xref: /openbmc/linux/fs/btrfs/compression.c (revision f0f217ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <crypto/hash.h>
24 #include "misc.h"
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "btrfs_inode.h"
29 #include "volumes.h"
30 #include "ordered-data.h"
31 #include "compression.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "subpage.h"
35 #include "zoned.h"
36 
37 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
38 
39 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
40 {
41 	switch (type) {
42 	case BTRFS_COMPRESS_ZLIB:
43 	case BTRFS_COMPRESS_LZO:
44 	case BTRFS_COMPRESS_ZSTD:
45 	case BTRFS_COMPRESS_NONE:
46 		return btrfs_compress_types[type];
47 	default:
48 		break;
49 	}
50 
51 	return NULL;
52 }
53 
54 bool btrfs_compress_is_valid_type(const char *str, size_t len)
55 {
56 	int i;
57 
58 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
59 		size_t comp_len = strlen(btrfs_compress_types[i]);
60 
61 		if (len < comp_len)
62 			continue;
63 
64 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
65 			return true;
66 	}
67 	return false;
68 }
69 
70 static int compression_compress_pages(int type, struct list_head *ws,
71                struct address_space *mapping, u64 start, struct page **pages,
72                unsigned long *out_pages, unsigned long *total_in,
73                unsigned long *total_out)
74 {
75 	switch (type) {
76 	case BTRFS_COMPRESS_ZLIB:
77 		return zlib_compress_pages(ws, mapping, start, pages,
78 				out_pages, total_in, total_out);
79 	case BTRFS_COMPRESS_LZO:
80 		return lzo_compress_pages(ws, mapping, start, pages,
81 				out_pages, total_in, total_out);
82 	case BTRFS_COMPRESS_ZSTD:
83 		return zstd_compress_pages(ws, mapping, start, pages,
84 				out_pages, total_in, total_out);
85 	case BTRFS_COMPRESS_NONE:
86 	default:
87 		/*
88 		 * This can happen when compression races with remount setting
89 		 * it to 'no compress', while caller doesn't call
90 		 * inode_need_compress() to check if we really need to
91 		 * compress.
92 		 *
93 		 * Not a big deal, just need to inform caller that we
94 		 * haven't allocated any pages yet.
95 		 */
96 		*out_pages = 0;
97 		return -E2BIG;
98 	}
99 }
100 
101 static int compression_decompress_bio(struct list_head *ws,
102 				      struct compressed_bio *cb)
103 {
104 	switch (cb->compress_type) {
105 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
106 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
107 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
108 	case BTRFS_COMPRESS_NONE:
109 	default:
110 		/*
111 		 * This can't happen, the type is validated several times
112 		 * before we get here.
113 		 */
114 		BUG();
115 	}
116 }
117 
118 static int compression_decompress(int type, struct list_head *ws,
119                unsigned char *data_in, struct page *dest_page,
120                unsigned long start_byte, size_t srclen, size_t destlen)
121 {
122 	switch (type) {
123 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
124 						start_byte, srclen, destlen);
125 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
126 						start_byte, srclen, destlen);
127 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
128 						start_byte, srclen, destlen);
129 	case BTRFS_COMPRESS_NONE:
130 	default:
131 		/*
132 		 * This can't happen, the type is validated several times
133 		 * before we get here.
134 		 */
135 		BUG();
136 	}
137 }
138 
139 static int btrfs_decompress_bio(struct compressed_bio *cb);
140 
141 static void finish_compressed_bio_read(struct compressed_bio *cb)
142 {
143 	unsigned int index;
144 	struct page *page;
145 
146 	if (cb->status == BLK_STS_OK)
147 		cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));
148 
149 	/* Release the compressed pages */
150 	for (index = 0; index < cb->nr_pages; index++) {
151 		page = cb->compressed_pages[index];
152 		page->mapping = NULL;
153 		put_page(page);
154 	}
155 
156 	/* Do io completion on the original bio */
157 	btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status);
158 
159 	/* Finally free the cb struct */
160 	kfree(cb->compressed_pages);
161 	kfree(cb);
162 }
163 
164 /*
165  * Verify the checksums and kick off repair if needed on the uncompressed data
166  * before decompressing it into the original bio and freeing the uncompressed
167  * pages.
168  */
169 static void end_compressed_bio_read(struct btrfs_bio *bbio)
170 {
171 	struct compressed_bio *cb = bbio->private;
172 	struct inode *inode = cb->inode;
173 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
174 	struct btrfs_inode *bi = BTRFS_I(inode);
175 	bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) &&
176 		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
177 	blk_status_t status = bbio->bio.bi_status;
178 	struct bvec_iter iter;
179 	struct bio_vec bv;
180 	u32 offset;
181 
182 	btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
183 		u64 start = bbio->file_offset + offset;
184 
185 		if (!status &&
186 		    (!csum || !btrfs_check_data_csum(inode, bbio, offset,
187 						     bv.bv_page, bv.bv_offset))) {
188 			btrfs_clean_io_failure(bi, start, bv.bv_page,
189 					       bv.bv_offset);
190 		} else {
191 			int ret;
192 
193 			refcount_inc(&cb->pending_ios);
194 			ret = btrfs_repair_one_sector(inode, bbio, offset,
195 						      bv.bv_page, bv.bv_offset,
196 						      btrfs_submit_data_read_bio);
197 			if (ret) {
198 				refcount_dec(&cb->pending_ios);
199 				status = errno_to_blk_status(ret);
200 			}
201 		}
202 	}
203 
204 	if (status)
205 		cb->status = status;
206 
207 	if (refcount_dec_and_test(&cb->pending_ios))
208 		finish_compressed_bio_read(cb);
209 	btrfs_bio_free_csum(bbio);
210 	bio_put(&bbio->bio);
211 }
212 
213 /*
214  * Clear the writeback bits on all of the file
215  * pages for a compressed write
216  */
217 static noinline void end_compressed_writeback(struct inode *inode,
218 					      const struct compressed_bio *cb)
219 {
220 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
221 	unsigned long index = cb->start >> PAGE_SHIFT;
222 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
223 	struct folio_batch fbatch;
224 	const int errno = blk_status_to_errno(cb->status);
225 	int i;
226 	int ret;
227 
228 	if (errno)
229 		mapping_set_error(inode->i_mapping, errno);
230 
231 	folio_batch_init(&fbatch);
232 	while (index <= end_index) {
233 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
234 				&fbatch);
235 
236 		if (ret == 0)
237 			return;
238 
239 		for (i = 0; i < ret; i++) {
240 			struct folio *folio = fbatch.folios[i];
241 
242 			if (errno)
243 				folio_set_error(folio);
244 			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
245 							 cb->start, cb->len);
246 		}
247 		folio_batch_release(&fbatch);
248 	}
249 	/* the inode may be gone now */
250 }
251 
252 static void finish_compressed_bio_write(struct compressed_bio *cb)
253 {
254 	struct inode *inode = cb->inode;
255 	unsigned int index;
256 
257 	/*
258 	 * Ok, we're the last bio for this extent, step one is to call back
259 	 * into the FS and do all the end_io operations.
