1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 #include "zoned.h" 32 33 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 34 35 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 36 { 37 switch (type) { 38 case BTRFS_COMPRESS_ZLIB: 39 case BTRFS_COMPRESS_LZO: 40 case BTRFS_COMPRESS_ZSTD: 41 case BTRFS_COMPRESS_NONE: 42 return btrfs_compress_types[type]; 43 default: 44 break; 45 } 46 47 return NULL; 48 } 49 50 bool btrfs_compress_is_valid_type(const char *str, size_t len) 51 { 52 int i; 53 54 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 55 size_t comp_len = strlen(btrfs_compress_types[i]); 56 57 if (len < comp_len) 58 continue; 59 60 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 61 return true; 62 } 63 return false; 64 } 65 66 static int compression_compress_pages(int type, struct list_head *ws, 67 struct address_space *mapping, u64 start, struct page **pages, 68 unsigned long *out_pages, unsigned long *total_in, 69 unsigned long *total_out) 70 { 71 switch (type) { 72 case BTRFS_COMPRESS_ZLIB: 73 return zlib_compress_pages(ws, mapping, start, pages, 74 out_pages, total_in, total_out); 75 case BTRFS_COMPRESS_LZO: 76 return lzo_compress_pages(ws, mapping, start, pages, 77 out_pages, total_in, total_out); 78 case BTRFS_COMPRESS_ZSTD: 79 return zstd_compress_pages(ws, mapping, start, pages, 80 out_pages, total_in, total_out); 81 case BTRFS_COMPRESS_NONE: 82 default: 83 /* 84 * This can happen when compression races with remount setting 85 * it to 'no compress', while caller doesn't call 86 * inode_need_compress() to check if we really need to 87 * compress. 88 * 89 * Not a big deal, just need to inform caller that we 90 * haven't allocated any pages yet. 91 */ 92 *out_pages = 0; 93 return -E2BIG; 94 } 95 } 96 97 static int compression_decompress_bio(int type, struct list_head *ws, 98 struct compressed_bio *cb) 99 { 100 switch (type) { 101 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 102 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 103 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 104 case BTRFS_COMPRESS_NONE: 105 default: 106 /* 107 * This can't happen, the type is validated several times 108 * before we get here. 109 */ 110 BUG(); 111 } 112 } 113 114 static int compression_decompress(int type, struct list_head *ws, 115 unsigned char *data_in, struct page *dest_page, 116 unsigned long start_byte, size_t srclen, size_t destlen) 117 { 118 switch (type) { 119 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 120 start_byte, srclen, destlen); 121 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 122 start_byte, srclen, destlen); 123 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 124 start_byte, srclen, destlen); 125 case BTRFS_COMPRESS_NONE: 126 default: 127 /* 128 * This can't happen, the type is validated several times 129 * before we get here. 130 */ 131 BUG(); 132 } 133 } 134 135 static int btrfs_decompress_bio(struct compressed_bio *cb); 136 137 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 138 unsigned long disk_size) 139 { 140 return sizeof(struct compressed_bio) + 141 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size; 142 } 143 144 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 145 u64 disk_start) 146 { 147 struct btrfs_fs_info *fs_info = inode->root->fs_info; 148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 149 const u32 csum_size = fs_info->csum_size; 150 const u32 sectorsize = fs_info->sectorsize; 151 struct page *page; 152 unsigned long i; 153 char *kaddr; 154 u8 csum[BTRFS_CSUM_SIZE]; 155 struct compressed_bio *cb = bio->bi_private; 156 u8 *cb_sum = cb->sums; 157 158 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM)) 159 return 0; 160 161 shash->tfm = fs_info->csum_shash; 162 163 for (i = 0; i < cb->nr_pages; i++) { 164 u32 pg_offset; 165 u32 bytes_left = PAGE_SIZE; 166 page = cb->compressed_pages[i]; 167 168 /* Determine the remaining bytes inside the page first */ 169 if (i == cb->nr_pages - 1) 170 bytes_left = cb->compressed_len - i * PAGE_SIZE; 171 172 /* Hash through the page sector by sector */ 173 for (pg_offset = 0; pg_offset < bytes_left; 174 pg_offset += sectorsize) { 175 kaddr = kmap_atomic(page); 176 crypto_shash_digest(shash, kaddr + pg_offset, 177 sectorsize, csum); 178 kunmap_atomic(kaddr); 179 180 if (memcmp(&csum, cb_sum, csum_size) != 0) { 181 btrfs_print_data_csum_error(inode, disk_start, 182 csum, cb_sum, cb->mirror_num); 183 if (btrfs_io_bio(bio)->device) 184 btrfs_dev_stat_inc_and_print( 185 btrfs_io_bio(bio)->device, 186 BTRFS_DEV_STAT_CORRUPTION_ERRS); 187 return -EIO; 188 } 189 cb_sum += csum_size; 190 disk_start += sectorsize; 191 } 192 } 193 return 0; 194 } 195 196 /* when we finish reading compressed pages from the disk, we 197 * decompress them and then run the bio end_io routines on the 198 * decompressed pages (in the inode address space). 199 * 200 * This allows the checksumming and other IO error handling routines 201 * to work normally 202 * 203 * The compressed pages are freed here, and it must be run 204 * in process context 205 */ 206 static void end_compressed_bio_read(struct bio *bio) 207 { 208 struct compressed_bio *cb = bio->bi_private; 209 struct inode *inode; 210 struct page *page; 211 unsigned long index; 212 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 213 int ret = 0; 214 215 if (bio->bi_status) 216 cb->errors = 1; 217 218 /* if there are more bios still pending for this compressed 219 * extent, just exit 220 */ 221 if (!refcount_dec_and_test(&cb->pending_bios)) 222 goto out; 223 224 /* 225 * Record the correct mirror_num in cb->orig_bio so that 226 * read-repair can work properly. 227 */ 228 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 229 cb->mirror_num = mirror; 230 231 /* 232 * Some IO in this cb have failed, just skip checksum as there 233 * is no way it could be correct. 234 */ 235 if (cb->errors == 1) 236 goto csum_failed; 237 238 inode = cb->inode; 239 ret = check_compressed_csum(BTRFS_I(inode), bio, 240 bio->bi_iter.bi_sector << 9); 241 if (ret) 242 goto csum_failed; 243 244 /* ok, we're the last bio for this extent, lets start 245 * the decompression. 