1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/pagevec.h> 12 #include <linux/highmem.h> 13 #include <linux/kthread.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/psi.h> 20 #include <linux/slab.h> 21 #include <linux/sched/mm.h> 22 #include <linux/log2.h> 23 #include <crypto/hash.h> 24 #include "misc.h" 25 #include "ctree.h" 26 #include "fs.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "btrfs_inode.h" 30 #include "bio.h" 31 #include "ordered-data.h" 32 #include "compression.h" 33 #include "extent_io.h" 34 #include "extent_map.h" 35 #include "subpage.h" 36 #include "zoned.h" 37 #include "file-item.h" 38 #include "super.h" 39 40 static struct bio_set btrfs_compressed_bioset; 41 42 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 43 44 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 45 { 46 switch (type) { 47 case BTRFS_COMPRESS_ZLIB: 48 case BTRFS_COMPRESS_LZO: 49 case BTRFS_COMPRESS_ZSTD: 50 case BTRFS_COMPRESS_NONE: 51 return btrfs_compress_types[type]; 52 default: 53 break; 54 } 55 56 return NULL; 57 } 58 59 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio) 60 { 61 return container_of(bbio, struct compressed_bio, bbio); 62 } 63 64 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode, 65 u64 start, blk_opf_t op, 66 btrfs_bio_end_io_t end_io) 67 { 68 struct btrfs_bio *bbio; 69 70 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op, 71 GFP_NOFS, &btrfs_compressed_bioset)); 72 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL); 73 bbio->inode = inode; 74 bbio->file_offset = start; 75 return to_compressed_bio(bbio); 76 } 77 78 bool btrfs_compress_is_valid_type(const char *str, size_t len) 79 { 80 int i; 81 82 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 83 size_t comp_len = strlen(btrfs_compress_types[i]); 84 85 if (len < comp_len) 86 continue; 87 88 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 89 return true; 90 } 91 return false; 92 } 93 94 static int compression_compress_pages(int type, struct list_head *ws, 95 struct address_space *mapping, u64 start, struct page **pages, 96 unsigned long *out_pages, unsigned long *total_in, 97 unsigned long *total_out) 98 { 99 switch (type) { 100 case BTRFS_COMPRESS_ZLIB: 101 return zlib_compress_pages(ws, mapping, start, pages, 102 out_pages, total_in, total_out); 103 case BTRFS_COMPRESS_LZO: 104 return lzo_compress_pages(ws, mapping, start, pages, 105 out_pages, total_in, total_out); 106 case BTRFS_COMPRESS_ZSTD: 107 return zstd_compress_pages(ws, mapping, start, pages, 108 out_pages, total_in, total_out); 109 case BTRFS_COMPRESS_NONE: 110 default: 111 /* 112 * This can happen when compression races with remount setting 113 * it to 'no compress', while caller doesn't call 114 * inode_need_compress() to check if we really need to 115 * compress. 116 * 117 * Not a big deal, just need to inform caller that we 118 * haven't allocated any pages yet. 119 */ 120 *out_pages = 0; 121 return -E2BIG; 122 } 123 } 124 125 static int compression_decompress_bio(struct list_head *ws, 126 struct compressed_bio *cb) 127 { 128 switch (cb->compress_type) { 129 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 130 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 131 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 132 case BTRFS_COMPRESS_NONE: 133 default: 134 /* 135 * This can't happen, the type is validated several times 136 * before we get here. 137 */ 138 BUG(); 139 } 140 } 141 142 static int compression_decompress(int type, struct list_head *ws, 143 const u8 *data_in, struct page *dest_page, 144 unsigned long dest_pgoff, size_t srclen, size_t destlen) 145 { 146 switch (type) { 147 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 148 dest_pgoff, srclen, destlen); 149 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 150 dest_pgoff, srclen, destlen); 151 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 152 dest_pgoff, srclen, destlen); 153 case BTRFS_COMPRESS_NONE: 154 default: 155 /* 156 * This can't happen, the type is validated several times 157 * before we get here. 158 */ 159 BUG(); 160 } 161 } 162 163 static void btrfs_free_compressed_pages(struct compressed_bio *cb) 164 { 165 for (unsigned int i = 0; i < cb->nr_pages; i++) 166 put_page(cb->compressed_pages[i]); 167 kfree(cb->compressed_pages); 168 } 169 170 static int btrfs_decompress_bio(struct compressed_bio *cb); 171 172 static void end_compressed_bio_read(struct btrfs_bio *bbio) 173 { 174 struct compressed_bio *cb = to_compressed_bio(bbio); 175 blk_status_t status = bbio->bio.bi_status; 176 177 if (!status) 178 status = errno_to_blk_status(btrfs_decompress_bio(cb)); 179 180 btrfs_free_compressed_pages(cb); 181 btrfs_bio_end_io(cb->orig_bbio, status); 182 bio_put(&bbio->bio); 183 } 184 185 /* 186 * Clear the writeback bits on all of the file 187 * pages for a compressed write 188 */ 189 static noinline void end_compressed_writeback(const struct compressed_bio *cb) 190 { 191 struct inode *inode = &cb->bbio.inode->vfs_inode; 192 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 193 unsigned long index = cb->start >> PAGE_SHIFT; 194 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 195 struct folio_batch fbatch; 196 const int errno = blk_status_to_errno(cb->bbio.bio.bi_status); 197 int i; 198 int ret; 199 200 if (errno) 201 mapping_set_error(inode->i_mapping, errno); 202 203 