xref: /openbmc/linux/fs/btrfs/compression.c (revision e847c767)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <crypto/hash.h>
24 #include "misc.h"
25 #include "ctree.h"
26 #include "fs.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "btrfs_inode.h"
30 #include "bio.h"
31 #include "ordered-data.h"
32 #include "compression.h"
33 #include "extent_io.h"
34 #include "extent_map.h"
35 #include "subpage.h"
36 #include "zoned.h"
37 #include "file-item.h"
38 #include "super.h"
39 
40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
41 
42 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
43 {
44 	switch (type) {
45 	case BTRFS_COMPRESS_ZLIB:
46 	case BTRFS_COMPRESS_LZO:
47 	case BTRFS_COMPRESS_ZSTD:
48 	case BTRFS_COMPRESS_NONE:
49 		return btrfs_compress_types[type];
50 	default:
51 		break;
52 	}
53 
54 	return NULL;
55 }
56 
57 bool btrfs_compress_is_valid_type(const char *str, size_t len)
58 {
59 	int i;
60 
61 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
62 		size_t comp_len = strlen(btrfs_compress_types[i]);
63 
64 		if (len < comp_len)
65 			continue;
66 
67 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
68 			return true;
69 	}
70 	return false;
71 }
72 
73 static int compression_compress_pages(int type, struct list_head *ws,
74                struct address_space *mapping, u64 start, struct page **pages,
75                unsigned long *out_pages, unsigned long *total_in,
76                unsigned long *total_out)
77 {
78 	switch (type) {
79 	case BTRFS_COMPRESS_ZLIB:
80 		return zlib_compress_pages(ws, mapping, start, pages,
81 				out_pages, total_in, total_out);
82 	case BTRFS_COMPRESS_LZO:
83 		return lzo_compress_pages(ws, mapping, start, pages,
84 				out_pages, total_in, total_out);
85 	case BTRFS_COMPRESS_ZSTD:
86 		return zstd_compress_pages(ws, mapping, start, pages,
87 				out_pages, total_in, total_out);
88 	case BTRFS_COMPRESS_NONE:
89 	default:
90 		/*
91 		 * This can happen when compression races with remount setting
92 		 * it to 'no compress', while caller doesn't call
93 		 * inode_need_compress() to check if we really need to
94 		 * compress.
95 		 *
96 		 * Not a big deal, just need to inform caller that we
97 		 * haven't allocated any pages yet.
98 		 */
99 		*out_pages = 0;
100 		return -E2BIG;
101 	}
102 }
103 
104 static int compression_decompress_bio(struct list_head *ws,
105 				      struct compressed_bio *cb)
106 {
107 	switch (cb->compress_type) {
108 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
109 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
110 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
111 	case BTRFS_COMPRESS_NONE:
112 	default:
113 		/*
114 		 * This can't happen, the type is validated several times
115 		 * before we get here.
116 		 */
117 		BUG();
118 	}
119 }
120 
121 static int compression_decompress(int type, struct list_head *ws,
122                const u8 *data_in, struct page *dest_page,
123                unsigned long start_byte, size_t srclen, size_t destlen)
124 {
125 	switch (type) {
126 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
127 						start_byte, srclen, destlen);
128 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
129 						start_byte, srclen, destlen);
130 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
131 						start_byte, srclen, destlen);
132 	case BTRFS_COMPRESS_NONE:
133 	default:
134 		/*
135 		 * This can't happen, the type is validated several times
136 		 * before we get here.
137 		 */
138 		BUG();
139 	}
140 }
141 
142 static int btrfs_decompress_bio(struct compressed_bio *cb);
143 
144 static void end_compressed_bio_read(struct btrfs_bio *bbio)
145 {
146 	struct compressed_bio *cb = bbio->private;
147 	unsigned int index;
148 	struct page *page;
149 
150 	if (bbio->bio.bi_status)
151 		cb->status = bbio->bio.bi_status;
152 	else
153 		cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));
154 
155 	/* Release the compressed pages */
156 	for (index = 0; index < cb->nr_pages; index++) {
157 		page = cb->compressed_pages[index];
158 		page->mapping = NULL;
159 		put_page(page);
160 	}
161 
162 	/* Do io completion on the original bio */
163 	btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status);
164 
165 	/* Finally free the cb struct */
166 	kfree(cb->compressed_pages);
167 	kfree(cb);
168 	bio_put(&bbio->bio);
169 }
170 
171 /*
172  * Clear the writeback bits on all of the file
173  * pages for a compressed write
174  */
175 static noinline void end_compressed_writeback(struct inode *inode,
176 					      const struct compressed_bio *cb)
177 {
178 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
179 	unsigned long index = cb->start >> PAGE_SHIFT;
180 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
181 	struct folio_batch fbatch;
182 	const int errno = blk_status_to_errno(cb->status);
183 	int i;
184 	int ret;
185 
186 	if (errno)
187 		mapping_set_error(inode->i_mapping, errno);
188 
189 	folio_batch_init(&fbatch);
190 	while (index <= end_index) {
191 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
192 				&fbatch);
193 
194 		if (ret == 0)
195 			return;
196 
197 		for (i = 0; i < ret; i++) {
198 			struct folio *folio = fbatch.folios[i];
199 
200 			if (errno)
201 				folio_set_error(folio);
202 			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
203 							 cb->start, cb->len);
204 		}
205 		folio_batch_release(&fbatch);
206 	}
207 	/* the inode may be gone now */
208 }
209 
210 static void finish_compressed_bio_write(struct compressed_bio *cb)
211 {
212 	struct inode *inode = cb->inode;
213 	unsigned int index;
214 
215 	/*
216 	 * Ok, we're the last bio for this extent, step one is to call back
217 	 * into the FS and do all the end_io operations.