246 */ 247 ret = btrfs_decompress_bio(cb); 248 249 csum_failed: 250 if (ret) 251 cb->errors = 1; 252 253 /* release the compressed pages */ 254 index = 0; 255 for (index = 0; index < cb->nr_pages; index++) { 256 page = cb->compressed_pages[index]; 257 page->mapping = NULL; 258 put_page(page); 259 } 260 261 /* do io completion on the original bio */ 262 if (cb->errors) { 263 bio_io_error(cb->orig_bio); 264 } else { 265 struct bio_vec *bvec; 266 struct bvec_iter_all iter_all; 267 268 /* 269 * we have verified the checksum already, set page 270 * checked so the end_io handlers know about it 271 */ 272 ASSERT(!bio_flagged(bio, BIO_CLONED)); 273 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 274 SetPageChecked(bvec->bv_page); 275 276 bio_endio(cb->orig_bio); 277 } 278 279 /* finally free the cb struct */ 280 kfree(cb->compressed_pages); 281 kfree(cb); 282 out: 283 bio_put(bio); 284 } 285 286 /* 287 * Clear the writeback bits on all of the file 288 * pages for a compressed write 289 */ 290 static noinline void end_compressed_writeback(struct inode *inode, 291 const struct compressed_bio *cb) 292 { 293 unsigned long index = cb->start >> PAGE_SHIFT; 294 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 295 struct page *pages[16]; 296 unsigned long nr_pages = end_index - index + 1; 297 int i; 298 int ret; 299 300 if (cb->errors) 301 mapping_set_error(inode->i_mapping, -EIO); 302 303 while (nr_pages > 0) { 304 ret = find_get_pages_contig(inode->i_mapping, index, 305 min_t(unsigned long, 306 nr_pages, ARRAY_SIZE(pages)), pages); 307 if (ret == 0) { 308 nr_pages -= 1; 309 index += 1; 310 continue; 311 } 312 for (i = 0; i < ret; i++) { 313 if (cb->errors) 314 SetPageError(pages[i]); 315 end_page_writeback(pages[i]); 316 put_page(pages[i]); 317 } 318 nr_pages -= ret; 319 index += ret; 320 } 321 /* the inode may be gone now */ 322 } 323 324 /* 325 * do the cleanup once all the compressed pages hit the disk. 326 * This will clear writeback on the file pages and free the compressed 327 * pages. 328 * 329 * This also calls the writeback end hooks for the file pages so that 330 * metadata and checksums can be updated in the file. 331 */ 332 static void end_compressed_bio_write(struct bio *bio) 333 { 334 struct compressed_bio *cb = bio->bi_private; 335 struct inode *inode; 336 struct page *page; 337 unsigned long index; 338 339 if (bio->bi_status) 340 cb->errors = 1; 341 342 /* if there are more bios still pending for this compressed 343 * extent, just exit 344 */ 345 if (!refcount_dec_and_test(&cb->pending_bios)) 346 goto out; 347 348 /* ok, we're the last bio for this extent, step one is to 349 * call back into the FS and do all the end_io operations 350 */ 351 inode = cb->inode; 352 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 353 btrfs_record_physical_zoned(inode, cb->start, bio); 354 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 355 cb->start, cb->start + cb->len - 1, 356 bio->bi_status == BLK_STS_OK); 357 cb->compressed_pages[0]->mapping = NULL; 358 359 end_compressed_writeback(inode, cb); 360 /* note, our inode could be gone now */ 361 362 /* 363 * release the compressed pages, these came from alloc_page and 364 * are not attached to the inode at all 365 */ 366 index = 0; 367 for (index = 0; index < cb->nr_pages; index++) { 368 page = cb->compressed_pages[index]; 369 page->mapping = NULL; 370 put_page(page); 371 } 372 373 /* finally free the cb struct */ 374 kfree(cb->compressed_pages); 375 kfree(cb); 376 out: 377 bio_put(bio); 378 } 379 380 /* 381 * worker function to build and submit bios for previously compressed pages. 382 * The corresponding pages in the inode should be marked for writeback 383 * and the compressed pages should have a reference on them for dropping 384 * when the IO is complete. 385 * 386 * This also checksums the file bytes and gets things ready for 387 * the end io hooks. 388 */ 389 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 390 unsigned long len, u64 disk_start, 391 unsigned long compressed_len, 392 struct page **compressed_pages, 393 unsigned long nr_pages, 394 unsigned int write_flags, 395 struct cgroup_subsys_state *blkcg_css) 396 { 397 struct btrfs_fs_info *fs_info = inode->root->fs_info; 398 struct bio *bio = NULL; 399 struct compressed_bio *cb; 400 unsigned long bytes_left; 401 int pg_index = 0; 402 struct page *page; 403 u64 first_byte = disk_start; 404 blk_status_t ret; 405 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 406 const bool use_append = btrfs_use_zone_append(inode, disk_start); 407 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE; 408 409 WARN_ON(!PAGE_ALIGNED(start)); 410 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 411 if (!cb) 412 return BLK_STS_RESOURCE; 413 refcount_set(&cb->pending_bios, 0); 414 cb->errors = 0; 415 cb->inode = &inode->vfs_inode; 416 cb->start = start; 417 cb->len = len; 418 cb->mirror_num = 0; 419 cb->compressed_pages = compressed_pages; 420 cb->compressed_len = compressed_len; 421 cb->orig_bio = NULL; 422 cb->nr_pages = nr_pages; 423 424 bio = btrfs_bio_alloc(first_byte); 425 bio->bi_opf = bio_op | write_flags; 426 bio->bi_private = cb; 427 bio->bi_end_io = end_compressed_bio_write; 428 429 if (use_append) { 430 struct extent_map *em; 431 struct map_lookup *map; 432 struct block_device *bdev; 433 434 em = btrfs_get_chunk_map(fs_info, disk_start, PAGE_SIZE); 435 if (IS_ERR(em)) { 436 kfree(cb); 437 bio_put(bio); 438 return BLK_STS_NOTSUPP; 439 } 440 441 map = em->map_lookup; 442 /* We only support single profile for now */ 443 ASSERT(map->num_stripes == 1); 444 bdev = map->stripes[0].dev->bdev; 445 446 bio_set_dev(bio, bdev); 447 free_extent_map(em); 448 } 449 450 if (blkcg_css) { 451 bio->bi_opf |= REQ_CGROUP_PUNT; 452 kthread_associate_blkcg(blkcg_css); 453 } 454 refcount_set(&cb->pending_bios, 1); 455 456 /* create and submit bios for the compressed pages */ 457 bytes_left = compressed_len; 458 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 459 int submit = 0; 460 int len; 461 462 page = compressed_pages[pg_index]; 463 page->mapping = inode->vfs_inode.i_mapping; 464 if (bio->bi_iter.bi_size) 465 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 466 0); 467 468 if (pg_index == 0 && use_append) 469 len = bio_add_zone_append_page(bio, page, PAGE_SIZE, 0); 470 else 471 len = bio_add_page(bio, page, PAGE_SIZE, 0); 472 473 page->mapping = NULL; 474 if (submit || len < PAGE_SIZE) { 475 /* 476 * inc the count before we submit the bio so 477 * we know the end IO handler won't happen before 478 * we inc the count. Otherwise, the cb might get 479 * freed before we're done setting it up 480 */ 481 refcount_inc(&cb->pending_bios); 482 ret = btrfs_bio_wq_end_io(fs_info, bio, 483 BTRFS_WQ_ENDIO_DATA); 484 BUG_ON(ret); /* -ENOMEM */ 485 486 if (!skip_sum) { 487 ret = btrfs_csum_one_bio(inode, bio, start, 1); 488 BUG_ON(ret); /* -ENOMEM */ 489 } 490 491 ret = btrfs_map_bio(fs_info, bio, 0); 492 if (ret) { 493 bio->bi_status = ret; 494 bio_endio(bio); 495 } 496 497 bio = btrfs_bio_alloc(first_byte); 498 bio->bi_opf = bio_op | write_flags; 499 bio->bi_private = cb; 500 bio->bi_end_io = end_compressed_bio_write; 501 if (blkcg_css) 502 bio->bi_opf |= REQ_CGROUP_PUNT; 503 /* 504 * Use bio_add_page() to ensure the bio has at least one 505 * page. 506 */ 507 bio_add_page(bio, page, PAGE_SIZE, 0); 508 } 509 if (bytes_left < PAGE_SIZE) { 510 btrfs_info(fs_info, 511 "bytes left %lu compress len %lu nr %lu", 512 bytes_left, cb->compressed_len, cb->nr_pages); 513 } 514 bytes_left -= PAGE_SIZE; 515 first_byte += PAGE_SIZE; 516 cond_resched(); 517 } 518 519 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 520 BUG_ON(ret); /* -ENOMEM */ 521 522 if (!skip_sum) { 523 ret = btrfs_csum_one_bio(inode, bio, start, 1); 524 BUG_ON(ret); /* -ENOMEM */ 525 } 526 527 ret = btrfs_map_bio(fs_info, bio, 0); 528 if (ret) { 529 bio->bi_status = ret; 530 bio_endio(bio); 531 } 532 533 if (blkcg_css) 534 kthread_associate_blkcg(NULL); 535 536 return 0; 537 } 538 539 static u64 bio_end_offset(struct bio *bio) 540 { 541 struct bio_vec *last = bio_last_bvec_all(bio); 542 543 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 544 } 545 546 static noinline int add_ra_bio_pages(struct inode *inode, 547 u64 compressed_end, 548 struct compressed_bio *cb) 549 { 550 unsigned long end_index; 551 unsigned long pg_index; 552 u64 last_offset; 553 u64 isize = i_size_read(inode); 554 int ret; 555 struct page *page; 556 unsigned long nr_pages = 0; 557 struct extent_map *em; 558 struct address_space *mapping = inode->i_mapping; 559 struct extent_map_tree *em_tree; 560 struct extent_io_tree *tree; 561 u64 end; 562 int misses = 0; 563 564 last_offset = bio_end_offset(cb->orig_bio); 565 em_tree = &BTRFS_I(inode)->extent_tree; 566 tree = &BTRFS_I(inode)->io_tree; 567 568 if (isize == 0) 569 return 0; 570 571 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 572 573 while (last_offset < compressed_end) { 574 pg_index = last_offset >> PAGE_SHIFT; 575 576 if (pg_index > end_index) 577 break; 578 579 page = xa_load(&mapping->i_pages, pg_index); 580 if (page && !xa_is_value(page)) { 581 misses++; 582 if (misses > 4) 583 break; 584 goto next; 585 } 586 587 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 588 ~__GFP_FS)); 589 if (!page) 590 break; 591 592 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 593 put_page(page); 594 goto next; 595 } 596 597 /* 598 * at this point, we have a locked page in the page cache 599 * for these bytes in the file. But, we have to make 600 * sure they map to this compressed extent on disk. 601 */ 602 ret = set_page_extent_mapped(page); 603 if (ret < 0) { 604 unlock_page(page); 605 put_page(page); 606 break; 607 } 608 609 end = last_offset + PAGE_SIZE - 1; 610 lock_extent(tree, last_offset, end); 611 read_lock(&em_tree->lock); 612 em = lookup_extent_mapping(em_tree, last_offset, 613 PAGE_SIZE); 614 read_unlock(&em_tree->lock); 615 616 if (!em || last_offset < em->start || 617 (last_offset + PAGE_SIZE > extent_map_end(em)) || 618 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 619 free_extent_map(em); 620 unlock_extent(tree, last_offset, end); 621 unlock_page(page); 622 put_page(page); 623 break; 624 } 625 free_extent_map(em); 626 627 if (page->index == end_index) { 628 size_t zero_offset = offset_in_page(isize); 629 630 if (zero_offset) { 631 int zeros; 632 zeros = PAGE_SIZE - zero_offset; 633 memzero_page(page, zero_offset, zeros); 634 flush_dcache_page(page); 635 } 636 } 637 638 ret = bio_add_page(cb->orig_bio, page, 639 PAGE_SIZE, 0); 640 641 if (ret == PAGE_SIZE) { 642 nr_pages++; 643 put_page(page); 644 } else { 645 unlock_extent(tree, last_offset, end); 646 unlock_page(page); 647 put_page(page); 648 break; 649 } 650 next: 651 last_offset += PAGE_SIZE; 652 } 653 return 0; 654 } 655 656 /* 657 * for a compressed read, the bio we get passed has all the inode pages 658 * in it. We don't actually do IO on those pages but allocate new ones 659 * to hold the compressed pages on disk. 660 * 661 * bio->bi_iter.bi_sector points to the compressed extent on disk 662 * bio->bi_io_vec points to all of the inode pages 663 * 664 * After the compressed pages are read, we copy the bytes into the 665 * bio we were passed and then call the bio end_io calls 666 */ 667 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 668 int mirror_num, unsigned long bio_flags) 669 { 670 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 671 struct extent_map_tree *em_tree; 672 struct compressed_bio *cb; 673 unsigned long compressed_len; 674 unsigned long nr_pages; 675 unsigned long pg_index; 676 struct page *page; 677 struct bio *comp_bio; 678 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9; 679 u64 em_len; 680 u64 em_start; 681 struct extent_map *em; 682 blk_status_t ret = BLK_STS_RESOURCE; 683 int faili = 0; 684 u8 *sums; 685 686 em_tree = &BTRFS_I(inode)->extent_tree; 687 688 /* we need the actual starting offset of this extent in the file */ 689 read_lock(&em_tree->lock); 690 em = lookup_extent_mapping(em_tree, 691 page_offset(bio_first_page_all(bio)), 692 fs_info->sectorsize); 693 read_unlock(&em_tree->lock); 694 if (!em) 695 return BLK_STS_IOERR; 696 697 compressed_len = em->block_len; 698 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 699 if (!cb) 700 goto out; 701 702 refcount_set(&cb->pending_bios, 0); 703 cb->errors = 0; 704 cb->inode = inode; 705 cb->mirror_num = mirror_num; 706 sums = cb->sums; 707 708 cb->start = em->orig_start; 709 em_len = em->len; 710 em_start = em->start; 711 712 free_extent_map(em); 713 em = NULL; 714 715 cb->len = bio->bi_iter.bi_size; 716 cb->compressed_len = compressed_len; 717 cb->compress_type = extent_compress_type(bio_flags); 718 cb->orig_bio = bio; 719 720 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 721 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 722 GFP_NOFS); 723 if (!cb->compressed_pages) 724 goto fail1; 725 726 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 727 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 728 __GFP_HIGHMEM); 729 if (!cb->compressed_pages[pg_index]) { 730 faili = pg_index - 1; 731 ret = BLK_STS_RESOURCE; 732 goto fail2; 733 } 734 } 735 faili = nr_pages - 1; 736 cb->nr_pages = nr_pages; 737 738 add_ra_bio_pages(inode, em_start + em_len, cb); 739 740 /* include any pages we added in add_ra-bio_pages */ 741 cb->len = bio->bi_iter.bi_size; 742 743 comp_bio = btrfs_bio_alloc(cur_disk_byte); 744 comp_bio->bi_opf = REQ_OP_READ; 745 comp_bio->bi_private = cb; 746 comp_bio->bi_end_io = end_compressed_bio_read; 747 refcount_set(&cb->pending_bios, 1); 748 749 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 750 u32 pg_len = PAGE_SIZE; 751 int submit = 0; 752 753 /* 754 * To handle subpage case, we need to make sure the bio only 755 * covers the range we need. 756 * 757 * If we're at the last page, truncate the length to only cover 758 * the remaining part. 759 */ 760 if (pg_index == nr_pages - 1) 761 pg_len = min_t(u32, PAGE_SIZE, 762 compressed_len - pg_index * PAGE_SIZE); 763 764 page = cb->compressed_pages[pg_index]; 765 page->mapping = inode->i_mapping; 766 page->index = em_start >> PAGE_SHIFT; 767 768 if (comp_bio->bi_iter.bi_size) 769 submit = btrfs_bio_fits_in_stripe(page, pg_len, 770 comp_bio, 0); 771 772 page->mapping = NULL; 773 if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) { 774 unsigned int nr_sectors; 775 776 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 777 BTRFS_WQ_ENDIO_DATA); 778 BUG_ON(ret); /* -ENOMEM */ 779 780 /* 781 * inc the count before we submit the bio so 782 * we know the end IO handler won't happen before 783 * we inc the count. Otherwise, the cb might get 784 * freed before we're done setting it up 785 */ 786 refcount_inc(&cb->pending_bios); 787 788 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 789 BUG_ON(ret); /* -ENOMEM */ 790 791 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 792 fs_info->sectorsize); 793 sums += fs_info->csum_size * nr_sectors; 794 795 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 796 if (ret) { 797 comp_bio->bi_status = ret; 798 bio_endio(comp_bio); 799 } 800 801 comp_bio = btrfs_bio_alloc(cur_disk_byte); 802 comp_bio->bi_opf = REQ_OP_READ; 803 comp_bio->bi_private = cb; 804 comp_bio->bi_end_io = end_compressed_bio_read; 805 806 bio_add_page(comp_bio, page, pg_len, 0); 807 } 808 cur_disk_byte += pg_len; 809 } 810 811 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 812 BUG_ON(ret); /* -ENOMEM */ 813 814 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 815 BUG_ON(ret); /* -ENOMEM */ 816 817 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 818 if (ret) { 819 comp_bio->bi_status = ret; 820 bio_endio(comp_bio); 821 } 822 823 return 0; 824 825 fail2: 826 while (faili >= 0) { 827 __free_page(cb->compressed_pages[faili]); 828 faili--; 829 } 830 831 kfree(cb->compressed_pages); 832 fail1: 833 kfree(cb); 834 out: 835 free_extent_map(em); 836 return ret; 837 } 838 839 /* 840 * Heuristic uses systematic sampling to collect data from the input data 841 * range, the logic can be tuned by the following constants: 842 * 843 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 844 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 845 */ 846 #define SAMPLING_READ_SIZE (16) 847 #define SAMPLING_INTERVAL (256) 848 849 /* 850 * For statistical analysis of the input data we consider bytes that form a 851 * Galois Field of 256 objects. Each object has an attribute count, ie. how 852 * many times the object appeared in the sample. 853 */ 854 #define BUCKET_SIZE (256) 855 856 /* 857 * The size of the sample is based on a statistical sampling rule of thumb. 858 * The common way is to perform sampling tests as long as the number of 859 * elements in each cell is at least 5. 860 * 861 * Instead of 5, we choose 32 to obtain more accurate results. 862 * If the data contain the maximum number of symbols, which is 256, we obtain a 863 * sample size bound by 8192. 864 * 865 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 866 * from up to 512 locations. 867 */ 868 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 869 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 870 871 struct bucket_item { 872 u32 count; 873 }; 874 875 struct heuristic_ws { 876 /* Partial copy of input data */ 877 u8 *sample; 878 u32 sample_size; 879 /* Buckets store counters for each byte value */ 880 struct bucket_item *bucket; 881 /* Sorting buffer */ 882 struct bucket_item *bucket_b; 883 struct list_head list; 884 }; 885 886 static struct workspace_manager heuristic_wsm; 887 888 static void free_heuristic_ws(struct list_head *ws) 889 { 890 struct heuristic_ws *workspace; 891 892 workspace = list_entry(ws, struct heuristic_ws, list); 893 894 kvfree(workspace->sample); 895 kfree(workspace->bucket); 896 kfree(workspace->bucket_b); 897 kfree(workspace); 898 } 899 900 static struct list_head *alloc_heuristic_ws(unsigned int level) 901 { 902 struct heuristic_ws *ws; 903 904 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 905 if (!ws) 906 return ERR_PTR(-ENOMEM); 907 908 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 909 if (!ws->sample) 910 goto fail; 911 912 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 913 if (!ws->bucket) 914 goto fail; 915 916 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 917 if (!ws->bucket_b) 918 goto fail; 919 920 INIT_LIST_HEAD(&ws->list); 921 return &ws->list; 922 fail: 923 free_heuristic_ws(&ws->list); 924 return ERR_PTR(-ENOMEM); 925 } 926 927 const struct btrfs_compress_op btrfs_heuristic_compress = { 928 .workspace_manager = &heuristic_wsm, 929 }; 930 931 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 