xref: /openbmc/linux/fs/btrfs/compression.c (revision e23feb16)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45 
46 struct compressed_bio {
47 	/* number of bios pending for this compressed extent */
48 	atomic_t pending_bios;
49 
50 	/* the pages with the compressed data on them */
51 	struct page **compressed_pages;
52 
53 	/* inode that owns this data */
54 	struct inode *inode;
55 
56 	/* starting offset in the inode for our pages */
57 	u64 start;
58 
59 	/* number of bytes in the inode we're working on */
60 	unsigned long len;
61 
62 	/* number of bytes on disk */
63 	unsigned long compressed_len;
64 
65 	/* the compression algorithm for this bio */
66 	int compress_type;
67 
68 	/* number of compressed pages in the array */
69 	unsigned long nr_pages;
70 
71 	/* IO errors */
72 	int errors;
73 	int mirror_num;
74 
75 	/* for reads, this is the bio we are copying the data into */
76 	struct bio *orig_bio;
77 
78 	/*
79 	 * the start of a variable length array of checksums only
80 	 * used by reads
81 	 */
82 	u32 sums;
83 };
84 
85 static int btrfs_decompress_biovec(int type, struct page **pages_in,
86 				   u64 disk_start, struct bio_vec *bvec,
87 				   int vcnt, size_t srclen);
88 
89 static inline int compressed_bio_size(struct btrfs_root *root,
90 				      unsigned long disk_size)
91 {
92 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
93 
94 	return sizeof(struct compressed_bio) +
95 		((disk_size + root->sectorsize - 1) / root->sectorsize) *
96 		csum_size;
97 }
98 
99 static struct bio *compressed_bio_alloc(struct block_device *bdev,
100 					u64 first_byte, gfp_t gfp_flags)
101 {
102 	int nr_vecs;
103 
104 	nr_vecs = bio_get_nr_vecs(bdev);
105 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
106 }
107 
108 static int check_compressed_csum(struct inode *inode,
109 				 struct compressed_bio *cb,
110 				 u64 disk_start)
111 {
112 	int ret;
113 	struct page *page;
114 	unsigned long i;
115 	char *kaddr;
116 	u32 csum;
117 	u32 *cb_sum = &cb->sums;
118 
119 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
120 		return 0;
121 
122 	for (i = 0; i < cb->nr_pages; i++) {
123 		page = cb->compressed_pages[i];
124 		csum = ~(u32)0;
125 
126 		kaddr = kmap_atomic(page);
127 		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
128 		btrfs_csum_final(csum, (char *)&csum);
129 		kunmap_atomic(kaddr);
130 
131 		if (csum != *cb_sum) {
132 			printk(KERN_INFO "btrfs csum failed ino %llu "
133 			       "extent %llu csum %u "
134 			       "wanted %u mirror %d\n",
135 			       btrfs_ino(inode), disk_start, csum, *cb_sum,
136 			       cb->mirror_num);
137 			ret = -EIO;
138 			goto fail;
139 		}
140 		cb_sum++;
141 
142 	}
143 	ret = 0;
144 fail:
145 	return ret;
146 }
147 
148 /* when we finish reading compressed pages from the disk, we
149  * decompress them and then run the bio end_io routines on the
150  * decompressed pages (in the inode address space).
151  *
152  * This allows the checksumming and other IO error handling routines
153  * to work normally
154  *
155  * The compressed pages are freed here, and it must be run
156  * in process context
157  */
158 static void end_compressed_bio_read(struct bio *bio, int err)
159 {
160 	struct compressed_bio *cb = bio->bi_private;
161 	struct inode *inode;
162 	struct page *page;
163 	unsigned long index;
164 	int ret;
165 
166 	if (err)
167 		cb->errors = 1;
168 
169 	/* if there are more bios still pending for this compressed
170 	 * extent, just exit
171 	 */
172 	if (!atomic_dec_and_test(&cb->pending_bios))
173 		goto out;
174 
175 	inode = cb->inode;
176 	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
177 	if (ret)
178 		goto csum_failed;
179 
180 	/* ok, we're the last bio for this extent, lets start
181 	 * the decompression.
