1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/kthread.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sched/mm.h> 20 #include <linux/log2.h> 21 #include <crypto/hash.h> 22 #include "misc.h" 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "ordered-data.h" 29 #include "compression.h" 30 #include "extent_io.h" 31 #include "extent_map.h" 32 #include "subpage.h" 33 #include "zoned.h" 34 35 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 36 37 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 38 { 39 switch (type) { 40 case BTRFS_COMPRESS_ZLIB: 41 case BTRFS_COMPRESS_LZO: 42 case BTRFS_COMPRESS_ZSTD: 43 case BTRFS_COMPRESS_NONE: 44 return btrfs_compress_types[type]; 45 default: 46 break; 47 } 48 49 return NULL; 50 } 51 52 bool btrfs_compress_is_valid_type(const char *str, size_t len) 53 { 54 int i; 55 56 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 57 size_t comp_len = strlen(btrfs_compress_types[i]); 58 59 if (len < comp_len) 60 continue; 61 62 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 63 return true; 64 } 65 return false; 66 } 67 68 static int compression_compress_pages(int type, struct list_head *ws, 69 struct address_space *mapping, u64 start, struct page **pages, 70 unsigned long *out_pages, unsigned long *total_in, 71 unsigned long *total_out) 72 { 73 switch (type) { 74 case BTRFS_COMPRESS_ZLIB: 75 return zlib_compress_pages(ws, mapping, start, pages, 76 out_pages, total_in, total_out); 77 case BTRFS_COMPRESS_LZO: 78 return lzo_compress_pages(ws, mapping, start, pages, 79 out_pages, total_in, total_out); 80 case BTRFS_COMPRESS_ZSTD: 81 return zstd_compress_pages(ws, mapping, start, pages, 82 out_pages, total_in, total_out); 83 case BTRFS_COMPRESS_NONE: 84 default: 85 /* 86 * This can happen when compression races with remount setting 87 * it to 'no compress', while caller doesn't call 88 * inode_need_compress() to check if we really need to 89 * compress. 90 * 91 * Not a big deal, just need to inform caller that we 92 * haven't allocated any pages yet. 93 */ 94 *out_pages = 0; 95 return -E2BIG; 96 } 97 } 98 99 static int compression_decompress_bio(struct list_head *ws, 100 struct compressed_bio *cb) 101 { 102 switch (cb->compress_type) { 103 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 104 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 105 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 106 case BTRFS_COMPRESS_NONE: 107 default: 108 /* 109 * This can't happen, the type is validated several times 110 * before we get here. 111 */ 112 BUG(); 113 } 114 } 115 116 static int compression_decompress(int type, struct list_head *ws, 117 unsigned char *data_in, struct page *dest_page, 118 unsigned long start_byte, size_t srclen, size_t destlen) 119 { 120 switch (type) { 121 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 122 start_byte, srclen, destlen); 123 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 124 start_byte, srclen, destlen); 125 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 126 start_byte, srclen, destlen); 127 case BTRFS_COMPRESS_NONE: 128 default: 129 /* 130 * This can't happen, the type is validated several times 131 * before we get here. 132 */ 133 BUG(); 134 } 135 } 136 137 static int btrfs_decompress_bio(struct compressed_bio *cb); 138 139 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 140 unsigned long disk_size) 141 { 142 return sizeof(struct compressed_bio) + 143 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size; 144 } 145 146 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 147 u64 disk_start) 148 { 149 struct btrfs_fs_info *fs_info = inode->root->fs_info; 150 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 151 const u32 csum_size = fs_info->csum_size; 152 const u32 sectorsize = fs_info->sectorsize; 153 struct page *page; 154 