folio_batch_init(&fbatch); 204 while (index <= end_index) { 205 ret = filemap_get_folios(inode->i_mapping, &index, end_index, 206 &fbatch); 207 208 if (ret == 0) 209 return; 210 211 for (i = 0; i < ret; i++) { 212 struct folio *folio = fbatch.folios[i]; 213 214 btrfs_page_clamp_clear_writeback(fs_info, &folio->page, 215 cb->start, cb->len); 216 } 217 folio_batch_release(&fbatch); 218 } 219 /* the inode may be gone now */ 220 } 221 222 static void btrfs_finish_compressed_write_work(struct work_struct *work) 223 { 224 struct compressed_bio *cb = 225 container_of(work, struct compressed_bio, write_end_work); 226 227 btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len, 228 cb->bbio.bio.bi_status == BLK_STS_OK); 229 230 if (cb->writeback) 231 end_compressed_writeback(cb); 232 /* Note, our inode could be gone now */ 233 234 btrfs_free_compressed_pages(cb); 235 bio_put(&cb->bbio.bio); 236 } 237 238 /* 239 * Do the cleanup once all the compressed pages hit the disk. This will clear 240 * writeback on the file pages and free the compressed pages. 241 * 242 * This also calls the writeback end hooks for the file pages so that metadata 243 * and checksums can be updated in the file. 244 */ 245 static void end_compressed_bio_write(struct btrfs_bio *bbio) 246 { 247 struct compressed_bio *cb = to_compressed_bio(bbio); 248 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 249 250 queue_work(fs_info->compressed_write_workers, &cb->write_end_work); 251 } 252 253 static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb) 254 { 255 struct bio *bio = &cb->bbio.bio; 256 u32 offset = 0; 257 258 while (offset < cb->compressed_len) { 259 u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE); 260 261 /* Maximum compressed extent is smaller than bio size limit. */ 262 __bio_add_page(bio, cb->compressed_pages[offset >> PAGE_SHIFT], 263 len, 0); 264 offset += len; 265 } 266 } 267 268 /* 269 * worker function to build and submit bios for previously compressed pages. 270 * The corresponding pages in the inode should be marked for writeback 271 * and the compressed pages should have a reference on them for dropping 272 * when the IO is complete. 273 * 274 * This also checksums the file bytes and gets things ready for 275 * the end io hooks. 276 */ 277 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered, 278 struct page **compressed_pages, 279 unsigned int nr_pages, 280 blk_opf_t write_flags, 281 bool writeback) 282 { 283 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 284 struct btrfs_fs_info *fs_info = inode->root->fs_info; 285 struct compressed_bio *cb; 286 287 ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize)); 288 ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize)); 289 290 cb = alloc_compressed_bio(inode, ordered->file_offset, 291 REQ_OP_WRITE | write_flags, 292 end_compressed_bio_write); 293 cb->start = ordered->file_offset; 294 cb->len = ordered->num_bytes; 295 cb->compressed_pages = compressed_pages; 296 cb->compressed_len = ordered->disk_num_bytes; 297 cb->writeback = writeback; 298 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); 299 cb->nr_pages = nr_pages; 300 cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT; 301 cb->bbio.ordered = ordered; 302 btrfs_add_compressed_bio_pages(cb); 303 304 btrfs_submit_bio(&cb->bbio, 0); 305 } 306 307 /* 308 * Add extra pages in the same compressed file extent so that we don't need to 309 * re-read the same extent again and again. 310 * 311 * NOTE: this won't work well for subpage, as for subpage read, we lock the 312 * full page then submit bio for each compressed/regular extents. 313 * 314 * This means, if we have several sectors in the same page points to the same 315 * on-disk compressed data, we will re-read the same extent many times and 316 * this function can only help for the next page. 317 */ 318 static noinline int add_ra_bio_pages(struct inode *inode, 319 u64 compressed_end, 320 struct compressed_bio *cb, 321 int *memstall, unsigned long *pflags) 322 { 323 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 324 unsigned long end_index; 325 struct bio *orig_bio = &cb->orig_bbio->bio; 326 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size; 327 u64 isize = i_size_read(inode); 328 int ret; 329 struct page *page; 330 struct extent_map *em; 331 struct address_space *mapping = inode->i_mapping; 332 struct extent_map_tree *em_tree; 333 struct extent_io_tree *tree; 334 int sectors_missed = 0; 335 336 em_tree = &BTRFS_I(inode)->extent_tree; 337 tree = &BTRFS_I(inode)->io_tree; 338 339 if (isize == 0) 340 return 0; 341 342 /* 343 * For current subpage support, we only support 64K page size, 344 * which means maximum compressed extent size (128K) is just 2x page 345 * size. 346 * This makes readahead less effective, so here disable readahead for 347 * subpage for now, until full compressed write is supported. 348 */ 349 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 350 return 0; 351 352 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 353 354 while (cur < compressed_end) { 355 u64 page_end; 356 u64 pg_index = cur >> PAGE_SHIFT; 357 u32 add_size; 358 359 if (pg_index > end_index) 360 break; 361 362 page = xa_load(&mapping->i_pages, pg_index); 363 if (page && !xa_is_value(page)) { 364 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 365 fs_info->sectorsize_bits; 366 367 /* Beyond threshold, no need to continue */ 368 if (sectors_missed > 4) 369 break; 370 371 /* 372 * Jump to next page start as we already have page for 373 * current offset. 