260 	 */
261 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
262 			cb->start, cb->start + cb->len - 1,
263 			cb->status == BLK_STS_OK);
264 
265 	if (cb->writeback)
266 		end_compressed_writeback(inode, cb);
267 	/* Note, our inode could be gone now */
268 
269 	/*
270 	 * Release the compressed pages, these came from alloc_page and
271 	 * are not attached to the inode at all
272 	 */
273 	for (index = 0; index < cb->nr_pages; index++) {
274 		struct page *page = cb->compressed_pages[index];
275 
276 		page->mapping = NULL;
277 		put_page(page);
278 	}
279 
280 	/* Finally free the cb struct */
281 	kfree(cb->compressed_pages);
282 	kfree(cb);
283 }
284 
285 static void btrfs_finish_compressed_write_work(struct work_struct *work)
286 {
287 	struct compressed_bio *cb =
288 		container_of(work, struct compressed_bio, write_end_work);
289 
290 	finish_compressed_bio_write(cb);
291 }
292 
293 /*
294  * Do the cleanup once all the compressed pages hit the disk.  This will clear
295  * writeback on the file pages and free the compressed pages.
296  *
297  * This also calls the writeback end hooks for the file pages so that metadata
298  * and checksums can be updated in the file.
299  */
300 static void end_compressed_bio_write(struct btrfs_bio *bbio)
301 {
302 	struct compressed_bio *cb = bbio->private;
303 
304 	if (bbio->bio.bi_status)
305 		cb->status = bbio->bio.bi_status;
306 
307 	if (refcount_dec_and_test(&cb->pending_ios)) {
308 		struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
309 
310 		btrfs_record_physical_zoned(cb->inode, cb->start, &bbio->bio);
311 		queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
312 	}
313 	bio_put(&bbio->bio);
314 }
315 
316 /*
317  * Allocate a compressed_bio, which will be used to read/write on-disk
318  * (aka, compressed) * data.
319  *
320  * @cb:                 The compressed_bio structure, which records all the needed
321  *                      information to bind the compressed data to the uncompressed
322  *                      page cache.
323  * @disk_byten:         The logical bytenr where the compressed data will be read
324  *                      from or written to.
325  * @endio_func:         The endio function to call after the IO for compressed data
326  *                      is finished.
327  * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
328  *                      Let the caller know to only fill the bio up to the stripe
329  *                      boundary.
330  */
331 
332 
333 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
334 					blk_opf_t opf,
335 					btrfs_bio_end_io_t endio_func,
336 					u64 *next_stripe_start)
337 {
338 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
339 	struct btrfs_io_geometry geom;
340 	struct extent_map *em;
341 	struct bio *bio;
342 	int ret;
343 
344 	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, endio_func, cb);
345 	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
346 
347 	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
348 	if (IS_ERR(em)) {
349 		bio_put(bio);
350 		return ERR_CAST(em);
351 	}
352 
353 	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
354 		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
355 
356 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
357 	free_extent_map(em);
358 	if (ret < 0) {
359 		bio_put(bio);
360 		return ERR_PTR(ret);
361 	}
362 	*next_stripe_start = disk_bytenr + geom.len;
363 	refcount_inc(&cb->pending_ios);
364 	return bio;
365 }
366 
367 /*
368  * worker function to build and submit bios for previously compressed pages.
369  * The corresponding pages in the inode should be marked for writeback
370  * and the compressed pages should have a reference on them for dropping
371  * when the IO is complete.
372  *
373  * This also checksums the file bytes and gets things ready for
374  * the end io hooks.
375  */
376 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
377 				 unsigned int len, u64 disk_start,
378 				 unsigned int compressed_len,
379 				 struct page **compressed_pages,
380 				 unsigned int nr_pages,
381 				 blk_opf_t write_flags,
382 				 struct cgroup_subsys_state *blkcg_css,
383 				 bool writeback)
384 {
385 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
386 	struct bio *bio = NULL;
387 	struct compressed_bio *cb;
388 	u64 cur_disk_bytenr = disk_start;
389 	u64 next_stripe_start;
390 	blk_status_t ret = BLK_STS_OK;
391 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
392 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
393 	const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
394 
395 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
396 	       IS_ALIGNED(len, fs_info->sectorsize));
397 	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
398 	if (!cb)
399 		return BLK_STS_RESOURCE;
400 	refcount_set(&cb->pending_ios, 1);
401 	cb->status = BLK_STS_OK;
402 	cb->inode = &inode->vfs_inode;
403 	cb->start = start;
404 	cb->len = len;
405 	cb->compressed_pages = compressed_pages;
406 	cb->compressed_len = compressed_len;
407 	cb->writeback = writeback;
408 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
409 	cb->nr_pages = nr_pages;
410 
411 	if (blkcg_css)
412 		kthread_associate_blkcg(blkcg_css);
413 
414 	while (cur_disk_bytenr < disk_start + compressed_len) {
415 		u64 offset = cur_disk_bytenr - disk_start;
416 		unsigned int index = offset >> PAGE_SHIFT;
417 		unsigned int real_size;
418 		unsigned int added;
419 		struct page *page = compressed_pages[index];
420 		bool submit = false;
421 
422 		/* Allocate new bio if submitted or not yet allocated */
423 		if (!bio) {
424 			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
425 				bio_op | write_flags, end_compressed_bio_write,
426 				&next_stripe_start);
427 			if (IS_ERR(bio)) {
428 				ret = errno_to_blk_status(PTR_ERR(bio));
429 				break;
430 			}
431 			if (blkcg_css)
432 				bio->bi_opf |= REQ_CGROUP_PUNT;
433 		}
434 		/*
435 		 * We should never reach next_stripe_start start as we will
436 		 * submit comp_bio when reach the boundary immediately.
