xref: /openbmc/linux/fs/btrfs/compression.c (revision e7aff33e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <crypto/hash.h>
24 #include "misc.h"
25 #include "ctree.h"
26 #include "fs.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "btrfs_inode.h"
30 #include "bio.h"
31 #include "ordered-data.h"
32 #include "compression.h"
33 #include "extent_io.h"
34 #include "extent_map.h"
35 #include "subpage.h"
36 #include "zoned.h"
37 #include "file-item.h"
38 #include "super.h"
39 
40 struct bio_set btrfs_compressed_bioset;
41 
42 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
43 
44 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
45 {
46 	switch (type) {
47 	case BTRFS_COMPRESS_ZLIB:
48 	case BTRFS_COMPRESS_LZO:
49 	case BTRFS_COMPRESS_ZSTD:
50 	case BTRFS_COMPRESS_NONE:
51 		return btrfs_compress_types[type];
52 	default:
53 		break;
54 	}
55 
56 	return NULL;
57 }
58 
59 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
60 {
61 	return container_of(bbio, struct compressed_bio, bbio);
62 }
63 
64 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
65 						   u64 start, blk_opf_t op,
66 						   btrfs_bio_end_io_t end_io)
67 {
68 	struct btrfs_bio *bbio;
69 
70 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
71 					  GFP_NOFS, &btrfs_compressed_bioset));
72 	btrfs_bio_init(bbio, inode, end_io, NULL);
73 	bbio->file_offset = start;
74 	return to_compressed_bio(bbio);
75 }
76 
77 bool btrfs_compress_is_valid_type(const char *str, size_t len)
78 {
79 	int i;
80 
81 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
82 		size_t comp_len = strlen(btrfs_compress_types[i]);
83 
84 		if (len < comp_len)
85 			continue;
86 
87 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
88 			return true;
89 	}
90 	return false;
91 }
92 
93 static int compression_compress_pages(int type, struct list_head *ws,
94                struct address_space *mapping, u64 start, struct page **pages,
95                unsigned long *out_pages, unsigned long *total_in,
96                unsigned long *total_out)
97 {
98 	switch (type) {
99 	case BTRFS_COMPRESS_ZLIB:
100 		return zlib_compress_pages(ws, mapping, start, pages,
101 				out_pages, total_in, total_out);
102 	case BTRFS_COMPRESS_LZO:
103 		return lzo_compress_pages(ws, mapping, start, pages,
104 				out_pages, total_in, total_out);
105 	case BTRFS_COMPRESS_ZSTD:
106 		return zstd_compress_pages(ws, mapping, start, pages,
107 				out_pages, total_in, total_out);
108 	case BTRFS_COMPRESS_NONE:
109 	default:
110 		/*
111 		 * This can happen when compression races with remount setting
112 		 * it to 'no compress', while caller doesn't call
113 		 * inode_need_compress() to check if we really need to
114 		 * compress.
115 		 *
116 		 * Not a big deal, just need to inform caller that we
117 		 * haven't allocated any pages yet.
118 		 */
119 		*out_pages = 0;
120 		return -E2BIG;
121 	}
122 }
123 
124 static int compression_decompress_bio(struct list_head *ws,
125 				      struct compressed_bio *cb)
126 {
127 	switch (cb->compress_type) {
128 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
129 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
130 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
131 	case BTRFS_COMPRESS_NONE:
132 	default:
133 		/*
134 		 * This can't happen, the type is validated several times
135 		 * before we get here.
136 		 */
137 		BUG();
138 	}
139 }
140 
141 static int compression_decompress(int type, struct list_head *ws,
142                const u8 *data_in, struct page *dest_page,
143                unsigned long start_byte, size_t srclen, size_t destlen)
144 {
145 	switch (type) {
146 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
147 						start_byte, srclen, destlen);
148 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
149 						start_byte, srclen, destlen);
150 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
151 						start_byte, srclen, destlen);
152 	case BTRFS_COMPRESS_NONE:
153 	default:
154 		/*
155 		 * This can't happen, the type is validated several times
156 		 * before we get here.
157 		 */
158 		BUG();
159 	}
160 }
161 
162 static int btrfs_decompress_bio(struct compressed_bio *cb);
163 
164 static void end_compressed_bio_read(struct btrfs_bio *bbio)
165 {
166 	struct compressed_bio *cb = to_compressed_bio(bbio);
167 	blk_status_t status = bbio->bio.bi_status;
168 	unsigned int index;
169 	struct page *page;
170 
171 	if (!status)
172 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
173 
174 	/* Release the compressed pages */
175 	for (index = 0; index < cb->nr_pages; index++) {
176 		page = cb->compressed_pages[index];
177 		page->mapping = NULL;
178 		put_page(page);
179 	}
180 
181 	/* Do io completion on the original bio */
182 	btrfs_bio_end_io(btrfs_bio(cb->orig_bio), status);
183 
184 	/* Finally free the cb struct */
185 	kfree(cb->compressed_pages);
186 	bio_put(&bbio->bio);
187 }
188 
189 /*
190  * Clear the writeback bits on all of the file
191  * pages for a compressed write
192  */
193 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
194 {
195 	struct inode *inode = &cb->bbio.inode->vfs_inode;
196 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
197 	unsigned long index = cb->start >> PAGE_SHIFT;
198 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
199 	struct folio_batch fbatch;
200 	const int errno = blk_status_to_errno(cb->bbio.bio.bi_status);
201 	int i;
202 	int ret;
203 
204 	if (errno)
205 		mapping_set_error(inode->i_mapping, errno);
206 
207 	folio_batch_init(&fbatch);
208 	while (index <= end_index) {
209 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
210 				&fbatch);
211 
212 		if (ret == 0)
213 			return;
214 
215 		for (i = 0; i < ret; i++) {
216 			struct folio *folio = fbatch.folios[i];
217 
218 			if (errno)
219 				folio_set_error(folio);
220 			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
221 							 cb->start, cb->len);
222 		}
223 		folio_batch_release(&fbatch);
224 	}
225 	/* the inode may be gone now */
226 }
227 
228 static void finish_compressed_bio_write(struct compressed_bio *cb)
229 {
230 	unsigned int index;
231 
232 	/*
233 	 * Ok, we're the last bio for this extent, step one is to call back
234 	 * into the FS and do all the end_io operations.
