1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/kthread.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sched/mm.h> 20 #include <linux/log2.h> 21 #include <crypto/hash.h> 22 #include "misc.h" 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "ordered-data.h" 29 #include "compression.h" 30 #include "extent_io.h" 31 #include "extent_map.h" 32 #include "subpage.h" 33 #include "zoned.h" 34 35 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 36 37 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 38 { 39 switch (type) { 40 case BTRFS_COMPRESS_ZLIB: 41 case BTRFS_COMPRESS_LZO: 42 case BTRFS_COMPRESS_ZSTD: 43 case BTRFS_COMPRESS_NONE: 44 return btrfs_compress_types[type]; 45 default: 46 break; 47 } 48 49 return NULL; 50 } 51 52 bool btrfs_compress_is_valid_type(const char *str, size_t len) 53 { 54 int i; 55 56 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 57 size_t comp_len = strlen(btrfs_compress_types[i]); 58 59 if (len < comp_len) 60 continue; 61 62 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 63 return true; 64 } 65 return false; 66 } 67 68 static int compression_compress_pages(int type, struct list_head *ws, 69 struct address_space *mapping, u64 start, struct page **pages, 70 unsigned long *out_pages, unsigned long *total_in, 71 unsigned long *total_out) 72 { 73 switch (type) { 74 case BTRFS_COMPRESS_ZLIB: 75 return zlib_compress_pages(ws, mapping, start, pages, 76 out_pages, total_in, total_out); 77 case BTRFS_COMPRESS_LZO: 78 return lzo_compress_pages(ws, mapping, start, pages, 79 out_pages, total_in, total_out); 80 case BTRFS_COMPRESS_ZSTD: 81 return zstd_compress_pages(ws, mapping, start, pages, 82 out_pages, total_in, total_out); 83 case BTRFS_COMPRESS_NONE: 84 default: 85 /* 86 * This can happen when compression races with remount setting 87 * it to 'no compress', while caller doesn't call 88 * inode_need_compress() to check if we really need to 89 * compress. 90 * 91 * Not a big deal, just need to inform caller that we 92 * haven't allocated any pages yet. 93 */ 94 *out_pages = 0; 95 return -E2BIG; 96 } 97 } 98 99 static int compression_decompress_bio(struct list_head *ws, 100 struct compressed_bio *cb) 101 { 102 switch (cb->compress_type) { 103 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 104 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 105 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 106 case BTRFS_COMPRESS_NONE: 107 default: 108 /* 109 * This can't happen, the type is validated several times 110 * before we get here. 111 */ 112 BUG(); 113 } 114 } 115 116 static int compression_decompress(int type, struct list_head *ws, 117 unsigned char *data_in, struct page *dest_page, 118 unsigned long start_byte, size_t srclen, size_t destlen) 119 { 120 switch (type) { 121 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 122 start_byte, srclen, destlen); 123 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 124 start_byte, srclen, destlen); 125 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 126 start_byte, srclen, destlen); 127 case BTRFS_COMPRESS_NONE: 128 default: 129 /* 130 * This can't happen, the type is validated several times 131 * before we get here. 132 */ 133 BUG(); 134 } 135 } 136 137 static int btrfs_decompress_bio(struct compressed_bio *cb); 138 139 static void finish_compressed_bio_read(struct compressed_bio *cb) 140 { 141 unsigned int index; 142 struct page *page; 143 144 if (cb->status == BLK_STS_OK) 145 cb->status = errno_to_blk_status(btrfs_decompress_bio(cb)); 146 147 /* Release the compressed pages */ 148 for (index = 0; index < cb->nr_pages; index++) { 149 page = cb->compressed_pages[index]; 150 page->mapping = NULL; 151 put_page(page); 152 } 153 154 /* Do io completion on the original bio */ 155 if (cb->status != BLK_STS_OK) 156 cb->orig_bio->bi_status = cb->status; 157 bio_endio(cb->orig_bio); 158 159 /* Finally free the cb struct */ 160 kfree(cb->compressed_pages); 161 kfree(cb); 162 } 163 164 /* 165 * Verify the checksums and kick off repair if needed on the uncompressed data 166 * before decompressing it into the original bio and freeing the uncompressed 167 * pages. 168 */ 169 static void end_compressed_bio_read(struct bio *bio) 170 { 171 struct compressed_bio *cb = bio->bi_private; 172 struct inode *inode = cb->inode; 173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 174 struct btrfs_inode *bi = BTRFS_I(inode); 175 bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) && 176 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 177 blk_status_t status = bio->bi_status; 178 struct btrfs_bio *bbio = btrfs_bio(bio); 179 struct bvec_iter iter; 180 struct bio_vec bv; 181 u32 offset; 182 183 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) { 184 u64 start = bbio->file_offset + offset; 185 186 if (!status && 187 (!csum || !btrfs_check_data_csum(inode, bbio, offset, 188 bv.bv_page, bv.bv_offset))) { 189 clean_io_failure(fs_info, &bi->io_failure_tree, 190 &bi->io_tree, start, bv.bv_page, 191 btrfs_ino(bi), bv.bv_offset); 192 } else { 193 int ret; 194 195 refcount_inc(&cb->pending_ios); 196 ret = btrfs_repair_one_sector(inode, bbio, offset, 197 bv.bv_page, bv.bv_offset, 198 btrfs_submit_data_read_bio); 199 if (ret) { 200 refcount_dec(&cb->pending_ios); 201 status = errno_to_blk_status(ret); 202 } 203 } 204 } 205 206 if (status) 207 cb->status = status; 208 209 if (refcount_dec_and_test(&cb->pending_ios)) 210 finish_compressed_bio_read(cb); 211 btrfs_bio_free_csum(bbio); 212 bio_put(bio); 213 } 214 215 /* 216 * Clear the writeback bits on all of the file 217 * pages for a compressed write 218 */ 219 static noinline void end_compressed_writeback(struct inode *inode, 220 const struct compressed_bio *cb) 221 { 222 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 223 unsigned long index = cb->start >> PAGE_SHIFT; 224 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 225 struct page *pages[16]; 226 unsigned long nr_pages = end_index - index + 1; 227 const int errno = blk_status_to_errno(cb->status); 228 int i; 229 int ret; 230 231 if (errno) 232 mapping_set_error(inode->i_mapping, errno); 233 234 while (nr_pages > 0) { 235 ret = find_get_pages_contig(inode->i_mapping, index, 236 min_t(unsigned long, 237 nr_pages, ARRAY_SIZE(pages)), pages); 238 if (ret == 0) { 239 nr_pages -= 1; 240 index += 1; 241 continue; 242 } 243 for (i = 0; i < ret; i++) { 244 if (errno) 245 SetPageError(pages[i]); 246 btrfs_page_clamp_clear_writeback(fs_info, pages[i], 247 cb->start, cb->len); 248 put_page(pages[i]); 249 } 250 nr_pages -= ret; 251 index += ret; 252 } 253 /* the inode may be gone now */ 254 } 255 256 static void finish_compressed_bio_write(struct compressed_bio *cb) 257 { 258 struct inode *inode = cb->inode; 259 unsigned int index; 260 261 /* 262 * Ok, we're the last bio for this extent, step one is to call back 263 * into the FS and do all the end_io operations. 