932 /* The heuristic is represented as compression type 0 */ 933 &btrfs_heuristic_compress, 934 &btrfs_zlib_compress, 935 &btrfs_lzo_compress, 936 &btrfs_zstd_compress, 937 }; 938 939 static struct list_head *alloc_workspace(int type, unsigned int level) 940 { 941 switch (type) { 942 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 943 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 944 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 945 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 946 default: 947 /* 948 * This can't happen, the type is validated several times 949 * before we get here. 950 */ 951 BUG(); 952 } 953 } 954 955 static void free_workspace(int type, struct list_head *ws) 956 { 957 switch (type) { 958 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 959 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 960 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 961 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 962 default: 963 /* 964 * This can't happen, the type is validated several times 965 * before we get here. 966 */ 967 BUG(); 968 } 969 } 970 971 static void btrfs_init_workspace_manager(int type) 972 { 973 struct workspace_manager *wsm; 974 struct list_head *workspace; 975 976 wsm = btrfs_compress_op[type]->workspace_manager; 977 INIT_LIST_HEAD(&wsm->idle_ws); 978 spin_lock_init(&wsm->ws_lock); 979 atomic_set(&wsm->total_ws, 0); 980 init_waitqueue_head(&wsm->ws_wait); 981 982 /* 983 * Preallocate one workspace for each compression type so we can 984 * guarantee forward progress in the worst case 985 */ 986 workspace = alloc_workspace(type, 0); 987 if (IS_ERR(workspace)) { 988 pr_warn( 989 "BTRFS: cannot preallocate compression workspace, will try later\n"); 990 } else { 991 atomic_set(&wsm->total_ws, 1); 992 wsm->free_ws = 1; 993 list_add(workspace, &wsm->idle_ws); 994 } 995 } 996 997 static void btrfs_cleanup_workspace_manager(int type) 998 { 999 struct workspace_manager *wsman; 1000 struct list_head *ws; 1001 1002 wsman = btrfs_compress_op[type]->workspace_manager; 1003 while (!list_empty(&wsman->idle_ws)) { 1004 ws = wsman->idle_ws.next; 1005 list_del(ws); 1006 free_workspace(type, ws); 1007 atomic_dec(&wsman->total_ws); 1008 } 1009 } 1010 1011 /* 1012 * This finds an available workspace or allocates a new one. 1013 * If it's not possible to allocate a new one, waits until there's one. 1014 * Preallocation makes a forward progress guarantees and we do not return 1015 * errors. 1016 */ 1017 struct list_head *btrfs_get_workspace(int type, unsigned int level) 1018 { 1019 struct workspace_manager *wsm; 1020 struct list_head *workspace; 1021 int cpus = num_online_cpus(); 1022 unsigned nofs_flag; 1023 struct list_head *idle_ws; 1024 spinlock_t *ws_lock; 1025 atomic_t *total_ws; 1026 wait_queue_head_t *ws_wait; 1027 int *free_ws; 1028 1029 wsm = btrfs_compress_op[type]->workspace_manager; 1030 idle_ws = &wsm->idle_ws; 1031 ws_lock = &wsm->ws_lock; 1032 total_ws = &wsm->total_ws; 1033 ws_wait = &wsm->ws_wait; 1034 free_ws = &wsm->free_ws; 1035 1036 again: 1037 spin_lock(ws_lock); 1038 if (!list_empty(idle_ws)) { 1039 workspace = idle_ws->next; 1040 list_del(workspace); 1041 (*free_ws)--; 1042 spin_unlock(ws_lock); 1043 return workspace; 1044 1045 } 1046 if (atomic_read(total_ws) > cpus) { 1047 DEFINE_WAIT(wait); 1048 1049 spin_unlock(ws_lock); 1050 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1051 if (atomic_read(total_ws) > cpus && !*free_ws) 1052 schedule(); 1053 finish_wait(ws_wait, &wait); 1054 goto again; 1055 } 1056 atomic_inc(total_ws); 1057 spin_unlock(ws_lock); 1058 1059 /* 1060 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1061 * to turn it off here because we might get called from the restricted 1062 * context of btrfs_compress_bio/btrfs_compress_pages 1063 */ 1064 nofs_flag = memalloc_nofs_save(); 1065 workspace = alloc_workspace(type, level); 1066 memalloc_nofs_restore(nofs_flag); 1067 1068 if (IS_ERR(workspace)) { 1069 atomic_dec(total_ws); 1070 wake_up(ws_wait); 1071 1072 /* 1073 * Do not return the error but go back to waiting. There's a 1074 * workspace preallocated for each type and the compression 1075 * time is bounded so we get to a workspace eventually. This 1076 * makes our caller's life easier. 1077 * 1078 * To prevent silent and low-probability deadlocks (when the 1079 * initial preallocation fails), check if there are any 1080 * workspaces at all. 1081 */ 1082 if (atomic_read(total_ws) == 0) { 1083 static DEFINE_RATELIMIT_STATE(_rs, 1084 /* once per minute */ 60 * HZ, 1085 /* no burst */ 1); 1086 1087 if (__ratelimit(&_rs)) { 1088 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1089 } 1090 } 1091 goto again; 1092 } 1093 return workspace; 1094 } 1095 1096 static struct list_head *get_workspace(int type, int level) 1097 { 1098 switch (type) { 1099 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1100 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1101 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1102 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1103 default: 1104 /* 1105 * This can't happen, the type is validated several times 1106 * before we get here. 1107 */ 1108 BUG(); 1109 } 1110 } 1111 1112 /* 1113 * put a workspace struct back on the list or free it if we have enough 1114 * idle ones sitting around 1115 */ 1116 void btrfs_put_workspace(int type, struct list_head *ws) 1117 { 1118 struct workspace_manager *wsm; 1119 struct list_head *idle_ws; 1120 spinlock_t *ws_lock; 1121 atomic_t *total_ws; 1122 wait_queue_head_t *ws_wait; 1123 int *free_ws; 1124 1125 wsm = btrfs_compress_op[type]->workspace_manager; 1126 idle_ws = &wsm->idle_ws; 1127 ws_lock = &wsm->ws_lock; 1128 total_ws = &wsm->total_ws; 1129 ws_wait = &wsm->ws_wait; 1130 free_ws = &wsm->free_ws; 1131 1132 spin_lock(ws_lock); 1133 if (*free_ws <= num_online_cpus()) { 1134 list_add(ws, idle_ws); 1135 (*free_ws)++; 1136 spin_unlock(ws_lock); 1137 goto wake; 1138 } 1139 spin_unlock(ws_lock); 1140 1141 free_workspace(type, ws); 1142 atomic_dec(total_ws); 1143 wake: 1144 cond_wake_up(ws_wait); 1145 } 1146 1147 static void put_workspace(int type, struct list_head *ws) 1148 { 1149 switch (type) { 1150 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1151 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1152 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1153 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1154 default: 1155 /* 1156 * This can't happen, the type is validated several times 1157 * before we get here. 1158 */ 1159 BUG(); 1160 } 1161 } 1162 1163 /* 1164 * Adjust @level according to the limits of the compression algorithm or 1165 * fallback to default 1166 */ 1167 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1168 { 1169 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1170 1171 if (level == 0) 1172 level = ops->default_level; 1173 else 1174 level = min(level, ops->max_level); 1175 1176 return level; 1177 } 1178 1179 /* 1180 * Given an address space and start and length, compress the bytes into @pages 1181 * that are allocated on demand. 