start byte is the first byte of the page we're currently 1028 * copying into relative to the start of the compressed data. 1029 */ 1030 start_byte = page_offset(bvec.bv_page) - disk_start; 1031 1032 /* we haven't yet hit data corresponding to this page */ 1033 if (total_out <= start_byte) 1034 return 1; 1035 1036 /* 1037 * the start of the data we care about is offset into 1038 * the middle of our working buffer 1039 */ 1040 if (total_out > start_byte && buf_start < start_byte) { 1041 buf_offset = start_byte - buf_start; 1042 working_bytes -= buf_offset; 1043 } else { 1044 buf_offset = 0; 1045 } 1046 current_buf_start = buf_start; 1047 1048 /* copy bytes from the working buffer into the pages */ 1049 while (working_bytes > 0) { 1050 bytes = min_t(unsigned long, bvec.bv_len, 1051 PAGE_SIZE - buf_offset); 1052 bytes = min(bytes, working_bytes); 1053 1054 kaddr = kmap_atomic(bvec.bv_page); 1055 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1056 kunmap_atomic(kaddr); 1057 flush_dcache_page(bvec.bv_page); 1058 1059 buf_offset += bytes; 1060 working_bytes -= bytes; 1061 current_buf_start += bytes; 1062 1063 /* check if we need to pick another page */ 1064 bio_advance(bio, bytes); 1065 if (!bio->bi_iter.bi_size) 1066 return 0; 1067 bvec = bio_iter_iovec(bio, bio->bi_iter); 1068 prev_start_byte = start_byte; 1069 start_byte = page_offset(bvec.bv_page) - disk_start; 1070 1071 /* 1072 * We need to make sure we're only adjusting 1073 * our offset into compression working buffer when 1074 * we're switching pages. Otherwise we can incorrectly 1075 * keep copying when we were actually done. 1076 */ 1077 if (start_byte != prev_start_byte) { 1078 /* 1079 * make sure our new page is covered by this 1080 * working buffer 1081 */ 1082 if (total_out <= start_byte) 1083 return 1; 1084 1085 /* 1086 * the next page in the biovec might not be adjacent 1087 * to the last page, but it might still be found 1088 * inside this working buffer. bump our offset pointer 1089 */ 1090 if (total_out > start_byte && 1091 current_buf_start < start_byte) { 1092 buf_offset = start_byte - buf_start; 1093 working_bytes = total_out - start_byte; 1094 current_buf_start = buf_start + buf_offset; 1095 } 1096 } 1097 } 1098 1099 return 1; 1100 } 1101