218 	 */
219 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
220 			cb->start, cb->start + cb->len - 1,
221 			cb->status == BLK_STS_OK);
222 
223 	if (cb->writeback)
224 		end_compressed_writeback(inode, cb);
225 	/* Note, our inode could be gone now */
226 
227 	/*
228 	 * Release the compressed pages, these came from alloc_page and
229 	 * are not attached to the inode at all
230 	 */
231 	for (index = 0; index < cb->nr_pages; index++) {
232 		struct page *page = cb->compressed_pages[index];
233 
234 		page->mapping = NULL;
235 		put_page(page);
236 	}
237 
238 	/* Finally free the cb struct */
239 	kfree(cb->compressed_pages);
240 	kfree(cb);
241 }
242 
243 static void btrfs_finish_compressed_write_work(struct work_struct *work)
244 {
245 	struct compressed_bio *cb =
246 		container_of(work, struct compressed_bio, write_end_work);
247 
248 	finish_compressed_bio_write(cb);
249 }
250 
251 /*
252  * Do the cleanup once all the compressed pages hit the disk.  This will clear
253  * writeback on the file pages and free the compressed pages.
254  *
255  * This also calls the writeback end hooks for the file pages so that metadata
256  * and checksums can be updated in the file.
257  */
258 static void end_compressed_bio_write(struct btrfs_bio *bbio)
259 {
260 	struct compressed_bio *cb = bbio->private;
261 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
262 
263 	cb->status = bbio->bio.bi_status;
264 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
265 
266 	bio_put(&bbio->bio);
267 }
268 
269 /*
270  * worker function to build and submit bios for previously compressed pages.
271  * The corresponding pages in the inode should be marked for writeback
272  * and the compressed pages should have a reference on them for dropping
273  * when the IO is complete.
274  *
275  * This also checksums the file bytes and gets things ready for
276  * the end io hooks.
277  */
278 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
279 				 unsigned int len, u64 disk_start,
280 				 unsigned int compressed_len,
281 				 struct page **compressed_pages,
282 				 unsigned int nr_pages,
283 				 blk_opf_t write_flags,
284 				 struct cgroup_subsys_state *blkcg_css,
285 				 bool writeback)
286 {
287 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
288 	struct bio *bio = NULL;
289 	struct compressed_bio *cb;
290 	u64 cur_disk_bytenr = disk_start;
291 	blk_status_t ret = BLK_STS_OK;
292 
293 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
294 	       IS_ALIGNED(len, fs_info->sectorsize));
295 	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
296 	if (!cb)
297 		return BLK_STS_RESOURCE;
298 	cb->status = BLK_STS_OK;
299 	cb->inode = &inode->vfs_inode;
300 	cb->start = start;
301 	cb->len = len;
302 	cb->compressed_pages = compressed_pages;
303 	cb->compressed_len = compressed_len;
304 	cb->writeback = writeback;
305 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
306 	cb->nr_pages = nr_pages;
307 
308 	if (blkcg_css) {
309 		kthread_associate_blkcg(blkcg_css);
310 		write_flags |= REQ_CGROUP_PUNT;
311 	}
312 
313 	write_flags |= REQ_BTRFS_ONE_ORDERED;
314 	bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_WRITE | write_flags,
315 			      BTRFS_I(cb->inode), end_compressed_bio_write, cb);
316 	bio->bi_iter.bi_sector = cur_disk_bytenr >> SECTOR_SHIFT;
317 	btrfs_bio(bio)->file_offset = start;
318 
319 	while (cur_disk_bytenr < disk_start + compressed_len) {
320 		u64 offset = cur_disk_bytenr - disk_start;
321 		unsigned int index = offset >> PAGE_SHIFT;
322 		unsigned int real_size;
323 		unsigned int added;
324 		struct page *page = compressed_pages[index];
325 
326 		/*
327 		 * We have various limits on the real read size:
328 		 * - page boundary
329 		 * - compressed length boundary
330 		 */
331 		real_size = min_t(u64, U32_MAX, PAGE_SIZE - offset_in_page(offset));
332 		real_size = min_t(u64, real_size, compressed_len - offset);
333 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
334 
335 		added = bio_add_page(bio, page, real_size, offset_in_page(offset));
336 		/*
337 		 * Maximum compressed extent is smaller than bio size limit,
338 		 * thus bio_add_page() should always success.
339 		 */
340 		ASSERT(added == real_size);
341 		cur_disk_bytenr += added;
342 	}
343 
344 	/* Finished the range. */
345 	ASSERT(bio->bi_iter.bi_size);
346 	btrfs_submit_bio(bio, 0);
347 	if (blkcg_css)
348 		kthread_associate_blkcg(NULL);
349 	return ret;
350 }
351 
352 static u64 bio_end_offset(struct bio *bio)
353 {
354 	struct bio_vec *last = bio_last_bvec_all(bio);
355 
356 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
357 }
358 
359 /*
360  * Add extra pages in the same compressed file extent so that we don't need to
361  * re-read the same extent again and again.
362  *
363  * NOTE: this won't work well for subpage, as for subpage read, we lock the
364  * full page then submit bio for each compressed/regular extents.
365  *
366  * This means, if we have several sectors in the same page points to the same
367  * on-disk compressed data, we will re-read the same extent many times and
368  * this function can only help for the next page.
369  */
370 static noinline int add_ra_bio_pages(struct inode *inode,
371 				     u64 compressed_end,
372 				     struct compressed_bio *cb,
373 				     int *memstall, unsigned long *pflags)
374 {
375 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
376 	unsigned long end_index;
377 	u64 cur = bio_end_offset(cb->orig_bio);
378 	u64 isize = i_size_read(inode);
379 	int ret;
380 	struct page *page;
381 	struct extent_map *em;
382 	struct address_space *mapping = inode->i_mapping;
383 	struct extent_map_tree *em_tree;
384 	struct extent_io_tree *tree;
385 	int sectors_missed = 0;
386 
387 	em_tree = &BTRFS_I(inode)->extent_tree;
388 	tree = &BTRFS_I(inode)->io_tree;
389 
390 	if (isize == 0)
391 		return 0;
392 
393 	/*
394 	 * For current subpage support, we only support 64K page size,
395 	 * which means maximum compressed extent size (128K) is just 2x page
396 	 * size.
397 	 * This makes readahead less effective, so here disable readahead for
398 	 * subpage for now, until full compressed write is supported.