1182 * 1183 * @type_level is encoded algorithm and level, where level 0 means whatever 1184 * default the algorithm chooses and is opaque here; 1185 * - compression algo are 0-3 1186 * - the level are bits 4-7 1187 * 1188 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1189 * and returns number of actually allocated pages 1190 * 1191 * @total_in is used to return the number of bytes actually read. It 1192 * may be smaller than the input length if we had to exit early because we 1193 * ran out of room in the pages array or because we cross the 1194 * max_out threshold. 1195 * 1196 * @total_out is an in/out parameter, must be set to the input length and will 1197 * be also used to return the total number of compressed bytes 1198 * 1199 * @max_out tells us the max number of bytes that we're allowed to 1200 * stuff into pages 1201 */ 1202 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1203 u64 start, struct page **pages, 1204 unsigned long *out_pages, 1205 unsigned long *total_in, 1206 unsigned long *total_out) 1207 { 1208 int type = btrfs_compress_type(type_level); 1209 int level = btrfs_compress_level(type_level); 1210 struct list_head *workspace; 1211 int ret; 1212 1213 level = btrfs_compress_set_level(type, level); 1214 workspace = get_workspace(type, level); 1215 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1216 out_pages, total_in, total_out); 1217 put_workspace(type, workspace); 1218 return ret; 1219 } 1220 1221 /* 1222 * pages_in is an array of pages with compressed data. 1223 * 1224 * disk_start is the starting logical offset of this array in the file 1225 * 1226 * orig_bio contains the pages from the file that we want to decompress into 1227 * 1228 * srclen is the number of bytes in pages_in 1229 * 1230 * The basic idea is that we have a bio that was created by readpages. 1231 * The pages in the bio are for the uncompressed data, and they may not 1232 * be contiguous. They all correspond to the range of bytes covered by 1233 * the compressed extent. 1234 */ 1235 static int btrfs_decompress_bio(struct compressed_bio *cb) 1236 { 1237 struct list_head *workspace; 1238 int ret; 1239 int type = cb->compress_type; 1240 1241 workspace = get_workspace(type, 0); 1242 ret = compression_decompress_bio(type, workspace, cb); 1243 put_workspace(type, workspace); 1244 1245 return ret; 1246 } 1247 1248 /* 1249 * a less complex decompression routine. Our compressed data fits in a 1250 * single page, and we want to read a single page out of it. 1251 * start_byte tells us the offset into the compressed data we're interested in 1252 */ 1253 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1254 unsigned long start_byte, size_t srclen, size_t destlen) 1255 { 1256 struct list_head *workspace; 1257 int ret; 1258 1259 workspace = get_workspace(type, 0); 1260 ret = compression_decompress(type, workspace, data_in, dest_page, 1261 start_byte, srclen, destlen); 1262 put_workspace(type, workspace); 1263 1264 return ret; 1265 } 1266 1267 void __init btrfs_init_compress(void) 1268 { 1269 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1270 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1271 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1272 zstd_init_workspace_manager(); 1273 } 1274 1275 void __cold btrfs_exit_compress(void) 1276 { 1277 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1278 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1279 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1280 zstd_cleanup_workspace_manager(); 1281 } 1282 1283 /* 1284 * Copy uncompressed data from working buffer to pages. 1285 * 1286 * buf_start is the byte offset we're of the start of our workspace buffer. 1287 * 1288 * total_out is the last byte of the buffer 1289 */ 1290 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1291 unsigned long total_out, u64 disk_start, 1292 struct bio *bio) 1293 { 1294 unsigned long buf_offset; 1295 unsigned long current_buf_start; 1296 unsigned long start_byte; 1297 unsigned long prev_start_byte; 1298 unsigned long working_bytes = total_out - buf_start; 1299 unsigned long bytes; 1300 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1301 1302 /* 1303 * start byte is the first byte of the page we're currently 1304 * copying into relative to the start of the compressed data. 1305 */ 1306 start_byte = page_offset(bvec.bv_page) - disk_start; 1307 1308 /* we haven't yet hit data corresponding to this page */ 1309 if (total_out <= start_byte) 1310 return 1; 1311 1312 /* 1313 * the start of the data we care about is offset into 1314 * the middle of our working buffer 1315 */ 1316 if (total_out > start_byte && buf_start < start_byte) { 1317 buf_offset = start_byte - buf_start; 1318 working_bytes -= buf_offset; 1319 } else { 1320 buf_offset = 0; 1321 } 1322 current_buf_start = buf_start; 1323 1324 /* copy bytes from the working buffer into the pages */ 1325 while (working_bytes > 0) { 1326 bytes = min_t(unsigned long, bvec.bv_len, 1327 PAGE_SIZE - (buf_offset % PAGE_SIZE)); 1328 bytes = min(bytes, working_bytes); 1329 1330 memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset, 1331 bytes); 1332 flush_dcache_page(bvec.bv_page); 1333 1334 buf_offset += bytes; 1335 working_bytes -= bytes; 1336 current_buf_start += bytes; 1337 1338 /* check if we need to pick