1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "volumes.h" 25 #include "ordered-data.h" 26 #include "compression.h" 27 #include "extent_io.h" 28 #include "extent_map.h" 29 30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 31 32 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 33 { 34 switch (type) { 35 case BTRFS_COMPRESS_ZLIB: 36 case BTRFS_COMPRESS_LZO: 37 case BTRFS_COMPRESS_ZSTD: 38 case BTRFS_COMPRESS_NONE: 39 return btrfs_compress_types[type]; 40 } 41 42 return NULL; 43 } 44 45 static int btrfs_decompress_bio(struct compressed_bio *cb); 46 47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 48 unsigned long disk_size) 49 { 50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 51 52 return sizeof(struct compressed_bio) + 53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 54 } 55 56 static int check_compressed_csum(struct btrfs_inode *inode, 57 struct compressed_bio *cb, 58 u64 disk_start) 59 { 60 int ret; 61 struct page *page; 62 unsigned long i; 63 char *kaddr; 64 u32 csum; 65 u32 *cb_sum = &cb->sums; 66 67 if (inode->flags & BTRFS_INODE_NODATASUM) 68 return 0; 69 70 for (i = 0; i < cb->nr_pages; i++) { 71 page = cb->compressed_pages[i]; 72 csum = ~(u32)0; 73 74 kaddr = kmap_atomic(page); 75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 76 btrfs_csum_final(csum, (u8 *)&csum); 77 kunmap_atomic(kaddr); 78 79 if (csum != *cb_sum) { 80 btrfs_print_data_csum_error(inode, disk_start, csum, 81 *cb_sum, cb->mirror_num); 82 ret = -EIO; 83 goto fail; 84 } 85 cb_sum++; 86 87 } 88 ret = 0; 89 fail: 90 return ret; 91 } 92 93 /* when we finish reading compressed pages from the disk, we 94 * decompress them and then run the bio end_io routines on the 95 * decompressed pages (in the inode address space). 96 * 97 * This allows the checksumming and other IO error handling routines 98 * to work normally 99 * 100 * The compressed pages are freed here, and it must be run 101 * in process context 102 */ 103 static void end_compressed_bio_read(struct bio *bio) 104 { 105 struct compressed_bio *cb = bio->bi_private; 106 struct inode *inode; 107 struct page *page; 108 unsigned long index; 109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 110 int ret = 0; 111 112 if (bio->bi_status) 113 cb->errors = 1; 114 115 /* if there are more bios still pending for this compressed 116 * extent, just exit 117 */ 118 if (!refcount_dec_and_test(&cb->pending_bios)) 119 goto out; 120 121 /* 122 * Record the correct mirror_num in cb->orig_bio so that 123 * read-repair can work properly. 124 */ 125 ASSERT(btrfs_io_bio(cb->orig_bio)); 126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 127 cb->mirror_num = mirror; 128 129 /* 130 * Some IO in this cb have failed, just skip checksum as there 131 * is no way it could be correct. 132 */ 133 if (cb->errors == 1) 134 goto csum_failed; 135 136 inode = cb->inode; 137 ret = check_compressed_csum(BTRFS_I(inode), cb, 138 (u64)bio->bi_iter.bi_sector << 9); 139 if (ret) 140 goto csum_failed; 141 142 /* ok, we're the last bio for this extent, lets start 143 * the decompression. 144 */ 145 ret = btrfs_decompress_bio(cb); 146 147 csum_failed: 148 if (ret) 149 cb->errors = 1; 150 151 /* release the compressed pages */ 152 index = 0; 153 for (index = 0; index < cb->nr_pages; index++) { 154 page = cb->compressed_pages[index]; 155 page->mapping = NULL; 156 put_page(page); 157 } 158 159 /* do io completion on the original bio */ 160 if (cb->errors) { 161 bio_io_error(cb->orig_bio); 162 } else { 163 int i; 164 struct bio_vec *bvec; 165 166 /* 167 * we have verified the checksum already, set page 168 * checked so the end_io handlers know about it 169 */ 170 ASSERT(!bio_flagged(bio, BIO_CLONED)); 171 bio_for_each_segment_all(bvec, cb->orig_bio, i) 172 SetPageChecked(bvec->bv_page); 173 174 bio_endio(cb->orig_bio); 175 } 176 177 /* finally free the cb struct */ 178 kfree(cb->compressed_pages); 179 kfree(cb); 180 out: 181 bio_put(bio); 182 } 183 184 /* 185 * Clear the writeback bits on all of the file 186 * pages for a compressed write 187 */ 188 static noinline void end_compressed_writeback(struct inode *inode, 189 const struct compressed_bio *cb) 190 { 191 unsigned long index = cb->start >> PAGE_SHIFT; 192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 193 struct page *pages[16]; 194 unsigned long nr_pages = end_index - index + 1; 195 int i; 196 int ret; 197 198 if (cb->errors) 199 mapping_set_error(inode->i_mapping, -EIO); 200 201 while (nr_pages > 0) { 202 ret = find_get_pages_contig(inode->i_mapping, index, 203 min_t(unsigned long, 204 nr_pages, ARRAY_SIZE(pages)), pages); 205 if (ret == 0) { 206 nr_pages -= 1; 207 index += 1; 208 continue; 209 } 210 for (i = 0; i < ret; i++) { 211 if (cb->errors) 212 SetPageError(pages[i]); 213 end_page_writeback(pages[i]); 214 put_page(pages[i]); 215 } 216 nr_pages -= ret; 217 index += ret; 218 } 219 /* the inode may be gone now */ 220 } 221 222 /* 223 * do the cleanup once all the compressed pages hit the disk. 224 * This will clear writeback on the file pages and free the compressed 225 * pages. 226 * 227 * This also calls the writeback end hooks for the file pages so that 228 * metadata and checksums can be updated in the file. 229 */ 230 static void end_compressed_bio_write(struct bio *bio) 231 { 232 struct extent_io_tree *tree; 233 struct compressed_bio *cb = bio->bi_private; 234 struct inode *inode; 235 struct page *page; 236 unsigned long index; 237 238 if (bio->bi_status) 239 cb->errors = 1; 240 241 /* if there are more bios still pending for this compressed 242 * extent, just exit 243 */ 244 if (!refcount_dec_and_test(&cb->pending_bios)) 245 goto out; 246 247 /* ok, we're the last bio for this extent, step one is to 248 * call back into the FS and do all the end_io operations 249 */ 250 inode = cb->inode; 251 tree = &BTRFS_I(inode)->io_tree; 252 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 253 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 254 cb->start, 255 cb->start + cb->len - 1, 256 NULL, 257 bio->bi_status ? 