374 */ 375 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 376 continue; 377 } 378 379 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 380 ~__GFP_FS)); 381 if (!page) 382 break; 383 384 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 385 put_page(page); 386 /* There is already a page, skip to page end */ 387 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 388 continue; 389 } 390 391 if (!*memstall && PageWorkingset(page)) { 392 psi_memstall_enter(pflags); 393 *memstall = 1; 394 } 395 396 ret = set_page_extent_mapped(page); 397 if (ret < 0) { 398 unlock_page(page); 399 put_page(page); 400 break; 401 } 402 403 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 404 lock_extent(tree, cur, page_end, NULL); 405 read_lock(&em_tree->lock); 406 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 407 read_unlock(&em_tree->lock); 408 409 /* 410 * At this point, we have a locked page in the page cache for 411 * these bytes in the file. But, we have to make sure they map 412 * to this compressed extent on disk. 413 */ 414 if (!em || cur < em->start || 415 (cur + fs_info->sectorsize > extent_map_end(em)) || 416 (em->block_start >> SECTOR_SHIFT) != orig_bio->bi_iter.bi_sector) { 417 free_extent_map(em); 418 unlock_extent(tree, cur, page_end, NULL); 419 unlock_page(page); 420 put_page(page); 421 break; 422 } 423 add_size = min(em->start + em->len, page_end + 1) - cur; 424 free_extent_map(em); 425 426 if (page->index == end_index) { 427 size_t zero_offset = offset_in_page(isize); 428 429 if (zero_offset) { 430 int zeros; 431 zeros = PAGE_SIZE - zero_offset; 432 memzero_page(page, zero_offset, zeros); 433 } 434 } 435 436 ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur)); 437 if (ret != add_size) { 438 unlock_extent(tree, cur, page_end, NULL); 439 unlock_page(page); 440 put_page(page); 441 break; 442 } 443 /* 444 * If it's subpage, we also need to increase its 445 * subpage::readers number, as at endio we will decrease 446 * subpage::readers and to unlock the page. 447 */ 448 if (fs_info->sectorsize < PAGE_SIZE) 449 btrfs_subpage_start_reader(fs_info, page, cur, add_size); 450 put_page(page); 451 cur += add_size; 452 } 453 return 0; 454 } 455 456 /* 457 * for a compressed read, the bio we get passed has all the inode pages 458 * in it. We don't actually do IO on those pages but allocate new ones 459 * to hold the compressed pages on disk. 460 * 461 * bio->bi_iter.bi_sector points to the compressed extent on disk 462 * bio->bi_io_vec points to all of the inode pages 463 * 464 * After the compressed pages are read, we copy the bytes into the 465 * bio we were passed and then call the bio end_io calls 466 */ 467 void btrfs_submit_compressed_read(struct btrfs_bio *bbio) 468 { 469 struct btrfs_inode *inode = bbio->inode; 470 struct btrfs_fs_info *fs_info = inode->root->fs_info; 471 struct extent_map_tree *em_tree = &inode->extent_tree; 472 struct compressed_bio *cb; 473 unsigned int compressed_len; 474 u64 file_offset = bbio->file_offset; 475 u64 em_len; 476 u64 em_start; 477 struct extent_map *em; 478 unsigned long pflags; 479 int memstall = 0; 480 blk_status_t ret; 481 int ret2; 482 483 /* we need the actual starting offset of this extent in the file */ 484 read_lock(&em_tree->lock); 485 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 486 read_unlock(&em_tree->lock); 487 if (!em) { 488 ret = BLK_STS_IOERR; 489 goto out; 490 } 491 492 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE); 493 compressed_len = em->block_len; 494 495 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ, 496 end_compressed_bio_read); 497 498 cb->start = em->orig_start; 499 em_len = em->len; 500 em_start = em->start; 501 502 cb->len = bbio->bio.bi_iter.bi_size; 503 cb->compressed_len = compressed_len; 504 cb->compress_type = em->compress_type; 505 cb->orig_bbio = bbio; 506 507 free_extent_map(em); 508 509 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 510 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS); 511 if (!cb->compressed_pages) { 512 ret = BLK_STS_RESOURCE; 513 goto out_free_bio; 514 } 515 516 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages); 517 if (ret2) { 518 ret = BLK_STS_RESOURCE; 519 goto out_free_compressed_pages; 520 } 521 522 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall, 523 &pflags); 524 525 /* include any pages we added in add_ra-bio_pages */ 526 cb->len = bbio->bio.bi_iter.bi_size; 527 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector; 528 btrfs_add_compressed_bio_pages(cb); 529 530 if (memstall) 531 psi_memstall_leave(&pflags); 532 533 btrfs_submit_bio(&cb->bbio, 0); 534 return; 535 536 out_free_compressed_pages: 537 kfree(cb->compressed_pages); 538 out_free_bio: 539 bio_put(&cb->bbio.bio); 540 out: 541 btrfs_bio_end_io(bbio, ret); 542 } 543 544 /* 545 * Heuristic uses systematic sampling to collect data from the input data 546 * range, the logic can be tuned by the following constants: 547 * 548 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 549 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 550 */ 551 #define SAMPLING_READ_SIZE (16) 552 #define SAMPLING_INTERVAL (256) 553 554 /* 555 * For statistical analysis of the input data we consider bytes that form a 556 * Galois Field of 256 objects. Each object has an attribute count, ie. how 557 * many times the object appeared in the sample. 