another page */ 1339 bio_advance(bio, bytes); 1340 if (!bio->bi_iter.bi_size) 1341 return 0; 1342 bvec = bio_iter_iovec(bio, bio->bi_iter); 1343 prev_start_byte = start_byte; 1344 start_byte = page_offset(bvec.bv_page) - disk_start; 1345 1346 /* 1347 * We need to make sure we're only adjusting 1348 * our offset into compression working buffer when 1349 * we're switching pages. Otherwise we can incorrectly 1350 * keep copying when we were actually done. 1351 */ 1352 if (start_byte != prev_start_byte) { 1353 /* 1354 * make sure our new page is covered by this 1355 * working buffer 1356 */ 1357 if (total_out <= start_byte) 1358 return 1; 1359 1360 /* 1361 * the next page in the biovec might not be adjacent 1362 * to the last page, but it might still be found 1363 * inside this working buffer. bump our offset pointer 1364 */ 1365 if (total_out > start_byte && 1366 current_buf_start < start_byte) { 1367 buf_offset = start_byte - buf_start; 1368 working_bytes = total_out - start_byte; 1369 current_buf_start = buf_start + buf_offset; 1370 } 1371 } 1372 } 1373 1374 return 1; 1375 } 1376 1377 /* 1378 * Shannon Entropy calculation 1379 * 1380 * Pure byte distribution analysis fails to determine compressibility of data. 1381 * Try calculating entropy to estimate the average minimum number of bits 1382 * needed to encode the sampled data. 1383 * 1384 * For convenience, return the percentage of needed bits, instead of amount of 1385 * bits directly. 1386 * 1387 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1388 * and can be compressible with high probability 1389 * 1390 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1391 * 1392 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1393 */ 1394 #define ENTROPY_LVL_ACEPTABLE (65) 1395 #define ENTROPY_LVL_HIGH (80) 1396 1397 /* 1398 * For increasead precision in shannon_entropy calculation, 1399 * let's do pow(n, M) to save more digits after comma: 1400 * 1401 * - maximum int bit length is 64 1402 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1403 * - 13 * 4 = 52 < 64 -> M = 4 1404 * 1405 * So use pow(n, 4). 1406 */ 1407 static inline u32 ilog2_w(u64 n) 1408 { 1409 return ilog2(n * n * n * n); 1410 } 1411 1412 static u32 shannon_entropy(struct heuristic_ws *ws) 1413 { 1414 const u32 entropy_max = 8 * ilog2_w(2); 1415 u32 entropy_sum = 0; 1416 u32 p, p_base, sz_base; 1417 u32 i; 1418 1419 sz_base = ilog2_w(ws->sample_size); 1420 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1421 p = ws->bucket[i].count; 1422 p_base = ilog2_w(p); 1423 entropy_sum += p * (sz_base - p_base); 1424 } 1425 1426 entropy_sum /= ws->sample_size; 1427 return entropy_sum * 100 / entropy_max; 1428 } 1429 1430 #define RADIX_BASE 4U 1431 #define COUNTERS_SIZE (1U << RADIX_BASE) 1432 1433 static u8 get4bits(u64 num, int shift) { 1434 u8 low4bits; 1435 1436 num >>= shift; 1437 /* Reverse order */ 1438 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1439 return low4bits; 1440 } 1441 1442 /* 1443 * Use 4 bits as radix base 1444 * Use 16 u32 counters for calculating new position in buf array 1445 * 1446 * @array - array that will be sorted 1447 * @array_buf - buffer array to store sorting results 1448 * must be equal in size to @array 1449 * @num - array size 1450 */ 1451 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1452 int num) 1453 { 1454 u64 max_num; 1455 u64 buf_num; 1456 u32 counters[COUNTERS_SIZE]; 1457 u32 new_addr; 1458 u32 addr; 1459 int bitlen; 1460 int shift; 1461 int i; 1462 1463 /* 1464 * Try avoid useless loop iterations for small numbers stored in big 1465 * counters. Example: 48 33 4 ... in 64bit array 1466 */ 1467 max_num = array[0].count; 1468 for (i = 1; i < num; i++) { 1469 buf_num = array[i].count; 1470 if (buf_num > max_num) 1471 max_num = buf_num; 1472 } 1473 1474 buf_num = ilog2(max_num); 1475 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1476 1477 shift = 0; 1478 while (shift < bitlen) { 1479 memset(counters, 0, sizeof(counters)); 1480 1481 for (i = 0; i < num; i++) { 1482 buf_num = array[i].count; 1483 addr = get4bits(buf_num, shift); 1484 counters[addr]++; 1485 } 1486 1487 for (i = 1; i < COUNTERS_SIZE; i++) 1488 counters[i] += counters[i - 1]; 1489 1490 for (i = num - 1; i >= 0; i--) { 1491 buf_num = array[i].count; 1492 addr = get4bits(buf_num, shift); 1493 counters[addr]--; 1494 new_addr = counters[addr]; 1495 array_buf[new_addr] = array[i]; 1496 } 1497 1498 shift += RADIX_BASE; 1499 1500 /* 1501 * Normal radix expects to move data from a temporary array, to 1502 * the main one. But that requires some CPU time. Avoid that 1503 * by doing another sort iteration to original array instead of 1504 * memcpy() 1505 */ 1506 memset(counters, 0, sizeof(counters)); 1507 1508 for (i = 0; i < num; i ++) { 1509 buf_num = array_buf[i].count; 1510 addr = get4bits(buf_num, shift); 1511 counters[addr]++; 1512 } 1513 1514 for (i = 1; i < COUNTERS_SIZE; i++) 1515 counters[i] += counters[i - 1]; 1516 1517 for (i = num - 1; i >= 0; i--) { 1518 buf_num = array_buf[i].count; 1519 addr = get4bits(buf_num, shift); 1520 counters[addr]--; 1521 new_addr = counters[addr]; 1522 array[new_addr] = array_buf[i]; 1523 } 1524 1525 shift += RADIX_BASE; 1526 } 1527 } 1528 1529 /* 1530 * Size of the core byte set - how many bytes cover 90% of the sample 1531 * 1532 * There are several types of structured binary data that use nearly all byte 1533 * values. The distribution can be uniform and counts in all buckets will be 1534 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1535 * 1536 * Other possibility is normal (Gaussian) distribution, where the data could 1537 * be potentially compressible, but we have to take a few more steps to decide 1538 * how much. 1539 * 1540 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1541 * compression algo can easy fix that 1542 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1543 * probability is not compressible 1544 */ 1545 #define BYTE_CORE_SET_LOW (64) 1546 #define BYTE_CORE_SET_HIGH (200) 1547 1548 static int byte_core_set_size(struct heuristic_ws *ws) 1549 { 1550 u32 i; 1551 u32 coreset_sum = 0; 1552 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1553 struct bucket_item *bucket = ws->bucket; 1554 1555 /* Sort in reverse order */ 1556 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1557 1558 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1559 coreset_sum += bucket[i].count; 1560 1561 if (coreset_sum > core_set_threshold) 1562 return i; 1563 1564 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1565 coreset_sum += bucket[i].count; 1566 if (coreset_sum > core_set_threshold) 1567 break; 1568 } 1569 1570 return i; 1571 } 1572 1573 /* 1574 * Count byte values in buckets. 