258 BLK_STS_OK : BLK_STS_NOTSUPP); 259 cb->compressed_pages[0]->mapping = NULL; 260 261 end_compressed_writeback(inode, cb); 262 /* note, our inode could be gone now */ 263 264 /* 265 * release the compressed pages, these came from alloc_page and 266 * are not attached to the inode at all 267 */ 268 index = 0; 269 for (index = 0; index < cb->nr_pages; index++) { 270 page = cb->compressed_pages[index]; 271 page->mapping = NULL; 272 put_page(page); 273 } 274 275 /* finally free the cb struct */ 276 kfree(cb->compressed_pages); 277 kfree(cb); 278 out: 279 bio_put(bio); 280 } 281 282 /* 283 * worker function to build and submit bios for previously compressed pages. 284 * The corresponding pages in the inode should be marked for writeback 285 * and the compressed pages should have a reference on them for dropping 286 * when the IO is complete. 287 * 288 * This also checksums the file bytes and gets things ready for 289 * the end io hooks. 290 */ 291 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 292 unsigned long len, u64 disk_start, 293 unsigned long compressed_len, 294 struct page **compressed_pages, 295 unsigned long nr_pages, 296 unsigned int write_flags) 297 { 298 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 299 struct bio *bio = NULL; 300 struct compressed_bio *cb; 301 unsigned long bytes_left; 302 int pg_index = 0; 303 struct page *page; 304 u64 first_byte = disk_start; 305 struct block_device *bdev; 306 blk_status_t ret; 307 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 308 309 WARN_ON(start & ((u64)PAGE_SIZE - 1)); 310 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 311 if (!cb) 312 return BLK_STS_RESOURCE; 313 refcount_set(&cb->pending_bios, 0); 314 cb->errors = 0; 315 cb->inode = inode; 316 cb->start = start; 317 cb->len = len; 318 cb->mirror_num = 0; 319 cb->compressed_pages = compressed_pages; 320 cb->compressed_len = compressed_len; 321 cb->orig_bio = NULL; 322 cb->nr_pages = nr_pages; 323 324 bdev = fs_info->fs_devices->latest_bdev; 325 326 bio = btrfs_bio_alloc(bdev, first_byte); 327 bio->bi_opf = REQ_OP_WRITE | write_flags; 328 bio->bi_private = cb; 329 bio->bi_end_io = end_compressed_bio_write; 330 refcount_set(&cb->pending_bios, 1); 331 332 /* create and submit bios for the compressed pages */ 333 bytes_left = compressed_len; 334 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 335 int submit = 0; 336 337 page = compressed_pages[pg_index]; 338 page->mapping = inode->i_mapping; 339 if (bio->bi_iter.bi_size) 340 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0); 341 342 page->mapping = NULL; 343 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 344 PAGE_SIZE) { 345 /* 346 * inc the count before we submit the bio so 347 * we know the end IO handler won't happen before 348 * we inc the count. Otherwise, the cb might get 349 * freed before we're done setting it up 350 */ 351 refcount_inc(&cb->pending_bios); 352 ret = btrfs_bio_wq_end_io(fs_info, bio, 353 BTRFS_WQ_ENDIO_DATA); 354 BUG_ON(ret); /* -ENOMEM */ 355 356 if (!skip_sum) { 357 ret = btrfs_csum_one_bio(inode, bio, start, 1); 358 BUG_ON(ret); /* -ENOMEM */ 359 } 360 361 ret = btrfs_map_bio(fs_info, bio, 0, 1); 362 if (ret) { 363 bio->bi_status = ret; 364 bio_endio(bio); 365 } 366 367 bio = btrfs_bio_alloc(bdev, first_byte); 368 bio->bi_opf = REQ_OP_WRITE | write_flags; 369 bio->bi_private = cb; 370 bio->bi_end_io = end_compressed_bio_write; 371 bio_add_page(bio, page, PAGE_SIZE, 0); 372 } 373 if (bytes_left < PAGE_SIZE) { 374 btrfs_info(fs_info, 375 "bytes left %lu compress len %lu nr %lu", 376 bytes_left, cb->compressed_len, cb->nr_pages); 377 } 378 bytes_left -= PAGE_SIZE; 379 first_byte += PAGE_SIZE; 380 cond_resched(); 381 } 382 383 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 384 BUG_ON(ret); /* -ENOMEM */ 385 386 if (!skip_sum) { 387 ret = btrfs_csum_one_bio(inode, bio, start, 1); 388 BUG_ON(ret); /* -ENOMEM */ 389 } 390 391 ret = btrfs_map_bio(fs_info, bio, 0, 1); 392 if (ret) { 393 bio->bi_status = ret; 394 bio_endio(bio); 395 } 396 397 return 0; 398 } 399 400 static u64 bio_end_offset(struct bio *bio) 401 { 402 struct bio_vec *last = bio_last_bvec_all(bio); 403 404 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 405 } 406 407 static noinline int add_ra_bio_pages(struct inode *inode, 408 u64 compressed_end, 409 struct compressed_bio *cb) 410 { 411 unsigned long end_index; 412 unsigned long pg_index; 413 u64 last_offset; 414 u64 isize = i_size_read(inode); 415 int ret; 416 struct page *page; 417 unsigned long nr_pages = 0; 418 struct extent_map *em; 419 struct address_space *mapping = inode->i_mapping; 420 struct extent_map_tree *em_tree; 421 struct extent_io_tree *tree; 422 u64 end; 423 int misses = 0; 424 425 last_offset = bio_end_offset(cb->orig_bio); 426 em_tree = &BTRFS_I(inode)->extent_tree; 427 tree = &BTRFS_I(inode)->io_tree; 428 429 if (isize == 0) 430 return 0; 431 432 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 433 434 while (last_offset < compressed_end) { 435 pg_index = last_offset >> PAGE_SHIFT; 436 437 if (pg_index > end_index) 438 break; 439 440 rcu_read_lock(); 441 