264 */ 265 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL, 266 cb->start, cb->start + cb->len - 1, 267 cb->status == BLK_STS_OK); 268 269 if (cb->writeback) 270 end_compressed_writeback(inode, cb); 271 /* Note, our inode could be gone now */ 272 273 /* 274 * Release the compressed pages, these came from alloc_page and 275 * are not attached to the inode at all 276 */ 277 for (index = 0; index < cb->nr_pages; index++) { 278 struct page *page = cb->compressed_pages[index]; 279 280 page->mapping = NULL; 281 put_page(page); 282 } 283 284 /* Finally free the cb struct */ 285 kfree(cb->compressed_pages); 286 kfree(cb); 287 } 288 289 static void btrfs_finish_compressed_write_work(struct work_struct *work) 290 { 291 struct compressed_bio *cb = 292 container_of(work, struct compressed_bio, write_end_work); 293 294 finish_compressed_bio_write(cb); 295 } 296 297 /* 298 * Do the cleanup once all the compressed pages hit the disk. This will clear 299 * writeback on the file pages and free the compressed pages. 300 * 301 * This also calls the writeback end hooks for the file pages so that metadata 302 * and checksums can be updated in the file. 303 */ 304 static void end_compressed_bio_write(struct bio *bio) 305 { 306 struct compressed_bio *cb = bio->bi_private; 307 308 if (bio->bi_status) 309 cb->status = bio->bi_status; 310 311 if (refcount_dec_and_test(&cb->pending_ios)) { 312 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 313 314 btrfs_record_physical_zoned(cb->inode, cb->start, bio); 315 queue_work(fs_info->compressed_write_workers, &cb->write_end_work); 316 } 317 bio_put(bio); 318 } 319 320 /* 321 * Allocate a compressed_bio, which will be used to read/write on-disk 322 * (aka, compressed) * data. 323 * 324 * @cb: The compressed_bio structure, which records all the needed 325 * information to bind the compressed data to the uncompressed 326 * page cache. 327 * @disk_byten: The logical bytenr where the compressed data will be read 328 * from or written to. 329 * @endio_func: The endio function to call after the IO for compressed data 330 * is finished. 331 * @next_stripe_start: Return value of logical bytenr of where next stripe starts. 332 * Let the caller know to only fill the bio up to the stripe 333 * boundary. 334 */ 335 336 337 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr, 338 blk_opf_t opf, bio_end_io_t endio_func, 339 u64 *next_stripe_start) 340 { 341 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 342 struct btrfs_io_geometry geom; 343 struct extent_map *em; 344 struct bio *bio; 345 int ret; 346 347 bio = btrfs_bio_alloc(BIO_MAX_VECS); 348 349 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 350 bio->bi_opf = opf; 351 bio->bi_private = cb; 352 bio->bi_end_io = endio_func; 353 354 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize); 355 if (IS_ERR(em)) { 356 bio_put(bio); 357 return ERR_CAST(em); 358 } 359 360 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 361 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev); 362 363 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom); 364 free_extent_map(em); 365 if (ret < 0) { 366 bio_put(bio); 367 return ERR_PTR(ret); 368 } 369 *next_stripe_start = disk_bytenr + geom.len; 370 refcount_inc(&cb->pending_ios); 371 return bio; 372 } 373 374 /* 375 * worker function to build and submit bios for previously compressed pages. 376 * The corresponding pages in the inode should be marked for writeback 377 * and the compressed pages should have a reference on them for dropping 378 * when the IO is complete. 379 * 380 * This also checksums the file bytes and gets things ready for 381 * the end io hooks. 382 */ 383 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 384 unsigned int len, u64 disk_start, 385 unsigned int compressed_len, 386 struct page **compressed_pages, 387 unsigned int nr_pages, 388 blk_opf_t write_flags, 389 struct cgroup_subsys_state *blkcg_css, 390 bool writeback) 391 { 392 struct btrfs_fs_info *fs_info = inode->root->fs_info; 393 struct bio *bio = NULL; 394 struct compressed_bio *cb; 395 u64 cur_disk_bytenr = disk_start; 396 u64 next_stripe_start; 397 blk_status_t ret = BLK_STS_OK; 398 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 399 const bool use_append = btrfs_use_zone_append(inode, disk_start); 400 const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE; 401 402 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 403 IS_ALIGNED(len, fs_info->sectorsize)); 404 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS); 405 if (!cb) 406 return BLK_STS_RESOURCE; 407 refcount_set(&cb->pending_ios, 1); 408 cb->status = BLK_STS_OK; 409 cb->inode = &inode->vfs_inode; 410 cb->start = start; 411 cb->len = len; 412 cb->compressed_pages = compressed_pages; 413 cb->compressed_len = compressed_len; 414 cb->writeback = writeback; 415 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); 416 cb->nr_pages = nr_pages; 417 418 if (blkcg_css) 419 kthread_associate_blkcg(blkcg_css); 420 421 while (cur_disk_bytenr < disk_start + compressed_len) { 422 u64 offset = cur_disk_bytenr - disk_start; 423 unsigned int index = offset >> PAGE_SHIFT; 424 unsigned int real_size; 425 unsigned int added; 426 struct page *page = compressed_pages[index]; 427 bool submit = false; 428 429 /* Allocate new bio if submitted or not yet allocated */ 430 if (!bio) { 431 bio = alloc_compressed_bio(cb, cur_disk_bytenr, 432 bio_op | write_flags, end_compressed_bio_write, 433 &next_stripe_start); 434 if (IS_ERR(bio)) { 435 ret = errno_to_blk_status(PTR_ERR(bio)); 436 break; 437 } 438 if (blkcg_css) 439 bio->bi_opf |= REQ_CGROUP_PUNT; 440 } 441 /* 442 * We should never reach next_stripe_start start as we will 443 * submit comp_bio when reach the boundary immediately. 