182 	 */
183 	ret = btrfs_decompress_biovec(cb->compress_type,
184 				      cb->compressed_pages,
185 				      cb->start,
186 				      cb->orig_bio->bi_io_vec,
187 				      cb->orig_bio->bi_vcnt,
188 				      cb->compressed_len);
189 csum_failed:
190 	if (ret)
191 		cb->errors = 1;
192 
193 	/* release the compressed pages */
194 	index = 0;
195 	for (index = 0; index < cb->nr_pages; index++) {
196 		page = cb->compressed_pages[index];
197 		page->mapping = NULL;
198 		page_cache_release(page);
199 	}
200 
201 	/* do io completion on the original bio */
202 	if (cb->errors) {
203 		bio_io_error(cb->orig_bio);
204 	} else {
205 		int bio_index = 0;
206 		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
207 
208 		/*
209 		 * we have verified the checksum already, set page
210 		 * checked so the end_io handlers know about it
211 		 */
212 		while (bio_index < cb->orig_bio->bi_vcnt) {
213 			SetPageChecked(bvec->bv_page);
214 			bvec++;
215 			bio_index++;
216 		}
217 		bio_endio(cb->orig_bio, 0);
218 	}
219 
220 	/* finally free the cb struct */
221 	kfree(cb->compressed_pages);
222 	kfree(cb);
223 out:
224 	bio_put(bio);
225 }
226 
227 /*
228  * Clear the writeback bits on all of the file
229  * pages for a compressed write
230  */
231 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
232 					      unsigned long ram_size)
233 {
234 	unsigned long index = start >> PAGE_CACHE_SHIFT;
235 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
236 	struct page *pages[16];
237 	unsigned long nr_pages = end_index - index + 1;
238 	int i;
239 	int ret;
240 
241 	while (nr_pages > 0) {
242 		ret = find_get_pages_contig(inode->i_mapping, index,
243 				     min_t(unsigned long,
244 				     nr_pages, ARRAY_SIZE(pages)), pages);
245 		if (ret == 0) {
246 			nr_pages -= 1;
247 			index += 1;
248 			continue;
249 		}
250 		for (i = 0; i < ret; i++) {
251 			end_page_writeback(pages[i]);
252 			page_cache_release(pages[i]);
253 		}
254 		nr_pages -= ret;
255 		index += ret;
256 	}
257 	/* the inode may be gone now */
258 }
259 
260 /*
261  * do the cleanup once all the compressed pages hit the disk.
262  * This will clear writeback on the file pages and free the compressed
263  * pages.
264  *
265  * This also calls the writeback end hooks for the file pages so that
266  * metadata and checksums can be updated in the file.
267  */
268 static void end_compressed_bio_write(struct bio *bio, int err)
269 {
270 	struct extent_io_tree *tree;
271 	struct compressed_bio *cb = bio->bi_private;
272 	struct inode *inode;
273 	struct page *page;
274 	unsigned long index;
275 
276 	if (err)
277 		cb->errors = 1;
278 
279 	/* if there are more bios still pending for this compressed
280 	 * extent, just exit
281 	 */
282 	if (!atomic_dec_and_test(&cb->pending_bios))
283 		goto out;
284 
285 	/* ok, we're the last bio for this extent, step one is to
286 	 * call back into the FS and do all the end_io operations
287 	 */
288 	inode = cb->inode;
289 	tree = &BTRFS_I(inode)->io_tree;
290 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
291 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
292 					 cb->start,
293 					 cb->start + cb->len - 1,
294 					 NULL, 1);
295 	cb->compressed_pages[0]->mapping = NULL;
296 
297 	end_compressed_writeback(inode, cb->start, cb->len);
298 	/* note, our inode could be gone now */
299 
300 	/*
301 	 * release the compressed pages, these came from alloc_page and
302 	 * are not attached to the inode at all
303 	 */
304 	index = 0;
305 	for (index = 0; index < cb->nr_pages; index++) {
306 		page = cb->compressed_pages[index];
307 		page->mapping = NULL;
308 		page_cache_release(page);
309 	}
310 
311 	/* finally free the cb struct */
312 	kfree(cb->compressed_pages);
313 	kfree(cb);
314 out:
315 	bio_put(bio);
316 }
317 
318 /*
319  * worker function to build and submit bios for previously compressed pages.