page = radix_tree_lookup(&mapping->i_pages, pg_index); 442 rcu_read_unlock(); 443 if (page && !radix_tree_exceptional_entry(page)) { 444 misses++; 445 if (misses > 4) 446 break; 447 goto next; 448 } 449 450 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 451 ~__GFP_FS)); 452 if (!page) 453 break; 454 455 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 456 put_page(page); 457 goto next; 458 } 459 460 end = last_offset + PAGE_SIZE - 1; 461 /* 462 * at this point, we have a locked page in the page cache 463 * for these bytes in the file. But, we have to make 464 * sure they map to this compressed extent on disk. 465 */ 466 set_page_extent_mapped(page); 467 lock_extent(tree, last_offset, end); 468 read_lock(&em_tree->lock); 469 em = lookup_extent_mapping(em_tree, last_offset, 470 PAGE_SIZE); 471 read_unlock(&em_tree->lock); 472 473 if (!em || last_offset < em->start || 474 (last_offset + PAGE_SIZE > extent_map_end(em)) || 475 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 476 free_extent_map(em); 477 unlock_extent(tree, last_offset, end); 478 unlock_page(page); 479 put_page(page); 480 break; 481 } 482 free_extent_map(em); 483 484 if (page->index == end_index) { 485 char *userpage; 486 size_t zero_offset = isize & (PAGE_SIZE - 1); 487 488 if (zero_offset) { 489 int zeros; 490 zeros = PAGE_SIZE - zero_offset; 491 userpage = kmap_atomic(page); 492 memset(userpage + zero_offset, 0, zeros); 493 flush_dcache_page(page); 494 kunmap_atomic(userpage); 495 } 496 } 497 498 ret = bio_add_page(cb->orig_bio, page, 499 PAGE_SIZE, 0); 500 501 if (ret == PAGE_SIZE) { 502 nr_pages++; 503 put_page(page); 504 } else { 505 unlock_extent(tree, last_offset, end); 506 unlock_page(page); 507 put_page(page); 508 break; 509 } 510 next: 511 last_offset += PAGE_SIZE; 512 } 513 return 0; 514 } 515 516 /* 517 * for a compressed read, the bio we get passed has all the inode pages 518 * in it. We don't actually do IO on those pages but allocate new ones 519 * to hold the compressed pages on disk. 520 * 521 * bio->bi_iter.bi_sector points to the compressed extent on disk 522 * bio->bi_io_vec points to all of the inode pages 523 * 524 * After the compressed pages are read, we copy the bytes into the 525 * bio we were passed and then call the bio end_io calls 526 */ 527 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 528 int mirror_num, unsigned long bio_flags) 529 { 530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 531 struct extent_io_tree *tree; 532 struct extent_map_tree *em_tree; 533 struct compressed_bio *cb; 534 unsigned long compressed_len; 535 unsigned long nr_pages; 536 unsigned long pg_index; 537 struct page *page; 538 struct block_device *bdev; 539 struct bio *comp_bio; 540 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 541 u64 em_len; 542 u64 em_start; 543 struct extent_map *em; 544 blk_status_t ret = BLK_STS_RESOURCE; 545 int faili = 0; 546 u32 *sums; 547 548 tree = &BTRFS_I(inode)->io_tree; 549 em_tree = &BTRFS_I(inode)->extent_tree; 550 551 /* we need the actual starting offset of this extent in the file */ 552 read_lock(&em_tree->lock); 553 em = lookup_extent_mapping(em_tree, 554 page_offset(bio_first_page_all(bio)), 555 PAGE_SIZE); 556 read_unlock(&em_tree->lock); 557 if (!em) 558 return BLK_STS_IOERR; 559 560 compressed_len = em->block_len; 561 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 562 if (!cb) 563 goto out; 564 565 refcount_set(&cb->pending_bios, 0); 566 cb->errors = 0; 567 cb->inode = inode; 568 cb->mirror_num = mirror_num; 569 sums = &cb->sums; 570 571 cb->start = em->orig_start; 572 em_len = em->len; 573 em_start = em->start; 574 575 free_extent_map(em); 576 em = NULL; 577 578 cb->len = bio->bi_iter.bi_size; 579 cb->compressed_len = compressed_len; 580 cb->compress_type = extent_compress_type(bio_flags); 581 cb->orig_bio = bio; 582 583 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 584 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 585 GFP_NOFS); 586 if (!cb->compressed_pages) 587 goto fail1; 588 589 bdev = fs_info->fs_devices->latest_bdev; 590 591 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 592 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 593 __GFP_HIGHMEM); 594 if (!cb->compressed_pages[pg_index]) { 595 faili = pg_index - 1; 596 ret = BLK_STS_RESOURCE; 597 goto fail2; 598 } 599 } 600 faili = nr_pages - 1; 601 cb->nr_pages = nr_pages; 602 603 add_ra_bio_pages(inode, em_start + em_len, cb); 604 605 /* include any pages we added in add_ra-bio_pages */ 606 cb->len = bio->bi_iter.bi_size; 607 608 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 609 comp_bio->bi_opf = REQ_OP_READ; 610 comp_bio->bi_private = cb; 611 comp_bio->bi_end_io = end_compressed_bio_read; 612 refcount_set(&cb->pending_bios, 1); 613 614 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 615 int submit = 0; 616 617 page = cb->compressed_pages[pg_index]; 618 page->mapping = inode->i_mapping; 619 page->index = em_start >> PAGE_SHIFT; 620 621 if (comp_bio->bi_iter.bi_size) 622 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, 623 comp_bio, 0); 624 625 page->mapping = NULL; 626 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 627 PAGE_SIZE) { 628 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 629 BTRFS_WQ_ENDIO_DATA); 630 BUG_ON(ret); /* -ENOMEM */ 631 632 /* 633 * inc the count before we submit the bio so 634 * we know the end IO handler won't happen before 635 * we inc the count. Otherwise, the cb might get 636 * freed before we're done setting it up 637 */ 638 refcount_inc(&cb->pending_bios); 639 640 