1575 * This heuristic can detect textual data (configs, xml, json, html, etc). 1576 * Because in most text-like data byte set is restricted to limited number of 1577 * possible characters, and that restriction in most cases makes data easy to 1578 * compress. 1579 * 1580 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1581 * less - compressible 1582 * more - need additional analysis 1583 */ 1584 #define BYTE_SET_THRESHOLD (64) 1585 1586 static u32 byte_set_size(const struct heuristic_ws *ws) 1587 { 1588 u32 i; 1589 u32 byte_set_size = 0; 1590 1591 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1592 if (ws->bucket[i].count > 0) 1593 byte_set_size++; 1594 } 1595 1596 /* 1597 * Continue collecting count of byte values in buckets. If the byte 1598 * set size is bigger then the threshold, it's pointless to continue, 1599 * the detection technique would fail for this type of data. 1600 */ 1601 for (; i < BUCKET_SIZE; i++) { 1602 if (ws->bucket[i].count > 0) { 1603 byte_set_size++; 1604 if (byte_set_size > BYTE_SET_THRESHOLD) 1605 return byte_set_size; 1606 } 1607 } 1608 1609 return byte_set_size; 1610 } 1611 1612 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1613 { 1614 const u32 half_of_sample = ws->sample_size / 2; 1615 const u8 *data = ws->sample; 1616 1617 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1618 } 1619 1620 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1621 struct heuristic_ws *ws) 1622 { 1623 struct page *page; 1624 u64 index, index_end; 1625 u32 i, curr_sample_pos; 1626 u8 *in_data; 1627 1628 /* 1629 * Compression handles the input data by chunks of 128KiB 1630 * (defined by BTRFS_MAX_UNCOMPRESSED) 1631 * 1632 * We do the same for the heuristic and loop over the whole range. 1633 * 1634 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1635 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1636 */ 1637 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1638 end = start + BTRFS_MAX_UNCOMPRESSED; 1639 1640 index = start >> PAGE_SHIFT; 1641 index_end = end >> PAGE_SHIFT; 1642 1643 /* Don't miss unaligned end */ 1644 if (!IS_ALIGNED(end, PAGE_SIZE)) 1645 index_end++; 1646 1647 curr_sample_pos = 0; 1648 while (index < index_end) { 1649 page = find_get_page(inode->i_mapping, index); 1650 in_data = kmap_local_page(page); 1651 /* Handle case where the start is not aligned to PAGE_SIZE */ 1652 i = start % PAGE_SIZE; 1653 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1654 /* Don't sample any garbage from the last page */ 1655 if (start > end - SAMPLING_READ_SIZE) 1656 break; 1657 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1658 SAMPLING_READ_SIZE); 1659 i += SAMPLING_INTERVAL; 1660 start += SAMPLING_INTERVAL; 1661 curr_sample_pos += SAMPLING_READ_SIZE; 1662 } 1663 kunmap_local(in_data); 1664 put_page(page); 1665 1666 index++; 1667 } 1668 1669 ws->sample_size = curr_sample_pos; 1670 } 1671 1672 /* 1673 * Compression heuristic. 1674 * 1675 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1676 * quickly (compared to direct compression) detect data characteristics 1677 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1678 * data. 1679 * 1680 * The following types of analysis can be performed: 1681 * - detect mostly zero data 1682 * - detect data with low "byte set" size (text, etc) 1683 * - detect data with low/high "core byte" set 1684 * 1685 * Return non-zero if the compression should be done, 0 otherwise. 1686 */ 1687 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1688 { 1689 struct list_head *ws_list = get_workspace(0, 0); 1690 struct heuristic_ws *ws; 1691 u32 i; 1692 u8 byte; 1693 int ret = 0; 1694 1695 ws = list_entry(ws_list, struct heuristic_ws, list); 1696 1697 heuristic_collect_sample(inode, start, end, ws); 1698 1699 if (sample_repeated_patterns(ws)) { 1700 ret = 1; 1701 goto out; 1702 } 1703 1704 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1705 1706 for (i = 0; i < ws->sample_size; i++) { 1707 byte = ws->sample[i]; 1708 ws->bucket[byte].count++; 1709 } 1710 1711 i = byte_set_size(ws); 1712 if (i < BYTE_SET_THRESHOLD) { 1713 ret = 2; 1714 goto out; 1715 } 1716 1717 i = byte_core_set_size(ws); 1718 if (i <= BYTE_CORE_SET_LOW) { 1719 ret = 3; 1720 goto out; 1721 } 1722 1723 if (i >= BYTE_CORE_SET_HIGH) { 1724 ret = 0; 1725 goto out; 1726 } 1727 1728 i = shannon_entropy(ws); 1729 if (i <= ENTROPY_LVL_ACEPTABLE) { 1730 ret = 4; 1731 goto out; 1732 } 1733 1734 /* 1735 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1736 * needed to give green light to compression. 1737 * 1738 * For now just assume that compression at that level is not worth the 1739 * resources because: 1740 * 1741 * 1. it is possible to defrag the data later 1742 * 1743 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1744 * values, every bucket has counter at level ~54. The heuristic would 1745 * be confused. This can happen when data have some internal repeated 1746 * patterns like "abbacbbc...". This can be detected by analyzing 1747 * pairs of bytes, which is too costly. 1748 */ 1749 if (i < ENTROPY_LVL_HIGH) { 1750 ret = 5; 1751 goto out; 1752 } else { 1753 ret = 0; 1754 goto out; 1755 } 1756 1757 out: 1758 put_workspace(0, ws_list); 1759 return ret; 1760 } 1761 1762 /* 1763 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1764 * level, unrecognized string will set the default level 1765 */ 1766 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1767 { 1768 unsigned int level = 0; 1769 int ret; 1770 1771 if (!type) 1772 return 0; 1773 1774 if (str[0] == ':') { 1775 ret = kstrtouint(str + 1, 10, &level); 1776 if (ret) 1777 level = 0; 1778 } 1779 1780 level = btrfs_compress_set_level(type, level); 1781 1782 return level; 1783 } 1784