399 	 */
400 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
401 		return 0;
402 
403 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
404 
405 	while (cur < compressed_end) {
406 		u64 page_end;
407 		u64 pg_index = cur >> PAGE_SHIFT;
408 		u32 add_size;
409 
410 		if (pg_index > end_index)
411 			break;
412 
413 		page = xa_load(&mapping->i_pages, pg_index);
414 		if (page && !xa_is_value(page)) {
415 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
416 					  fs_info->sectorsize_bits;
417 
418 			/* Beyond threshold, no need to continue */
419 			if (sectors_missed > 4)
420 				break;
421 
422 			/*
423 			 * Jump to next page start as we already have page for
424 			 * current offset.
425 			 */
426 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
427 			continue;
428 		}
429 
430 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
431 								 ~__GFP_FS));
432 		if (!page)
433 			break;
434 
435 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
436 			put_page(page);
437 			/* There is already a page, skip to page end */
438 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
439 			continue;
440 		}
441 
442 		if (!*memstall && PageWorkingset(page)) {
443 			psi_memstall_enter(pflags);
444 			*memstall = 1;
445 		}
446 
447 		ret = set_page_extent_mapped(page);
448 		if (ret < 0) {
449 			unlock_page(page);
450 			put_page(page);
451 			break;
452 		}
453 
454 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
455 		lock_extent(tree, cur, page_end, NULL);
456 		read_lock(&em_tree->lock);
457 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
458 		read_unlock(&em_tree->lock);
459 
460 		/*
461 		 * At this point, we have a locked page in the page cache for
462 		 * these bytes in the file.  But, we have to make sure they map
463 		 * to this compressed extent on disk.
464 		 */
465 		if (!em || cur < em->start ||
466 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
467 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
468 			free_extent_map(em);
469 			unlock_extent(tree, cur, page_end, NULL);
470 			unlock_page(page);
471 			put_page(page);
472 			break;
473 		}
474 		free_extent_map(em);
475 
476 		if (page->index == end_index) {
477 			size_t zero_offset = offset_in_page(isize);
478 
479 			if (zero_offset) {
480 				int zeros;
481 				zeros = PAGE_SIZE - zero_offset;
482 				memzero_page(page, zero_offset, zeros);
483 			}
484 		}
485 
486 		add_size = min(em->start + em->len, page_end + 1) - cur;
487 		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
488 		if (ret != add_size) {
489 			unlock_extent(tree, cur, page_end, NULL);
490 			unlock_page(page);
491 			put_page(page);
492 			break;
493 		}
494 		/*
495 		 * If it's subpage, we also need to increase its
496 		 * subpage::readers number, as at endio we will decrease
497 		 * subpage::readers and to unlock the page.
498 		 */
499 		if (fs_info->sectorsize < PAGE_SIZE)
500 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
501 		put_page(page);
502 		cur += add_size;
503 	}
504 	return 0;
505 }
506 
507 /*
508  * for a compressed read, the bio we get passed has all the inode pages
509  * in it.  We don't actually do IO on those pages but allocate new ones
510  * to hold the compressed pages on disk.
511  *
512  * bio->bi_iter.bi_sector points to the compressed extent on disk
513  * bio->bi_io_vec points to all of the inode pages
514  *
515  * After the compressed pages are read, we copy the bytes into the
516  * bio we were passed and then call the bio end_io calls
517  */
518 void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
519 				  int mirror_num)
520 {
521 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
522 	struct extent_map_tree *em_tree;
523 	struct compressed_bio *cb;
524 	unsigned int compressed_len;
525 	struct bio *comp_bio;
526 	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
527 	u64 cur_disk_byte = disk_bytenr;
528 	u64 file_offset;
529 	u64 em_len;
530 	u64 em_start;
531 	struct extent_map *em;
532 	unsigned long pflags;
533 	int memstall = 0;
534 	blk_status_t ret;
535 	int ret2;
536 	int i;
537 
538 	em_tree = &BTRFS_I(inode)->extent_tree;
539 
540 	file_offset = bio_first_bvec_all(bio)->bv_offset +
541 		      page_offset(bio_first_page_all(bio));
542 
543 	/* we need the actual starting offset of this extent in the file */
544 	read_lock(&em_tree->lock);
545 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
546 	read_unlock(&em_tree->lock);
547 	if (!em) {
548 		ret = BLK_STS_IOERR;
549 		goto out;
550 	}
551 
552 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
553 	compressed_len = em->block_len;
554 	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
555 	if (!cb) {
556 		ret = BLK_STS_RESOURCE;
557 		goto out;
558 	}
559 
560 	cb->status = BLK_STS_OK;
561 	cb->inode = inode;
562 
563 	cb->start = em->orig_start;
564 	em_len = em->len;
565 	em_start = em->start;
566 
567 	cb->len = bio->bi_iter.bi_size;
568 	cb->compressed_len = compressed_len;
569 	cb->compress_type = em->compress_type;
570 	cb->orig_bio = bio;
571 
572 	free_extent_map(em);
573 	em = NULL;
574 
575 	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
576 	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
577 	if (!cb->compressed_pages) {
578 		ret = BLK_STS_RESOURCE;
579 		goto fail;
580 	}
581 
582 	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
583 	if (ret2) {
584 		ret = BLK_STS_RESOURCE;
585 		goto fail;
586 	}
587 
588 	add_ra_bio_pages(inode, em_start + em_len, cb, &memstall, &pflags);
589 
590 	/* include any pages we added in add_ra-bio_pages */
591 	cb->len = bio->bi_iter.bi_size;
592 
593 	comp_bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, BTRFS_I(cb->inode),
594 				   end_compressed_bio_read, cb);
595 	comp_bio->bi_iter.bi_sector = (cur_disk_byte >> SECTOR_SHIFT);
596 
597 	while (cur_disk_byte < disk_bytenr + compressed_len) {
598 		u64 offset = cur_disk_byte - disk_bytenr;
599 		unsigned int index = offset >> PAGE_SHIFT;
600 		unsigned int real_size;
601 		unsigned int added;
602 		struct page *page = cb->compressed_pages[index];
603 
604 		/*
605 		 * We have various limit on the real read size:
606 		 * - page boundary
607 		 * - compressed length boundary
608 		 */
609 		real_size = min_t(u64, U32_MAX, PAGE_SIZE - offset_in_page(offset));
610 		real_size = min_t(u64, real_size, compressed_len - offset);
611 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
612 
613 		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
614 		/*
615 		 * Maximum compressed extent is smaller than bio size limit,
616 		 * thus bio_add_page() should always success.