558 */ 559 #define BUCKET_SIZE (256) 560 561 /* 562 * The size of the sample is based on a statistical sampling rule of thumb. 563 * The common way is to perform sampling tests as long as the number of 564 * elements in each cell is at least 5. 565 * 566 * Instead of 5, we choose 32 to obtain more accurate results. 567 * If the data contain the maximum number of symbols, which is 256, we obtain a 568 * sample size bound by 8192. 569 * 570 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 571 * from up to 512 locations. 572 */ 573 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 574 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 575 576 struct bucket_item { 577 u32 count; 578 }; 579 580 struct heuristic_ws { 581 /* Partial copy of input data */ 582 u8 *sample; 583 u32 sample_size; 584 /* Buckets store counters for each byte value */ 585 struct bucket_item *bucket; 586 /* Sorting buffer */ 587 struct bucket_item *bucket_b; 588 struct list_head list; 589 }; 590 591 static struct workspace_manager heuristic_wsm; 592 593 static void free_heuristic_ws(struct list_head *ws) 594 { 595 struct heuristic_ws *workspace; 596 597 workspace = list_entry(ws, struct heuristic_ws, list); 598 599 kvfree(workspace->sample); 600 kfree(workspace->bucket); 601 kfree(workspace->bucket_b); 602 kfree(workspace); 603 } 604 605 static struct list_head *alloc_heuristic_ws(unsigned int level) 606 { 607 struct heuristic_ws *ws; 608 609 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 610 if (!ws) 611 return ERR_PTR(-ENOMEM); 612 613 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 614 if (!ws->sample) 615 goto fail; 616 617 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 618 if (!ws->bucket) 619 goto fail; 620 621 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 622 if (!ws->bucket_b) 623 goto fail; 624 625 INIT_LIST_HEAD(&ws->list); 626 return &ws->list; 627 fail: 628 free_heuristic_ws(&ws->list); 629 return ERR_PTR(-ENOMEM); 630 } 631 632 const struct btrfs_compress_op btrfs_heuristic_compress = { 633 .workspace_manager = &heuristic_wsm, 634 }; 635 636 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 637 /* The heuristic is represented as compression type 0 */ 638 &btrfs_heuristic_compress, 639 &btrfs_zlib_compress, 640 &btrfs_lzo_compress, 641 &btrfs_zstd_compress, 642 }; 643 644 static struct list_head *alloc_workspace(int type, unsigned int level) 645 { 646 switch (type) { 647 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 648 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 649 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 650 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 651 default: 652 /* 653 * This can't happen, the type is validated several times 654 * before we get here. 655 */ 656 BUG(); 657 } 658 } 659 660 static void free_workspace(int type, struct list_head *ws) 661 { 662 switch (type) { 663 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 664 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 665 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 666 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 667 default: 668 /* 669 * This can't happen, the type is validated several times 670 * before we get here. 671 */ 672 BUG(); 673 } 674 } 675 676 static void btrfs_init_workspace_manager(int type) 677 { 678 struct workspace_manager *wsm; 679 struct list_head *workspace; 680 681 wsm = btrfs_compress_op[type]->workspace_manager; 682 INIT_LIST_HEAD(&wsm->idle_ws); 683 spin_lock_init(&wsm->ws_lock); 684 atomic_set(&wsm->total_ws, 0); 685 init_waitqueue_head(&wsm->ws_wait); 686 687 /* 688 * Preallocate one workspace for each compression type so we can 689 * guarantee forward progress in the worst case 690 */ 691 workspace = alloc_workspace(type, 0); 692 if (IS_ERR(workspace)) { 693 pr_warn( 694 "BTRFS: cannot preallocate compression workspace, will try later\n"); 695 } else { 696 atomic_set(&wsm->total_ws, 1); 697 wsm->free_ws = 1; 698 list_add(workspace, &wsm->idle_ws); 699 } 700 } 701 702 static void btrfs_cleanup_workspace_manager(int type) 703 { 704 struct workspace_manager *wsman; 705 struct list_head *ws; 706 707 wsman = btrfs_compress_op[type]->workspace_manager; 708 while (!list_empty(&wsman->idle_ws)) { 709 ws = wsman->idle_ws.next; 710 list_del(ws); 711 free_workspace(type, ws); 712 atomic_dec(&wsman->total_ws); 713 } 714 } 715 716 /* 717 * This finds an available workspace or allocates a new one. 718 * If it's not possible to allocate a new one, waits until there's one. 719 * Preallocation makes a forward progress guarantees and we do not return 720 * errors. 721 */ 722 struct list_head *btrfs_get_workspace(int type, unsigned int level) 723 { 724 struct workspace_manager *wsm; 725 struct list_head *workspace; 726 int cpus = num_online_cpus(); 727 unsigned nofs_flag; 728 struct list_head *idle_ws; 729 spinlock_t *ws_lock; 730 atomic_t *total_ws; 731 wait_queue_head_t *ws_wait; 732 int *free_ws; 733 734 wsm = btrfs_compress_op[type]->workspace_manager; 735 idle_ws = &wsm->idle_ws; 736 ws_lock = &wsm->ws_lock; 737 total_ws = &wsm->total_ws; 738 ws_wait = &wsm->ws_wait; 739 free_ws = &wsm->free_ws; 740 741 again: 742 spin_lock(ws_lock); 743 if (!list_empty(idle_ws)) { 744 workspace = idle_ws->next; 745 list_del(workspace); 746 (*free_ws)--; 747 spin_unlock(ws_lock); 748 return workspace; 749 750 } 751 if (atomic_read(total_ws) > cpus) { 752 DEFINE_WAIT(wait); 753 754 spin_unlock(ws_lock); 755 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 756 if (atomic_read(total_ws) > cpus && !