unsigned int i; 155 char *kaddr; 156 u8 csum[BTRFS_CSUM_SIZE]; 157 struct compressed_bio *cb = bio->bi_private; 158 u8 *cb_sum = cb->sums; 159 160 if ((inode->flags & BTRFS_INODE_NODATASUM) || 161 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) 162 return 0; 163 164 shash->tfm = fs_info->csum_shash; 165 166 for (i = 0; i < cb->nr_pages; i++) { 167 u32 pg_offset; 168 u32 bytes_left = PAGE_SIZE; 169 page = cb->compressed_pages[i]; 170 171 /* Determine the remaining bytes inside the page first */ 172 if (i == cb->nr_pages - 1) 173 bytes_left = cb->compressed_len - i * PAGE_SIZE; 174 175 /* Hash through the page sector by sector */ 176 for (pg_offset = 0; pg_offset < bytes_left; 177 pg_offset += sectorsize) { 178 kaddr = kmap_atomic(page); 179 crypto_shash_digest(shash, kaddr + pg_offset, 180 sectorsize, csum); 181 kunmap_atomic(kaddr); 182 183 if (memcmp(&csum, cb_sum, csum_size) != 0) { 184 btrfs_print_data_csum_error(inode, disk_start, 185 csum, cb_sum, cb->mirror_num); 186 if (btrfs_bio(bio)->device) 187 btrfs_dev_stat_inc_and_print( 188 btrfs_bio(bio)->device, 189 BTRFS_DEV_STAT_CORRUPTION_ERRS); 190 return -EIO; 191 } 192 cb_sum += csum_size; 193 disk_start += sectorsize; 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * Reduce bio and io accounting for a compressed_bio with its corresponding bio. 201 * 202 * Return true if there is no pending bio nor io. 203 * Return false otherwise. 204 */ 205 static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio) 206 { 207 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 208 unsigned int bi_size = 0; 209 bool last_io = false; 210 struct bio_vec *bvec; 211 struct bvec_iter_all iter_all; 212 213 /* 214 * At endio time, bi_iter.bi_size doesn't represent the real bio size. 215 * Thus here we have to iterate through all segments to grab correct 216 * bio size. 217 */ 218 bio_for_each_segment_all(bvec, bio, iter_all) 219 bi_size += bvec->bv_len; 220 221 if (bio->bi_status) 222 cb->status = bio->bi_status; 223 224 ASSERT(bi_size && bi_size <= cb->compressed_len); 225 last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits, 226 &cb->pending_sectors); 227 /* 228 * Here we must wake up the possible error handler after all other 229 * operations on @cb finished, or we can race with 230 * finish_compressed_bio_*() which may free @cb. 231 */ 232 wake_up_var(cb); 233 234 return last_io; 235 } 236 237 static void finish_compressed_bio_read(struct compressed_bio *cb) 238 { 239 unsigned int index; 240 struct page *page; 241 242 /* Release the compressed pages */ 243 for (index = 0; index < cb->nr_pages; index++) { 244 page = cb->compressed_pages[index]; 245 page->mapping = NULL; 246 put_page(page); 247 } 248 249 /* Do io completion on the original bio */ 250 if (cb->status != BLK_STS_OK) { 251 cb->orig_bio->bi_status = cb->status; 252 bio_endio(cb->orig_bio); 253 } else { 254 struct bio_vec *bvec; 255 struct bvec_iter_all iter_all; 256 257 /* 258 * We have verified the checksum already, set page checked so 259 * the end_io handlers know about it 260 */ 261 ASSERT(!bio_flagged(cb->orig_bio, BIO_CLONED)); 262 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) { 263 u64 bvec_start = page_offset(bvec->bv_page) + 264 bvec->bv_offset; 265 266 btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb), 267 bvec->bv_page, bvec_start, 268 bvec->bv_len); 269 } 270 271 bio_endio(cb->orig_bio); 272 } 273 274 /* Finally free the cb struct */ 275 kfree(cb->compressed_pages); 276 kfree(cb); 277 } 278 279 /* when we finish reading compressed pages from the disk, we 280 * decompress them and then run the bio end_io routines on the 281 * decompressed pages (in the inode address space). 