320  * The corresponding pages in the inode should be marked for writeback
321  * and the compressed pages should have a reference on them for dropping
322  * when the IO is complete.
323  *
324  * This also checksums the file bytes and gets things ready for
325  * the end io hooks.
326  */
327 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
328 				 unsigned long len, u64 disk_start,
329 				 unsigned long compressed_len,
330 				 struct page **compressed_pages,
331 				 unsigned long nr_pages)
332 {
333 	struct bio *bio = NULL;
334 	struct btrfs_root *root = BTRFS_I(inode)->root;
335 	struct compressed_bio *cb;
336 	unsigned long bytes_left;
337 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
338 	int pg_index = 0;
339 	struct page *page;
340 	u64 first_byte = disk_start;
341 	struct block_device *bdev;
342 	int ret;
343 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
344 
345 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
346 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
347 	if (!cb)
348 		return -ENOMEM;
349 	atomic_set(&cb->pending_bios, 0);
350 	cb->errors = 0;
351 	cb->inode = inode;
352 	cb->start = start;
353 	cb->len = len;
354 	cb->mirror_num = 0;
355 	cb->compressed_pages = compressed_pages;
356 	cb->compressed_len = compressed_len;
357 	cb->orig_bio = NULL;
358 	cb->nr_pages = nr_pages;
359 
360 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
361 
362 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
363 	if(!bio) {
364 		kfree(cb);
365 		return -ENOMEM;
366 	}
367 	bio->bi_private = cb;
368 	bio->bi_end_io = end_compressed_bio_write;
369 	atomic_inc(&cb->pending_bios);
370 
371 	/* create and submit bios for the compressed pages */
372 	bytes_left = compressed_len;
373 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
374 		page = compressed_pages[pg_index];
375 		page->mapping = inode->i_mapping;
376 		if (bio->bi_size)
377 			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
378 							   PAGE_CACHE_SIZE,
379 							   bio, 0);
380 		else
381 			ret = 0;
382 
383 		page->mapping = NULL;
384 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
385 		    PAGE_CACHE_SIZE) {
386 			bio_get(bio);
387 
388 			/*
389 			 * inc the count before we submit the bio so
390 			 * we know the end IO handler won't happen before
391 			 * we inc the count.  Otherwise, the cb might get
392 			 * freed before we're done setting it up
393 			 */
394 			atomic_inc(&cb->pending_bios);
395 			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
396 			BUG_ON(ret); /* -ENOMEM */
397 
398 			if (!skip_sum) {
399 				ret = btrfs_csum_one_bio(root, inode, bio,
400 							 start, 1);
401 				BUG_ON(ret); /* -ENOMEM */
402 			}
403 
404 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
405 			BUG_ON(ret); /* -ENOMEM */
406 
407 			bio_put(bio);
408 
409 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
410 			BUG_ON(!bio);
411 			bio->bi_private = cb;
412 			bio->bi_end_io = end_compressed_bio_write;
413 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
414 		}
415 		if (bytes_left < PAGE_CACHE_SIZE) {
416 			printk("bytes left %lu compress len %lu nr %lu\n",
417 			       bytes_left, cb->compressed_len, cb->nr_pages);
418 		}
419 		bytes_left -= PAGE_CACHE_SIZE;
420 		first_byte += PAGE_CACHE_SIZE;
421 		cond_resched();
422 	}
423 	bio_get(bio);
424 
425 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
426 	BUG_ON(ret); /* -ENOMEM */
427 
428 	if (!skip_sum) {