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 641 ret = btrfs_lookup_bio_sums(inode, comp_bio, 642 sums); 643 BUG_ON(ret); /* -ENOMEM */ 644 } 645 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 646 fs_info->sectorsize); 647 648 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 649 if (ret) { 650 comp_bio->bi_status = ret; 651 bio_endio(comp_bio); 652 } 653 654 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 655 comp_bio->bi_opf = REQ_OP_READ; 656 comp_bio->bi_private = cb; 657 comp_bio->bi_end_io = end_compressed_bio_read; 658 659 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 660 } 661 cur_disk_byte += PAGE_SIZE; 662 } 663 664 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 665 BUG_ON(ret); /* -ENOMEM */ 666 667 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 668 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 669 BUG_ON(ret); /* -ENOMEM */ 670 } 671 672 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 673 if (ret) { 674 comp_bio->bi_status = ret; 675 bio_endio(comp_bio); 676 } 677 678 return 0; 679 680 fail2: 681 while (faili >= 0) { 682 __free_page(cb->compressed_pages[faili]); 683 faili--; 684 } 685 686 kfree(cb->compressed_pages); 687 fail1: 688 kfree(cb); 689 out: 690 free_extent_map(em); 691 return ret; 692 } 693 694 /* 695 * Heuristic uses systematic sampling to collect data from the input data 696 * range, the logic can be tuned by the following constants: 697 * 698 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 699 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 700 */ 701 #define SAMPLING_READ_SIZE (16) 702 #define SAMPLING_INTERVAL (256) 703 704 /* 705 * For statistical analysis of the input data we consider bytes that form a 706 * Galois Field of 256 objects. Each object has an attribute count, ie. how 707 * many times the object appeared in the sample. 708 */ 709 #define BUCKET_SIZE (256) 710 711 /* 712 * The size of the sample is based on a statistical sampling rule of thumb. 713 * The common way is to perform sampling tests as long as the number of 714 * elements in each cell is at least 5. 715 * 716 * Instead of 5, we choose 32 to obtain more accurate results. 717 * If the data contain the maximum number of symbols, which is 256, we obtain a 718 * sample size bound by 8192. 719 * 720 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 721 * from up to 512 locations. 722 */ 723 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 724 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 725 726 struct bucket_item { 727 u32 count; 728 }; 729 730 struct heuristic_ws { 731 /* Partial copy of input data */ 732 u8 *sample; 733 u32 sample_size; 734 /* Buckets store counters for each byte value */ 735 struct bucket_item *bucket; 736 /* Sorting buffer */ 737 struct bucket_item *bucket_b; 738 struct list_head list; 739 }; 740 741 static void free_heuristic_ws(struct list_head *ws) 742 { 743 struct heuristic_ws *workspace; 744 745 workspace = list_entry(ws, struct heuristic_ws, list); 746 747 kvfree(workspace->sample); 748 kfree(workspace->bucket); 749 kfree(workspace->bucket_b); 750 kfree(workspace); 751 } 752 753 static struct list_head *alloc_heuristic_ws(void) 754 { 755 struct heuristic_ws *ws; 756 757 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 758 if (!ws) 759 return ERR_PTR(-ENOMEM); 760 761 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 762 if (!ws->sample) 763 goto fail; 764 765 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 766 if (!ws->bucket) 767 goto fail; 768 769 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 770 if (!ws->bucket_b) 771 goto fail; 772 773 INIT_LIST_HEAD(&ws->list); 774 return &ws->list; 775 fail: 776 free_heuristic_ws(&ws->list); 777 return ERR_PTR(-ENOMEM); 778 } 779 780 struct workspaces_list { 781 struct list_head idle_ws; 782 spinlock_t ws_lock; 783 /* Number of free workspaces */ 784 int free_ws; 785 /* Total number of allocated workspaces */ 786 atomic_t total_ws; 787 /* Waiters for a free workspace */ 788 wait_queue_head_t ws_wait; 789 }; 790 791 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 792 793 static struct workspaces_list btrfs_heuristic_ws; 794 795 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 796 &btrfs_zlib_compress, 797 &btrfs_lzo_compress, 798 &btrfs_zstd_compress, 799 }; 800 801 void __init btrfs_init_compress(void) 802 { 803 struct list_head *workspace; 804 int i; 805 806 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws); 807 spin_lock_init(&btrfs_heuristic_ws.ws_lock); 808 atomic_set(&btrfs_heuristic_ws.total_ws, 0); 809 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait); 810 811 workspace = alloc_heuristic_ws(); 812 if (IS_ERR(workspace)) { 813 pr_warn( 814 "BTRFS: cannot preallocate heuristic workspace, will try later\n"); 815 } else { 816 atomic_set(&btrfs_heuristic_ws.total_ws, 1); 817 btrfs_heuristic_ws.free_ws = 1; 818 list_add(workspace, &btrfs_heuristic_ws.idle_ws); 819 } 820 821 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 822 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 823 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 824 atomic_set(&btrfs_comp_ws[i].total_ws, 0); 825 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 826 827 /* 828 * Preallocate one workspace for each compression type so 829 * we can guarantee forward progress in the worst case 830 */ 831 workspace = btrfs_compress_op[i]->alloc_workspace(); 832 if (IS_ERR(workspace)) { 833 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n"); 834 } else { 835 atomic_set(&btrfs_comp_ws[i].total_ws, 1); 836 btrfs_comp_ws[i].free_ws = 1; 837 list_add(workspace, &btrfs_comp_ws[i].idle_ws); 838 } 839 } 840 } 841 842 /* 843 * This finds an available workspace or allocates a new one. 844 * If it's not possible to allocate a new one, waits until there's one. 845 * Preallocation makes a forward progress guarantees and we do not return 846 * errors. 