444 */ 445 ASSERT(cur_disk_bytenr != next_stripe_start); 446 447 /* 448 * We have various limits on the real read size: 449 * - stripe boundary 450 * - page boundary 451 * - compressed length boundary 452 */ 453 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr); 454 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 455 real_size = min_t(u64, real_size, compressed_len - offset); 456 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 457 458 if (use_append) 459 added = bio_add_zone_append_page(bio, page, real_size, 460 offset_in_page(offset)); 461 else 462 added = bio_add_page(bio, page, real_size, 463 offset_in_page(offset)); 464 /* Reached zoned boundary */ 465 if (added == 0) 466 submit = true; 467 468 cur_disk_bytenr += added; 469 /* Reached stripe boundary */ 470 if (cur_disk_bytenr == next_stripe_start) 471 submit = true; 472 473 /* Finished the range */ 474 if (cur_disk_bytenr == disk_start + compressed_len) 475 submit = true; 476 477 if (submit) { 478 if (!skip_sum) { 479 ret = btrfs_csum_one_bio(inode, bio, start, true); 480 if (ret) { 481 bio->bi_status = ret; 482 bio_endio(bio); 483 break; 484 } 485 } 486 487 ASSERT(bio->bi_iter.bi_size); 488 btrfs_submit_bio(fs_info, bio, 0); 489 bio = NULL; 490 } 491 cond_resched(); 492 } 493 494 if (blkcg_css) 495 kthread_associate_blkcg(NULL); 496 497 if (refcount_dec_and_test(&cb->pending_ios)) 498 finish_compressed_bio_write(cb); 499 return ret; 500 } 501 502 static u64 bio_end_offset(struct bio *bio) 503 { 504 struct bio_vec *last = bio_last_bvec_all(bio); 505 506 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 507 } 508 509 /* 510 * Add extra pages in the same compressed file extent so that we don't need to 511 * re-read the same extent again and again. 512 * 513 * NOTE: this won't work well for subpage, as for subpage read, we lock the 514 * full page then submit bio for each compressed/regular extents. 515 * 516 * This means, if we have several sectors in the same page points to the same 517 * on-disk compressed data, we will re-read the same extent many times and 518 * this function can only help for the next page. 519 */ 520 static noinline int add_ra_bio_pages(struct inode *inode, 521 u64 compressed_end, 522 struct compressed_bio *cb) 523 { 524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 525 unsigned long end_index; 526 u64 cur = bio_end_offset(cb->orig_bio); 527 u64 isize = i_size_read(inode); 528 int ret; 529 struct page *page; 530 struct extent_map *em; 531 struct address_space *mapping = inode->i_mapping; 532 struct extent_map_tree *em_tree; 533 struct extent_io_tree *tree; 534 int sectors_missed = 0; 535 536 em_tree = &BTRFS_I(inode)->extent_tree; 537 tree = &BTRFS_I(inode)->io_tree; 538 539 if (isize == 0) 540 return 0; 541 542 /* 543 * For current subpage support, we only support 64K page size, 544 * which means maximum compressed extent size (128K) is just 2x page 545 * size. 546 * This makes readahead less effective, so here disable readahead for 547 * subpage for now, until full compressed write is supported. 548 */ 549 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 550 return 0; 551 552 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 553 554 while (cur < compressed_end) { 555 u64 page_end; 556 u64 pg_index = cur >> PAGE_SHIFT; 557 u32 add_size; 558 559 if (pg_index > end_index) 560 break; 561 562 page = xa_load(&mapping->i_pages, pg_index); 563 if (page && !xa_is_value(page)) { 564 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 565 fs_info->sectorsize_bits; 566 567 /* Beyond threshold, no need to continue */ 568 if (sectors_missed > 4) 569 break; 570 571 /* 572 * Jump to next page start as we already have page for 573 * current offset. 574 */ 575 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 576 continue; 577 } 578 579 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 580 ~__GFP_FS)); 581 if (!page) 582 break; 583 584 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 585 put_page(page); 586 /* There is already a page, skip to page end */ 587 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 588 continue; 589 } 590 591 ret = set_page_extent_mapped(page); 592 if (ret < 0) { 593 unlock_page(page); 594 put_page(page); 595 break; 596 } 597 598 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 599 lock_extent(tree, cur, page_end); 600 read_lock(&em_tree->lock); 601 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 602 read_unlock(&em_tree->lock); 603 604 /* 605 * At this point, we have a locked page in the page cache for 606 * these bytes in the file. But, we have to make sure they map 607 * to this compressed extent on disk. 608 */ 609 if (!em || cur < em->start || 610 (cur + fs_info->sectorsize > extent_map_end(em)) || 611 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 612 free_extent_map(em); 613 unlock_extent(tree, cur, page_end); 614 unlock_page(page); 615 put_page(page); 616 break; 617 } 618 free_extent_map(em); 619 620 if (page->index == end_index) { 621 size_t zero_offset = offset_in_page(isize); 622 623 if (zero_offset) { 624 int zeros; 625 zeros = PAGE_SIZE - zero_offset; 626 memzero_page(page, zero_offset, zeros); 627 } 628 } 629 630 add_size = min(em->start + em->len, page_end + 1) - cur; 631 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur)); 632 if (ret != add_size) { 633 unlock_extent(tree, cur, page_end); 634 unlock_page(page); 635 put_page(page); 636 break; 637 } 638 /* 639 * If it's subpage, we also need to increase its 640 * subpage::readers number, as at endio we will decrease 641 * subpage::readers and to unlock the page. 642 */ 643 if (fs_info->sectorsize < PAGE_SIZE) 644 btrfs_subpage_start_reader(fs_info, page, cur, add_size); 645 put_page(page); 646 cur += add_size; 647 } 648 return 0; 649 } 650 651 /* 652 * for a compressed read, the bio we get passed has all the inode pages 653 * in it. We don't actually do IO on those pages but allocate new ones 654 * to hold the compressed pages on disk. 655 * 656 * bio->bi_iter.bi_sector points to the compressed extent on disk 657 * bio->bi_io_vec points to all of the inode pages 658 * 659 * After the compressed pages are read, we copy the bytes into the 660 * bio we were passed and then call the bio end_io calls 661 */ 662 