*free_ws) 757 schedule(); 758 finish_wait(ws_wait, &wait); 759 goto again; 760 } 761 atomic_inc(total_ws); 762 spin_unlock(ws_lock); 763 764 /* 765 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 766 * to turn it off here because we might get called from the restricted 767 * context of btrfs_compress_bio/btrfs_compress_pages 768 */ 769 nofs_flag = memalloc_nofs_save(); 770 workspace = alloc_workspace(type, level); 771 memalloc_nofs_restore(nofs_flag); 772 773 if (IS_ERR(workspace)) { 774 atomic_dec(total_ws); 775 wake_up(ws_wait); 776 777 /* 778 * Do not return the error but go back to waiting. There's a 779 * workspace preallocated for each type and the compression 780 * time is bounded so we get to a workspace eventually. This 781 * makes our caller's life easier. 782 * 783 * To prevent silent and low-probability deadlocks (when the 784 * initial preallocation fails), check if there are any 785 * workspaces at all. 786 */ 787 if (atomic_read(total_ws) == 0) { 788 static DEFINE_RATELIMIT_STATE(_rs, 789 /* once per minute */ 60 * HZ, 790 /* no burst */ 1); 791 792 if (__ratelimit(&_rs)) { 793 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 794 } 795 } 796 goto again; 797 } 798 return workspace; 799 } 800 801 static struct list_head *get_workspace(int type, int level) 802 { 803 switch (type) { 804 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 805 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 806 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 807 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 808 default: 809 /* 810 * This can't happen, the type is validated several times 811 * before we get here. 812 */ 813 BUG(); 814 } 815 } 816 817 /* 818 * put a workspace struct back on the list or free it if we have enough 819 * idle ones sitting around 820 */ 821 void btrfs_put_workspace(int type, struct list_head *ws) 822 { 823 struct workspace_manager *wsm; 824 struct list_head *idle_ws; 825 spinlock_t *ws_lock; 826 atomic_t *total_ws; 827 wait_queue_head_t *ws_wait; 828 int *free_ws; 829 830 wsm = btrfs_compress_op[type]->workspace_manager; 831 idle_ws = &wsm->idle_ws; 832 ws_lock = &wsm->ws_lock; 833 total_ws = &wsm->total_ws; 834 ws_wait = &wsm->ws_wait; 835 free_ws = &wsm->free_ws; 836 837 spin_lock(ws_lock); 838 if (*free_ws <= num_online_cpus()) { 839 list_add(ws, idle_ws); 840 (*free_ws)++; 841 spin_unlock(ws_lock); 842 goto wake; 843 } 844 spin_unlock(ws_lock); 845 846 free_workspace(type, ws); 847 atomic_dec(total_ws); 848 wake: 849 cond_wake_up(ws_wait); 850 } 851 852 static void put_workspace(int type, struct list_head *ws) 853 { 854 switch (type) { 855 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 856 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 857 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 858 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 859 default: 860 /* 861 * This can't happen, the type is validated several times 862 * before we get here. 863 */ 864 BUG(); 865 } 866 } 867 868 /* 869 * Adjust @level according to the limits of the compression algorithm or 870 * fallback to default 871 */ 872 static unsigned int btrfs_compress_set_level(int type, unsigned level) 873 { 874 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 875 876 if (level == 0) 877 level = ops->default_level; 878 else 879 level = min(level, ops->max_level); 880 881 return level; 882 } 883 884 /* 885 * Given an address space and start and length, compress the bytes into @pages 886 * that are allocated on demand. 887 * 888 * @type_level is encoded algorithm and level, where level 0 means whatever 889 * default the algorithm chooses and is opaque here; 890 * - compression algo are 0-3 891 * - the level are bits 4-7 892 * 893 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 894 * and returns number of actually allocated pages 895 * 896 * @total_in is used to return the number of bytes actually read. It 897 * may be smaller than the input length if we had to exit early because we 898 * ran out of room in the pages array or because we cross the 899 * max_out threshold. 900 * 901 * @total_out is an in/out parameter, must be set to the input length and will 902 * be also used to return the total number of compressed bytes 903 */ 904 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 905 u64 start, struct page **pages, 906 unsigned long *out_pages, 907 unsigned long *total_in, 908 unsigned long *total_out) 909 { 910 int type = btrfs_compress_type(type_level); 911 int level = btrfs_compress_level(type_level); 912 struct list_head *workspace; 913 int ret; 914 915 level = btrfs_compress_set_level(type, level); 916 workspace = get_workspace(type, level); 917 ret = compression_compress_pages(type, workspace, mapping, start, pages, 918 out_pages, total_in, total_out); 919 put_workspace(type, workspace); 920 return ret; 921 } 922 923 static int btrfs_decompress_bio(struct compressed_bio *cb) 924 { 925 struct list_head *workspace; 926 int