617 		 */
618 		ASSERT(added == real_size);
619 		cur_disk_byte += added;
620 	}
621 
622 	if (memstall)
623 		psi_memstall_leave(&pflags);
624 
625 	/*
626 	 * Stash the initial offset of this chunk, as there is no direct
627 	 * correlation between compressed pages and the original file offset.
628 	 * The field is only used for printing error messages anyway.
629 	 */
630 	btrfs_bio(comp_bio)->file_offset = file_offset;
631 
632 	ASSERT(comp_bio->bi_iter.bi_size);
633 	btrfs_submit_bio(comp_bio, mirror_num);
634 	return;
635 
636 fail:
637 	if (cb->compressed_pages) {
638 		for (i = 0; i < cb->nr_pages; i++) {
639 			if (cb->compressed_pages[i])
640 				__free_page(cb->compressed_pages[i]);
641 		}
642 	}
643 
644 	kfree(cb->compressed_pages);
645 	kfree(cb);
646 out:
647 	free_extent_map(em);
648 	btrfs_bio_end_io(btrfs_bio(bio), ret);
649 	return;
650 }
651 
652 /*
653  * Heuristic uses systematic sampling to collect data from the input data
654  * range, the logic can be tuned by the following constants:
655  *
656  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
657  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
658  */
659 #define SAMPLING_READ_SIZE	(16)
660 #define SAMPLING_INTERVAL	(256)
661 
662 /*
663  * For statistical analysis of the input data we consider bytes that form a
664  * Galois Field of 256 objects. Each object has an attribute count, ie. how
665  * many times the object appeared in the sample.
666  */
667 #define BUCKET_SIZE		(256)
668 
669 /*
670  * The size of the sample is based on a statistical sampling rule of thumb.
671  * The common way is to perform sampling tests as long as the number of
672  * elements in each cell is at least 5.
673  *
674  * Instead of 5, we choose 32 to obtain more accurate results.
675  * If the data contain the maximum number of symbols, which is 256, we obtain a
676  * sample size bound by 8192.
677  *
678  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
679  * from up to 512 locations.
680  */
681 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
682 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
683 
684 struct bucket_item {
685 	u32 count;
686 };
687 
688 struct heuristic_ws {
689 	/* Partial copy of input data */
690 	u8 *sample;
691 	u32 sample_size;
692 	/* Buckets store counters for each byte value */
693 	struct bucket_item *bucket;
694 	/* Sorting buffer */
695 	struct bucket_item *bucket_b;
696 	struct list_head list;
697 };
698 
699 static struct workspace_manager heuristic_wsm;
700 
701 static void free_heuristic_ws(struct list_head *ws)
702 {
703 	struct heuristic_ws *workspace;
704 
705 	workspace = list_entry(ws, struct heuristic_ws, list);
706 
707 	kvfree(workspace->sample);
708 	kfree(workspace->bucket);
709 	kfree(workspace->bucket_b);
710 	kfree(workspace);
711 }
712 
713 static struct list_head *alloc_heuristic_ws(unsigned int level)
714 {
715 	struct heuristic_ws *ws;
716 
717 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
718 	if (!ws)
719 		return ERR_PTR(-ENOMEM);
720 
721 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
722 	if (!ws->sample)
723 		goto fail;
724 
725 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
726 	if (!ws->bucket)
727 		goto fail;
728 
729 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
730 	if (!ws->bucket_b)
731 		goto fail;
732 
733 	INIT_LIST_HEAD(&ws->list);
734 	return &ws->list;
735 fail:
736 	free_heuristic_ws(&ws->list);
737 	return ERR_PTR(-ENOMEM);
738 }
739 
740 const struct btrfs_compress_op btrfs_heuristic_compress = {
741 	.workspace_manager = &heuristic_wsm,
742 };
743 
744 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
745 	/* The heuristic is represented as compression type 0 */
746 	&btrfs_heuristic_compress,
747 	&btrfs_zlib_compress,
748 	&btrfs_lzo_compress,
749 	&btrfs_zstd_compress,
750 };
751 
752 static struct list_head *alloc_workspace(int type, unsigned int level)
753 {
754 	switch (type) {
755 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
756 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
757 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
758 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
759 	default:
760 		/*
761 		 * This can't happen, the type is validated several times
762 		 * before we get here.
763 		 */
764 		BUG();
765 	}
766 }
767 
768 static void free_workspace(int type, struct list_head *ws)
769 {
770 	switch (type) {
771 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
772 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
773 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
774 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
775 	default:
776 		/*
777 		 * This can't happen, the type is validated several times
778 		 * before we get here.
779 		 */
780 		BUG();
781 	}
782 }
783 
784 static void btrfs_init_workspace_manager(int type)
785 {
786 	struct workspace_manager *wsm;
787 	struct list_head *workspace;
788 
789 	wsm = btrfs_compress_op[type]->workspace_manager;
790 	INIT_LIST_HEAD(&wsm->idle_ws);
791 	spin_lock_init(&wsm->ws_lock);
792 	atomic_set(&wsm->total_ws, 0);
793 	init_waitqueue_head(&wsm->ws_wait);
794 
795 	/*
796 	 * Preallocate one workspace for each compression type so we can
797 	 * guarantee forward progress in the worst case
798 	 */
799 	workspace = alloc_workspace(type, 0);
800 	if (IS_ERR(workspace)) {
801 		pr_warn(
802 	"BTRFS: cannot preallocate compression workspace, will try later\n");
803 	} else {
804 		atomic_set(&wsm->total_ws, 1);
805 		wsm->free_ws = 1;
806 		list_add(workspace, &wsm->idle_ws);
807 	}
808 }
809 
810 static void btrfs_cleanup_workspace_manager(int type)
811 {
812 	struct workspace_manager *wsman;
813 	struct list_head *ws;
814 
815 	wsman = btrfs_compress_op[type]->workspace_manager;
816 	while (!list_empty(&wsman->idle_ws)) {
817 		ws = wsman->idle_ws.next;
818 		list_del(ws);
819 		free_workspace(type, ws);
820 		atomic_dec(&wsman->total_ws);
821 	}
822 }
823 
824 /*
825  * This finds an available workspace or allocates a new one.