437 		 */
438 		ASSERT(cur_disk_bytenr != next_stripe_start);
439 
440 		/*
441 		 * We have various limits on the real read size:
442 		 * - stripe boundary
443 		 * - page boundary
444 		 * - compressed length boundary
445 		 */
446 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
447 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
448 		real_size = min_t(u64, real_size, compressed_len - offset);
449 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
450 
451 		if (use_append)
452 			added = bio_add_zone_append_page(bio, page, real_size,
453 					offset_in_page(offset));
454 		else
455 			added = bio_add_page(bio, page, real_size,
456 					offset_in_page(offset));
457 		/* Reached zoned boundary */
458 		if (added == 0)
459 			submit = true;
460 
461 		cur_disk_bytenr += added;
462 		/* Reached stripe boundary */
463 		if (cur_disk_bytenr == next_stripe_start)
464 			submit = true;
465 
466 		/* Finished the range */
467 		if (cur_disk_bytenr == disk_start + compressed_len)
468 			submit = true;
469 
470 		if (submit) {
471 			if (!skip_sum) {
472 				ret = btrfs_csum_one_bio(inode, bio, start, true);
473 				if (ret) {
474 					btrfs_bio_end_io(btrfs_bio(bio), ret);
475 					break;
476 				}
477 			}
478 
479 			ASSERT(bio->bi_iter.bi_size);
480 			btrfs_submit_bio(fs_info, bio, 0);
481 			bio = NULL;
482 		}
483 		cond_resched();
484 	}
485 
486 	if (blkcg_css)
487 		kthread_associate_blkcg(NULL);
488 
489 	if (refcount_dec_and_test(&cb->pending_ios))
490 		finish_compressed_bio_write(cb);
491 	return ret;
492 }
493 
494 static u64 bio_end_offset(struct bio *bio)
495 {
496 	struct bio_vec *last = bio_last_bvec_all(bio);
497 
498 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
499 }
500 
501 /*
502  * Add extra pages in the same compressed file extent so that we don't need to
503  * re-read the same extent again and again.
504  *
505  * NOTE: this won't work well for subpage, as for subpage read, we lock the
506  * full page then submit bio for each compressed/regular extents.
507  *
508  * This means, if we have several sectors in the same page points to the same
509  * on-disk compressed data, we will re-read the same extent many times and
510  * this function can only help for the next page.
511  */
512 static noinline int add_ra_bio_pages(struct inode *inode,
513 				     u64 compressed_end,
514 				     struct compressed_bio *cb,
515 				     unsigned long *pflags)
516 {
517 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
518 	unsigned long end_index;
519 	u64 cur = bio_end_offset(cb->orig_bio);
520 	u64 isize = i_size_read(inode);
521 	int ret;
522 	struct page *page;
523 	struct extent_map *em;
524 	struct address_space *mapping = inode->i_mapping;
525 	struct extent_map_tree *em_tree;
526 	struct extent_io_tree *tree;
527 	int sectors_missed = 0;
528 
529 	em_tree = &BTRFS_I(inode)->extent_tree;
530 	tree = &BTRFS_I(inode)->io_tree;
531 
532 	if (isize == 0)
533 		return 0;
534 
535 	/*
536 	 * For current subpage support, we only support 64K page size,
537 	 * which means maximum compressed extent size (128K) is just 2x page
538 	 * size.
539 	 * This makes readahead less effective, so here disable readahead for
540 	 * subpage for now, until full compressed write is supported.
541 	 */
542 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
543 		return 0;
544 
545 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
546 
547 	while (cur < compressed_end) {
548 		u64 page_end;
549 		u64 pg_index = cur >> PAGE_SHIFT;
550 		u32 add_size;
551 
552 		if (pg_index > end_index)
553 			break;
554 
555 		page = xa_load(&mapping->i_pages, pg_index);
556 		if (page && !xa_is_value(page)) {
557 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
558 					  fs_info->sectorsize_bits;
559 
560 			/* Beyond threshold, no need to continue */
561 			if (sectors_missed > 4)
562 				break;
563 
564 			/*
565 			 * Jump to next page start as we already have page for
566 			 * current offset.
567 			 */
568 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
569 			continue;
570 		}
571 
572 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
573 								 ~__GFP_FS));
574 		if (!page)
575 			break;
576 
577 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
578 			put_page(page);
579 			/* There is already a page, skip to page end */
580 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
581 			continue;
582 		}
583 
584 		if (PageWorkingset(page))
585 			psi_memstall_enter(pflags);
586 
587 		ret = set_page_extent_mapped(page);
588 		if (ret < 0) {
589 			unlock_page(page);
590 			put_page(page);
591 			break;
592 		}
593 
594 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
595 		lock_extent(tree, cur, page_end, NULL);
596 		read_lock(&em_tree->lock);
597 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
598 		read_unlock(&em_tree->lock);
599 
600 		/*
601 		 * At this point, we have a locked page in the page cache for
602 		 * these bytes in the file.  But, we have to make sure they map
603 		 * to this compressed extent on disk.
604 		 */
605 		if (!em || cur < em->start ||
606 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
607 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
608 			free_extent_map(em);
609 			unlock_extent(tree, cur, page_end, NULL);
610 			unlock_page(page);
611 			put_page(page);
612 			break;
613 		}
614 		free_extent_map(em);
615 
616 		if (page->index == end_index) {
617 			size_t zero_offset = offset_in_page(isize);
618 
619 			if (zero_offset) {
620 				int zeros;
621 				zeros = PAGE_SIZE - zero_offset;
622 				memzero_page(page, zero_offset, zeros);
623 			}
624 		}
625 
626 		add_size = min(em->start + em->len, page_end + 1) - cur;
627 		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
628 		if (ret != add_size) {
629 			unlock_extent(tree, cur, page_end, NULL);
630 			unlock_page(page);
631 			put_page(page);
632 			break;
633 		}
634 		/*
635 		 * If it's subpage, we also need to increase its
636 		 * subpage::readers number, as at endio we will decrease
637 		 * subpage::readers and to unlock the page.
638 		 */
639 		if (fs_info->sectorsize < PAGE_SIZE)
640 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
641 		put_page(page);
642 		cur += add_size;
643 	}
644 	return 0;
645 }
646 
647 /*
648  * for a compressed read, the bio we get passed has all the inode pages
649  * in it.  We don't actually do IO on those pages but allocate new ones
650  * to hold the compressed pages on disk.