235 	 */
236 	btrfs_writepage_endio_finish_ordered(cb->bbio.inode, NULL,
237 			cb->start, cb->start + cb->len - 1,
238 			cb->bbio.bio.bi_status == BLK_STS_OK);
239 
240 	if (cb->writeback)
241 		end_compressed_writeback(cb);
242 	/* Note, our inode could be gone now */
243 
244 	/*
245 	 * Release the compressed pages, these came from alloc_page and
246 	 * are not attached to the inode at all
247 	 */
248 	for (index = 0; index < cb->nr_pages; index++) {
249 		struct page *page = cb->compressed_pages[index];
250 
251 		page->mapping = NULL;
252 		put_page(page);
253 	}
254 
255 	/* Finally free the cb struct */
256 	kfree(cb->compressed_pages);
257 	bio_put(&cb->bbio.bio);
258 }
259 
260 static void btrfs_finish_compressed_write_work(struct work_struct *work)
261 {
262 	struct compressed_bio *cb =
263 		container_of(work, struct compressed_bio, write_end_work);
264 
265 	finish_compressed_bio_write(cb);
266 }
267 
268 /*
269  * Do the cleanup once all the compressed pages hit the disk.  This will clear
270  * writeback on the file pages and free the compressed pages.
271  *
272  * This also calls the writeback end hooks for the file pages so that metadata
273  * and checksums can be updated in the file.
274  */
275 static void end_compressed_bio_write(struct btrfs_bio *bbio)
276 {
277 	struct compressed_bio *cb = to_compressed_bio(bbio);
278 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
279 
280 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
281 }
282 
283 /*
284  * worker function to build and submit bios for previously compressed pages.
285  * The corresponding pages in the inode should be marked for writeback
286  * and the compressed pages should have a reference on them for dropping
287  * when the IO is complete.
288  *
289  * This also checksums the file bytes and gets things ready for
290  * the end io hooks.
291  */
292 void btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
293 				 unsigned int len, u64 disk_start,
294 				 unsigned int compressed_len,
295 				 struct page **compressed_pages,
296 				 unsigned int nr_pages,
297 				 blk_opf_t write_flags,
298 				 struct cgroup_subsys_state *blkcg_css,
299 				 bool writeback)
300 {
301 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
302 	struct bio *bio;
303 	struct compressed_bio *cb;
304 	u64 cur_disk_bytenr = disk_start;
305 
306 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
307 	       IS_ALIGNED(len, fs_info->sectorsize));
308 
309 	if (blkcg_css) {
310 		kthread_associate_blkcg(blkcg_css);
311 		write_flags |= REQ_CGROUP_PUNT;
312 	}
313 	write_flags |= REQ_BTRFS_ONE_ORDERED;
314 
315 	cb = alloc_compressed_bio(inode, start, REQ_OP_WRITE | write_flags,
316 				  end_compressed_bio_write);
317 	cb->start = start;
318 	cb->len = len;
319 	cb->compressed_pages = compressed_pages;
320 	cb->compressed_len = compressed_len;
321 	cb->writeback = writeback;
322 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
323 	cb->nr_pages = nr_pages;
324 
325 	bio = &cb->bbio.bio;
326 	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
327 
328 	while (cur_disk_bytenr < disk_start + compressed_len) {
329 		u64 offset = cur_disk_bytenr - disk_start;
330 		unsigned int index = offset >> PAGE_SHIFT;
331 		unsigned int real_size;
332 		unsigned int added;
333 		struct page *page = compressed_pages[index];
334 
335 		/*
336 		 * We have various limits on the real read size:
337 		 * - page boundary
338 		 * - compressed length boundary
339 		 */
340 		real_size = min_t(u64, U32_MAX, PAGE_SIZE - offset_in_page(offset));
341 		real_size = min_t(u64, real_size, compressed_len - offset);
342 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
343 
344 		added = bio_add_page(bio, page, real_size, offset_in_page(offset));
345 		/*
346 		 * Maximum compressed extent is smaller than bio size limit,
347 		 * thus bio_add_page() should always success.
348 		 */
349 		ASSERT(added == real_size);
350 		cur_disk_bytenr += added;
351 	}
352 
353 	/* Finished the range. */
354 	ASSERT(bio->bi_iter.bi_size);
355 	btrfs_submit_bio(bio, 0);
356 	if (blkcg_css)
357 		kthread_associate_blkcg(NULL);
358 }
359 
360 static u64 bio_end_offset(struct bio *bio)
361 {
362 	struct bio_vec *last = bio_last_bvec_all(bio);
363 
364 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
365 }
366 
367 /*
368  * Add extra pages in the same compressed file extent so that we don't need to
369  * re-read the same extent again and again.
370  *
371  * NOTE: this won't work well for subpage, as for subpage read, we lock the
372  * full page then submit bio for each compressed/regular extents.
373  *
374  * This means, if we have several sectors in the same page points to the same
375  * on-disk compressed data, we will re-read the same extent many times and
376  * this function can only help for the next page.
377  */
378 static noinline int add_ra_bio_pages(struct inode *inode,
379 				     u64 compressed_end,
380 				     struct compressed_bio *cb,
381 				     int *memstall, unsigned long *pflags)
382 {
383 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
384 	unsigned long end_index;
385 	u64 cur = bio_end_offset(cb->orig_bio);
386 	u64 isize = i_size_read(inode);
387 	int ret;
388 	struct page *page;
389 	struct extent_map *em;
390 	struct address_space *mapping = inode->i_mapping;
391 	struct extent_map_tree *em_tree;
392 	struct extent_io_tree *tree;
393 	int sectors_missed = 0;
394 
395 	em_tree = &BTRFS_I(inode)->extent_tree;
396 	tree = &BTRFS_I(inode)->io_tree;
397 
398 	if (isize == 0)
399 		return 0;
400 
401 	/*
402 	 * For current subpage support, we only support 64K page size,
403 	 * which means maximum compressed extent size (128K) is just 2x page
404 	 * size.