429 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
430 		BUG_ON(ret); /* -ENOMEM */
431 	}
432 
433 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
434 	BUG_ON(ret); /* -ENOMEM */
435 
436 	bio_put(bio);
437 	return 0;
438 }
439 
440 static noinline int add_ra_bio_pages(struct inode *inode,
441 				     u64 compressed_end,
442 				     struct compressed_bio *cb)
443 {
444 	unsigned long end_index;
445 	unsigned long pg_index;
446 	u64 last_offset;
447 	u64 isize = i_size_read(inode);
448 	int ret;
449 	struct page *page;
450 	unsigned long nr_pages = 0;
451 	struct extent_map *em;
452 	struct address_space *mapping = inode->i_mapping;
453 	struct extent_map_tree *em_tree;
454 	struct extent_io_tree *tree;
455 	u64 end;
456 	int misses = 0;
457 
458 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
459 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
460 	em_tree = &BTRFS_I(inode)->extent_tree;
461 	tree = &BTRFS_I(inode)->io_tree;
462 
463 	if (isize == 0)
464 		return 0;
465 
466 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
467 
468 	while (last_offset < compressed_end) {
469 		pg_index = last_offset >> PAGE_CACHE_SHIFT;
470 
471 		if (pg_index > end_index)
472 			break;
473 
474 		rcu_read_lock();
475 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
476 		rcu_read_unlock();
477 		if (page) {
478 			misses++;
479 			if (misses > 4)
480 				break;
481 			goto next;
482 		}
483 
484 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
485 								~__GFP_FS);
486 		if (!page)
487 			break;
488 
489 		if (add_to_page_cache_lru(page, mapping, pg_index,
490 								GFP_NOFS)) {
491 			page_cache_release(page);
492 			goto next;
493 		}
494 
495 		end = last_offset + PAGE_CACHE_SIZE - 1;
496 		/*
497 		 * at this point, we have a locked page in the page cache
498 		 * for these bytes in the file.  But, we have to make
499 		 * sure they map to this compressed extent on disk.
500 		 */
501 		set_page_extent_mapped(page);
502 		lock_extent(tree, last_offset, end);
503 		read_lock(&em_tree->lock);
504 		em = lookup_extent_mapping(em_tree, last_offset,
505 					   PAGE_CACHE_SIZE);
506 		read_unlock(&em_tree->lock);
507 
508 		if (!em || last_offset < em->start ||
509 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
510 		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
511 			free_extent_map(em);
512 			unlock_extent(tree, last_offset, end);
513 			unlock_page(page);
514 			page_cache_release(page);
515 			break;
516 		}
517 		free_extent_map(em);
518 
519 		if (page->index == end_index) {
520 			char *userpage;
521 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
522 
523 			if (zero_offset) {
524 				int zeros;
525 				zeros = PAGE_CACHE_SIZE - zero_offset;
526 				userpage = kmap_atomic(page);
527 				memset(userpage + zero_offset, 0, zeros);
528 				flush_dcache_page(page);
529 				kunmap_atomic(userpage);
530 			}
531 		}
532 
533 		ret = bio_add_page(cb->orig_bio, page,
534 				   PAGE_CACHE_SIZE, 0);
535 
536 		if (ret == PAGE_CACHE_SIZE) {
537 			nr_pages++;
538 			page_cache_release(page);
539 		} else {
540 			unlock_extent(tree, last_offset, end);
541 			unlock_page(page);
542 			page_cache_release(page);
543 			break;
544 		}
545 next:
546 		last_offset += PAGE_CACHE_SIZE;
547 	}
548 	return 0;
549 }
550 
551 /*
552  * for a compressed read, the bio we get passed has all the inode pages
553  * in it.  We don't actually do IO on those pages but allocate new ones
554  * to hold the compressed pages on disk.