847 */ 848 static struct list_head *__find_workspace(int type, bool heuristic) 849 { 850 struct list_head *workspace; 851 int cpus = num_online_cpus(); 852 int idx = type - 1; 853 unsigned nofs_flag; 854 struct list_head *idle_ws; 855 spinlock_t *ws_lock; 856 atomic_t *total_ws; 857 wait_queue_head_t *ws_wait; 858 int *free_ws; 859 860 if (heuristic) { 861 idle_ws = &btrfs_heuristic_ws.idle_ws; 862 ws_lock = &btrfs_heuristic_ws.ws_lock; 863 total_ws = &btrfs_heuristic_ws.total_ws; 864 ws_wait = &btrfs_heuristic_ws.ws_wait; 865 free_ws = &btrfs_heuristic_ws.free_ws; 866 } else { 867 idle_ws = &btrfs_comp_ws[idx].idle_ws; 868 ws_lock = &btrfs_comp_ws[idx].ws_lock; 869 total_ws = &btrfs_comp_ws[idx].total_ws; 870 ws_wait = &btrfs_comp_ws[idx].ws_wait; 871 free_ws = &btrfs_comp_ws[idx].free_ws; 872 } 873 874 again: 875 spin_lock(ws_lock); 876 if (!list_empty(idle_ws)) { 877 workspace = idle_ws->next; 878 list_del(workspace); 879 (*free_ws)--; 880 spin_unlock(ws_lock); 881 return workspace; 882 883 } 884 if (atomic_read(total_ws) > cpus) { 885 DEFINE_WAIT(wait); 886 887 spin_unlock(ws_lock); 888 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 889 if (atomic_read(total_ws) > cpus && !*free_ws) 890 schedule(); 891 finish_wait(ws_wait, &wait); 892 goto again; 893 } 894 atomic_inc(total_ws); 895 spin_unlock(ws_lock); 896 897 /* 898 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 899 * to turn it off here because we might get called from the restricted 900 * context of btrfs_compress_bio/btrfs_compress_pages 901 */ 902 nofs_flag = memalloc_nofs_save(); 903 if (heuristic) 904 workspace = alloc_heuristic_ws(); 905 else 906 workspace = btrfs_compress_op[idx]->alloc_workspace(); 907 memalloc_nofs_restore(nofs_flag); 908 909 if (IS_ERR(workspace)) { 910 atomic_dec(total_ws); 911 wake_up(ws_wait); 912 913 /* 914 * Do not return the error but go back to waiting. There's a 915 * workspace preallocated for each type and the compression 916 * time is bounded so we get to a workspace eventually. This 917 * makes our caller's life easier. 918 * 919 * To prevent silent and low-probability deadlocks (when the 920 * initial preallocation fails), check if there are any 921 * workspaces at all. 922 */ 923 if (atomic_read(total_ws) == 0) { 924 static DEFINE_RATELIMIT_STATE(_rs, 925 /* once per minute */ 60 * HZ, 926 /* no burst */ 1); 927 928 if (__ratelimit(&_rs)) { 929 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 930 } 931 } 932 goto again; 933 } 934 return workspace; 935 } 936 937 static struct list_head *find_workspace(int type) 938 { 939 return __find_workspace(type, false); 940 } 941 942 /* 943 * put a workspace struct back on the list or free it if we have enough 944 * idle ones sitting around 945 */ 946 static void __free_workspace(int type, struct list_head *workspace, 947 bool heuristic) 948 { 949 int idx = type - 1; 950 struct list_head *idle_ws; 951 spinlock_t *ws_lock; 952 atomic_t *total_ws; 953 wait_queue_head_t *ws_wait; 954 int *free_ws; 955 956 if (heuristic) { 957 idle_ws = &btrfs_heuristic_ws.idle_ws; 958 ws_lock = &btrfs_heuristic_ws.ws_lock; 959 total_ws = &btrfs_heuristic_ws.total_ws; 960 ws_wait = &btrfs_heuristic_ws.ws_wait; 961 free_ws = &btrfs_heuristic_ws.free_ws; 962 } else { 963 idle_ws = &btrfs_comp_ws[idx].idle_ws; 964 ws_lock = &btrfs_comp_ws[idx].ws_lock; 965 total_ws = &btrfs_comp_ws[idx].total_ws; 966 ws_wait = &btrfs_comp_ws[idx].ws_wait; 967 free_ws = &btrfs_comp_ws[idx].free_ws; 968 } 969 970 spin_lock(ws_lock); 971 if (*free_ws <= num_online_cpus()) { 972 list_add(workspace, idle_ws); 973 (*free_ws)++; 974 spin_unlock(ws_lock); 975 goto wake; 976 } 977 spin_unlock(ws_lock); 978 979 if (heuristic) 980 free_heuristic_ws(workspace); 981 else 982 btrfs_compress_op[idx]->free_workspace(workspace); 983 atomic_dec(total_ws); 984 wake: 985 cond_wake_up(ws_wait); 986 } 987 988 static void free_workspace(int type, struct list_head *ws) 989 { 990 return __free_workspace(type, ws, false); 991 } 992 993 /* 994 * cleanup function for module exit 995 */ 996 static void free_workspaces(void) 997 { 998 struct list_head *workspace; 999 int i; 1000 1001 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) { 1002 workspace = btrfs_heuristic_ws.idle_ws.next; 1003 list_del(workspace); 1004 free_heuristic_ws(workspace); 1005 atomic_dec(&btrfs_heuristic_ws.total_ws); 1006 } 1007 1008 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 1009 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 1010 workspace = btrfs_comp_ws[i].idle_ws.next; 1011 list_del(workspace); 1012 btrfs_compress_op[i]->free_workspace(workspace); 1013 atomic_dec(&btrfs_comp_ws[i].total_ws); 1014 } 1015 } 1016 } 1017 1018 /* 1019 * Given an address space and start and length, compress the bytes into @pages 1020 * that are allocated on demand. 1021 * 1022 * @type_level is encoded algorithm and level, where level 0 means whatever 1023 * default the algorithm chooses and is opaque here; 1024 * - compression algo are 0-3 1025 * - the level are bits 4-7 1026 * 1027 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1028 * and returns number of actually allocated pages 1029 * 1030 * @total_in is used to return the number of bytes actually read. It 1031 * may be smaller than the input length if we had to exit early because we 1032 * ran out of room in the pages array or because we cross the 1033 * max_out threshold. 