826  * If it's not possible to allocate a new one, waits until there's one.
827  * Preallocation makes a forward progress guarantees and we do not return
828  * errors.
829  */
830 struct list_head *btrfs_get_workspace(int type, unsigned int level)
831 {
832 	struct workspace_manager *wsm;
833 	struct list_head *workspace;
834 	int cpus = num_online_cpus();
835 	unsigned nofs_flag;
836 	struct list_head *idle_ws;
837 	spinlock_t *ws_lock;
838 	atomic_t *total_ws;
839 	wait_queue_head_t *ws_wait;
840 	int *free_ws;
841 
842 	wsm = btrfs_compress_op[type]->workspace_manager;
843 	idle_ws	 = &wsm->idle_ws;
844 	ws_lock	 = &wsm->ws_lock;
845 	total_ws = &wsm->total_ws;
846 	ws_wait	 = &wsm->ws_wait;
847 	free_ws	 = &wsm->free_ws;
848 
849 again:
850 	spin_lock(ws_lock);
851 	if (!list_empty(idle_ws)) {
852 		workspace = idle_ws->next;
853 		list_del(workspace);
854 		(*free_ws)--;
855 		spin_unlock(ws_lock);
856 		return workspace;
857 
858 	}
859 	if (atomic_read(total_ws) > cpus) {
860 		DEFINE_WAIT(wait);
861 
862 		spin_unlock(ws_lock);
863 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
864 		if (atomic_read(total_ws) > cpus && !*free_ws)
865 			schedule();
866 		finish_wait(ws_wait, &wait);
867 		goto again;
868 	}
869 	atomic_inc(total_ws);
870 	spin_unlock(ws_lock);
871 
872 	/*
873 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
874 	 * to turn it off here because we might get called from the restricted
875 	 * context of btrfs_compress_bio/btrfs_compress_pages
876 	 */
877 	nofs_flag = memalloc_nofs_save();
878 	workspace = alloc_workspace(type, level);
879 	memalloc_nofs_restore(nofs_flag);
880 
881 	if (IS_ERR(workspace)) {
882 		atomic_dec(total_ws);
883 		wake_up(ws_wait);
884 
885 		/*
886 		 * Do not return the error but go back to waiting. There's a
887 		 * workspace preallocated for each type and the compression
888 		 * time is bounded so we get to a workspace eventually. This
889 		 * makes our caller's life easier.
890 		 *
891 		 * To prevent silent and low-probability deadlocks (when the
892 		 * initial preallocation fails), check if there are any
893 		 * workspaces at all.
894 		 */
895 		if (atomic_read(total_ws) == 0) {
896 			static DEFINE_RATELIMIT_STATE(_rs,
897 					/* once per minute */ 60 * HZ,
898 					/* no burst */ 1);
899 
900 			if (__ratelimit(&_rs)) {
901 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
902 			}
903 		}
904 		goto again;
905 	}
906 	return workspace;
907 }
908 
909 static struct list_head *get_workspace(int type, int level)
910 {
911 	switch (type) {
912 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
913 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
914 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
915 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
916 	default:
917 		/*
918 		 * This can't happen, the type is validated several times
919 		 * before we get here.
920 		 */
921 		BUG();
922 	}
923 }
924 
925 /*
926  * put a workspace struct back on the list or free it if we have enough
927  * idle ones sitting around
928  */
929 void btrfs_put_workspace(int type, struct list_head *ws)
930 {
931 	struct workspace_manager *wsm;
932 	struct list_head *idle_ws;
933 	spinlock_t *ws_lock;
934 	atomic_t *total_ws;
935 	wait_queue_head_t *ws_wait;
936 	int *free_ws;
937 
938 	wsm = btrfs_compress_op[type]->workspace_manager;
939 	idle_ws	 = &wsm->idle_ws;
940 	ws_lock	 = &wsm->ws_lock;
941 	total_ws = &wsm->total_ws;
942 	ws_wait	 = &wsm->ws_wait;
943 	free_ws	 = &wsm->free_ws;
944 
945 	spin_lock(ws_lock);
946 	if (*free_ws <= num_online_cpus()) {
947 		list_add(ws, idle_ws);
948 		(*free_ws)++;
949 		spin_unlock(ws_lock);
950 		goto wake;
951 	}
952 	spin_unlock(ws_lock);
953 
954 	free_workspace(type, ws);
955 	atomic_dec(total_ws);
956 wake:
957 	cond_wake_up(ws_wait);
958 }
959 
960 static void put_workspace(int type, struct list_head *ws)
961 {
962 	switch (type) {
963 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
964 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
965 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
966 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
967 	default:
968 		/*
969 		 * This can't happen, the type is validated several times
970 		 * before we get here.
971 		 */
972 		BUG();
973 	}
974 }
975 
976 /*
977  * Adjust @level according to the limits of the compression algorithm or
978  * fallback to default
979  */
980 static unsigned int btrfs_compress_set_level(int type, unsigned level)
981 {
982 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
983 
984 	if (level == 0)
985 		level = ops->default_level;
986 	else
987 		level = min(level, ops->max_level);
988 
989 	return level;
990 }
991 
992 /*
993  * Given an address space and start and length, compress the bytes into @pages
994  * that are allocated on demand.