651  *
652  * bio->bi_iter.bi_sector points to the compressed extent on disk
653  * bio->bi_io_vec points to all of the inode pages
654  *
655  * After the compressed pages are read, we copy the bytes into the
656  * bio we were passed and then call the bio end_io calls
657  */
658 void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
659 				  int mirror_num)
660 {
661 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
662 	struct extent_map_tree *em_tree;
663 	struct compressed_bio *cb;
664 	unsigned int compressed_len;
665 	struct bio *comp_bio = NULL;
666 	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
667 	u64 cur_disk_byte = disk_bytenr;
668 	u64 next_stripe_start;
669 	u64 file_offset;
670 	u64 em_len;
671 	u64 em_start;
672 	struct extent_map *em;
673 	/* Initialize to 1 to make skip psi_memstall_leave unless needed */
674 	unsigned long pflags = 1;
675 	blk_status_t ret;
676 	int ret2;
677 	int i;
678 
679 	em_tree = &BTRFS_I(inode)->extent_tree;
680 
681 	file_offset = bio_first_bvec_all(bio)->bv_offset +
682 		      page_offset(bio_first_page_all(bio));
683 
684 	/* we need the actual starting offset of this extent in the file */
685 	read_lock(&em_tree->lock);
686 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
687 	read_unlock(&em_tree->lock);
688 	if (!em) {
689 		ret = BLK_STS_IOERR;
690 		goto out;
691 	}
692 
693 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
694 	compressed_len = em->block_len;
695 	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
696 	if (!cb) {
697 		ret = BLK_STS_RESOURCE;
698 		goto out;
699 	}
700 
701 	refcount_set(&cb->pending_ios, 1);
702 	cb->status = BLK_STS_OK;
703 	cb->inode = inode;
704 
705 	cb->start = em->orig_start;
706 	em_len = em->len;
707 	em_start = em->start;
708 
709 	cb->len = bio->bi_iter.bi_size;
710 	cb->compressed_len = compressed_len;
711 	cb->compress_type = em->compress_type;
712 	cb->orig_bio = bio;
713 
714 	free_extent_map(em);
715 	em = NULL;
716 
717 	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
718 	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
719 	if (!cb->compressed_pages) {
720 		ret = BLK_STS_RESOURCE;
721 		goto fail;
722 	}
723 
724 	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
725 	if (ret2) {
726 		ret = BLK_STS_RESOURCE;
727 		goto fail;
728 	}
729 
730 	add_ra_bio_pages(inode, em_start + em_len, cb, &pflags);
731 
732 	/* include any pages we added in add_ra-bio_pages */
733 	cb->len = bio->bi_iter.bi_size;
734 
735 	while (cur_disk_byte < disk_bytenr + compressed_len) {
736 		u64 offset = cur_disk_byte - disk_bytenr;
737 		unsigned int index = offset >> PAGE_SHIFT;
738 		unsigned int real_size;
739 		unsigned int added;
740 		struct page *page = cb->compressed_pages[index];
741 		bool submit = false;
742 
743 		/* Allocate new bio if submitted or not yet allocated */
744 		if (!comp_bio) {
745 			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
746 					REQ_OP_READ, end_compressed_bio_read,
747 					&next_stripe_start);
748 			if (IS_ERR(comp_bio)) {
749 				cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
750 				break;
751 			}
752 		}
753 		/*
754 		 * We should never reach next_stripe_start start as we will
755 		 * submit comp_bio when reach the boundary immediately.
756 		 */
757 		ASSERT(cur_disk_byte != next_stripe_start);
758 		/*
759 		 * We have various limit on the real read size:
760 		 * - stripe boundary
761 		 * - page boundary
762 		 * - compressed length boundary
763 		 */
764 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
765 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
766 		real_size = min_t(u64, real_size, compressed_len - offset);
767 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
768 
769 		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
770 		/*
771 		 * Maximum compressed extent is smaller than bio size limit,
772 		 * thus bio_add_page() should always success.
773 		 */
774 		ASSERT(added == real_size);
775 		cur_disk_byte += added;
776 
777 		/* Reached stripe boundary, need to submit */
778 		if (cur_disk_byte == next_stripe_start)
779 			submit = true;
780 
781 		/* Has finished the range, need to submit */
782 		if (cur_disk_byte == disk_bytenr + compressed_len)
783 			submit = true;
784 
785 		if (submit) {
786 			/* Save the original iter for read repair */
787 			if (bio_op(comp_bio) == REQ_OP_READ)
788 				btrfs_bio(comp_bio)->iter = comp_bio->bi_iter;
789 
790 			/*
791 			 * Save the initial offset of this chunk, as there
792 			 * is no direct correlation between compressed pages and
793 			 * the original file offset.  The field is only used for
794 			 * priting error messages.
795 			 */
796 			btrfs_bio(comp_bio)->file_offset = file_offset;
797 
798 			ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL);
799 			if (ret) {
800 				btrfs_bio_end_io(btrfs_bio(comp_bio), ret);
801 				break;
802 			}
803 
804 			ASSERT(comp_bio->bi_iter.bi_size);
805 			btrfs_submit_bio(fs_info, comp_bio, mirror_num);
806 			comp_bio = NULL;
807 		}
808 	}
809 
810 	if (!pflags)
811 		psi_memstall_leave(&pflags);
812 
813 	if (refcount_dec_and_test(&cb->pending_ios))
814 		finish_compressed_bio_read(cb);
815 	return;
816 
817 fail:
818 	if (cb->compressed_pages) {
819 		for (i = 0; i < cb->nr_pages; i++) {
820 			if (cb->compressed_pages[i])
821 				__free_page(cb->compressed_pages[i]);
822 		}
823 	}
824 
825 	kfree(cb->compressed_pages);
826 	kfree(cb);
827 out:
828 	free_extent_map(em);
829 	btrfs_bio_end_io(btrfs_bio(bio), ret);
830 	return;
831 }
832 
833 /*
834  * Heuristic uses systematic sampling to collect data from the input data
835  * range, the logic can be tuned by the following constants:
836  *
837  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
838  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
839  */
840 #define SAMPLING_READ_SIZE	(16)
841 #define SAMPLING_INTERVAL	(256)
842 
843 /*
844  * For statistical analysis of the input data we consider bytes that form a
845  * Galois Field of 256 objects. Each object has an attribute count, ie. how
846  * many times the object appeared in the sample.
847  */
848 #define BUCKET_SIZE		(256)
849 
850 /*
851  * The size of the sample is based on a statistical sampling rule of thumb.
852  * The common way is to perform sampling tests as long as the number of
853  * elements in each cell is at least 5.
854  *
855  * Instead of 5, we choose 32 to obtain more accurate results.
856  * If the data contain the maximum number of symbols, which is 256, we obtain a
857  * sample size bound by 8192.
858  *
859  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
860  * from up to 512 locations.