void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 663 int mirror_num) 664 { 665 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 666 struct extent_map_tree *em_tree; 667 struct compressed_bio *cb; 668 unsigned int compressed_len; 669 struct bio *comp_bio = NULL; 670 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 671 u64 cur_disk_byte = disk_bytenr; 672 u64 next_stripe_start; 673 u64 file_offset; 674 u64 em_len; 675 u64 em_start; 676 struct extent_map *em; 677 blk_status_t ret; 678 int ret2; 679 int i; 680 681 em_tree = &BTRFS_I(inode)->extent_tree; 682 683 file_offset = bio_first_bvec_all(bio)->bv_offset + 684 page_offset(bio_first_page_all(bio)); 685 686 /* we need the actual starting offset of this extent in the file */ 687 read_lock(&em_tree->lock); 688 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 689 read_unlock(&em_tree->lock); 690 if (!em) { 691 ret = BLK_STS_IOERR; 692 goto out; 693 } 694 695 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE); 696 compressed_len = em->block_len; 697 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS); 698 if (!cb) { 699 ret = BLK_STS_RESOURCE; 700 goto out; 701 } 702 703 refcount_set(&cb->pending_ios, 1); 704 cb->status = BLK_STS_OK; 705 cb->inode = inode; 706 707 cb->start = em->orig_start; 708 em_len = em->len; 709 em_start = em->start; 710 711 cb->len = bio->bi_iter.bi_size; 712 cb->compressed_len = compressed_len; 713 cb->compress_type = em->compress_type; 714 cb->orig_bio = bio; 715 716 free_extent_map(em); 717 em = NULL; 718 719 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 720 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS); 721 if (!cb->compressed_pages) { 722 ret = BLK_STS_RESOURCE; 723 goto fail; 724 } 725 726 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages); 727 if (ret2) { 728 ret = BLK_STS_RESOURCE; 729 goto fail; 730 } 731 732 add_ra_bio_pages(inode, em_start + em_len, cb); 733 734 /* include any pages we added in add_ra-bio_pages */ 735 cb->len = bio->bi_iter.bi_size; 736 737 while (cur_disk_byte < disk_bytenr + compressed_len) { 738 u64 offset = cur_disk_byte - disk_bytenr; 739 unsigned int index = offset >> PAGE_SHIFT; 740 unsigned int real_size; 741 unsigned int added; 742 struct page *page = cb->compressed_pages[index]; 743 bool submit = false; 744 745 /* Allocate new bio if submitted or not yet allocated */ 746 if (!comp_bio) { 747 comp_bio = alloc_compressed_bio(cb, cur_disk_byte, 748 REQ_OP_READ, end_compressed_bio_read, 749 &next_stripe_start); 750 if (IS_ERR(comp_bio)) { 751 cb->status = errno_to_blk_status(PTR_ERR(comp_bio)); 752 break; 753 } 754 } 755 /* 756 * We should never reach next_stripe_start start as we will 757 * submit comp_bio when reach the boundary immediately. 758 */ 759 ASSERT(cur_disk_byte != next_stripe_start); 760 /* 761 * We have various limit on the real read size: 762 * - stripe boundary 763 * - page boundary 764 * - compressed length boundary 765 */ 766 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte); 767 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 768 real_size = min_t(u64, real_size, compressed_len - offset); 769 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 770 771 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset)); 772 /* 773 * Maximum compressed extent is smaller than bio size limit, 774 * thus bio_add_page() should always success. 775 */ 776 ASSERT(added == real_size); 777 cur_disk_byte += added; 778 779 /* Reached stripe boundary, need to submit */ 780 if (cur_disk_byte == next_stripe_start) 781 submit = true; 782 783 /* Has finished the range, need to submit */ 784 if (cur_disk_byte == disk_bytenr + compressed_len) 785 submit = true; 786 787 if (submit) { 788 /* Save the original iter for read repair */ 789 if (bio_op(comp_bio) == REQ_OP_READ) 790 btrfs_bio(comp_bio)->iter = comp_bio->bi_iter; 791 792 /* 793 * Save the initial offset of this chunk, as there 794 * is no direct correlation between compressed pages and 795 * the original file offset. The field is only used for 796 * priting error messages. 797 */ 798 btrfs_bio(comp_bio)->file_offset = file_offset; 799 800 ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL); 801 if (ret) { 802 comp_bio->bi_status = ret; 803 bio_endio(comp_bio); 804 break; 805 } 806 807 ASSERT(comp_bio->bi_iter.bi_size); 808 btrfs_submit_bio(fs_info, comp_bio, mirror_num); 809 comp_bio = NULL; 810 } 811 } 812 813 if (refcount_dec_and_test(&cb->pending_ios)) 814 finish_compressed_bio_read(cb); 815 return; 816 817 fail: 818 if (cb->compressed_pages) { 819 for (i = 0; i < cb->nr_pages; i++) { 820 if (cb->compressed_pages[i]) 821 __free_page(cb->compressed_pages[i]); 822 } 823 } 824 825 kfree(cb->compressed_pages); 826 kfree(cb); 827 out: 828 free_extent_map(em); 829 bio->bi_status = ret; 830 bio_endio(bio); 831 return; 832 } 833 834 /* 835 * Heuristic uses systematic sampling to collect data from the input data 836 * range, the logic can be tuned by the following constants: 837 * 838 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 839 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 840 */ 841 #define SAMPLING_READ_SIZE (16) 842 #define SAMPLING_INTERVAL (256) 843 844 /* 845 * For statistical analysis of the input data we consider bytes that form a 846 * Galois Field of 256 objects. Each object has an attribute count, ie. how 847 * many times the object appeared in the sample. 848 */ 849 #define BUCKET_SIZE (256) 850 851 /* 852 * The size of the sample is based on a statistical sampling rule of thumb. 853 * The common way is to perform sampling tests as long as the number of 854 * elements in each cell is at least 5. 855 * 856 * Instead of 5, we choose 32 to obtain more accurate results. 857 * If the data contain the maximum number of symbols, which is 256, we obtain a 858 * sample size bound by 8192. 859 * 860 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 861 * from up to 512 locations. 