405 	 * This makes readahead less effective, so here disable readahead for
406 	 * subpage for now, until full compressed write is supported.
407 	 */
408 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
409 		return 0;
410 
411 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
412 
413 	while (cur < compressed_end) {
414 		u64 page_end;
415 		u64 pg_index = cur >> PAGE_SHIFT;
416 		u32 add_size;
417 
418 		if (pg_index > end_index)
419 			break;
420 
421 		page = xa_load(&mapping->i_pages, pg_index);
422 		if (page && !xa_is_value(page)) {
423 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
424 					  fs_info->sectorsize_bits;
425 
426 			/* Beyond threshold, no need to continue */
427 			if (sectors_missed > 4)
428 				break;
429 
430 			/*
431 			 * Jump to next page start as we already have page for
432 			 * current offset.
433 			 */
434 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
435 			continue;
436 		}
437 
438 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
439 								 ~__GFP_FS));
440 		if (!page)
441 			break;
442 
443 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
444 			put_page(page);
445 			/* There is already a page, skip to page end */
446 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
447 			continue;
448 		}
449 
450 		if (!*memstall && PageWorkingset(page)) {
451 			psi_memstall_enter(pflags);
452 			*memstall = 1;
453 		}
454 
455 		ret = set_page_extent_mapped(page);
456 		if (ret < 0) {
457 			unlock_page(page);
458 			put_page(page);
459 			break;
460 		}
461 
462 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
463 		lock_extent(tree, cur, page_end, NULL);
464 		read_lock(&em_tree->lock);
465 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
466 		read_unlock(&em_tree->lock);
467 
468 		/*
469 		 * At this point, we have a locked page in the page cache for
470 		 * these bytes in the file.  But, we have to make sure they map
471 		 * to this compressed extent on disk.
472 		 */
473 		if (!em || cur < em->start ||
474 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
475 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
476 			free_extent_map(em);
477 			unlock_extent(tree, cur, page_end, NULL);
478 			unlock_page(page);
479 			put_page(page);
480 			break;
481 		}
482 		free_extent_map(em);
483 
484 		if (page->index == end_index) {
485 			size_t zero_offset = offset_in_page(isize);
486 
487 			if (zero_offset) {
488 				int zeros;
489 				zeros = PAGE_SIZE - zero_offset;
490 				memzero_page(page, zero_offset, zeros);
491 			}
492 		}
493 
494 		add_size = min(em->start + em->len, page_end + 1) - cur;
495 		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
496 		if (ret != add_size) {
497 			unlock_extent(tree, cur, page_end, NULL);
498 			unlock_page(page);
499 			put_page(page);
500 			break;
501 		}
502 		/*
503 		 * If it's subpage, we also need to increase its
504 		 * subpage::readers number, as at endio we will decrease
505 		 * subpage::readers and to unlock the page.
506 		 */
507 		if (fs_info->sectorsize < PAGE_SIZE)
508 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
509 		put_page(page);
510 		cur += add_size;
511 	}
512 	return 0;
513 }
514 
515 /*
516  * for a compressed read, the bio we get passed has all the inode pages
517  * in it.  We don't actually do IO on those pages but allocate new ones
518  * to hold the compressed pages on disk.
519  *
520  * bio->bi_iter.bi_sector points to the compressed extent on disk
521  * bio->bi_io_vec points to all of the inode pages
522  *
523  * After the compressed pages are read, we copy the bytes into the
524  * bio we were passed and then call the bio end_io calls
525  */
526 void btrfs_submit_compressed_read(struct bio *bio, int mirror_num)
527 {
528 	struct btrfs_inode *inode = btrfs_bio(bio)->inode;
529 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
530 	struct extent_map_tree *em_tree = &inode->extent_tree;
531 	struct compressed_bio *cb;
532 	unsigned int compressed_len;
533 	struct bio *comp_bio;
534 	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
535 	u64 cur_disk_byte = disk_bytenr;
536 	u64 file_offset = btrfs_bio(bio)->file_offset;
537 	u64 em_len;
538 	u64 em_start;
539 	struct extent_map *em;
540 	unsigned long pflags;
541 	int memstall = 0;
542 	blk_status_t ret;
543 	int ret2;
544 
545 	/* we need the actual starting offset of this extent in the file */
546 	read_lock(&em_tree->lock);
547 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
548 	read_unlock(&em_tree->lock);
549 	if (!em) {
550 		ret = BLK_STS_IOERR;
551 		goto out;
552 	}
553 
554 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
555 	compressed_len = em->block_len;
556 
557 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
558 				  end_compressed_bio_read);
559 	comp_bio = &cb->bbio.bio;
560 	comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
561 
562 	cb->start = em->orig_start;
563 	em_len = em->len;
564 	em_start = em->start;
565 
566 	cb->len = bio->bi_iter.bi_size;
567 	cb->compressed_len = compressed_len;
568 	cb->compress_type = em->compress_type;
569 	cb->orig_bio = bio;
570 
571 	free_extent_map(em);
572 
573 	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
574 	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
575 	if (!cb->compressed_pages) {
576 		ret = BLK_STS_RESOURCE;
577 		goto out_free_bio;
578 	}
579 
580 	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
581 	if (ret2) {
582 		ret = BLK_STS_RESOURCE;
583 		goto out_free_compressed_pages;
584 	}
585 
586 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
587 			 &pflags);
588 
589 	/* include any pages we added in add_ra-bio_pages */
590 	cb->len = bio->bi_iter.bi_size;
591 
592 	while (cur_disk_byte < disk_bytenr + compressed_len) {
593 		u64 offset = cur_disk_byte - disk_bytenr;
594 		unsigned int index = offset >> PAGE_SHIFT;
595 		unsigned int real_size;
596 		unsigned int added;
597 		struct page *page = cb->compressed_pages[index];
598 
599 		/*
600 		 * We have various limit on the real read size:
601 		 * - page boundary
602 		 * - compressed length boundary
603 		 */
604 		real_size = min_t(u64, U32_MAX, PAGE_SIZE - offset_in_page(offset));
605 		real_size = min_t(u64, real_size, compressed_len - offset);
606 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
607 
608 		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
609 		/*
610 		 * Maximum compressed extent is smaller than bio size limit,
611 		 * thus bio_add_page() should always success.