282 * 283 * This allows the checksumming and other IO error handling routines 284 * to work normally 285 * 286 * The compressed pages are freed here, and it must be run 287 * in process context 288 */ 289 static void end_compressed_bio_read(struct bio *bio) 290 { 291 struct compressed_bio *cb = bio->bi_private; 292 struct inode *inode; 293 unsigned int mirror = btrfs_bio(bio)->mirror_num; 294 int ret = 0; 295 296 if (!dec_and_test_compressed_bio(cb, bio)) 297 goto out; 298 299 /* 300 * Record the correct mirror_num in cb->orig_bio so that 301 * read-repair can work properly. 302 */ 303 btrfs_bio(cb->orig_bio)->mirror_num = mirror; 304 cb->mirror_num = mirror; 305 306 /* 307 * Some IO in this cb have failed, just skip checksum as there 308 * is no way it could be correct. 309 */ 310 if (cb->status != BLK_STS_OK) 311 goto csum_failed; 312 313 inode = cb->inode; 314 ret = check_compressed_csum(BTRFS_I(inode), bio, 315 bio->bi_iter.bi_sector << 9); 316 if (ret) 317 goto csum_failed; 318 319 /* ok, we're the last bio for this extent, lets start 320 * the decompression. 321 */ 322 ret = btrfs_decompress_bio(cb); 323 324 csum_failed: 325 if (ret) 326 cb->status = errno_to_blk_status(ret); 327 finish_compressed_bio_read(cb); 328 out: 329 bio_put(bio); 330 } 331 332 /* 333 * Clear the writeback bits on all of the file 334 * pages for a compressed write 335 */ 336 static noinline void end_compressed_writeback(struct inode *inode, 337 const struct compressed_bio *cb) 338 { 339 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 340 unsigned long index = cb->start >> PAGE_SHIFT; 341 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 342 struct page *pages[16]; 343 unsigned long nr_pages = end_index - index + 1; 344 const int errno = blk_status_to_errno(cb->status); 345 int i; 346 int ret; 347 348 if (errno) 349 mapping_set_error(inode->i_mapping, errno); 350 351 while (nr_pages > 0) { 352 ret = find_get_pages_contig(inode->i_mapping, index, 353 min_t(unsigned long, 354 nr_pages, ARRAY_SIZE(pages)), pages); 355 if (ret == 0) { 356 nr_pages -= 1; 357 index += 1; 358 continue; 359 } 360 for (i = 0; i < ret; i++) { 361 if (errno) 362 SetPageError(pages[i]); 363 btrfs_page_clamp_clear_writeback(fs_info, pages[i], 364 cb->start, cb->len); 365 put_page(pages[i]); 366 } 367 nr_pages -= ret; 368 index += ret; 369 } 370 /* the inode may be gone now */ 371 } 372 373 static void finish_compressed_bio_write(struct compressed_bio *cb) 374 { 375 struct inode *inode = cb->inode; 376 unsigned int index; 377 378 /* 379 * Ok, we're the last bio for this extent, step one is to call back 380 * into the FS and do all the end_io operations. 381 */ 382 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL, 383 cb->start, cb->start + cb->len - 1, 384 cb->status == BLK_STS_OK); 385 386 if (cb->writeback) 387 end_compressed_writeback(inode, cb); 388 /* Note, our inode could be gone now */ 389 390 /* 391 * Release the compressed pages, these came from alloc_page and 392 * are not attached to the inode at all 393 */ 394 for (index = 0; index < cb->nr_pages; index++) { 395 struct page *page = cb->compressed_pages[index]; 396 397 page->mapping = NULL; 398 put_page(page); 399 } 400 401 /* Finally free the cb struct */ 402 kfree(cb->compressed_pages); 403 kfree(cb); 404 } 405 406 /* 407 * Do the cleanup once all the compressed pages hit the disk. This will clear 408 * writeback on the file pages and free the compressed pages. 