862 */ 863 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 864 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 865 866 struct bucket_item { 867 u32 count; 868 }; 869 870 struct heuristic_ws { 871 /* Partial copy of input data */ 872 u8 *sample; 873 u32 sample_size; 874 /* Buckets store counters for each byte value */ 875 struct bucket_item *bucket; 876 /* Sorting buffer */ 877 struct bucket_item *bucket_b; 878 struct list_head list; 879 }; 880 881 static struct workspace_manager heuristic_wsm; 882 883 static void free_heuristic_ws(struct list_head *ws) 884 { 885 struct heuristic_ws *workspace; 886 887 workspace = list_entry(ws, struct heuristic_ws, list); 888 889 kvfree(workspace->sample); 890 kfree(workspace->bucket); 891 kfree(workspace->bucket_b); 892 kfree(workspace); 893 } 894 895 static struct list_head *alloc_heuristic_ws(unsigned int level) 896 { 897 struct heuristic_ws *ws; 898 899 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 900 if (!ws) 901 return ERR_PTR(-ENOMEM); 902 903 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 904 if (!ws->sample) 905 goto fail; 906 907 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 908 if (!ws->bucket) 909 goto fail; 910 911 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 912 if (!ws->bucket_b) 913 goto fail; 914 915 INIT_LIST_HEAD(&ws->list); 916 return &ws->list; 917 fail: 918 free_heuristic_ws(&ws->list); 919 return ERR_PTR(-ENOMEM); 920 } 921 922 const struct btrfs_compress_op btrfs_heuristic_compress = { 923 .workspace_manager = &heuristic_wsm, 924 }; 925 926 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 927 /* The heuristic is represented as compression type 0 */ 928 &btrfs_heuristic_compress, 929 &btrfs_zlib_compress, 930 &btrfs_lzo_compress, 931 &btrfs_zstd_compress, 932 }; 933 934 static struct list_head *alloc_workspace(int type, unsigned int level) 935 { 936 switch (type) { 937 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 938 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 939 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 940 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 941 default: 942 /* 943 * This can't happen, the type is validated several times 944 * before we get here. 945 */ 946 BUG(); 947 } 948 } 949 950 static void free_workspace(int type, struct list_head *ws) 951 { 952 switch (type) { 953 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 954 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 955 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 956 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 957 default: 958 /* 959 * This can't happen, the type is validated several times 960 * before we get here. 961 */ 962 BUG(); 963 } 964 } 965 966 static void btrfs_init_workspace_manager(int type) 967 { 968 struct workspace_manager *wsm; 969 struct list_head *workspace; 970 971 wsm = btrfs_compress_op[type]->workspace_manager; 972 INIT_LIST_HEAD(&wsm->idle_ws); 973 spin_lock_init(&wsm->ws_lock); 974 atomic_set(&wsm->total_ws, 0); 975 init_waitqueue_head(&wsm->ws_wait); 976 977 /* 978 * Preallocate one workspace for each compression type so we can 979 * guarantee forward progress in the worst case 980 */ 981 workspace = alloc_workspace(type, 0); 982 if (IS_ERR(workspace)) { 983 pr_warn( 984 "BTRFS: cannot preallocate compression workspace, will try later\n"); 985 } else { 986 atomic_set(&wsm->total_ws, 1); 987 wsm->free_ws = 1; 988 list_add(workspace, &wsm->idle_ws); 989 } 990 } 991 992 static void btrfs_cleanup_workspace_manager(int type) 993 { 994 struct workspace_manager *wsman; 995 struct list_head *ws; 996 997 wsman = btrfs_compress_op[type]->workspace_manager; 998 while (!list_empty(&wsman->idle_ws)) { 999 ws = wsman->idle_ws.next; 1000 list_del(ws); 1001 free_workspace(type, ws); 1002 atomic_dec(&wsman->total_ws); 1003 } 1004 } 1005 1006 /* 1007 * This finds an available workspace or allocates a new one. 1008 * If it's not possible to allocate a new one, waits until there's one. 1009 * Preallocation makes a forward progress guarantees and we do not return 1010 * errors. 1011 */ 1012 struct list_head *btrfs_get_workspace(int type, unsigned int level) 1013 { 1014 struct workspace_manager *wsm; 1015 struct list_head *workspace; 1016 int cpus = num_online_cpus(); 1017 unsigned nofs_flag; 1018 struct list_head *idle_ws; 1019 spinlock_t *ws_lock; 1020 atomic_t *total_ws; 1021 wait_queue_head_t *ws_wait; 1022 int *free_ws; 1023 1024 wsm = btrfs_compress_op[type]->workspace_manager; 1025 idle_ws = &wsm->idle_ws; 1026 ws_lock = &wsm->ws_lock; 1027 total_ws = &wsm->total_ws; 1028 ws_wait = &wsm->ws_wait; 1029 free_ws = &wsm->free_ws; 1030 1031 again: 1032 spin_lock(ws_lock); 1033 if (!list_empty(idle_ws)) { 1034 workspace = idle_ws->next; 1035 list_del(workspace); 1036 (*free_ws)--; 1037 spin_unlock(ws_lock); 1038 return workspace; 1039 1040 } 1041 if (atomic_read(total_ws) > cpus) { 1042 DEFINE_WAIT(wait); 1043 1044 spin_unlock(ws_lock); 1045 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1046 if (atomic_read(total_ws) > cpus && !*free_ws) 1047 schedule(); 1048 finish_wait(ws_wait, &wait); 1049 goto again; 1050 } 1051 atomic_inc(total_ws); 1052 spin_unlock(ws_lock); 1053 1054 /* 1055 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1056 * to turn it off here because we might get called from the restricted 1057 * context of btrfs_compress_bio/btrfs_compress_pages 1058 */ 1059 nofs_flag = memalloc_nofs_save(); 1060 workspace = alloc_workspace(type, level); 1061 memalloc_nofs_restore(nofs_flag); 1062 1063 if (IS_ERR(workspace)) { 1064 atomic_dec(total_ws); 1065 wake_up(ws_wait); 1066 1067 /* 1068 * Do not return the error but go back to waiting. There's a 1069 * workspace preallocated for each type and the compression 1070 * time is bounded so we get to a workspace eventually. This 1071 * makes our caller's life easier. 