ret; 927 int type = cb->compress_type; 928 929 workspace = get_workspace(type, 0); 930 ret = compression_decompress_bio(workspace, cb); 931 put_workspace(type, workspace); 932 933 if (!ret) 934 zero_fill_bio(&cb->orig_bbio->bio); 935 return ret; 936 } 937 938 /* 939 * a less complex decompression routine. Our compressed data fits in a 940 * single page, and we want to read a single page out of it. 941 * start_byte tells us the offset into the compressed data we're interested in 942 */ 943 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page, 944 unsigned long dest_pgoff, size_t srclen, size_t destlen) 945 { 946 struct btrfs_fs_info *fs_info = btrfs_sb(dest_page->mapping->host->i_sb); 947 struct list_head *workspace; 948 const u32 sectorsize = fs_info->sectorsize; 949 int ret; 950 951 /* 952 * The full destination page range should not exceed the page size. 953 * And the @destlen should not exceed sectorsize, as this is only called for 954 * inline file extents, which should not exceed sectorsize. 955 */ 956 ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize); 957 958 workspace = get_workspace(type, 0); 959 ret = compression_decompress(type, workspace, data_in, dest_page, 960 dest_pgoff, srclen, destlen); 961 put_workspace(type, workspace); 962 963 return ret; 964 } 965 966 int __init btrfs_init_compress(void) 967 { 968 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE, 969 offsetof(struct compressed_bio, bbio.bio), 970 BIOSET_NEED_BVECS)) 971 return -ENOMEM; 972 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 973 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 974 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 975 zstd_init_workspace_manager(); 976 return 0; 977 } 978 979 void __cold btrfs_exit_compress(void) 980 { 981 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 982 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 983 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 984 zstd_cleanup_workspace_manager(); 985 bioset_exit(&btrfs_compressed_bioset); 986 } 987 988 /* 989 * Copy decompressed data from working buffer to pages. 990 * 991 * @buf: The decompressed data buffer 992 * @buf_len: The decompressed data length 993 * @decompressed: Number of bytes that are already decompressed inside the 994 * compressed extent 995 * @cb: The compressed extent descriptor 996 * @orig_bio: The original bio that the caller wants to read for 997 * 998 * An easier to understand graph is like below: 999 * 1000 * |<- orig_bio ->| |<- orig_bio->| 1001 * |<------- full decompressed extent ----->| 1002 * |<----------- @cb range ---->| 1003 * | |<-- @buf_len -->| 1004 * |<--- @decompressed --->| 1005 * 1006 * Note that, @cb can be a subpage of the full decompressed extent, but 1007 * @cb->start always has the same as the orig_file_offset value of the full 1008 * decompressed extent. 1009 * 1010 * When reading compressed extent, we have to read the full compressed extent, 1011 * while @orig_bio may only want part of the range. 1012 * Thus this function will ensure only data covered by @orig_bio will be copied 1013 * to. 1014 * 1015 * Return 0 if we have copied all needed contents for @orig_bio. 1016 * Return >0 if we need continue decompress. 1017 */ 1018 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1019 struct compressed_bio *cb, u32 decompressed) 1020 { 1021 struct bio *orig_bio = &cb->orig_bbio->bio; 1022 /* Offset inside the full decompressed extent */ 1023 u32 cur_offset; 1024 1025 cur_offset = decompressed; 1026 /* The main loop to do the copy */ 1027 while (cur_offset < decompressed + buf_len) { 1028 struct bio_vec bvec; 1029 size_t copy_len; 1030 u32 copy_start; 1031 /* Offset inside the full decompressed extent */ 1032 u32 bvec_offset; 1033 1034 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1035 /* 1036 * cb->start may underflow, but subtracting that value can still 1037 * give us correct offset inside the full decompressed extent. 1038 */ 1039 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1040 1041 /* Haven't reached the bvec range, exit */ 1042 if (decompressed + buf_len <= bvec_offset) 1043 return 1; 1044 1045 copy_start = max(cur_offset, bvec_offset); 1046 copy_len = min(bvec_offset + bvec.bv_len, 1047 decompressed + buf_len) - copy_start; 1048 ASSERT(copy_len); 1049 1050 /* 1051 * Extra range check to ensure we didn't go beyond 1052 * @buf + @buf_len. 1053 */ 1054 ASSERT(copy_start - decompressed < buf_len); 1055 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1056 buf + copy_start - decompressed, copy_len); 1057 cur_offset += copy_len; 1058 1059 bio_advance(orig_bio, copy_len); 1060 /* Finished the bio */ 1061 if (!orig_bio->bi_iter.bi_size) 1062 return 0; 1063 } 1064 return 1; 1065 } 1066 1067 /* 1068 * Shannon Entropy calculation 1069 * 1070 * Pure byte distribution analysis fails to determine compressibility of data. 1071 * Try calculating entropy to estimate the average minimum number of bits 1072 * needed to encode the sampled data. 1073 * 1074 * For convenience, return the percentage of needed bits, instead of amount of 1075 * bits directly. 