995  *
996  * @type_level is encoded algorithm and level, where level 0 means whatever
997  * default the algorithm chooses and is opaque here;
998  * - compression algo are 0-3
999  * - the level are bits 4-7
1000  *
1001  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1002  * and returns number of actually allocated pages
1003  *
1004  * @total_in is used to return the number of bytes actually read.  It
1005  * may be smaller than the input length if we had to exit early because we
1006  * ran out of room in the pages array or because we cross the
1007  * max_out threshold.
1008  *
1009  * @total_out is an in/out parameter, must be set to the input length and will
1010  * be also used to return the total number of compressed bytes
1011  */
1012 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1013 			 u64 start, struct page **pages,
1014 			 unsigned long *out_pages,
1015 			 unsigned long *total_in,
1016 			 unsigned long *total_out)
1017 {
1018 	int type = btrfs_compress_type(type_level);
1019 	int level = btrfs_compress_level(type_level);
1020 	struct list_head *workspace;
1021 	int ret;
1022 
1023 	level = btrfs_compress_set_level(type, level);
1024 	workspace = get_workspace(type, level);
1025 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1026 					 out_pages, total_in, total_out);
1027 	put_workspace(type, workspace);
1028 	return ret;
1029 }
1030 
1031 static int btrfs_decompress_bio(struct compressed_bio *cb)
1032 {
1033 	struct list_head *workspace;
1034 	int ret;
1035 	int type = cb->compress_type;
1036 
1037 	workspace = get_workspace(type, 0);
1038 	ret = compression_decompress_bio(workspace, cb);
1039 	put_workspace(type, workspace);
1040 
1041 	return ret;
1042 }
1043 
1044 /*
1045  * a less complex decompression routine.  Our compressed data fits in a
1046  * single page, and we want to read a single page out of it.
1047  * start_byte tells us the offset into the compressed data we're interested in
1048  */
1049 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1050 		     unsigned long start_byte, size_t srclen, size_t destlen)
1051 {
1052 	struct list_head *workspace;
1053 	int ret;
1054 
1055 	workspace = get_workspace(type, 0);
1056 	ret = compression_decompress(type, workspace, data_in, dest_page,
1057 				     start_byte, srclen, destlen);
1058 	put_workspace(type, workspace);
1059 
1060 	return ret;
1061 }
1062 
1063 int __init btrfs_init_compress(void)
1064 {
1065 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1066 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1067 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1068 	zstd_init_workspace_manager();
1069 	return 0;
1070 }
1071 
1072 void __cold btrfs_exit_compress(void)
1073 {
1074 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1075 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1076 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1077 	zstd_cleanup_workspace_manager();
1078 }
1079 
1080 /*
1081  * Copy decompressed data from working buffer to pages.
1082  *
1083  * @buf:		The decompressed data buffer
1084  * @buf_len:		The decompressed data length
1085  * @decompressed:	Number of bytes that are already decompressed inside the
1086  * 			compressed extent
1087  * @cb:			The compressed extent descriptor
1088  * @orig_bio:		The original bio that the caller wants to read for
1089  *
1090  * An easier to understand graph is like below:
1091  *
1092  * 		|<- orig_bio ->|     |<- orig_bio->|
1093  * 	|<-------      full decompressed extent      ----->|
1094  * 	|<-----------    @cb range   ---->|
1095  * 	|			|<-- @buf_len -->|
1096  * 	|<--- @decompressed --->|
1097  *
1098  * Note that, @cb can be a subpage of the full decompressed extent, but
1099  * @cb->start always has the same as the orig_file_offset value of the full
1100  * decompressed extent.
1101  *
1102  * When reading compressed extent, we have to read the full compressed extent,
1103  * while @orig_bio may only want part of the range.
1104  * Thus this function will ensure only data covered by @orig_bio will be copied
1105  * to.
1106  *
1107  * Return 0 if we have copied all needed contents for @orig_bio.
1108  * Return >0 if we need continue decompress.
1109  */
1110 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1111 			      struct compressed_bio *cb, u32 decompressed)
1112 {
1113 	struct bio *orig_bio = cb->orig_bio;
1114 	/* Offset inside the full decompressed extent */
1115 	u32 cur_offset;
1116 
1117 	cur_offset = decompressed;
1118 	/* The main loop to do the copy */
1119 	while (cur_offset < decompressed + buf_len) {
1120 		struct bio_vec bvec;
1121 		size_t copy_len;
1122 		u32 copy_start;
1123 		/* Offset inside the full decompressed extent */
1124 		u32 bvec_offset;
1125 
1126 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1127 		/*
1128 		 * cb->start may underflow, but subtracting that value can still
1129 		 * give us correct offset inside the full decompressed extent.
1130 		 */
1131 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1132 
1133 		/* Haven't reached the bvec range, exit */
1134 		if (decompressed + buf_len <= bvec_offset)
1135 			return 1;
1136 
1137 		copy_start = max(cur_offset, bvec_offset);
1138 		copy_len = min(bvec_offset + bvec.bv_len,
1139 			       decompressed + buf_len) - copy_start;
1140 		ASSERT(copy_len);
1141 
1142 		/*
1143 		 * Extra range check to ensure we didn't go beyond
1144 		 * @buf + @buf_len.
1145 		 */
1146 		ASSERT(copy_start - decompressed < buf_len);
1147 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1148 			       buf + copy_start - decompressed, copy_len);
1149 		cur_offset += copy_len;
1150 
1151 		bio_advance(orig_bio, copy_len);
1152 		/* Finished the bio */
1153 		if (!orig_bio->bi_iter.bi_size)
1154 			return 0;
1155 	}
1156 	return 1;
1157 }
1158 
1159 /*
1160  * Shannon Entropy calculation
1161  *
1162  * Pure byte distribution analysis fails to determine compressibility of data.
1163  * Try calculating entropy to estimate the average minimum number of bits
1164  * needed to encode the sampled data.
1165  *
1166  * For convenience, return the percentage of needed bits, instead of amount of
1167  * bits directly.