1072 * 1073 * To prevent silent and low-probability deadlocks (when the 1074 * initial preallocation fails), check if there are any 1075 * workspaces at all. 1076 */ 1077 if (atomic_read(total_ws) == 0) { 1078 static DEFINE_RATELIMIT_STATE(_rs, 1079 /* once per minute */ 60 * HZ, 1080 /* no burst */ 1); 1081 1082 if (__ratelimit(&_rs)) { 1083 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1084 } 1085 } 1086 goto again; 1087 } 1088 return workspace; 1089 } 1090 1091 static struct list_head *get_workspace(int type, int level) 1092 { 1093 switch (type) { 1094 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1095 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1096 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1097 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1098 default: 1099 /* 1100 * This can't happen, the type is validated several times 1101 * before we get here. 1102 */ 1103 BUG(); 1104 } 1105 } 1106 1107 /* 1108 * put a workspace struct back on the list or free it if we have enough 1109 * idle ones sitting around 1110 */ 1111 void btrfs_put_workspace(int type, struct list_head *ws) 1112 { 1113 struct workspace_manager *wsm; 1114 struct list_head *idle_ws; 1115 spinlock_t *ws_lock; 1116 atomic_t *total_ws; 1117 wait_queue_head_t *ws_wait; 1118 int *free_ws; 1119 1120 wsm = btrfs_compress_op[type]->workspace_manager; 1121 idle_ws = &wsm->idle_ws; 1122 ws_lock = &wsm->ws_lock; 1123 total_ws = &wsm->total_ws; 1124 ws_wait = &wsm->ws_wait; 1125 free_ws = &wsm->free_ws; 1126 1127 spin_lock(ws_lock); 1128 if (*free_ws <= num_online_cpus()) { 1129 list_add(ws, idle_ws); 1130 (*free_ws)++; 1131 spin_unlock(ws_lock); 1132 goto wake; 1133 } 1134 spin_unlock(ws_lock); 1135 1136 free_workspace(type, ws); 1137 atomic_dec(total_ws); 1138 wake: 1139 cond_wake_up(ws_wait); 1140 } 1141 1142 static void put_workspace(int type, struct list_head *ws) 1143 { 1144 switch (type) { 1145 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1146 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1147 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1148 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1149 default: 1150 /* 1151 * This can't happen, the type is validated several times 1152 * before we get here. 1153 */ 1154 BUG(); 1155 } 1156 } 1157 1158 /* 1159 * Adjust @level according to the limits of the compression algorithm or 1160 * fallback to default 1161 */ 1162 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1163 { 1164 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1165 1166 if (level == 0) 1167 level = ops->default_level; 1168 else 1169 level = min(level, ops->max_level); 1170 1171 return level; 1172 } 1173 1174 /* 1175 * Given an address space and start and length, compress the bytes into @pages 1176 * that are allocated on demand. 1177 * 1178 * @type_level is encoded algorithm and level, where level 0 means whatever 1179 * default the algorithm chooses and is opaque here; 1180 * - compression algo are 0-3 1181 * - the level are bits 4-7 1182 * 1183 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1184 * and returns number of actually allocated pages 1185 * 1186 * @total_in is used to return the number of bytes actually read. It 1187 * may be smaller than the input length if we had to exit early because we 1188 * ran out of room in the pages array or because we cross the 1189 * max_out threshold. 1190 * 1191 * @total_out is an in/out parameter, must be set to the input length and will 1192 * be also used to return the total number of compressed bytes 1193 */ 1194 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1195 u64 start, struct page **pages, 1196 unsigned long *out_pages, 1197 unsigned long *total_in, 1198 unsigned long *total_out) 1199 { 1200 int type = btrfs_compress_type(type_level); 1201 int level = btrfs_compress_level(type_level); 1202 struct list_head *workspace; 1203 int ret; 1204 1205 level = btrfs_compress_set_level(type, level); 1206 workspace = get_workspace(type, level); 1207 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1208 out_pages, total_in, total_out); 1209 put_workspace(type, workspace); 1210 return ret; 1211 } 1212 1213 static int btrfs_decompress_bio(struct compressed_bio *cb) 1214 { 1215 struct list_head *workspace; 1216 int ret; 1217 int type = cb->compress_type; 1218 1219 workspace = get_workspace(type, 0); 1220 ret = compression_decompress_bio(workspace, cb); 1221 put_workspace(type, workspace); 1222 1223 return ret; 1224 } 1225 1226 /* 1227 * a less complex decompression routine. Our compressed data fits in a 1228 * single page, and we want to read a single page out of it. 1229 * start_byte tells us the offset into the compressed data we're interested in 1230 */ 1231 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1232 unsigned long start_byte, size_t srclen, size_t destlen) 1233 { 1234 struct list_head *workspace; 1235 int ret; 1236 1237 workspace = get_workspace(type, 0); 1238 ret = compression_decompress(type, workspace, data_in, dest_page, 1239 start_byte, srclen, destlen); 1240 put_workspace(type, workspace); 1241 1242 return ret; 1243 } 1244 1245 void __init btrfs_init_compress(void) 1246 { 1247 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1248 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1249 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1250 zstd_init_workspace_manager(); 1251 } 1252 1253 void __cold btrfs_exit_compress(void) 1254 { 1255 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1256 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1257 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1258 zstd_cleanup_workspace_manager(); 1259 } 1260 1261 /* 1262 * Copy decompressed data from working buffer to pages. 1263 * 1264 * @buf: The decompressed data buffer 1265 * @buf_len: The decompressed data length 1266 * @decompressed: Number of bytes that are already decompressed inside the 1267 * compressed extent 1268 * @cb: The compressed extent descriptor 1269 * @orig_bio: The original bio that the caller wants to read for 1270 * 1271 * An easier to understand graph is like below: 1272 * 1273 * |<- orig_bio ->| |<- orig_bio->| 1274 * |<------- full decompressed extent ----->| 1275 * |<----------- @cb range ---->| 1276 * | |<-- @buf_len -->| 1277 * |<--- @decompressed --->| 1278 * 1279 * Note that, @cb can be a subpage of the full decompressed extent, but 1280 * @cb->start always has the same as the orig_file_offset value of the full 1281 * decompressed extent. 1282 * 1283 * When reading compressed extent, we have to read the full compressed extent, 1284 * while @orig_bio may only want part of the range. 1285 * Thus this function will ensure only data covered by @orig_bio will be copied 1286 * to. 1287 * 1288 * Return 0 if we have copied all needed contents for @orig_bio. 1289 * Return >0 if we need continue decompress. 