1034 * 1035 * @total_out is an in/out parameter, must be set to the input length and will 1036 * be also used to return the total number of compressed bytes 1037 * 1038 * @max_out tells us the max number of bytes that we're allowed to 1039 * stuff into pages 1040 */ 1041 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1042 u64 start, struct page **pages, 1043 unsigned long *out_pages, 1044 unsigned long *total_in, 1045 unsigned long *total_out) 1046 { 1047 struct list_head *workspace; 1048 int ret; 1049 int type = type_level & 0xF; 1050 1051 workspace = find_workspace(type); 1052 1053 btrfs_compress_op[type - 1]->set_level(workspace, type_level); 1054 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 1055 start, pages, 1056 out_pages, 1057 total_in, total_out); 1058 free_workspace(type, workspace); 1059 return ret; 1060 } 1061 1062 /* 1063 * pages_in is an array of pages with compressed data. 1064 * 1065 * disk_start is the starting logical offset of this array in the file 1066 * 1067 * orig_bio contains the pages from the file that we want to decompress into 1068 * 1069 * srclen is the number of bytes in pages_in 1070 * 1071 * The basic idea is that we have a bio that was created by readpages. 1072 * The pages in the bio are for the uncompressed data, and they may not 1073 * be contiguous. They all correspond to the range of bytes covered by 1074 * the compressed extent. 1075 */ 1076 static int btrfs_decompress_bio(struct compressed_bio *cb) 1077 { 1078 struct list_head *workspace; 1079 int ret; 1080 int type = cb->compress_type; 1081 1082 workspace = find_workspace(type); 1083 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb); 1084 free_workspace(type, workspace); 1085 1086 return ret; 1087 } 1088 1089 /* 1090 * a less complex decompression routine. Our compressed data fits in a 1091 * single page, and we want to read a single page out of it. 1092 * start_byte tells us the offset into the compressed data we're interested in 1093 */ 1094 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1095 unsigned long start_byte, size_t srclen, size_t destlen) 1096 { 1097 struct list_head *workspace; 1098 int ret; 1099 1100 workspace = find_workspace(type); 1101 1102 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 1103 dest_page, start_byte, 1104 srclen, destlen); 1105 1106 free_workspace(type, workspace); 1107 return ret; 1108 } 1109 1110 void __cold btrfs_exit_compress(void) 1111 { 1112 free_workspaces(); 1113 } 1114 1115 /* 1116 * Copy uncompressed data from working buffer to pages. 1117 * 1118 * buf_start is the byte offset we're of the start of our workspace buffer. 1119 * 1120 * total_out is the last byte of the buffer 1121 */ 1122 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1123 unsigned long total_out, u64 disk_start, 1124 struct bio *bio) 1125 { 1126 unsigned long buf_offset; 1127 unsigned long current_buf_start; 1128 unsigned long start_byte; 1129 unsigned long prev_start_byte; 1130 unsigned long working_bytes = total_out - buf_start; 1131 unsigned long bytes; 1132 char *kaddr; 1133 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1134 1135 /* 1136 * start byte is the first byte of the page we're currently 1137 * copying into relative to the start of the compressed data. 1138 */ 1139 start_byte = page_offset(bvec.bv_page) - disk_start; 1140 1141 /* we haven't yet hit data corresponding to this page */ 1142 if (total_out <= start_byte) 1143 return 1; 1144 1145 /* 1146 * the start of the data we care about is offset into 1147 * the middle of our working buffer 1148 */ 1149 if (total_out > start_byte && buf_start < start_byte) { 1150 buf_offset = start_byte - buf_start; 1151 working_bytes -= buf_offset; 1152 } else { 1153 buf_offset = 0; 1154 } 1155 current_buf_start = buf_start; 1156 1157 /* copy bytes from the working buffer into the pages */ 1158 while (working_bytes > 0) { 1159 bytes = min_t(unsigned long, bvec.bv_len, 1160 PAGE_SIZE - buf_offset); 1161 bytes = min(bytes, working_bytes); 1162 1163 kaddr = kmap_atomic(bvec.bv_page); 1164 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1165 kunmap_atomic(kaddr); 1166 flush_dcache_page(bvec.bv_page); 1167 1168 buf_offset += bytes; 1169 working_bytes -= bytes; 1170 current_buf_start += bytes; 1171 1172 /* check if we need to pick another page */ 1173 bio_advance(bio, bytes); 1174 if (!bio->bi_iter.bi_size) 1175 return 0; 1176 bvec = bio_iter_iovec(bio, bio->bi_iter); 1177 prev_start_byte = start_byte; 1178 start_byte = page_offset(bvec.bv_page) - disk_start; 1179 1180 /* 1181 * We need to make sure we're only adjusting 1182 * our offset into compression working buffer when 1183 * we're switching pages. Otherwise we can incorrectly 1184 * keep copying when we were actually done. 1185 */ 1186 if (start_byte != prev_start_byte) { 1187 /* 1188 * make sure our new page is covered by this 1189 * working buffer 1190 */ 1191 if (total_out <= start_byte) 1192 return 1; 1193 1194 /* 1195 * the next page in the biovec might not be adjacent 1196 * to the last page, but it might still be found 1197 * inside this working buffer. bump our offset pointer 1198 */ 1199 if (total_out > start_byte && 1200 current_buf_start < start_byte) { 1201 buf_offset = start_byte - buf_start; 1202 working_bytes = total_out - start_byte; 1203 current_buf_start = buf_start + buf_offset; 1204 } 1205 } 1206 } 1207 1208 return 1; 1209 } 1210 1211 /* 1212 * Shannon Entropy calculation 1213 * 1214 * Pure byte distribution analysis fails to determine compressiability of data. 1215 * Try calculating entropy to estimate the average minimum number of bits 1216 * needed to encode the sampled data. 1217 * 1218 * For convenience, return the percentage of needed bits, instead of amount of 1219 * bits directly. 