555  *
556  * bio->bi_sector points to the compressed extent on disk
557  * bio->bi_io_vec points to all of the inode pages
558  * bio->bi_vcnt is a count of pages
559  *
560  * After the compressed pages are read, we copy the bytes into the
561  * bio we were passed and then call the bio end_io calls
562  */
563 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
564 				 int mirror_num, unsigned long bio_flags)
565 {
566 	struct extent_io_tree *tree;
567 	struct extent_map_tree *em_tree;
568 	struct compressed_bio *cb;
569 	struct btrfs_root *root = BTRFS_I(inode)->root;
570 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
571 	unsigned long compressed_len;
572 	unsigned long nr_pages;
573 	unsigned long pg_index;
574 	struct page *page;
575 	struct block_device *bdev;
576 	struct bio *comp_bio;
577 	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
578 	u64 em_len;
579 	u64 em_start;
580 	struct extent_map *em;
581 	int ret = -ENOMEM;
582 	int faili = 0;
583 	u32 *sums;
584 
585 	tree = &BTRFS_I(inode)->io_tree;
586 	em_tree = &BTRFS_I(inode)->extent_tree;
587 
588 	/* we need the actual starting offset of this extent in the file */
589 	read_lock(&em_tree->lock);
590 	em = lookup_extent_mapping(em_tree,
591 				   page_offset(bio->bi_io_vec->bv_page),
592 				   PAGE_CACHE_SIZE);
593 	read_unlock(&em_tree->lock);
594 	if (!em)
595 		return -EIO;
596 
597 	compressed_len = em->block_len;
598 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
599 	if (!cb)
600 		goto out;
601 
602 	atomic_set(&cb->pending_bios, 0);
603 	cb->errors = 0;
604 	cb->inode = inode;
605 	cb->mirror_num = mirror_num;
606 	sums = &cb->sums;
607 
608 	cb->start = em->orig_start;
609 	em_len = em->len;
610 	em_start = em->start;
611 
612 	free_extent_map(em);
613 	em = NULL;
614 
615 	cb->len = uncompressed_len;
616 	cb->compressed_len = compressed_len;
617 	cb->compress_type = extent_compress_type(bio_flags);
618 	cb->orig_bio = bio;
619 
620 	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
621 				 PAGE_CACHE_SIZE;
622 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
623 				       GFP_NOFS);
624 	if (!cb->compressed_pages)
625 		goto fail1;
626 
627 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
628 
629 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
630 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
631 							      __GFP_HIGHMEM);
632 		if (!cb->compressed_pages[pg_index]) {
633 			faili = pg_index - 1;
634 			ret = -ENOMEM;
635 			goto fail2;
636 		}
637 	}
638 	faili = nr_pages - 1;
639 	cb->nr_pages = nr_pages;
640 
641 	/* In the parent-locked case, we only locked the range we are
642 	 * interested in.  In all other cases, we can opportunistically
643 	 * cache decompressed data that goes beyond the requested range. */
644 	if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
645 		add_ra_bio_pages(inode, em_start + em_len, cb);
646 
647 	/* include any pages we added in add_ra-bio_pages */
648 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
649 	cb->len = uncompressed_len;
650 
651 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
652 	if (!comp_bio)
653 		goto fail2;
654 	comp_bio->bi_private = cb;
655 	comp_bio->bi_end_io = end_compressed_bio_read;
656 	atomic_inc(&cb->pending_bios);
657 
658 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
659 		page = cb->compressed_pages[pg_index];
660 		page->mapping = inode->i_mapping;
661 		page->index = em_start >> PAGE_CACHE_SHIFT;
662 
663 		if (comp_bio->bi_size)
664 			ret = tree->ops->merge_bio_hook(READ, page, 0,
665 							PAGE_CACHE_SIZE,
666 							comp_bio, 0);
667 		else
668 			ret = 0;
669 
670 		page->mapping = NULL;
671 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
672 		    PAGE_CACHE_SIZE) {
673 			bio_get(comp_bio);
674 
675 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
676 			BUG_ON(ret); /* -ENOMEM */
677 
678 			/*
679 			 * inc the count before we submit the bio so