612 		 */
613 		ASSERT(added == real_size);
614 		cur_disk_byte += added;
615 	}
616 
617 	if (memstall)
618 		psi_memstall_leave(&pflags);
619 
620 	ASSERT(comp_bio->bi_iter.bi_size);
621 	btrfs_submit_bio(comp_bio, mirror_num);
622 	return;
623 
624 out_free_compressed_pages:
625 	kfree(cb->compressed_pages);
626 out_free_bio:
627 	bio_put(comp_bio);
628 out:
629 	btrfs_bio_end_io(btrfs_bio(bio), ret);
630 }
631 
632 /*
633  * Heuristic uses systematic sampling to collect data from the input data
634  * range, the logic can be tuned by the following constants:
635  *
636  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
637  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
638  */
639 #define SAMPLING_READ_SIZE	(16)
640 #define SAMPLING_INTERVAL	(256)
641 
642 /*
643  * For statistical analysis of the input data we consider bytes that form a
644  * Galois Field of 256 objects. Each object has an attribute count, ie. how
645  * many times the object appeared in the sample.
646  */
647 #define BUCKET_SIZE		(256)
648 
649 /*
650  * The size of the sample is based on a statistical sampling rule of thumb.
651  * The common way is to perform sampling tests as long as the number of
652  * elements in each cell is at least 5.
653  *
654  * Instead of 5, we choose 32 to obtain more accurate results.
655  * If the data contain the maximum number of symbols, which is 256, we obtain a
656  * sample size bound by 8192.
657  *
658  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
659  * from up to 512 locations.
660  */
661 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
662 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
663 
664 struct bucket_item {
665 	u32 count;
666 };
667 
668 struct heuristic_ws {
669 	/* Partial copy of input data */
670 	u8 *sample;
671 	u32 sample_size;
672 	/* Buckets store counters for each byte value */
673 	struct bucket_item *bucket;
674 	/* Sorting buffer */
675 	struct bucket_item *bucket_b;
676 	struct list_head list;
677 };
678 
679 static struct workspace_manager heuristic_wsm;
680 
681 static void free_heuristic_ws(struct list_head *ws)
682 {
683 	struct heuristic_ws *workspace;
684 
685 	workspace = list_entry(ws, struct heuristic_ws, list);
686 
687 	kvfree(workspace->sample);
688 	kfree(workspace->bucket);
689 	kfree(workspace->bucket_b);
690 	kfree(workspace);
691 }
692 
693 static struct list_head *alloc_heuristic_ws(unsigned int level)
694 {
695 	struct heuristic_ws *ws;
696 
697 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
698 	if (!ws)
699 		return ERR_PTR(-ENOMEM);
700 
701 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
702 	if (!ws->sample)
703 		goto fail;
704 
705 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
706 	if (!ws->bucket)
707 		goto fail;
708 
709 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
710 	if (!ws->bucket_b)
711 		goto fail;
712 
713 	INIT_LIST_HEAD(&ws->list);
714 	return &ws->list;
715 fail:
716 	free_heuristic_ws(&ws->list);
717 	return ERR_PTR(-ENOMEM);
718 }
719 
720 const struct btrfs_compress_op btrfs_heuristic_compress = {
721 	.workspace_manager = &heuristic_wsm,
722 };
723 
724 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
725 	/* The heuristic is represented as compression type 0 */
726 	&btrfs_heuristic_compress,
727 	&btrfs_zlib_compress,
728 	&btrfs_lzo_compress,
729 	&btrfs_zstd_compress,
730 };
731 
732 static struct list_head *alloc_workspace(int type, unsigned int level)
733 {
734 	switch (type) {
735 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
736 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
737 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
738 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
739 	default:
740 		/*
741 		 * This can't happen, the type is validated several times
742 		 * before we get here.
743 		 */
744 		BUG();
745 	}
746 }
747 
748 static void free_workspace(int type, struct list_head *ws)
749 {
750 	switch (type) {
751 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
752 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
753 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
754 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
755 	default:
756 		/*
757 		 * This can't happen, the type is validated several times
758 		 * before we get here.
759 		 */
760 		BUG();
761 	}
762 }
763 
764 static void btrfs_init_workspace_manager(int type)
765 {
766 	struct workspace_manager *wsm;
767 	struct list_head *workspace;
768 
769 	wsm = btrfs_compress_op[type]->workspace_manager;
770 	INIT_LIST_HEAD(&wsm->idle_ws);
771 	spin_lock_init(&wsm->ws_lock);
772 	atomic_set(&wsm->total_ws, 0);
773 	init_waitqueue_head(&wsm->ws_wait);
774 
775 	/*
776 	 * Preallocate one workspace for each compression type so we can
777 	 * guarantee forward progress in the worst case
778 	 */
779 	workspace = alloc_workspace(type, 0);
780 	if (IS_ERR(workspace)) {
781 		pr_warn(
782 	"BTRFS: cannot preallocate compression workspace, will try later\n");
783 	} else {
784 		atomic_set(&wsm->total_ws, 1);
785 		wsm->free_ws = 1;
786 		list_add(workspace, &wsm->idle_ws);
787 	}
788 }
789 
790 static void btrfs_cleanup_workspace_manager(int type)
791 {
792 	struct workspace_manager *wsman;
793 	struct list_head *ws;
794 
795 	wsman = btrfs_compress_op[type]->workspace_manager;
796 	while (!list_empty(&wsman->idle_ws)) {
797 		ws = wsman->idle_ws.next;
798 		list_del(ws);
799 		free_workspace(type, ws);
800 		atomic_dec(&wsman->total_ws);
801 	}
802 }
803 
804 /*
805  * This finds an available workspace or allocates a new one.