1168  *
1169  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1170  *			    and can be compressible with high probability
1171  *
1172  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1173  *
1174  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1175  */
1176 #define ENTROPY_LVL_ACEPTABLE		(65)
1177 #define ENTROPY_LVL_HIGH		(80)
1178 
1179 /*
1180  * For increasead precision in shannon_entropy calculation,
1181  * let's do pow(n, M) to save more digits after comma:
1182  *
1183  * - maximum int bit length is 64
1184  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1185  * - 13 * 4 = 52 < 64		-> M = 4
1186  *
1187  * So use pow(n, 4).
1188  */
1189 static inline u32 ilog2_w(u64 n)
1190 {
1191 	return ilog2(n * n * n * n);
1192 }
1193 
1194 static u32 shannon_entropy(struct heuristic_ws *ws)
1195 {
1196 	const u32 entropy_max = 8 * ilog2_w(2);
1197 	u32 entropy_sum = 0;
1198 	u32 p, p_base, sz_base;
1199 	u32 i;
1200 
1201 	sz_base = ilog2_w(ws->sample_size);
1202 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1203 		p = ws->bucket[i].count;
1204 		p_base = ilog2_w(p);
1205 		entropy_sum += p * (sz_base - p_base);
1206 	}
1207 
1208 	entropy_sum /= ws->sample_size;
1209 	return entropy_sum * 100 / entropy_max;
1210 }
1211 
1212 #define RADIX_BASE		4U
1213 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1214 
1215 static u8 get4bits(u64 num, int shift) {
1216 	u8 low4bits;
1217 
1218 	num >>= shift;
1219 	/* Reverse order */
1220 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1221 	return low4bits;
1222 }
1223 
1224 /*
1225  * Use 4 bits as radix base
1226  * Use 16 u32 counters for calculating new position in buf array
1227  *
1228  * @array     - array that will be sorted
1229  * @array_buf - buffer array to store sorting results
1230  *              must be equal in size to @array
1231  * @num       - array size
1232  */
1233 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1234 		       int num)
1235 {
1236 	u64 max_num;
1237 	u64 buf_num;
1238 	u32 counters[COUNTERS_SIZE];
1239 	u32 new_addr;
1240 	u32 addr;
1241 	int bitlen;
1242 	int shift;
1243 	int i;
1244 
1245 	/*
1246 	 * Try avoid useless loop iterations for small numbers stored in big
1247 	 * counters.  Example: 48 33 4 ... in 64bit array
1248 	 */
1249 	max_num = array[0].count;
1250 	for (i = 1; i < num; i++) {
1251 		buf_num = array[i].count;
1252 		if (buf_num > max_num)
1253 			max_num = buf_num;
1254 	}
1255 
1256 	buf_num = ilog2(max_num);
1257 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1258 
1259 	shift = 0;
1260 	while (shift < bitlen) {
1261 		memset(counters, 0, sizeof(counters));
1262 
1263 		for (i = 0; i < num; i++) {
1264 			buf_num = array[i].count;
1265 			addr = get4bits(buf_num, shift);
1266 			counters[addr]++;
1267 		}
1268 
1269 		for (i = 1; i < COUNTERS_SIZE; i++)
1270 			counters[i] += counters[i - 1];
1271 
1272 		for (i = num - 1; i >= 0; i--) {
1273 			buf_num = array[i].count;
1274 			addr = get4bits(buf_num, shift);
1275 			counters[addr]--;
1276 			new_addr = counters[addr];
1277 			array_buf[new_addr] = array[i];
1278 		}
1279 
1280 		shift += RADIX_BASE;
1281 
1282 		/*
1283 		 * Normal radix expects to move data from a temporary array, to
1284 		 * the main one.  But that requires some CPU time. Avoid that
1285 		 * by doing another sort iteration to original array instead of
1286 		 * memcpy()
1287 		 */
1288 		memset(counters, 0, sizeof(counters));
1289 
1290 		for (i = 0; i < num; i ++) {
1291 			buf_num = array_buf[i].count;
1292 			addr = get4bits(buf_num, shift);
1293 			counters[addr]++;
1294 		}
1295 
1296 		for (i = 1; i < COUNTERS_SIZE; i++)
1297 			counters[i] += counters[i - 1];
1298 
1299 		for (i = num - 1; i >= 0; i--) {
1300 			buf_num = array_buf[i].count;
1301 			addr = get4bits(buf_num, shift);
1302 			counters[addr]--;
1303 			new_addr = counters[addr];
1304 			array[new_addr] = array_buf[i];
1305 		}
1306 
1307 		shift += RADIX_BASE;
1308 	}
1309 }
1310 
1311 /*
1312  * Size of the core byte set - how many bytes cover 90% of the sample
1313  *
1314  * There are several types of structured binary data that use nearly all byte
1315  * values. The distribution can be uniform and counts in all buckets will be
1316  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1317  *
1318  * Other possibility is normal (Gaussian) distribution, where the data could
1319  * be potentially compressible, but we have to take a few more steps to decide
1320  * how much.
1321  *
1322  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1323  *                       compression algo can easy fix that
1324  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1325  *                       probability is not compressible
1326  */
1327 #define BYTE_CORE_SET_LOW		(64)
1328 #define BYTE_CORE_SET_HIGH		(200)
1329 
1330 static int byte_core_set_size(struct heuristic_ws *ws)
1331 {
1332 	u32 i;
1333 	u32 coreset_sum = 0;
1334 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1335 	struct bucket_item *bucket = ws->bucket;
1336 
1337 	/* Sort in reverse order */
1338 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1339 
1340 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1341 		coreset_sum += bucket[i].count;
1342 
1343 	if (coreset_sum > core_set_threshold)
1344 		return i;
1345 
1346 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1347 		coreset_sum += bucket[i].count;
1348 		if (coreset_sum > core_set_threshold)
1349 			break;
1350 	}
1351 
1352 	return i;
1353 }
1354 
1355 /*
1356  * Count byte values in buckets.
1357  * This heuristic can detect textual data (configs, xml, json, html, etc).
1358  * Because in most text-like data byte set is restricted to limited number of
1359  * possible characters, and that restriction in most cases makes data easy to
1360  * compress.