409 * 410 * This also calls the writeback end hooks for the file pages so that metadata 411 * and checksums can be updated in the file. 412 */ 413 static void end_compressed_bio_write(struct bio *bio) 414 { 415 struct compressed_bio *cb = bio->bi_private; 416 417 if (!dec_and_test_compressed_bio(cb, bio)) 418 goto out; 419 420 btrfs_record_physical_zoned(cb->inode, cb->start, bio); 421 422 finish_compressed_bio_write(cb); 423 out: 424 bio_put(bio); 425 } 426 427 static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info, 428 struct compressed_bio *cb, 429 struct bio *bio, int mirror_num) 430 { 431 blk_status_t ret; 432 433 ASSERT(bio->bi_iter.bi_size); 434 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 435 if (ret) 436 return ret; 437 ret = btrfs_map_bio(fs_info, bio, mirror_num); 438 return ret; 439 } 440 441 /* 442 * Allocate a compressed_bio, which will be used to read/write on-disk 443 * (aka, compressed) * data. 444 * 445 * @cb: The compressed_bio structure, which records all the needed 446 * information to bind the compressed data to the uncompressed 447 * page cache. 448 * @disk_byten: The logical bytenr where the compressed data will be read 449 * from or written to. 450 * @endio_func: The endio function to call after the IO for compressed data 451 * is finished. 452 * @next_stripe_start: Return value of logical bytenr of where next stripe starts. 453 * Let the caller know to only fill the bio up to the stripe 454 * boundary. 455 */ 456 457 458 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr, 459 unsigned int opf, bio_end_io_t endio_func, 460 u64 *next_stripe_start) 461 { 462 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 463 struct btrfs_io_geometry geom; 464 struct extent_map *em; 465 struct bio *bio; 466 int ret; 467 468 bio = btrfs_bio_alloc(BIO_MAX_VECS); 469 470 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 471 bio->bi_opf = opf; 472 bio->bi_private = cb; 473 bio->bi_end_io = endio_func; 474 475 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize); 476 if (IS_ERR(em)) { 477 bio_put(bio); 478 return ERR_CAST(em); 479 } 480 481 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 482 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev); 483 484 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom); 485 free_extent_map(em); 486 if (ret < 0) { 487 bio_put(bio); 488 return ERR_PTR(ret); 489 } 490 *next_stripe_start = disk_bytenr + geom.len; 491 492 return bio; 493 } 494 495 /* 496 * worker function to build and submit bios for previously compressed pages. 497 * The corresponding pages in the inode should be marked for writeback 498 * and the compressed pages should have a reference on them for dropping 499 * when the IO is complete. 500 * 501 * This also checksums the file bytes and gets things ready for 502 * the end io hooks. 503 */ 504 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 505 unsigned int len, u64 disk_start, 506 unsigned int compressed_len, 507 struct page **compressed_pages, 508 unsigned int nr_pages, 509 unsigned int write_flags, 510 struct cgroup_subsys_state *blkcg_css, 511 bool writeback) 512 { 513 struct btrfs_fs_info *fs_info = inode->root->fs_info; 514 struct bio *bio = NULL; 515 struct compressed_bio *cb; 516 u64 cur_disk_bytenr = disk_start; 517 u64 next_stripe_start; 518 blk_status_t ret; 519 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 520 const bool use_append = btrfs_use_zone_append(inode, disk_start); 521 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE; 522 523 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 524 IS_ALIGNED(len, fs_info->sectorsize)); 525 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 526 if (!cb) 527 return BLK_STS_RESOURCE; 528 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits); 529 cb->status = BLK_STS_OK; 530 cb->inode = &inode->vfs_inode; 531 cb->start = start; 532 cb->len = len; 533 cb->mirror_num = 0; 534 cb->compressed_pages = compressed_pages; 535 cb->compressed_len = compressed_len; 536 cb->writeback = writeback; 537 cb->orig_bio = NULL; 538 cb->nr_pages = nr_pages; 539 540 if (blkcg_css) 541 kthread_associate_blkcg(blkcg_css); 542 543 while (cur_disk_bytenr < disk_start + compressed_len) { 544 u64 offset = cur_disk_bytenr - disk_start; 545 unsigned int index = offset >> PAGE_SHIFT; 546 unsigned int