680 			 * we know the end IO handler won't happen before
681 			 * we inc the count.  Otherwise, the cb might get
682 			 * freed before we're done setting it up
683 			 */
684 			atomic_inc(&cb->pending_bios);
685 
686 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
687 				ret = btrfs_lookup_bio_sums(root, inode,
688 							comp_bio, sums);
689 				BUG_ON(ret); /* -ENOMEM */
690 			}
691 			sums += (comp_bio->bi_size + root->sectorsize - 1) /
692 				root->sectorsize;
693 
694 			ret = btrfs_map_bio(root, READ, comp_bio,
695 					    mirror_num, 0);
696 			if (ret)
697 				bio_endio(comp_bio, ret);
698 
699 			bio_put(comp_bio);
700 
701 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
702 							GFP_NOFS);
703 			BUG_ON(!comp_bio);
704 			comp_bio->bi_private = cb;
705 			comp_bio->bi_end_io = end_compressed_bio_read;
706 
707 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
708 		}
709 		cur_disk_byte += PAGE_CACHE_SIZE;
710 	}
711 	bio_get(comp_bio);
712 
713 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
714 	BUG_ON(ret); /* -ENOMEM */
715 
716 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
717 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
718 		BUG_ON(ret); /* -ENOMEM */
719 	}
720 
721 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
722 	if (ret)
723 		bio_endio(comp_bio, ret);
724 
725 	bio_put(comp_bio);
726 	return 0;
727 
728 fail2:
729 	while (faili >= 0) {
730 		__free_page(cb->compressed_pages[faili]);
731 		faili--;
732 	}
733 
734 	kfree(cb->compressed_pages);
735 fail1:
736 	kfree(cb);
737 out:
738 	free_extent_map(em);
739 	return ret;
740 }
741 
742 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
743 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
744 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
745 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
746 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
747 
748 static struct btrfs_compress_op *btrfs_compress_op[] = {
749 	&btrfs_zlib_compress,
750 	&btrfs_lzo_compress,
751 };
752 
753 void __init btrfs_init_compress(void)
754 {
755 	int i;
756 
757 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
758 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
759 		spin_lock_init(&comp_workspace_lock[i]);
760 		atomic_set(&comp_alloc_workspace[i], 0);
761 		init_waitqueue_head(&comp_workspace_wait[i]);
762 	}
763 }
764 
765 /*
766  * this finds an available workspace or allocates a new one
767  * ERR_PTR is returned if things go bad.
768  */
769 static struct list_head *find_workspace(int type)
770 {
771 	struct list_head *workspace;
772 	int cpus = num_online_cpus();
773 	int idx = type - 1;
774 
775 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
776 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
777 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
778 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
779 	int *num_workspace			= &comp_num_workspace[idx];
780 again:
781 	spin_lock(workspace_lock);
782 	if (!list_empty(idle_workspace)) {
783 		workspace = idle_workspace->next;
784 		list_del(workspace);
785 		(*num_workspace)--;
786 		spin_unlock(workspace_lock);
787 		return workspace;
788 
789 	}
790 	if (atomic_read(alloc_workspace) > cpus) {
791 		DEFINE_WAIT(wait);
792 
793 		spin_unlock(workspace_lock);
794 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
795 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
796 			schedule();
797 		finish_wait(workspace_wait, &wait);
798 		goto again;
799 	}
800 	atomic_inc(alloc_workspace);
801 	spin_unlock(workspace_lock);
802 
803 	workspace = btrfs_compress_op[idx]->alloc_workspace();
804 	if (IS_ERR(workspace)) {
805 		atomic_dec(alloc_workspace);
806 		wake_up(workspace_wait);
807 	}
808 	return workspace;
809 }
810 
811 /*
812  * put a workspace struct back on the list or free it if we have enough
813  * idle ones sitting around
814  */
815 static void free_workspace(int type, struct list_head *workspace)