861  */
862 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
863 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
864 
865 struct bucket_item {
866 	u32 count;
867 };
868 
869 struct heuristic_ws {
870 	/* Partial copy of input data */
871 	u8 *sample;
872 	u32 sample_size;
873 	/* Buckets store counters for each byte value */
874 	struct bucket_item *bucket;
875 	/* Sorting buffer */
876 	struct bucket_item *bucket_b;
877 	struct list_head list;
878 };
879 
880 static struct workspace_manager heuristic_wsm;
881 
882 static void free_heuristic_ws(struct list_head *ws)
883 {
884 	struct heuristic_ws *workspace;
885 
886 	workspace = list_entry(ws, struct heuristic_ws, list);
887 
888 	kvfree(workspace->sample);
889 	kfree(workspace->bucket);
890 	kfree(workspace->bucket_b);
891 	kfree(workspace);
892 }
893 
894 static struct list_head *alloc_heuristic_ws(unsigned int level)
895 {
896 	struct heuristic_ws *ws;
897 
898 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
899 	if (!ws)
900 		return ERR_PTR(-ENOMEM);
901 
902 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
903 	if (!ws->sample)
904 		goto fail;
905 
906 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
907 	if (!ws->bucket)
908 		goto fail;
909 
910 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
911 	if (!ws->bucket_b)
912 		goto fail;
913 
914 	INIT_LIST_HEAD(&ws->list);
915 	return &ws->list;
916 fail:
917 	free_heuristic_ws(&ws->list);
918 	return ERR_PTR(-ENOMEM);
919 }
920 
921 const struct btrfs_compress_op btrfs_heuristic_compress = {
922 	.workspace_manager = &heuristic_wsm,
923 };
924 
925 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
926 	/* The heuristic is represented as compression type 0 */
927 	&btrfs_heuristic_compress,
928 	&btrfs_zlib_compress,
929 	&btrfs_lzo_compress,
930 	&btrfs_zstd_compress,
931 };
932 
933 static struct list_head *alloc_workspace(int type, unsigned int level)
934 {
935 	switch (type) {
936 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
937 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
938 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
939 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
940 	default:
941 		/*
942 		 * This can't happen, the type is validated several times
943 		 * before we get here.
944 		 */
945 		BUG();
946 	}
947 }
948 
949 static void free_workspace(int type, struct list_head *ws)
950 {
951 	switch (type) {
952 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
953 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
954 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
955 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
956 	default:
957 		/*
958 		 * This can't happen, the type is validated several times
959 		 * before we get here.
960 		 */
961 		BUG();
962 	}
963 }
964 
965 static void btrfs_init_workspace_manager(int type)
966 {
967 	struct workspace_manager *wsm;
968 	struct list_head *workspace;
969 
970 	wsm = btrfs_compress_op[type]->workspace_manager;
971 	INIT_LIST_HEAD(&wsm->idle_ws);
972 	spin_lock_init(&wsm->ws_lock);
973 	atomic_set(&wsm->total_ws, 0);
974 	init_waitqueue_head(&wsm->ws_wait);
975 
976 	/*
977 	 * Preallocate one workspace for each compression type so we can
978 	 * guarantee forward progress in the worst case
979 	 */
980 	workspace = alloc_workspace(type, 0);
981 	if (IS_ERR(workspace)) {
982 		pr_warn(
983 	"BTRFS: cannot preallocate compression workspace, will try later\n");
984 	} else {
985 		atomic_set(&wsm->total_ws, 1);
986 		wsm->free_ws = 1;
987 		list_add(workspace, &wsm->idle_ws);
988 	}
989 }
990 
991 static void btrfs_cleanup_workspace_manager(int type)
992 {
993 	struct workspace_manager *wsman;
994 	struct list_head *ws;
995 
996 	wsman = btrfs_compress_op[type]->workspace_manager;
997 	while (!list_empty(&wsman->idle_ws)) {
998 		ws = wsman->idle_ws.next;
999 		list_del(ws);
1000 		free_workspace(type, ws);
1001 		atomic_dec(&wsman->total_ws);
1002 	}
1003 }
1004 
1005 /*
1006  * This finds an available workspace or allocates a new one.
1007  * If it's not possible to allocate a new one, waits until there's one.
1008  * Preallocation makes a forward progress guarantees and we do not return
1009  * errors.
1010  */
1011 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1012 {
1013 	struct workspace_manager *wsm;
1014 	struct list_head *workspace;
1015 	int cpus = num_online_cpus();
1016 	unsigned nofs_flag;
1017 	struct list_head *idle_ws;
1018 	spinlock_t *ws_lock;
1019 	atomic_t *total_ws;
1020 	wait_queue_head_t *ws_wait;
1021 	int *free_ws;
1022 
1023 	wsm = btrfs_compress_op[type]->workspace_manager;
1024 	idle_ws	 = &wsm->idle_ws;
1025 	ws_lock	 = &wsm->ws_lock;
1026 	total_ws = &wsm->total_ws;
1027 	ws_wait	 = &wsm->ws_wait;
1028 	free_ws	 = &wsm->free_ws;
1029 
1030 again:
1031 	spin_lock(ws_lock);
1032 	if (!list_empty(idle_ws)) {
1033 		workspace = idle_ws->next;
1034 		list_del(workspace);
1035 		(*free_ws)--;
1036 		spin_unlock(ws_lock);
1037 		return workspace;
1038 
1039 	}
1040 	if (atomic_read(total_ws) > cpus) {
1041 		DEFINE_WAIT(wait);
1042 
1043 		spin_unlock(ws_lock);
1044 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1045 		if (atomic_read(total_ws) > cpus && !*free_ws)
1046 			schedule();
1047 		finish_wait(ws_wait, &wait);
1048 		goto again;
1049 	}
1050 	atomic_inc(total_ws);
1051 	spin_unlock(ws_lock);
1052 
1053 	/*
1054 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1055 	 * to turn it off here because we might get called from the restricted
1056 	 * context of btrfs_compress_bio/btrfs_compress_pages
1057 	 */
1058 	nofs_flag = memalloc_nofs_save();
1059 	workspace = alloc_workspace(type, level);
1060 	memalloc_nofs_restore(nofs_flag);
1061 
1062 	if (IS_ERR(workspace)) {
1063 		atomic_dec(total_ws);
1064 		wake_up(ws_wait);
1065 
1066 		/*
1067 		 * Do not return the error but go back to waiting. There's a
1068 		 * workspace preallocated for each type and the compression
1069 		 * time is bounded so we get to a workspace eventually. This
1070 		 * makes our caller's life easier.
1071 		 *
1072 		 * To prevent silent and low-probability deadlocks (when the
1073 		 * initial preallocation fails), check if there are any
1074 		 * workspaces at all.
1075 		 */
1076 		if (atomic_read(total_ws) == 0) {
1077 			static DEFINE_RATELIMIT_STATE(_rs,
1078 					/* once per minute */ 60 * HZ,
1079 					/* no burst */ 1);
1080 
1081 			if (__ratelimit(&_rs)) {
1082 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1083 			}
1084 		}
1085 		goto again;
1086 	}
1087 	return workspace;
1088 }
1089 
1090 static struct list_head *get_workspace(int type, int level)
1091 {
1092 	switch (type) {
1093 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1094 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1095 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1096 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1097 	default:
1098 		/*
1099 		 * This can't happen, the type is validated several times
1100 		 * before we get here.