1220 * 1221 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1222 * and can be compressible with high probability 1223 * 1224 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1225 * 1226 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1227 */ 1228 #define ENTROPY_LVL_ACEPTABLE (65) 1229 #define ENTROPY_LVL_HIGH (80) 1230 1231 /* 1232 * For increasead precision in shannon_entropy calculation, 1233 * let's do pow(n, M) to save more digits after comma: 1234 * 1235 * - maximum int bit length is 64 1236 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1237 * - 13 * 4 = 52 < 64 -> M = 4 1238 * 1239 * So use pow(n, 4). 1240 */ 1241 static inline u32 ilog2_w(u64 n) 1242 { 1243 return ilog2(n * n * n * n); 1244 } 1245 1246 static u32 shannon_entropy(struct heuristic_ws *ws) 1247 { 1248 const u32 entropy_max = 8 * ilog2_w(2); 1249 u32 entropy_sum = 0; 1250 u32 p, p_base, sz_base; 1251 u32 i; 1252 1253 sz_base = ilog2_w(ws->sample_size); 1254 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1255 p = ws->bucket[i].count; 1256 p_base = ilog2_w(p); 1257 entropy_sum += p * (sz_base - p_base); 1258 } 1259 1260 entropy_sum /= ws->sample_size; 1261 return entropy_sum * 100 / entropy_max; 1262 } 1263 1264 #define RADIX_BASE 4U 1265 #define COUNTERS_SIZE (1U << RADIX_BASE) 1266 1267 static u8 get4bits(u64 num, int shift) { 1268 u8 low4bits; 1269 1270 num >>= shift; 1271 /* Reverse order */ 1272 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1273 return low4bits; 1274 } 1275 1276 /* 1277 * Use 4 bits as radix base 1278 * Use 16 u32 counters for calculating new possition in buf array 1279 * 1280 * @array - array that will be sorted 1281 * @array_buf - buffer array to store sorting results 1282 * must be equal in size to @array 1283 * @num - array size 1284 */ 1285 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1286 int num) 1287 { 1288 u64 max_num; 1289 u64 buf_num; 1290 u32 counters[COUNTERS_SIZE]; 1291 u32 new_addr; 1292 u32 addr; 1293 int bitlen; 1294 int shift; 1295 int i; 1296 1297 /* 1298 * Try avoid useless loop iterations for small numbers stored in big 1299 * counters. Example: 48 33 4 ... in 64bit array 1300 */ 1301 max_num = array[0].count; 1302 for (i = 1; i < num; i++) { 1303 buf_num = array[i].count; 1304 if (buf_num > max_num) 1305 max_num = buf_num; 1306 } 1307 1308 buf_num = ilog2(max_num); 1309 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1310 1311 shift = 0; 1312 while (shift < bitlen) { 1313 memset(counters, 0, sizeof(counters)); 1314 1315 for (i = 0; i < num; i++) { 1316 buf_num = array[i].count; 1317 addr = get4bits(buf_num, shift); 1318 counters[addr]++; 1319 } 1320 1321 for (i = 1; i < COUNTERS_SIZE; i++) 1322 counters[i] += counters[i - 1]; 1323 1324 for (i = num - 1; i >= 0; i--) { 1325 buf_num = array[i].count; 1326 addr = get4bits(buf_num, shift); 1327 counters[addr]--; 1328 new_addr = counters[addr]; 1329 array_buf[new_addr] = array[i]; 1330 } 1331 1332 shift += RADIX_BASE; 1333 1334 /* 1335 * Normal radix expects to move data from a temporary array, to 1336 * the main one. But that requires some CPU time. Avoid that 1337 * by doing another sort iteration to original array instead of 1338 * memcpy() 1339 */ 1340 memset(counters, 0, sizeof(counters)); 1341 1342 for (i = 0; i < num; i ++) { 1343 buf_num = array_buf[i].count; 1344 addr = get4bits(buf_num, shift); 1345 counters[addr]++; 1346 } 1347 1348 for (i = 1; i < COUNTERS_SIZE; i++) 1349 counters[i] += counters[i - 1]; 1350 1351 for (i = num - 1; i >= 0; i--) { 1352 buf_num = array_buf[i].count; 1353 addr = get4bits(buf_num, shift); 1354 counters[addr]--; 1355 new_addr = counters[addr]; 1356 array[new_addr] = array_buf[i]; 1357 } 1358 1359 shift += RADIX_BASE; 1360 } 1361 } 1362 1363 /* 1364 * Size of the core byte set - how many bytes cover 90% of the sample 1365 * 1366 * There are several types of structured binary data that use nearly all byte 1367 * values. The distribution can be uniform and counts in all buckets will be 1368 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1369 * 1370 * Other possibility is normal (Gaussian) distribution, where the data could 1371 * be potentially compressible, but we have to take a few more steps to decide 1372 * how much. 1373 * 1374 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1375 * compression algo can easy fix that 1376 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1377 * probability is not compressible 1378 */ 1379 #define BYTE_CORE_SET_LOW (64) 1380 #define BYTE_CORE_SET_HIGH (200) 1381 1382 static int byte_core_set_size(struct heuristic_ws *ws) 1383 { 1384 u32 i; 1385 u32 coreset_sum = 0; 1386 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1387 struct bucket_item *bucket = ws->bucket; 1388 1389 /* Sort in reverse order */ 1390 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1391 1392 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1393 coreset_sum += bucket[i].count; 1394 1395 if (coreset_sum > core_set_threshold) 1396 return i; 1397 1398 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1399 coreset_sum += bucket[i].count; 1400 if (coreset_sum > core_set_threshold) 1401 break; 1402 } 1403 1404 return i; 1405 } 1406 1407 /* 1408 * Count byte values in buckets. 