806  * If it's not possible to allocate a new one, waits until there's one.
807  * Preallocation makes a forward progress guarantees and we do not return
808  * errors.
809  */
810 struct list_head *btrfs_get_workspace(int type, unsigned int level)
811 {
812 	struct workspace_manager *wsm;
813 	struct list_head *workspace;
814 	int cpus = num_online_cpus();
815 	unsigned nofs_flag;
816 	struct list_head *idle_ws;
817 	spinlock_t *ws_lock;
818 	atomic_t *total_ws;
819 	wait_queue_head_t *ws_wait;
820 	int *free_ws;
821 
822 	wsm = btrfs_compress_op[type]->workspace_manager;
823 	idle_ws	 = &wsm->idle_ws;
824 	ws_lock	 = &wsm->ws_lock;
825 	total_ws = &wsm->total_ws;
826 	ws_wait	 = &wsm->ws_wait;
827 	free_ws	 = &wsm->free_ws;
828 
829 again:
830 	spin_lock(ws_lock);
831 	if (!list_empty(idle_ws)) {
832 		workspace = idle_ws->next;
833 		list_del(workspace);
834 		(*free_ws)--;
835 		spin_unlock(ws_lock);
836 		return workspace;
837 
838 	}
839 	if (atomic_read(total_ws) > cpus) {
840 		DEFINE_WAIT(wait);
841 
842 		spin_unlock(ws_lock);
843 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
844 		if (atomic_read(total_ws) > cpus && !*free_ws)
845 			schedule();
846 		finish_wait(ws_wait, &wait);
847 		goto again;
848 	}
849 	atomic_inc(total_ws);
850 	spin_unlock(ws_lock);
851 
852 	/*
853 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
854 	 * to turn it off here because we might get called from the restricted
855 	 * context of btrfs_compress_bio/btrfs_compress_pages
856 	 */
857 	nofs_flag = memalloc_nofs_save();
858 	workspace = alloc_workspace(type, level);
859 	memalloc_nofs_restore(nofs_flag);
860 
861 	if (IS_ERR(workspace)) {
862 		atomic_dec(total_ws);
863 		wake_up(ws_wait);
864 
865 		/*
866 		 * Do not return the error but go back to waiting. There's a
867 		 * workspace preallocated for each type and the compression
868 		 * time is bounded so we get to a workspace eventually. This
869 		 * makes our caller's life easier.
870 		 *
871 		 * To prevent silent and low-probability deadlocks (when the
872 		 * initial preallocation fails), check if there are any
873 		 * workspaces at all.
874 		 */
875 		if (atomic_read(total_ws) == 0) {
876 			static DEFINE_RATELIMIT_STATE(_rs,
877 					/* once per minute */ 60 * HZ,
878 					/* no burst */ 1);
879 
880 			if (__ratelimit(&_rs)) {
881 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
882 			}
883 		}
884 		goto again;
885 	}
886 	return workspace;
887 }
888 
889 static struct list_head *get_workspace(int type, int level)
890 {
891 	switch (type) {
892 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
893 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
894 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
895 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
896 	default:
897 		/*
898 		 * This can't happen, the type is validated several times
899 		 * before we get here.
900 		 */
901 		BUG();
902 	}
903 }
904 
905 /*
906  * put a workspace struct back on the list or free it if we have enough
907  * idle ones sitting around
908  */
909 void btrfs_put_workspace(int type, struct list_head *ws)
910 {
911 	struct workspace_manager *wsm;
912 	struct list_head *idle_ws;
913 	spinlock_t *ws_lock;
914 	atomic_t *total_ws;
915 	wait_queue_head_t *ws_wait;
916 	int *free_ws;
917 
918 	wsm = btrfs_compress_op[type]->workspace_manager;
919 	idle_ws	 = &wsm->idle_ws;
920 	ws_lock	 = &wsm->ws_lock;
921 	total_ws = &wsm->total_ws;
922 	ws_wait	 = &wsm->ws_wait;
923 	free_ws	 = &wsm->free_ws;
924 
925 	spin_lock(ws_lock);
926 	if (*free_ws <= num_online_cpus()) {
927 		list_add(ws, idle_ws);
928 		(*free_ws)++;
929 		spin_unlock(ws_lock);
930 		goto wake;
931 	}
932 	spin_unlock(ws_lock);
933 
934 	free_workspace(type, ws);
935 	atomic_dec(total_ws);
936 wake:
937 	cond_wake_up(ws_wait);
938 }
939 
940 static void put_workspace(int type, struct list_head *ws)
941 {
942 	switch (type) {
943 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
944 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
945 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
946 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
947 	default:
948 		/*
949 		 * This can't happen, the type is validated several times
950 		 * before we get here.
951 		 */
952 		BUG();
953 	}
954 }
955 
956 /*
957  * Adjust @level according to the limits of the compression algorithm or
958  * fallback to default
959  */
960 static unsigned int btrfs_compress_set_level(int type, unsigned level)
961 {
962 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
963 
964 	if (level == 0)
965 		level = ops->default_level;
966 	else
967 		level = min(level, ops->max_level);
968 
969 	return level;
970 }
971 
972 /*
973  * Given an address space and start and length, compress the bytes into @pages
974  * that are allocated on demand.
975  *
976  * @type_level is encoded algorithm and level, where level 0 means whatever
977  * default the algorithm chooses and is opaque here;
978  * - compression algo are 0-3
979  * - the level are bits 4-7
980  *
981  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
982  * and returns number of actually allocated pages
983  *
984  * @total_in is used to return the number of bytes actually read.  It
985  * may be smaller than the input length if we had to exit early because we
986  * ran out of room in the pages array or because we cross the
987  * max_out threshold.