1076 * 1077 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1078 * and can be compressible with high probability 1079 * 1080 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1081 * 1082 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1083 */ 1084 #define ENTROPY_LVL_ACEPTABLE (65) 1085 #define ENTROPY_LVL_HIGH (80) 1086 1087 /* 1088 * For increasead precision in shannon_entropy calculation, 1089 * let's do pow(n, M) to save more digits after comma: 1090 * 1091 * - maximum int bit length is 64 1092 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1093 * - 13 * 4 = 52 < 64 -> M = 4 1094 * 1095 * So use pow(n, 4). 1096 */ 1097 static inline u32 ilog2_w(u64 n) 1098 { 1099 return ilog2(n * n * n * n); 1100 } 1101 1102 static u32 shannon_entropy(struct heuristic_ws *ws) 1103 { 1104 const u32 entropy_max = 8 * ilog2_w(2); 1105 u32 entropy_sum = 0; 1106 u32 p, p_base, sz_base; 1107 u32 i; 1108 1109 sz_base = ilog2_w(ws->sample_size); 1110 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1111 p = ws->bucket[i].count; 1112 p_base = ilog2_w(p); 1113 entropy_sum += p * (sz_base - p_base); 1114 } 1115 1116 entropy_sum /= ws->sample_size; 1117 return entropy_sum * 100 / entropy_max; 1118 } 1119 1120 #define RADIX_BASE 4U 1121 #define COUNTERS_SIZE (1U << RADIX_BASE) 1122 1123 static u8 get4bits(u64 num, int shift) { 1124 u8 low4bits; 1125 1126 num >>= shift; 1127 /* Reverse order */ 1128 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1129 return low4bits; 1130 } 1131 1132 /* 1133 * Use 4 bits as radix base 1134 * Use 16 u32 counters for calculating new position in buf array 1135 * 1136 * @array - array that will be sorted 1137 * @array_buf - buffer array to store sorting results 1138 * must be equal in size to @array 1139 * @num - array size 1140 */ 1141 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1142 int num) 1143 { 1144 u64 max_num; 1145 u64 buf_num; 1146 u32 counters[COUNTERS_SIZE]; 1147 u32 new_addr; 1148 u32 addr; 1149 int bitlen; 1150 int shift; 1151 int i; 1152 1153 /* 1154 * Try avoid useless loop iterations for small numbers stored in big 1155 * counters. Example: 48 33 4 ... in 64bit array 1156 */ 1157 max_num = array[0].count; 1158 for (i = 1; i < num; i++) { 1159 buf_num = array[i].count; 1160 if (buf_num > max_num) 1161 max_num = buf_num; 1162 } 1163 1164 buf_num = ilog2(max_num); 1165 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1166 1167 shift = 0; 1168 while (shift < bitlen) { 1169 memset(counters, 0, sizeof(counters)); 1170 1171 for (i = 0; i < num; i++) { 1172 buf_num = array[i].count; 1173 addr = get4bits(buf_num, shift); 1174 counters[addr]++; 1175 } 1176 1177 for (i = 1; i < COUNTERS_SIZE; i++) 1178 counters[i] += counters[i - 1]; 1179 1180 for (i = num - 1; i >= 0; i--) { 1181 buf_num = array[i].count; 1182 addr = get4bits(buf_num, shift); 1183 counters[addr]--; 1184 new_addr = counters[addr]; 1185 array_buf[new_addr] = array[i]; 1186 } 1187 1188 shift += RADIX_BASE; 1189 1190 /* 1191 * Normal radix expects to move data from a temporary array, to 1192 * the main one. But that requires some CPU time. Avoid that 1193 * by doing another sort iteration to original array instead of 1194 * memcpy() 1195 */ 1196 memset(counters, 0, sizeof(counters)); 1197 1198 for (i = 0; i < num; i ++) { 1199 buf_num = array_buf[i].count; 1200 addr = get4bits(buf_num, shift); 1201 counters[addr]++; 1202 } 1203 1204 for (i = 1; i < COUNTERS_SIZE; i++) 1205 counters[i] += counters[i - 1]; 1206 1207 for (i = num - 1; i >= 0; i--) { 1208 buf_num = array_buf[i].count; 1209 addr = get4bits(buf_num, shift); 1210 counters[addr]--; 1211 new_addr = counters[addr]; 1212 array[new_addr] = array_buf[i]; 1213 } 1214 1215 shift += RADIX_BASE; 1216 } 1217 } 1218 1219 /* 1220 * Size of the core byte set - how many bytes cover 90% of the sample 1221 * 1222 * There are several types of structured binary data that use nearly all byte 1223 * values. The distribution can be uniform and counts in all buckets will be 1224 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1225 * 1226 * Other possibility is normal (Gaussian) distribution, where the data could 1227 * be potentially compressible, but we have to take a few more steps to decide 1228 * how much. 1229 * 1230 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1231 * compression algo can easy fix that 1232 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1233 * probability is not compressible 1234 */ 1235 #define BYTE_CORE_SET_LOW (64) 1236 #define BYTE_CORE_SET_HIGH (200) 1237 1238 static int byte_core_set_size(struct heuristic_ws *ws) 1239 { 1240 u32 i; 1241 u32 coreset_sum = 0; 1242 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1243 struct bucket_item *bucket = ws->bucket; 1244 1245 /* Sort in reverse order */ 1246 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1247 1248 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1249 coreset_sum += bucket[i].count; 1250 1251 if (coreset_sum > core_set_threshold) 1252 return i; 1253 1254 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1255 coreset_sum += bucket[i].count; 1256 if (coreset_sum > core_set_threshold) 1257 break; 1258 } 1259 1260 return i; 1261 } 1262 1263 /* 1264 * Count byte values in buckets. 1265 * This heuristic can detect textual data (configs, xml, json, html, etc). 1266 * Because in most text-like data byte set is restricted to limited number of 1267 * possible characters, and that restriction in most cases makes data easy to 1268 * compress. 