816 {
817 	int idx = type - 1;
818 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
819 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
820 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
821 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
822 	int *num_workspace			= &comp_num_workspace[idx];
823 
824 	spin_lock(workspace_lock);
825 	if (*num_workspace < num_online_cpus()) {
826 		list_add_tail(workspace, idle_workspace);
827 		(*num_workspace)++;
828 		spin_unlock(workspace_lock);
829 		goto wake;
830 	}
831 	spin_unlock(workspace_lock);
832 
833 	btrfs_compress_op[idx]->free_workspace(workspace);
834 	atomic_dec(alloc_workspace);
835 wake:
836 	smp_mb();
837 	if (waitqueue_active(workspace_wait))
838 		wake_up(workspace_wait);
839 }
840 
841 /*
842  * cleanup function for module exit
843  */
844 static void free_workspaces(void)
845 {
846 	struct list_head *workspace;
847 	int i;
848 
849 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
850 		while (!list_empty(&comp_idle_workspace[i])) {
851 			workspace = comp_idle_workspace[i].next;
852 			list_del(workspace);
853 			btrfs_compress_op[i]->free_workspace(workspace);
854 			atomic_dec(&comp_alloc_workspace[i]);
855 		}
856 	}
857 }
858 
859 /*
860  * given an address space and start/len, compress the bytes.
861  *
862  * pages are allocated to hold the compressed result and stored
863  * in 'pages'
864  *
865  * out_pages is used to return the number of pages allocated.  There
866  * may be pages allocated even if we return an error
867  *
868  * total_in is used to return the number of bytes actually read.  It
869  * may be smaller then len if we had to exit early because we
870  * ran out of room in the pages array or because we cross the
871  * max_out threshold.
872  *
873  * total_out is used to return the total number of compressed bytes
874  *
875  * max_out tells us the max number of bytes that we're allowed to
876  * stuff into pages
877  */
878 int btrfs_compress_pages(int type, struct address_space *mapping,
879 			 u64 start, unsigned long len,
880 			 struct page **pages,
881 			 unsigned long nr_dest_pages,
882 			 unsigned long *out_pages,
883 			 unsigned long *total_in,
884 			 unsigned long *total_out,
885 			 unsigned long max_out)
886 {
887 	struct list_head *workspace;
888 	int ret;
889 
890 	workspace = find_workspace(type);
891 	if (IS_ERR(workspace))
892 		return -1;
893 
894 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
895 						      start, len, pages,
896 						      nr_dest_pages, out_pages,
897 						      total_in, total_out,
898 						      max_out);
899 	free_workspace(type, workspace);
900 	return ret;
901 }
902 
903 /*
904  * pages_in is an array of pages with compressed data.
905  *
906  * disk_start is the starting logical offset of this array in the file
907  *
908  * bvec is a bio_vec of pages from the file that we want to decompress into
909  *
910  * vcnt is the count of pages in the biovec
911  *
912  * srclen is the number of bytes in pages_in
913  *
914  * The basic idea is that we have a bio that was created by readpages.
915  * The pages in the bio are for the uncompressed data, and they may not
916  * be contiguous.  They all correspond to the range of bytes covered by
917  * the compressed extent.
918  */
919 static int btrfs_decompress_biovec(int type, struct page **pages_in,
920 				   u64 disk_start, struct bio_vec *bvec,
921 				   int vcnt, size_t srclen)
922 {
923 	struct list_head *workspace;
924 	int ret;
925 
926 	workspace = find_workspace(type);
927 	if (IS_ERR(workspace))
928 		return -ENOMEM;
929 
930 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
931 							 disk_start,
932 							 bvec, vcnt, srclen);
933 	free_workspace(type, workspace);
934 	return ret;
935 }
936 
937 /*
938  * a less complex decompression routine.  Our compressed data fits in a
939  * single page, and we want to read a single page out of it.