988  *
989  * @total_out is an in/out parameter, must be set to the input length and will
990  * be also used to return the total number of compressed bytes
991  */
992 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
993 			 u64 start, struct page **pages,
994 			 unsigned long *out_pages,
995 			 unsigned long *total_in,
996 			 unsigned long *total_out)
997 {
998 	int type = btrfs_compress_type(type_level);
999 	int level = btrfs_compress_level(type_level);
1000 	struct list_head *workspace;
1001 	int ret;
1002 
1003 	level = btrfs_compress_set_level(type, level);
1004 	workspace = get_workspace(type, level);
1005 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1006 					 out_pages, total_in, total_out);
1007 	put_workspace(type, workspace);
1008 	return ret;
1009 }
1010 
1011 static int btrfs_decompress_bio(struct compressed_bio *cb)
1012 {
1013 	struct list_head *workspace;
1014 	int ret;
1015 	int type = cb->compress_type;
1016 
1017 	workspace = get_workspace(type, 0);
1018 	ret = compression_decompress_bio(workspace, cb);
1019 	put_workspace(type, workspace);
1020 
1021 	return ret;
1022 }
1023 
1024 /*
1025  * a less complex decompression routine.  Our compressed data fits in a
1026  * single page, and we want to read a single page out of it.
1027  * start_byte tells us the offset into the compressed data we're interested in
1028  */
1029 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1030 		     unsigned long start_byte, size_t srclen, size_t destlen)
1031 {
1032 	struct list_head *workspace;
1033 	int ret;
1034 
1035 	workspace = get_workspace(type, 0);
1036 	ret = compression_decompress(type, workspace, data_in, dest_page,
1037 				     start_byte, srclen, destlen);
1038 	put_workspace(type, workspace);
1039 
1040 	return ret;
1041 }
1042 
1043 int __init btrfs_init_compress(void)
1044 {
1045 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1046 			offsetof(struct compressed_bio, bbio.bio),
1047 			BIOSET_NEED_BVECS))
1048 		return -ENOMEM;
1049 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1050 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1051 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1052 	zstd_init_workspace_manager();
1053 	return 0;
1054 }
1055 
1056 void __cold btrfs_exit_compress(void)
1057 {
1058 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1059 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1060 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1061 	zstd_cleanup_workspace_manager();
1062 	bioset_exit(&btrfs_compressed_bioset);
1063 }
1064 
1065 /*
1066  * Copy decompressed data from working buffer to pages.
1067  *
1068  * @buf:		The decompressed data buffer
1069  * @buf_len:		The decompressed data length
1070  * @decompressed:	Number of bytes that are already decompressed inside the
1071  * 			compressed extent
1072  * @cb:			The compressed extent descriptor
1073  * @orig_bio:		The original bio that the caller wants to read for
1074  *
1075  * An easier to understand graph is like below:
1076  *
1077  * 		|<- orig_bio ->|     |<- orig_bio->|
1078  * 	|<-------      full decompressed extent      ----->|
1079  * 	|<-----------    @cb range   ---->|
1080  * 	|			|<-- @buf_len -->|
1081  * 	|<--- @decompressed --->|
1082  *
1083  * Note that, @cb can be a subpage of the full decompressed extent, but
1084  * @cb->start always has the same as the orig_file_offset value of the full
1085  * decompressed extent.
1086  *
1087  * When reading compressed extent, we have to read the full compressed extent,
1088  * while @orig_bio may only want part of the range.
1089  * Thus this function will ensure only data covered by @orig_bio will be copied
1090  * to.
1091  *
1092  * Return 0 if we have copied all needed contents for @orig_bio.
1093  * Return >0 if we need continue decompress.
1094  */
1095 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1096 			      struct compressed_bio *cb, u32 decompressed)
1097 {
1098 	struct bio *orig_bio = cb->orig_bio;
1099 	/* Offset inside the full decompressed extent */
1100 	u32 cur_offset;
1101 
1102 	cur_offset = decompressed;
1103 	/* The main loop to do the copy */
1104 	while (cur_offset < decompressed + buf_len) {
1105 		struct bio_vec bvec;
1106 		size_t copy_len;
1107 		u32 copy_start;
1108 		/* Offset inside the full decompressed extent */
1109 		u32 bvec_offset;
1110 
1111 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1112 		/*
1113 		 * cb->start may underflow, but subtracting that value can still
1114 		 * give us correct offset inside the full decompressed extent.
1115 		 */
1116 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1117 
1118 		/* Haven't reached the bvec range, exit */
1119 		if (decompressed + buf_len <= bvec_offset)
1120 			return 1;
1121 
1122 		copy_start = max(cur_offset, bvec_offset);
1123 		copy_len = min(bvec_offset + bvec.bv_len,
1124 			       decompressed + buf_len) - copy_start;
1125 		ASSERT(copy_len);
1126 
1127 		/*
1128 		 * Extra range check to ensure we didn't go beyond
1129 		 * @buf + @buf_len.
1130 		 */
1131 		ASSERT(copy_start - decompressed < buf_len);
1132 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1133 			       buf + copy_start - decompressed, copy_len);
1134 		cur_offset += copy_len;
1135 
1136 		bio_advance(orig_bio, copy_len);
1137 		/* Finished the bio */
1138 		if (!orig_bio->bi_iter.bi_size)
1139 			return 0;
1140 	}
1141 	return 1;
1142 }
1143 
1144 /*
1145  * Shannon Entropy calculation
1146  *
1147  * Pure byte distribution analysis fails to determine compressibility of data.
1148  * Try calculating entropy to estimate the average minimum number of bits
1149  * needed to encode the sampled data.
1150  *
1151  * For convenience, return the percentage of needed bits, instead of amount of
1152  * bits directly.
1153  *
1154  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1155  *			    and can be compressible with high probability
1156  *
1157  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1158  *
1159  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1160  */
1161 #define ENTROPY_LVL_ACEPTABLE		(65)
1162 #define ENTROPY_LVL_HIGH		(80)
1163 
1164 /*
1165  * For increasead precision in shannon_entropy calculation,
1166  * let's do pow(n, M) to save more digits after comma:
1167  *
1168  * - maximum int bit length is 64
1169  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1170  * - 13 * 4 = 52 < 64		-> M = 4
1171  *
1172  * So use pow(n, 4).