1361  *
1362  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1363  *	less - compressible
1364  *	more - need additional analysis
1365  */
1366 #define BYTE_SET_THRESHOLD		(64)
1367 
1368 static u32 byte_set_size(const struct heuristic_ws *ws)
1369 {
1370 	u32 i;
1371 	u32 byte_set_size = 0;
1372 
1373 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1374 		if (ws->bucket[i].count > 0)
1375 			byte_set_size++;
1376 	}
1377 
1378 	/*
1379 	 * Continue collecting count of byte values in buckets.  If the byte
1380 	 * set size is bigger then the threshold, it's pointless to continue,
1381 	 * the detection technique would fail for this type of data.
1382 	 */
1383 	for (; i < BUCKET_SIZE; i++) {
1384 		if (ws->bucket[i].count > 0) {
1385 			byte_set_size++;
1386 			if (byte_set_size > BYTE_SET_THRESHOLD)
1387 				return byte_set_size;
1388 		}
1389 	}
1390 
1391 	return byte_set_size;
1392 }
1393 
1394 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1395 {
1396 	const u32 half_of_sample = ws->sample_size / 2;
1397 	const u8 *data = ws->sample;
1398 
1399 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1400 }
1401 
1402 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1403 				     struct heuristic_ws *ws)
1404 {
1405 	struct page *page;
1406 	u64 index, index_end;
1407 	u32 i, curr_sample_pos;
1408 	u8 *in_data;
1409 
1410 	/*
1411 	 * Compression handles the input data by chunks of 128KiB
1412 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1413 	 *
1414 	 * We do the same for the heuristic and loop over the whole range.
1415 	 *
1416 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1417 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1418 	 */
1419 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1420 		end = start + BTRFS_MAX_UNCOMPRESSED;
1421 
1422 	index = start >> PAGE_SHIFT;
1423 	index_end = end >> PAGE_SHIFT;
1424 
1425 	/* Don't miss unaligned end */
1426 	if (!PAGE_ALIGNED(end))
1427 		index_end++;
1428 
1429 	curr_sample_pos = 0;
1430 	while (index < index_end) {
1431 		page = find_get_page(inode->i_mapping, index);
1432 		in_data = kmap_local_page(page);
1433 		/* Handle case where the start is not aligned to PAGE_SIZE */
1434 		i = start % PAGE_SIZE;
1435 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1436 			/* Don't sample any garbage from the last page */
1437 			if (start > end - SAMPLING_READ_SIZE)
1438 				break;
1439 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1440 					SAMPLING_READ_SIZE);
1441 			i += SAMPLING_INTERVAL;
1442 			start += SAMPLING_INTERVAL;
1443 			curr_sample_pos += SAMPLING_READ_SIZE;
1444 		}
1445 		kunmap_local(in_data);
1446 		put_page(page);
1447 
1448 		index++;
1449 	}
1450 
1451 	ws->sample_size = curr_sample_pos;
1452 }
1453 
1454 /*
1455  * Compression heuristic.
1456  *
1457  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1458  * quickly (compared to direct compression) detect data characteristics
1459  * (compressible/incompressible) to avoid wasting CPU time on incompressible
1460  * data.
1461  *
1462  * The following types of analysis can be performed:
1463  * - detect mostly zero data
1464  * - detect data with low "byte set" size (text, etc)
1465  * - detect data with low/high "core byte" set
1466  *
1467  * Return non-zero if the compression should be done, 0 otherwise.
1468  */
1469 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1470 {
1471 	struct list_head *ws_list = get_workspace(0, 0);
1472 	struct heuristic_ws *ws;
1473 	u32 i;
1474 	u8 byte;
1475 	int ret = 0;
1476 
1477 	ws = list_entry(ws_list, struct heuristic_ws, list);
1478 
1479 	heuristic_collect_sample(inode, start, end, ws);
1480 
1481 	if (sample_repeated_patterns(ws)) {
1482 		ret = 1;
1483 		goto out;
1484 	}
1485 
1486 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1487 
1488 	for (i = 0; i < ws->sample_size; i++) {
1489 		byte = ws->sample[i];
1490 		ws->bucket[byte].count++;
1491 	}
1492 
1493 	i = byte_set_size(ws);
1494 	if (i < BYTE_SET_THRESHOLD) {
1495 		ret = 2;
1496 		goto out;
1497 	}
1498 
1499 	i = byte_core_set_size(ws);
1500 	if (i <= BYTE_CORE_SET_LOW) {
1501 		ret = 3;
1502 		goto out;
1503 	}
1504 
1505 	if (i >= BYTE_CORE_SET_HIGH) {
1506 		ret = 0;
1507 		goto out;
1508 	}
1509 
1510 	i = shannon_entropy(ws);
1511 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1512 		ret = 4;
1513 		goto out;
1514 	}
1515 
1516 	/*
1517 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1518 	 * needed to give green light to compression.
1519 	 *
1520 	 * For now just assume that compression at that level is not worth the
1521 	 * resources because:
1522 	 *
1523 	 * 1. it is possible to defrag the data later
1524 	 *
1525 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1526 	 * values, every bucket has counter at level ~54. The heuristic would
1527 	 * be confused. This can happen when data have some internal repeated
1528 	 * patterns like "abbacbbc...". This can be detected by analyzing
1529 	 * pairs of bytes, which is too costly.
1530 	 */
1531 	if (i < ENTROPY_LVL_HIGH) {
1532 		ret = 5;
1533 		goto out;
1534 	} else {
1535 		ret = 0;
1536 		goto out;
1537 	}
1538 
1539 out:
1540 	put_workspace(0, ws_list);
1541 	return ret;
1542 }
1543 
1544 /*
1545  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1546  * level, unrecognized string will set the default level
1547  */
1548 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1549 {
1550 	unsigned int level = 0;
1551 	int ret;
1552 
1553 	if (!type)
1554 		return 0;
1555 
1556 	if (str[0] == ':') {
1557 		ret = kstrtouint(str + 1, 10, &level);
1558 		if (ret)
1559 			level = 0;
1560 	}
1561 
1562 	level = btrfs_compress_set_level(type, level);
1563 
1564 	return level;
1565 }
1566