1101 		 */
1102 		BUG();
1103 	}
1104 }
1105 
1106 /*
1107  * put a workspace struct back on the list or free it if we have enough
1108  * idle ones sitting around
1109  */
1110 void btrfs_put_workspace(int type, struct list_head *ws)
1111 {
1112 	struct workspace_manager *wsm;
1113 	struct list_head *idle_ws;
1114 	spinlock_t *ws_lock;
1115 	atomic_t *total_ws;
1116 	wait_queue_head_t *ws_wait;
1117 	int *free_ws;
1118 
1119 	wsm = btrfs_compress_op[type]->workspace_manager;
1120 	idle_ws	 = &wsm->idle_ws;
1121 	ws_lock	 = &wsm->ws_lock;
1122 	total_ws = &wsm->total_ws;
1123 	ws_wait	 = &wsm->ws_wait;
1124 	free_ws	 = &wsm->free_ws;
1125 
1126 	spin_lock(ws_lock);
1127 	if (*free_ws <= num_online_cpus()) {
1128 		list_add(ws, idle_ws);
1129 		(*free_ws)++;
1130 		spin_unlock(ws_lock);
1131 		goto wake;
1132 	}
1133 	spin_unlock(ws_lock);
1134 
1135 	free_workspace(type, ws);
1136 	atomic_dec(total_ws);
1137 wake:
1138 	cond_wake_up(ws_wait);
1139 }
1140 
1141 static void put_workspace(int type, struct list_head *ws)
1142 {
1143 	switch (type) {
1144 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1145 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1146 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1147 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1148 	default:
1149 		/*
1150 		 * This can't happen, the type is validated several times
1151 		 * before we get here.
1152 		 */
1153 		BUG();
1154 	}
1155 }
1156 
1157 /*
1158  * Adjust @level according to the limits of the compression algorithm or
1159  * fallback to default
1160  */
1161 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1162 {
1163 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1164 
1165 	if (level == 0)
1166 		level = ops->default_level;
1167 	else
1168 		level = min(level, ops->max_level);
1169 
1170 	return level;
1171 }
1172 
1173 /*
1174  * Given an address space and start and length, compress the bytes into @pages
1175  * that are allocated on demand.
1176  *
1177  * @type_level is encoded algorithm and level, where level 0 means whatever
1178  * default the algorithm chooses and is opaque here;
1179  * - compression algo are 0-3
1180  * - the level are bits 4-7
1181  *
1182  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1183  * and returns number of actually allocated pages
1184  *
1185  * @total_in is used to return the number of bytes actually read.  It
1186  * may be smaller than the input length if we had to exit early because we
1187  * ran out of room in the pages array or because we cross the
1188  * max_out threshold.
1189  *
1190  * @total_out is an in/out parameter, must be set to the input length and will
1191  * be also used to return the total number of compressed bytes
1192  */
1193 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1194 			 u64 start, struct page **pages,
1195 			 unsigned long *out_pages,
1196 			 unsigned long *total_in,
1197 			 unsigned long *total_out)
1198 {
1199 	int type = btrfs_compress_type(type_level);
1200 	int level = btrfs_compress_level(type_level);
1201 	struct list_head *workspace;
1202 	int ret;
1203 
1204 	level = btrfs_compress_set_level(type, level);
1205 	workspace = get_workspace(type, level);
1206 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1207 					 out_pages, total_in, total_out);
1208 	put_workspace(type, workspace);
1209 	return ret;
1210 }
1211 
1212 static int btrfs_decompress_bio(struct compressed_bio *cb)
1213 {
1214 	struct list_head *workspace;
1215 	int ret;
1216 	int type = cb->compress_type;
1217 
1218 	workspace = get_workspace(type, 0);
1219 	ret = compression_decompress_bio(workspace, cb);
1220 	put_workspace(type, workspace);
1221 
1222 	return ret;
1223 }
1224 
1225 /*
1226  * a less complex decompression routine.  Our compressed data fits in a
1227  * single page, and we want to read a single page out of it.
1228  * start_byte tells us the offset into the compressed data we're interested in
1229  */
1230 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1231 		     unsigned long start_byte, size_t srclen, size_t destlen)
1232 {
1233 	struct list_head *workspace;
1234 	int ret;
1235 
1236 	workspace = get_workspace(type, 0);
1237 	ret = compression_decompress(type, workspace, data_in, dest_page,
1238 				     start_byte, srclen, destlen);
1239 	put_workspace(type, workspace);
1240 
1241 	return ret;
1242 }
1243 
1244 void __init btrfs_init_compress(void)
1245 {
1246 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1247 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1248 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1249 	zstd_init_workspace_manager();
1250 }
1251 
1252 void __cold btrfs_exit_compress(void)
1253 {
1254 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1255 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1256 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1257 	zstd_cleanup_workspace_manager();
1258 }
1259 
1260 /*
1261  * Copy decompressed data from working buffer to pages.
1262  *
1263  * @buf:		The decompressed data buffer
1264  * @buf_len:		The decompressed data length
1265  * @decompressed:	Number of bytes that are already decompressed inside the
1266  * 			compressed extent
1267  * @cb:			The compressed extent descriptor
1268  * @orig_bio:		The original bio that the caller wants to read for
1269  *
1270  * An easier to understand graph is like below:
1271  *
1272  * 		|<- orig_bio ->|     |<- orig_bio->|
1273  * 	|<-------      full decompressed extent      ----->|
1274  * 	|<-----------    @cb range   ---->|
1275  * 	|			|<-- @buf_len -->|
1276  * 	|<--- @decompressed --->|
1277  *
1278  * Note that, @cb can be a subpage of the full decompressed extent, but
1279  * @cb->start always has the same as the orig_file_offset value of the full
1280  * decompressed extent.
1281  *
1282  * When reading compressed extent, we have to read the full compressed extent,
1283  * while @orig_bio may only want part of the range.
1284  * Thus this function will ensure only data covered by @orig_bio will be copied
1285  * to.
1286  *
1287  * Return 0 if we have copied all needed contents for @orig_bio.
1288  * Return >0 if we need continue decompress.
1289  */
1290 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1291 			      struct compressed_bio *cb, u32 decompressed)
1292 {
1293 	struct bio *orig_bio = cb->orig_bio;
1294 	/* Offset inside the full decompressed extent */
1295 	u32 cur_offset;
1296 
1297 	cur_offset = decompressed;
1298 	/* The main loop to do the copy */
1299 	while (cur_offset < decompressed + buf_len) {
1300 		struct bio_vec bvec;
1301 		size_t copy_len;
1302 		u32 copy_start;
1303 		/* Offset inside the full decompressed extent */
1304 		u32 bvec_offset;
1305 
1306 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1307 		/*
1308 		 * cb->start may underflow, but subtracting that value can still
1309 		 * give us correct offset inside the full decompressed extent.