1173  */
1174 static inline u32 ilog2_w(u64 n)
1175 {
1176 	return ilog2(n * n * n * n);
1177 }
1178 
1179 static u32 shannon_entropy(struct heuristic_ws *ws)
1180 {
1181 	const u32 entropy_max = 8 * ilog2_w(2);
1182 	u32 entropy_sum = 0;
1183 	u32 p, p_base, sz_base;
1184 	u32 i;
1185 
1186 	sz_base = ilog2_w(ws->sample_size);
1187 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1188 		p = ws->bucket[i].count;
1189 		p_base = ilog2_w(p);
1190 		entropy_sum += p * (sz_base - p_base);
1191 	}
1192 
1193 	entropy_sum /= ws->sample_size;
1194 	return entropy_sum * 100 / entropy_max;
1195 }
1196 
1197 #define RADIX_BASE		4U
1198 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1199 
1200 static u8 get4bits(u64 num, int shift) {
1201 	u8 low4bits;
1202 
1203 	num >>= shift;
1204 	/* Reverse order */
1205 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1206 	return low4bits;
1207 }
1208 
1209 /*
1210  * Use 4 bits as radix base
1211  * Use 16 u32 counters for calculating new position in buf array
1212  *
1213  * @array     - array that will be sorted
1214  * @array_buf - buffer array to store sorting results
1215  *              must be equal in size to @array
1216  * @num       - array size
1217  */
1218 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1219 		       int num)
1220 {
1221 	u64 max_num;
1222 	u64 buf_num;
1223 	u32 counters[COUNTERS_SIZE];
1224 	u32 new_addr;
1225 	u32 addr;
1226 	int bitlen;
1227 	int shift;
1228 	int i;
1229 
1230 	/*
1231 	 * Try avoid useless loop iterations for small numbers stored in big
1232 	 * counters.  Example: 48 33 4 ... in 64bit array
1233 	 */
1234 	max_num = array[0].count;
1235 	for (i = 1; i < num; i++) {
1236 		buf_num = array[i].count;
1237 		if (buf_num > max_num)
1238 			max_num = buf_num;
1239 	}
1240 
1241 	buf_num = ilog2(max_num);
1242 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1243 
1244 	shift = 0;
1245 	while (shift < bitlen) {
1246 		memset(counters, 0, sizeof(counters));
1247 
1248 		for (i = 0; i < num; i++) {
1249 			buf_num = array[i].count;
1250 			addr = get4bits(buf_num, shift);
1251 			counters[addr]++;
1252 		}
1253 
1254 		for (i = 1; i < COUNTERS_SIZE; i++)
1255 			counters[i] += counters[i - 1];
1256 
1257 		for (i = num - 1; i >= 0; i--) {
1258 			buf_num = array[i].count;
1259 			addr = get4bits(buf_num, shift);
1260 			counters[addr]--;
1261 			new_addr = counters[addr];
1262 			array_buf[new_addr] = array[i];
1263 		}
1264 
1265 		shift += RADIX_BASE;
1266 
1267 		/*
1268 		 * Normal radix expects to move data from a temporary array, to
1269 		 * the main one.  But that requires some CPU time. Avoid that
1270 		 * by doing another sort iteration to original array instead of
1271 		 * memcpy()
1272 		 */
1273 		memset(counters, 0, sizeof(counters));
1274 
1275 		for (i = 0; i < num; i ++) {
1276 			buf_num = array_buf[i].count;
1277 			addr = get4bits(buf_num, shift);
1278 			counters[addr]++;
1279 		}
1280 
1281 		for (i = 1; i < COUNTERS_SIZE; i++)
1282 			counters[i] += counters[i - 1];
1283 
1284 		for (i = num - 1; i >= 0; i--) {
1285 			buf_num = array_buf[i].count;
1286 			addr = get4bits(buf_num, shift);
1287 			counters[addr]--;
1288 			new_addr = counters[addr];
1289 			array[new_addr] = array_buf[i];
1290 		}
1291 
1292 		shift += RADIX_BASE;
1293 	}
1294 }
1295 
1296 /*
1297  * Size of the core byte set - how many bytes cover 90% of the sample
1298  *
1299  * There are several types of structured binary data that use nearly all byte
1300  * values. The distribution can be uniform and counts in all buckets will be
1301  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1302  *
1303  * Other possibility is normal (Gaussian) distribution, where the data could
1304  * be potentially compressible, but we have to take a few more steps to decide
1305  * how much.
1306  *
1307  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1308  *                       compression algo can easy fix that
1309  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1310  *                       probability is not compressible
1311  */
1312 #define BYTE_CORE_SET_LOW		(64)
1313 #define BYTE_CORE_SET_HIGH		(200)
1314 
1315 static int byte_core_set_size(struct heuristic_ws *ws)
1316 {
1317 	u32 i;
1318 	u32 coreset_sum = 0;
1319 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1320 	struct bucket_item *bucket = ws->bucket;
1321 
1322 	/* Sort in reverse order */
1323 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1324 
1325 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1326 		coreset_sum += bucket[i].count;
1327 
1328 	if (coreset_sum > core_set_threshold)
1329 		return i;
1330 
1331 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1332 		coreset_sum += bucket[i].count;
1333 		if (coreset_sum > core_set_threshold)
1334 			break;
1335 	}
1336 
1337 	return i;
1338 }
1339 
1340 /*
1341  * Count byte values in buckets.
1342  * This heuristic can detect textual data (configs, xml, json, html, etc).
1343  * Because in most text-like data byte set is restricted to limited number of
1344  * possible characters, and that restriction in most cases makes data easy to
1345  * compress.