1290 */ 1291 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1292 struct compressed_bio *cb, u32 decompressed) 1293 { 1294 struct bio *orig_bio = cb->orig_bio; 1295 /* Offset inside the full decompressed extent */ 1296 u32 cur_offset; 1297 1298 cur_offset = decompressed; 1299 /* The main loop to do the copy */ 1300 while (cur_offset < decompressed + buf_len) { 1301 struct bio_vec bvec; 1302 size_t copy_len; 1303 u32 copy_start; 1304 /* Offset inside the full decompressed extent */ 1305 u32 bvec_offset; 1306 1307 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1308 /* 1309 * cb->start may underflow, but subtracting that value can still 1310 * give us correct offset inside the full decompressed extent. 1311 */ 1312 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1313 1314 /* Haven't reached the bvec range, exit */ 1315 if (decompressed + buf_len <= bvec_offset) 1316 return 1; 1317 1318 copy_start = max(cur_offset, bvec_offset); 1319 copy_len = min(bvec_offset + bvec.bv_len, 1320 decompressed + buf_len) - copy_start; 1321 ASSERT(copy_len); 1322 1323 /* 1324 * Extra range check to ensure we didn't go beyond 1325 * @buf + @buf_len. 1326 */ 1327 ASSERT(copy_start - decompressed < buf_len); 1328 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1329 buf + copy_start - decompressed, copy_len); 1330 cur_offset += copy_len; 1331 1332 bio_advance(orig_bio, copy_len); 1333 /* Finished the bio */ 1334 if (!orig_bio->bi_iter.bi_size) 1335 return 0; 1336 } 1337 return 1; 1338 } 1339 1340 /* 1341 * Shannon Entropy calculation 1342 * 1343 * Pure byte distribution analysis fails to determine compressibility of data. 1344 * Try calculating entropy to estimate the average minimum number of bits 1345 * needed to encode the sampled data. 1346 * 1347 * For convenience, return the percentage of needed bits, instead of amount of 1348 * bits directly. 1349 * 1350 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1351 * and can be compressible with high probability 1352 * 1353 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1354 * 1355 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1356 */ 1357 #define ENTROPY_LVL_ACEPTABLE (65) 1358 #define ENTROPY_LVL_HIGH (80) 1359 1360 /* 1361 * For increasead precision in shannon_entropy calculation, 1362 * let's do pow(n, M) to save more digits after comma: 1363 * 1364 * - maximum int bit length is 64 1365 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1366 * - 13 * 4 = 52 < 64 -> M = 4 1367 * 1368 * So use pow(n, 4). 1369 */ 1370 static inline u32 ilog2_w(u64 n) 1371 { 1372 return ilog2(n * n * n * n); 1373 } 1374 1375 static u32 shannon_entropy(struct heuristic_ws *ws) 1376 { 1377 const u32 entropy_max = 8 * ilog2_w(2); 1378 u32 entropy_sum = 0; 1379 u32 p, p_base, sz_base; 1380 u32 i; 1381 1382 sz_base = ilog2_w(ws->sample_size); 1383 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1384 p = ws->bucket[i].count; 1385 p_base = ilog2_w(p); 1386 entropy_sum += p * (sz_base - p_base); 1387 } 1388 1389 entropy_sum /= ws->sample_size; 1390 return entropy_sum * 100 / entropy_max; 1391 } 1392 1393 #define RADIX_BASE 4U 1394 #define COUNTERS_SIZE (1U << RADIX_BASE) 1395 1396 static u8 get4bits(u64 num, int shift) { 1397 u8 low4bits; 1398 1399 num >>= shift; 1400 /* Reverse order */ 1401 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1402 return low4bits; 1403 } 1404 1405 /* 1406 * Use 4 bits as radix base 1407 * Use 16 u32 counters for calculating new position in buf array 1408 * 1409 * @array - array that will be sorted 1410 * @array_buf - buffer array to store sorting results 1411 * must be equal in size to @array 1412 * @num - array size 1413 */ 1414 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1415 int num) 1416 { 1417 u64 max_num; 1418 u64 buf_num; 1419 u32 counters[COUNTERS_SIZE]; 1420 u32 new_addr; 1421 u32 addr; 1422 int bitlen; 1423 int shift; 1424 int i; 1425 1426 /* 1427 * Try avoid useless loop iterations for small numbers stored in big 1428 * counters. Example: 48 33 4 ... in 64bit array 1429 */ 1430 max_num = array[0].count; 1431 for (i = 1; i < num; i++) { 1432 buf_num = array[i].count; 1433 if (buf_num > max_num) 1434 max_num = buf_num; 1435 } 1436 1437 buf_num = ilog2(max_num); 1438 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1439 1440 shift = 0; 1441 while (shift < bitlen) { 1442 memset(counters, 0, sizeof(counters)); 1443 1444 for (i = 0; i < num; i++) { 1445 buf_num = array[i].count; 1446 addr = get4bits(buf_num, shift); 1447 counters[addr]++; 1448 } 1449 1450 for (i = 1; i < COUNTERS_SIZE; i++) 1451 counters[i] += counters[i - 1]; 1452 1453 for (i = num - 1; i >= 0; i--) { 1454 buf_num = array[i].count; 1455 addr = get4bits(buf_num, shift); 1456 counters[addr]--; 1457 new_addr = counters[addr]; 1458 array_buf[new_addr] = array[i]; 1459 } 1460 1461 shift += RADIX_BASE; 1462 1463 /* 1464 * Normal radix expects to move data from a temporary array, to 1465 * the main one. But that requires some CPU time. Avoid that 1466 * by doing another sort iteration to original array instead of 1467 * memcpy() 1468 */ 1469 memset(counters, 0, sizeof(counters)); 1470 1471 for (i = 0; i < num; i ++) { 1472 buf_num = array_buf[i].count; 1473 addr = get4bits(buf_num, shift); 1474 counters[addr]++; 1475 } 1476 1477 for (i = 1; i < COUNTERS_SIZE; i++) 1478 counters[i] += counters[i - 1]; 1479 1480 for (i = num - 1; i >= 0; i--) { 1481 buf_num = array_buf[i].count; 1482 addr = get4bits(buf_num, shift); 1483 counters[addr]--; 1484 new_addr = counters[addr]; 1485 array[new_addr] = array_buf[i]; 1486 } 1487 1488 shift += RADIX_BASE; 1489 } 1490 } 1491 1492 /* 1493 * Size of the core byte set - how many bytes cover 90% of the sample 1494 * 1495 * There are several types of structured binary data that use nearly all byte 1496 * values. The distribution can be uniform and counts in all buckets will be 1497 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1498 * 1499 * Other possibility is normal (Gaussian) distribution, where the data could 1500 * be potentially compressible, but we have to take a few more steps to decide 1501 * how much. 1502 * 1503 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1504 * compression algo can easy fix that 1505 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1506 * probability is not compressible 1507 */ 1508 #define BYTE_CORE_SET_LOW (64) 1509 #define BYTE_CORE_SET_HIGH (200) 1510 1511 static int byte_core_set_size(struct heuristic_ws *ws) 1512 { 1513 u32 i; 1514 u32 coreset_sum = 0; 1515 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1516 struct bucket_item *bucket = ws->bucket; 1517 1518 /* Sort in reverse order */ 1519 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1520 1521 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1522 coreset_sum += bucket[i].count; 1523 1524 if (coreset_sum > core_set_threshold) 1525 return i; 1526 1527 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1528 coreset_sum += bucket[i].count; 1529 if (coreset_sum > core_set_threshold) 1530 break; 1531 } 1532 1533 return i; 1534 } 1535 1536 /* 1537 * Count byte values in buckets. 