1310 		 */
1311 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1312 
1313 		/* Haven't reached the bvec range, exit */
1314 		if (decompressed + buf_len <= bvec_offset)
1315 			return 1;
1316 
1317 		copy_start = max(cur_offset, bvec_offset);
1318 		copy_len = min(bvec_offset + bvec.bv_len,
1319 			       decompressed + buf_len) - copy_start;
1320 		ASSERT(copy_len);
1321 
1322 		/*
1323 		 * Extra range check to ensure we didn't go beyond
1324 		 * @buf + @buf_len.
1325 		 */
1326 		ASSERT(copy_start - decompressed < buf_len);
1327 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1328 			       buf + copy_start - decompressed, copy_len);
1329 		cur_offset += copy_len;
1330 
1331 		bio_advance(orig_bio, copy_len);
1332 		/* Finished the bio */
1333 		if (!orig_bio->bi_iter.bi_size)
1334 			return 0;
1335 	}
1336 	return 1;
1337 }
1338 
1339 /*
1340  * Shannon Entropy calculation
1341  *
1342  * Pure byte distribution analysis fails to determine compressibility of data.
1343  * Try calculating entropy to estimate the average minimum number of bits
1344  * needed to encode the sampled data.
1345  *
1346  * For convenience, return the percentage of needed bits, instead of amount of
1347  * bits directly.
1348  *
1349  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1350  *			    and can be compressible with high probability
1351  *
1352  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1353  *
1354  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1355  */
1356 #define ENTROPY_LVL_ACEPTABLE		(65)
1357 #define ENTROPY_LVL_HIGH		(80)
1358 
1359 /*
1360  * For increasead precision in shannon_entropy calculation,
1361  * let's do pow(n, M) to save more digits after comma:
1362  *
1363  * - maximum int bit length is 64
1364  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1365  * - 13 * 4 = 52 < 64		-> M = 4
1366  *
1367  * So use pow(n, 4).
1368  */
1369 static inline u32 ilog2_w(u64 n)
1370 {
1371 	return ilog2(n * n * n * n);
1372 }
1373 
1374 static u32 shannon_entropy(struct heuristic_ws *ws)
1375 {
1376 	const u32 entropy_max = 8 * ilog2_w(2);
1377 	u32 entropy_sum = 0;
1378 	u32 p, p_base, sz_base;
1379 	u32 i;
1380 
1381 	sz_base = ilog2_w(ws->sample_size);
1382 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1383 		p = ws->bucket[i].count;
1384 		p_base = ilog2_w(p);
1385 		entropy_sum += p * (sz_base - p_base);
1386 	}
1387 
1388 	entropy_sum /= ws->sample_size;
1389 	return entropy_sum * 100 / entropy_max;
1390 }
1391 
1392 #define RADIX_BASE		4U
1393 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1394 
1395 static u8 get4bits(u64 num, int shift) {
1396 	u8 low4bits;
1397 
1398 	num >>= shift;
1399 	/* Reverse order */
1400 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1401 	return low4bits;
1402 }
1403 
1404 /*
1405  * Use 4 bits as radix base
1406  * Use 16 u32 counters for calculating new position in buf array
1407  *
1408  * @array     - array that will be sorted
1409  * @array_buf - buffer array to store sorting results
1410  *              must be equal in size to @array
1411  * @num       - array size
1412  */
1413 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1414 		       int num)
1415 {
1416 	u64 max_num;
1417 	u64 buf_num;
1418 	u32 counters[COUNTERS_SIZE];
1419 	u32 new_addr;
1420 	u32 addr;
1421 	int bitlen;
1422 	int shift;
1423 	int i;
1424 
1425 	/*
1426 	 * Try avoid useless loop iterations for small numbers stored in big
1427 	 * counters.  Example: 48 33 4 ... in 64bit array
1428 	 */
1429 	max_num = array[0].count;
1430 	for (i = 1; i < num; i++) {
1431 		buf_num = array[i].count;
1432 		if (buf_num > max_num)
1433 			max_num = buf_num;
1434 	}
1435 
1436 	buf_num = ilog2(max_num);
1437 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1438 
1439 	shift = 0;
1440 	while (shift < bitlen) {
1441 		memset(counters, 0, sizeof(counters));
1442 
1443 		for (i = 0; i < num; i++) {
1444 			buf_num = array[i].count;
1445 			addr = get4bits(buf_num, shift);
1446 			counters[addr]++;
1447 		}
1448 
1449 		for (i = 1; i < COUNTERS_SIZE; i++)
1450 			counters[i] += counters[i - 1];
1451 
1452 		for (i = num - 1; i >= 0; i--) {
1453 			buf_num = array[i].count;
1454 			addr = get4bits(buf_num, shift);
1455 			counters[addr]--;
1456 			new_addr = counters[addr];
1457 			array_buf[new_addr] = array[i];
1458 		}
1459 
1460 		shift += RADIX_BASE;
1461 
1462 		/*
1463 		 * Normal radix expects to move data from a temporary array, to
1464 		 * the main one.  But that requires some CPU time. Avoid that
1465 		 * by doing another sort iteration to original array instead of
1466 		 * memcpy()
1467 		 */
1468 		memset(counters, 0, sizeof(counters));
1469 
1470 		for (i = 0; i < num; i ++) {
1471 			buf_num = array_buf[i].count;
1472 			addr = get4bits(buf_num, shift);
1473 			counters[addr]++;
1474 		}
1475 
1476 		for (i = 1; i < COUNTERS_SIZE; i++)
1477 			counters[i] += counters[i - 1];
1478 
1479 		for (i = num - 1; i >= 0; i--) {
1480 			buf_num = array_buf[i].count;
1481 			addr = get4bits(buf_num, shift);
1482 			counters[addr]--;
1483 			new_addr = counters[addr];
1484 			array[new_addr] = array_buf[i];
1485 		}
1486 
1487 		shift += RADIX_BASE;
1488 	}
1489 }
1490 
1491 /*
1492  * Size of the core byte set - how many bytes cover 90% of the sample
1493  *
1494  * There are several types of structured binary data that use nearly all byte
1495  * values. The distribution can be uniform and counts in all buckets will be
1496  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1497  *
1498  * Other possibility is normal (Gaussian) distribution, where the data could
1499  * be potentially compressible, but we have to take a few more steps to decide
1500  * how much.
1501  *
1502  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1503  *                       compression algo can easy fix that
1504  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1505  *                       probability is not compressible
1506  */
1507 #define BYTE_CORE_SET_LOW		(64)
1508 #define BYTE_CORE_SET_HIGH		(200)
1509 
1510 static int byte_core_set_size(struct heuristic_ws *ws)
1511 {
1512 	u32 i;
1513 	u32 coreset_sum = 0;
1514 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1515 	struct bucket_item *bucket = ws->bucket;
1516 
1517 	/* Sort in reverse order */
1518 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1519 
1520 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1521 		coreset_sum += bucket[i].count;
1522 
1523 	if (coreset_sum > core_set_threshold)
1524 		return i;
1525 
1526 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1527 		coreset_sum += bucket[i].count;
1528 		if (coreset_sum > core_set_threshold)
1529 			break;
1530 	}
1531 
1532 	return i;
1533 }
1534 
1535 /*
1536  * Count byte values in buckets.