940  * start_byte tells us the offset into the compressed data we're interested in
941  */
942 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
943 		     unsigned long start_byte, size_t srclen, size_t destlen)
944 {
945 	struct list_head *workspace;
946 	int ret;
947 
948 	workspace = find_workspace(type);
949 	if (IS_ERR(workspace))
950 		return -ENOMEM;
951 
952 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
953 						  dest_page, start_byte,
954 						  srclen, destlen);
955 
956 	free_workspace(type, workspace);
957 	return ret;
958 }
959 
960 void btrfs_exit_compress(void)
961 {
962 	free_workspaces();
963 }
964 
965 /*
966  * Copy uncompressed data from working buffer to pages.
967  *
968  * buf_start is the byte offset we're of the start of our workspace buffer.
969  *
970  * total_out is the last byte of the buffer
971  */
972 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
973 			      unsigned long total_out, u64 disk_start,
974 			      struct bio_vec *bvec, int vcnt,
975 			      unsigned long *pg_index,
976 			      unsigned long *pg_offset)
977 {
978 	unsigned long buf_offset;
979 	unsigned long current_buf_start;
980 	unsigned long start_byte;
981 	unsigned long working_bytes = total_out - buf_start;
982 	unsigned long bytes;
983 	char *kaddr;
984 	struct page *page_out = bvec[*pg_index].bv_page;
985 
986 	/*
987 	 * start byte is the first byte of the page we're currently
988 	 * copying into relative to the start of the compressed data.
989 	 */
990 	start_byte = page_offset(page_out) - disk_start;
991 
992 	/* we haven't yet hit data corresponding to this page */
993 	if (total_out <= start_byte)
994 		return 1;
995 
996 	/*
997 	 * the start of the data we care about is offset into
998 	 * the middle of our working buffer
999 	 */
1000 	if (total_out > start_byte && buf_start < start_byte) {
1001 		buf_offset = start_byte - buf_start;
1002 		working_bytes -= buf_offset;
1003 	} else {
1004 		buf_offset = 0;
1005 	}
1006 	current_buf_start = buf_start;
1007 
1008 	/* copy bytes from the working buffer into the pages */
1009 	while (working_bytes > 0) {
1010 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1011 			    PAGE_CACHE_SIZE - buf_offset);
1012 		bytes = min(bytes, working_bytes);
1013 		kaddr = kmap_atomic(page_out);
1014 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1015 		kunmap_atomic(kaddr);
1016 		flush_dcache_page(page_out);
1017 
1018 		*pg_offset += bytes;
1019 		buf_offset += bytes;
1020 		working_bytes -= bytes;
1021 		current_buf_start += bytes;
1022 
1023 		/* check if we need to pick another page */
1024 		if (*pg_offset == PAGE_CACHE_SIZE) {
1025 			(*pg_index)++;
1026 			if (*pg_index >= vcnt)
1027 				return 0;
1028 
1029 			page_out = bvec[*pg_index].bv_page;
1030 			*pg_offset = 0;
1031 			start_byte = page_offset(page_out) - disk_start;
1032 
1033 			/*
1034 			 * make sure our new page is covered by this
1035 			 * working buffer
1036 			 */
1037 			if (total_out <= start_byte)
1038 				return 1;
1039 
1040 			/*
1041 			 * the next page in the biovec might not be adjacent
1042 			 * to the last page, but it might still be found
1043 			 * inside this working buffer. bump our offset pointer
1044 			 */
1045 			if (total_out > start_byte &&
1046 			    current_buf_start < start_byte) {
1047 				buf_offset = start_byte - buf_start;
1048 				working_bytes = total_out - start_byte;
1049 				current_buf_start = buf_start + buf_offset;
1050 			}
1051 		}
1052 	}
1053 
1054 	return 1;
1055 }
1056