1346  *
1347  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1348  *	less - compressible
1349  *	more - need additional analysis
1350  */
1351 #define BYTE_SET_THRESHOLD		(64)
1352 
1353 static u32 byte_set_size(const struct heuristic_ws *ws)
1354 {
1355 	u32 i;
1356 	u32 byte_set_size = 0;
1357 
1358 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1359 		if (ws->bucket[i].count > 0)
1360 			byte_set_size++;
1361 	}
1362 
1363 	/*
1364 	 * Continue collecting count of byte values in buckets.  If the byte
1365 	 * set size is bigger then the threshold, it's pointless to continue,
1366 	 * the detection technique would fail for this type of data.
1367 	 */
1368 	for (; i < BUCKET_SIZE; i++) {
1369 		if (ws->bucket[i].count > 0) {
1370 			byte_set_size++;
1371 			if (byte_set_size > BYTE_SET_THRESHOLD)
1372 				return byte_set_size;
1373 		}
1374 	}
1375 
1376 	return byte_set_size;
1377 }
1378 
1379 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1380 {
1381 	const u32 half_of_sample = ws->sample_size / 2;
1382 	const u8 *data = ws->sample;
1383 
1384 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1385 }
1386 
1387 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1388 				     struct heuristic_ws *ws)
1389 {
1390 	struct page *page;
1391 	u64 index, index_end;
1392 	u32 i, curr_sample_pos;
1393 	u8 *in_data;
1394 
1395 	/*
1396 	 * Compression handles the input data by chunks of 128KiB
1397 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1398 	 *
1399 	 * We do the same for the heuristic and loop over the whole range.
1400 	 *
1401 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1402 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1403 	 */
1404 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1405 		end = start + BTRFS_MAX_UNCOMPRESSED;
1406 
1407 	index = start >> PAGE_SHIFT;
1408 	index_end = end >> PAGE_SHIFT;
1409 
1410 	/* Don't miss unaligned end */
1411 	if (!PAGE_ALIGNED(end))
1412 		index_end++;
1413 
1414 	curr_sample_pos = 0;
1415 	while (index < index_end) {
1416 		page = find_get_page(inode->i_mapping, index);
1417 		in_data = kmap_local_page(page);
1418 		/* Handle case where the start is not aligned to PAGE_SIZE */
1419 		i = start % PAGE_SIZE;
1420 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1421 			/* Don't sample any garbage from the last page */
1422 			if (start > end - SAMPLING_READ_SIZE)
1423 				break;
1424 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1425 					SAMPLING_READ_SIZE);
1426 			i += SAMPLING_INTERVAL;
1427 			start += SAMPLING_INTERVAL;
1428 			curr_sample_pos += SAMPLING_READ_SIZE;
1429 		}
1430 		kunmap_local(in_data);
1431 		put_page(page);
1432 
1433 		index++;
1434 	}
1435 
1436 	ws->sample_size = curr_sample_pos;
1437 }
1438 
1439 /*
1440  * Compression heuristic.
1441  *
1442  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1443  * quickly (compared to direct compression) detect data characteristics
1444  * (compressible/incompressible) to avoid wasting CPU time on incompressible
1445  * data.
1446  *
1447  * The following types of analysis can be performed:
1448  * - detect mostly zero data
1449  * - detect data with low "byte set" size (text, etc)
1450  * - detect data with low/high "core byte" set
1451  *
1452  * Return non-zero if the compression should be done, 0 otherwise.
1453  */
1454 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1455 {
1456 	struct list_head *ws_list = get_workspace(0, 0);
1457 	struct heuristic_ws *ws;
1458 	u32 i;
1459 	u8 byte;
1460 	int ret = 0;
1461 
1462 	ws = list_entry(ws_list, struct heuristic_ws, list);
1463 
1464 	heuristic_collect_sample(inode, start, end, ws);
1465 
1466 	if (sample_repeated_patterns(ws)) {
1467 		ret = 1;
1468 		goto out;
1469 	}
1470 
1471 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1472 
1473 	for (i = 0; i < ws->sample_size; i++) {
1474 		byte = ws->sample[i];
1475 		ws->bucket[byte].count++;
1476 	}
1477 
1478 	i = byte_set_size(ws);
1479 	if (i < BYTE_SET_THRESHOLD) {
1480 		ret = 2;
1481 		goto out;
1482 	}
1483 
1484 	i = byte_core_set_size(ws);
1485 	if (i <= BYTE_CORE_SET_LOW) {
1486 		ret = 3;
1487 		goto out;
1488 	}
1489 
1490 	if (i >= BYTE_CORE_SET_HIGH) {
1491 		ret = 0;
1492 		goto out;
1493 	}
1494 
1495 	i = shannon_entropy(ws);
1496 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1497 		ret = 4;
1498 		goto out;
1499 	}
1500 
1501 	/*
1502 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1503 	 * needed to give green light to compression.
1504 	 *
1505 	 * For now just assume that compression at that level is not worth the
1506 	 * resources because:
1507 	 *
1508 	 * 1. it is possible to defrag the data later
1509 	 *
1510 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1511 	 * values, every bucket has counter at level ~54. The heuristic would
1512 	 * be confused. This can happen when data have some internal repeated
1513 	 * patterns like "abbacbbc...". This can be detected by analyzing
1514 	 * pairs of bytes, which is too costly.
1515 	 */
1516 	if (i < ENTROPY_LVL_HIGH) {
1517 		ret = 5;
1518 		goto out;
1519 	} else {
1520 		ret = 0;
1521 		goto out;
1522 	}
1523 
1524 out:
1525 	put_workspace(0, ws_list);
1526 	return ret;
1527 }
1528 
1529 /*
1530  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1531  * level, unrecognized string will set the default level
1532  */
1533 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1534 {
1535 	unsigned int level = 0;
1536 	int ret;
1537 
1538 	if (!type)
1539 		return 0;
1540 
1541 	if (str[0] == ':') {
1542 		ret = kstrtouint(str + 1, 10, &level);
1543 		if (ret)
1544 			level = 0;
1545 	}
1546 
1547 	level = btrfs_compress_set_level(type, level);
1548 
1549 	return level;
1550 }
1551