1538 * This heuristic can detect textual data (configs, xml, json, html, etc). 1539 * Because in most text-like data byte set is restricted to limited number of 1540 * possible characters, and that restriction in most cases makes data easy to 1541 * compress. 1542 * 1543 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1544 * less - compressible 1545 * more - need additional analysis 1546 */ 1547 #define BYTE_SET_THRESHOLD (64) 1548 1549 static u32 byte_set_size(const struct heuristic_ws *ws) 1550 { 1551 u32 i; 1552 u32 byte_set_size = 0; 1553 1554 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1555 if (ws->bucket[i].count > 0) 1556 byte_set_size++; 1557 } 1558 1559 /* 1560 * Continue collecting count of byte values in buckets. If the byte 1561 * set size is bigger then the threshold, it's pointless to continue, 1562 * the detection technique would fail for this type of data. 1563 */ 1564 for (; i < BUCKET_SIZE; i++) { 1565 if (ws->bucket[i].count > 0) { 1566 byte_set_size++; 1567 if (byte_set_size > BYTE_SET_THRESHOLD) 1568 return byte_set_size; 1569 } 1570 } 1571 1572 return byte_set_size; 1573 } 1574 1575 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1576 { 1577 const u32 half_of_sample = ws->sample_size / 2; 1578 const u8 *data = ws->sample; 1579 1580 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1581 } 1582 1583 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1584 struct heuristic_ws *ws) 1585 { 1586 struct page *page; 1587 u64 index, index_end; 1588 u32 i, curr_sample_pos; 1589 u8 *in_data; 1590 1591 /* 1592 * Compression handles the input data by chunks of 128KiB 1593 * (defined by BTRFS_MAX_UNCOMPRESSED) 1594 * 1595 * We do the same for the heuristic and loop over the whole range. 1596 * 1597 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1598 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1599 */ 1600 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1601 end = start + BTRFS_MAX_UNCOMPRESSED; 1602 1603 index = start >> PAGE_SHIFT; 1604 index_end = end >> PAGE_SHIFT; 1605 1606 /* Don't miss unaligned end */ 1607 if (!IS_ALIGNED(end, PAGE_SIZE)) 1608 index_end++; 1609 1610 curr_sample_pos = 0; 1611 while (index < index_end) { 1612 page = find_get_page(inode->i_mapping, index); 1613 in_data = kmap_local_page(page); 1614 /* Handle case where the start is not aligned to PAGE_SIZE */ 1615 i = start % PAGE_SIZE; 1616 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1617 /* Don't sample any garbage from the last page */ 1618 if (start > end - SAMPLING_READ_SIZE) 1619 break; 1620 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1621 SAMPLING_READ_SIZE); 1622 i += SAMPLING_INTERVAL; 1623 start += SAMPLING_INTERVAL; 1624 curr_sample_pos += SAMPLING_READ_SIZE; 1625 } 1626 kunmap_local(in_data); 1627 put_page(page); 1628 1629 index++; 1630 } 1631 1632 ws->sample_size = curr_sample_pos; 1633 } 1634 1635 /* 1636 * Compression heuristic. 1637 * 1638 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1639 * quickly (compared to direct compression) detect data characteristics 1640 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1641 * data. 1642 * 1643 * The following types of analysis can be performed: 1644 * - detect mostly zero data 1645 * - detect data with low "byte set" size (text, etc) 1646 * - detect data with low/high "core byte" set 1647 * 1648 * Return non-zero if the compression should be done, 0 otherwise. 1649 */ 1650 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1651 { 1652 struct list_head *ws_list = get_workspace(0, 0); 1653 struct heuristic_ws *ws; 1654 u32 i; 1655 u8 byte; 1656 int ret = 0; 1657 1658 ws = list_entry(ws_list, struct heuristic_ws, list); 1659 1660 heuristic_collect_sample(inode, start, end, ws); 1661 1662 if (sample_repeated_patterns(ws)) { 1663 ret = 1; 1664 goto out; 1665 } 1666 1667 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1668 1669 for (i = 0; i < ws->sample_size; i++) { 1670 byte = ws->sample[i]; 1671 ws->bucket[byte].count++; 1672 } 1673 1674 i = byte_set_size(ws); 1675 if (i < BYTE_SET_THRESHOLD) { 1676 ret = 2; 1677 goto out; 1678 } 1679 1680 i = byte_core_set_size(ws); 1681 if (i <= BYTE_CORE_SET_LOW) { 1682 ret = 3; 1683 goto out; 1684 } 1685 1686 if (i >= BYTE_CORE_SET_HIGH) { 1687 ret = 0; 1688 goto out; 1689 } 1690 1691 i = shannon_entropy(ws); 1692 if (i <= ENTROPY_LVL_ACEPTABLE) { 1693 ret = 4; 1694 goto out; 1695 } 1696 1697 /* 1698 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1699 * needed to give green light to compression. 1700 * 1701 * For now just assume that compression at that level is not worth the 1702 * resources because: 1703 * 1704 * 1. it is possible to defrag the data later 1705 * 1706 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1707 * values, every bucket has counter at level ~54. The heuristic would 1708 * be confused. This can happen when data have some internal repeated 1709 * patterns like "abbacbbc...". This can be detected by analyzing 1710 * pairs of bytes, which is too costly. 1711 */ 1712 if (i < ENTROPY_LVL_HIGH) { 1713 ret = 5; 1714 goto out; 1715 } else { 1716 ret = 0; 1717 goto out; 1718 } 1719 1720 out: 1721 put_workspace(0, ws_list); 1722 return ret; 1723 } 1724 1725 /* 1726 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1727 * level, unrecognized string will set the default level 1728 */ 1729 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1730 { 1731 unsigned int level = 0; 1732 int ret; 1733 1734 if (!type) 1735 return 0; 1736 1737 if (str[0] == ':') { 1738 ret = kstrtouint(str + 1, 10, &level); 1739 if (ret) 1740 level = 0; 1741 } 1742 1743 level = btrfs_compress_set_level(type, level); 1744 1745 return level; 1746 } 1747