1269 * 1270 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1271 * less - compressible 1272 * more - need additional analysis 1273 */ 1274 #define BYTE_SET_THRESHOLD (64) 1275 1276 static u32 byte_set_size(const struct heuristic_ws *ws) 1277 { 1278 u32 i; 1279 u32 byte_set_size = 0; 1280 1281 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1282 if (ws->bucket[i].count > 0) 1283 byte_set_size++; 1284 } 1285 1286 /* 1287 * Continue collecting count of byte values in buckets. If the byte 1288 * set size is bigger then the threshold, it's pointless to continue, 1289 * the detection technique would fail for this type of data. 1290 */ 1291 for (; i < BUCKET_SIZE; i++) { 1292 if (ws->bucket[i].count > 0) { 1293 byte_set_size++; 1294 if (byte_set_size > BYTE_SET_THRESHOLD) 1295 return byte_set_size; 1296 } 1297 } 1298 1299 return byte_set_size; 1300 } 1301 1302 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1303 { 1304 const u32 half_of_sample = ws->sample_size / 2; 1305 const u8 *data = ws->sample; 1306 1307 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1308 } 1309 1310 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1311 struct heuristic_ws *ws) 1312 { 1313 struct page *page; 1314 u64 index, index_end; 1315 u32 i, curr_sample_pos; 1316 u8 *in_data; 1317 1318 /* 1319 * Compression handles the input data by chunks of 128KiB 1320 * (defined by BTRFS_MAX_UNCOMPRESSED) 1321 * 1322 * We do the same for the heuristic and loop over the whole range. 1323 * 1324 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1325 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1326 */ 1327 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1328 end = start + BTRFS_MAX_UNCOMPRESSED; 1329 1330 index = start >> PAGE_SHIFT; 1331 index_end = end >> PAGE_SHIFT; 1332 1333 /* Don't miss unaligned end */ 1334 if (!PAGE_ALIGNED(end)) 1335 index_end++; 1336 1337 curr_sample_pos = 0; 1338 while (index < index_end) { 1339 page = find_get_page(inode->i_mapping, index); 1340 in_data = kmap_local_page(page); 1341 /* Handle case where the start is not aligned to PAGE_SIZE */ 1342 i = start % PAGE_SIZE; 1343 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1344 /* Don't sample any garbage from the last page */ 1345 if (start > end - SAMPLING_READ_SIZE) 1346 break; 1347 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1348 SAMPLING_READ_SIZE); 1349 i += SAMPLING_INTERVAL; 1350 start += SAMPLING_INTERVAL; 1351 curr_sample_pos += SAMPLING_READ_SIZE; 1352 } 1353 kunmap_local(in_data); 1354 put_page(page); 1355 1356 index++; 1357 } 1358 1359 ws->sample_size = curr_sample_pos; 1360 } 1361 1362 /* 1363 * Compression heuristic. 1364 * 1365 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1366 * quickly (compared to direct compression) detect data characteristics 1367 * (compressible/incompressible) to avoid wasting CPU time on incompressible 1368 * data. 1369 * 1370 * The following types of analysis can be performed: 1371 * - detect mostly zero data 1372 * - detect data with low "byte set" size (text, etc) 1373 * - detect data with low/high "core byte" set 1374 * 1375 * Return non-zero if the compression should be done, 0 otherwise. 1376 */ 1377 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1378 { 1379 struct list_head *ws_list = get_workspace(0, 0); 1380 struct heuristic_ws *ws; 1381 u32 i; 1382 u8 byte; 1383 int ret = 0; 1384 1385 ws = list_entry(ws_list, struct heuristic_ws, list); 1386 1387 heuristic_collect_sample(inode, start, end, ws); 1388 1389 if (sample_repeated_patterns(ws)) { 1390 ret = 1; 1391 goto out; 1392 } 1393 1394 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1395 1396 for (i = 0; i < ws->sample_size; i++) { 1397 byte = ws->sample[i]; 1398 ws->bucket[byte].count++; 1399 } 1400 1401 i = byte_set_size(ws); 1402 if (i < BYTE_SET_THRESHOLD) { 1403 ret = 2; 1404 goto out; 1405 } 1406 1407 i = byte_core_set_size(ws); 1408 if (i <= BYTE_CORE_SET_LOW) { 1409 ret = 3; 1410 goto out; 1411 } 1412 1413 if (i >= BYTE_CORE_SET_HIGH) { 1414 ret = 0; 1415 goto out; 1416 } 1417 1418 i = shannon_entropy(ws); 1419 if (i <= ENTROPY_LVL_ACEPTABLE) { 1420 ret = 4; 1421 goto out; 1422 } 1423 1424 /* 1425 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1426 * needed to give green light to compression. 1427 * 1428 * For now just assume that compression at that level is not worth the 1429 * resources because: 1430 * 1431 * 1. it is possible to defrag the data later 1432 * 1433 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1434 * values, every bucket has counter at level ~54. The heuristic would 1435 * be confused. This can happen when data have some internal repeated 1436 * patterns like "abbacbbc...". This can be detected by analyzing 1437 * pairs of bytes, which is too costly. 1438 */ 1439 if (i < ENTROPY_LVL_HIGH) { 1440 ret = 5; 1441 goto out; 1442 } else { 1443 ret = 0; 1444 goto out; 1445 } 1446 1447 out: 1448 put_workspace(0, ws_list); 1449 return ret; 1450 } 1451 1452 /* 1453 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1454 * level, unrecognized string will set the default level 1455 */ 1456 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1457 { 1458 unsigned int level = 0; 1459 int ret; 1460 1461 if (!type) 1462 return 0; 1463 1464 if (str[0] == ':') { 1465 ret = kstrtouint(str + 1, 10, &level); 1466 if (ret) 1467 level = 0; 1468 } 1469 1470 level = btrfs_compress_set_level(type, level); 1471 1472 return level; 1473 } 1474