1409 * This heuristic can detect textual data (configs, xml, json, html, etc). 1410 * Because in most text-like data byte set is restricted to limited number of 1411 * possible characters, and that restriction in most cases makes data easy to 1412 * compress. 1413 * 1414 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1415 * less - compressible 1416 * more - need additional analysis 1417 */ 1418 #define BYTE_SET_THRESHOLD (64) 1419 1420 static u32 byte_set_size(const struct heuristic_ws *ws) 1421 { 1422 u32 i; 1423 u32 byte_set_size = 0; 1424 1425 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1426 if (ws->bucket[i].count > 0) 1427 byte_set_size++; 1428 } 1429 1430 /* 1431 * Continue collecting count of byte values in buckets. If the byte 1432 * set size is bigger then the threshold, it's pointless to continue, 1433 * the detection technique would fail for this type of data. 1434 */ 1435 for (; i < BUCKET_SIZE; i++) { 1436 if (ws->bucket[i].count > 0) { 1437 byte_set_size++; 1438 if (byte_set_size > BYTE_SET_THRESHOLD) 1439 return byte_set_size; 1440 } 1441 } 1442 1443 return byte_set_size; 1444 } 1445 1446 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1447 { 1448 const u32 half_of_sample = ws->sample_size / 2; 1449 const u8 *data = ws->sample; 1450 1451 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1452 } 1453 1454 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1455 struct heuristic_ws *ws) 1456 { 1457 struct page *page; 1458 u64 index, index_end; 1459 u32 i, curr_sample_pos; 1460 u8 *in_data; 1461 1462 /* 1463 * Compression handles the input data by chunks of 128KiB 1464 * (defined by BTRFS_MAX_UNCOMPRESSED) 1465 * 1466 * We do the same for the heuristic and loop over the whole range. 1467 * 1468 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1469 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1470 */ 1471 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1472 end = start + BTRFS_MAX_UNCOMPRESSED; 1473 1474 index = start >> PAGE_SHIFT; 1475 index_end = end >> PAGE_SHIFT; 1476 1477 /* Don't miss unaligned end */ 1478 if (!IS_ALIGNED(end, PAGE_SIZE)) 1479 index_end++; 1480 1481 curr_sample_pos = 0; 1482 while (index < index_end) { 1483 page = find_get_page(inode->i_mapping, index); 1484 in_data = kmap(page); 1485 /* Handle case where the start is not aligned to PAGE_SIZE */ 1486 i = start % PAGE_SIZE; 1487 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1488 /* Don't sample any garbage from the last page */ 1489 if (start > end - SAMPLING_READ_SIZE) 1490 break; 1491 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1492 SAMPLING_READ_SIZE); 1493 i += SAMPLING_INTERVAL; 1494 start += SAMPLING_INTERVAL; 1495 curr_sample_pos += SAMPLING_READ_SIZE; 1496 } 1497 kunmap(page); 1498 put_page(page); 1499 1500 index++; 1501 } 1502 1503 ws->sample_size = curr_sample_pos; 1504 } 1505 1506 /* 1507 * Compression heuristic. 1508 * 1509 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1510 * quickly (compared to direct compression) detect data characteristics 1511 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1512 * data. 1513 * 1514 * The following types of analysis can be performed: 1515 * - detect mostly zero data 1516 * - detect data with low "byte set" size (text, etc) 1517 * - detect data with low/high "core byte" set 1518 * 1519 * Return non-zero if the compression should be done, 0 otherwise. 1520 */ 1521 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1522 { 1523 struct list_head *ws_list = __find_workspace(0, true); 1524 struct heuristic_ws *ws; 1525 u32 i; 1526 u8 byte; 1527 int ret = 0; 1528 1529 ws = list_entry(ws_list, struct heuristic_ws, list); 1530 1531 heuristic_collect_sample(inode, start, end, ws); 1532 1533 if (sample_repeated_patterns(ws)) { 1534 ret = 1; 1535 goto out; 1536 } 1537 1538 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1539 1540 for (i = 0; i < ws->sample_size; i++) { 1541 byte = ws->sample[i]; 1542 ws->bucket[byte].count++; 1543 } 1544 1545 i = byte_set_size(ws); 1546 if (i < BYTE_SET_THRESHOLD) { 1547 ret = 2; 1548 goto out; 1549 } 1550 1551 i = byte_core_set_size(ws); 1552 if (i <= BYTE_CORE_SET_LOW) { 1553 ret = 3; 1554 goto out; 1555 } 1556 1557 if (i >= BYTE_CORE_SET_HIGH) { 1558 ret = 0; 1559 goto out; 1560 } 1561 1562 i = shannon_entropy(ws); 1563 if (i <= ENTROPY_LVL_ACEPTABLE) { 1564 ret = 4; 1565 goto out; 1566 } 1567 1568 /* 1569 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1570 * needed to give green light to compression. 1571 * 1572 * For now just assume that compression at that level is not worth the 1573 * resources because: 1574 * 1575 * 1. it is possible to defrag the data later 1576 * 1577 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1578 * values, every bucket has counter at level ~54. The heuristic would 1579 * be confused. This can happen when data have some internal repeated 1580 * patterns like "abbacbbc...". This can be detected by analyzing 1581 * pairs of bytes, which is too costly. 1582 */ 1583 if (i < ENTROPY_LVL_HIGH) { 1584 ret = 5; 1585 goto out; 1586 } else { 1587 ret = 0; 1588 goto out; 1589 } 1590 1591 out: 1592 __free_workspace(0, ws_list, true); 1593 return ret; 1594 } 1595 1596 unsigned int btrfs_compress_str2level(const char *str) 1597 { 1598 if (strncmp(str, "zlib", 4) != 0) 1599 return 0; 1600 1601 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */ 1602 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0) 1603 return str[5] - '0'; 1604 1605 return BTRFS_ZLIB_DEFAULT_LEVEL; 1606 } 1607