1537  * This heuristic can detect textual data (configs, xml, json, html, etc).
1538  * Because in most text-like data byte set is restricted to limited number of
1539  * possible characters, and that restriction in most cases makes data easy to
1540  * compress.
1541  *
1542  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1543  *	less - compressible
1544  *	more - need additional analysis
1545  */
1546 #define BYTE_SET_THRESHOLD		(64)
1547 
1548 static u32 byte_set_size(const struct heuristic_ws *ws)
1549 {
1550 	u32 i;
1551 	u32 byte_set_size = 0;
1552 
1553 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1554 		if (ws->bucket[i].count > 0)
1555 			byte_set_size++;
1556 	}
1557 
1558 	/*
1559 	 * Continue collecting count of byte values in buckets.  If the byte
1560 	 * set size is bigger then the threshold, it's pointless to continue,
1561 	 * the detection technique would fail for this type of data.
1562 	 */
1563 	for (; i < BUCKET_SIZE; i++) {
1564 		if (ws->bucket[i].count > 0) {
1565 			byte_set_size++;
1566 			if (byte_set_size > BYTE_SET_THRESHOLD)
1567 				return byte_set_size;
1568 		}
1569 	}
1570 
1571 	return byte_set_size;
1572 }
1573 
1574 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1575 {
1576 	const u32 half_of_sample = ws->sample_size / 2;
1577 	const u8 *data = ws->sample;
1578 
1579 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1580 }
1581 
1582 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1583 				     struct heuristic_ws *ws)
1584 {
1585 	struct page *page;
1586 	u64 index, index_end;
1587 	u32 i, curr_sample_pos;
1588 	u8 *in_data;
1589 
1590 	/*
1591 	 * Compression handles the input data by chunks of 128KiB
1592 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1593 	 *
1594 	 * We do the same for the heuristic and loop over the whole range.
1595 	 *
1596 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1597 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1598 	 */
1599 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1600 		end = start + BTRFS_MAX_UNCOMPRESSED;
1601 
1602 	index = start >> PAGE_SHIFT;
1603 	index_end = end >> PAGE_SHIFT;
1604 
1605 	/* Don't miss unaligned end */
1606 	if (!IS_ALIGNED(end, PAGE_SIZE))
1607 		index_end++;
1608 
1609 	curr_sample_pos = 0;
1610 	while (index < index_end) {
1611 		page = find_get_page(inode->i_mapping, index);
1612 		in_data = kmap_local_page(page);
1613 		/* Handle case where the start is not aligned to PAGE_SIZE */
1614 		i = start % PAGE_SIZE;
1615 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1616 			/* Don't sample any garbage from the last page */
1617 			if (start > end - SAMPLING_READ_SIZE)
1618 				break;
1619 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1620 					SAMPLING_READ_SIZE);
1621 			i += SAMPLING_INTERVAL;
1622 			start += SAMPLING_INTERVAL;
1623 			curr_sample_pos += SAMPLING_READ_SIZE;
1624 		}
1625 		kunmap_local(in_data);
1626 		put_page(page);
1627 
1628 		index++;
1629 	}
1630 
1631 	ws->sample_size = curr_sample_pos;
1632 }
1633 
1634 /*
1635  * Compression heuristic.
1636  *
1637  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1638  * quickly (compared to direct compression) detect data characteristics
1639  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1640  * data.
1641  *
1642  * The following types of analysis can be performed:
1643  * - detect mostly zero data
1644  * - detect data with low "byte set" size (text, etc)
1645  * - detect data with low/high "core byte" set
1646  *
1647  * Return non-zero if the compression should be done, 0 otherwise.
1648  */
1649 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1650 {
1651 	struct list_head *ws_list = get_workspace(0, 0);
1652 	struct heuristic_ws *ws;
1653 	u32 i;
1654 	u8 byte;
1655 	int ret = 0;
1656 
1657 	ws = list_entry(ws_list, struct heuristic_ws, list);
1658 
1659 	heuristic_collect_sample(inode, start, end, ws);
1660 
1661 	if (sample_repeated_patterns(ws)) {
1662 		ret = 1;
1663 		goto out;
1664 	}
1665 
1666 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1667 
1668 	for (i = 0; i < ws->sample_size; i++) {
1669 		byte = ws->sample[i];
1670 		ws->bucket[byte].count++;
1671 	}
1672 
1673 	i = byte_set_size(ws);
1674 	if (i < BYTE_SET_THRESHOLD) {
1675 		ret = 2;
1676 		goto out;
1677 	}
1678 
1679 	i = byte_core_set_size(ws);
1680 	if (i <= BYTE_CORE_SET_LOW) {
1681 		ret = 3;
1682 		goto out;
1683 	}
1684 
1685 	if (i >= BYTE_CORE_SET_HIGH) {
1686 		ret = 0;
1687 		goto out;
1688 	}
1689 
1690 	i = shannon_entropy(ws);
1691 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1692 		ret = 4;
1693 		goto out;
1694 	}
1695 
1696 	/*
1697 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1698 	 * needed to give green light to compression.
1699 	 *
1700 	 * For now just assume that compression at that level is not worth the
1701 	 * resources because:
1702 	 *
1703 	 * 1. it is possible to defrag the data later
1704 	 *
1705 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1706 	 * values, every bucket has counter at level ~54. The heuristic would
1707 	 * be confused. This can happen when data have some internal repeated
1708 	 * patterns like "abbacbbc...". This can be detected by analyzing
1709 	 * pairs of bytes, which is too costly.
1710 	 */
1711 	if (i < ENTROPY_LVL_HIGH) {
1712 		ret = 5;
1713 		goto out;
1714 	} else {
1715 		ret = 0;
1716 		goto out;
1717 	}
1718 
1719 out:
1720 	put_workspace(0, ws_list);
1721 	return ret;
1722 }
1723 
1724 /*
1725  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1726  * level, unrecognized string will set the default level
1727  */
1728 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1729 {
1730 	unsigned int level = 0;
1731 	int ret;
1732 
1733 	if (!type)
1734 		return 0;
1735 
1736 	if (str[0] == ':') {
1737 		ret = kstrtouint(str + 1, 10, &level);
1738 		if (ret)
1739 			level = 0;
1740 	}
1741 
1742 	level = btrfs_compress_set_level(type, level);
1743 
1744 	return level;
1745 }
1746