real_size; 547 unsigned int added; 548 struct page *page = compressed_pages[index]; 549 bool submit = false; 550 551 /* Allocate new bio if submitted or not yet allocated */ 552 if (!bio) { 553 bio = alloc_compressed_bio(cb, cur_disk_bytenr, 554 bio_op | write_flags, end_compressed_bio_write, 555 &next_stripe_start); 556 if (IS_ERR(bio)) { 557 ret = errno_to_blk_status(PTR_ERR(bio)); 558 bio = NULL; 559 goto finish_cb; 560 } 561 if (blkcg_css) 562 bio->bi_opf |= REQ_CGROUP_PUNT; 563 } 564 /* 565 * We should never reach next_stripe_start start as we will 566 * submit comp_bio when reach the boundary immediately. 567 */ 568 ASSERT(cur_disk_bytenr != next_stripe_start); 569 570 /* 571 * We have various limits on the real read size: 572 * - stripe boundary 573 * - page boundary 574 * - compressed length boundary 575 */ 576 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr); 577 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 578 real_size = min_t(u64, real_size, compressed_len - offset); 579 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 580 581 if (use_append) 582 added = bio_add_zone_append_page(bio, page, real_size, 583 offset_in_page(offset)); 584 else 585 added = bio_add_page(bio, page, real_size, 586 offset_in_page(offset)); 587 /* Reached zoned boundary */ 588 if (added == 0) 589 submit = true; 590 591 cur_disk_bytenr += added; 592 /* Reached stripe boundary */ 593 if (cur_disk_bytenr == next_stripe_start) 594 submit = true; 595 596 /* Finished the range */ 597 if (cur_disk_bytenr == disk_start + compressed_len) 598 submit = true; 599 600 if (submit) { 601 if (!skip_sum) { 602 ret = btrfs_csum_one_bio(inode, bio, start, true); 603 if (ret) 604 goto finish_cb; 605 } 606 607 ret = submit_compressed_bio(fs_info, cb, bio, 0); 608 if (ret) 609 goto finish_cb; 610 bio = NULL; 611 } 612 cond_resched(); 613 } 614 if (blkcg_css) 615 kthread_associate_blkcg(NULL); 616 617 return 0; 618 619 finish_cb: 620 if (blkcg_css) 621 kthread_associate_blkcg(NULL); 622 623 if (bio) { 624 bio->bi_status = ret; 625 bio_endio(bio); 626 } 627 /* Last byte of @cb is submitted, endio will free @cb */ 628 if (cur_disk_bytenr == disk_start + compressed_len) 629 return ret; 630 631 wait_var_event(cb, refcount_read(&cb->pending_sectors) == 632 (disk_start + compressed_len - cur_disk_bytenr) >> 633 fs_info->sectorsize_bits); 634 /* 635 * Even with previous bio ended, we should still have io not yet 636 * submitted, thus need to finish manually. 637 */ 638 ASSERT(refcount_read(&cb->pending_sectors)); 639 /* Now we are the only one referring @cb, can finish it safely. */ 640 finish_compressed_bio_write(cb); 641 return ret; 642 } 643 644 static u64 bio_end_offset(struct bio *bio) 645 { 646 struct bio_vec *last = bio_last_bvec_all(bio); 647 648 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 649 } 650 651 /* 652 * Add extra pages in the same compressed file extent so that we don't need to 653 * re-read the same extent again and again. 654 * 655 * NOTE: this won't work well for subpage, as for subpage read, we lock the 656 * full page then submit bio for each compressed/regular extents. 657 * 658 * This means, if we have several sectors in the same page points to the same 659 * on-disk compressed data, we will re-read the same extent many times and 660 * this function can only help for the next page. 661 */ 662 static noinline int add_ra_bio_pages(struct inode *inode, 663 u64 compressed_end, 664 struct compressed_bio *cb) 665 { 666 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 667 unsigned long end_index; 668 u64 cur = bio_end_offset(cb->orig_bio); 669 u64 isize = i_size_read(inode); 670 int ret; 671 struct page *page; 672 struct extent_map *em; 673 struct address_space *mapping = inode->i_mapping; 674 struct extent_map_tree *em_tree; 675 struct extent_io_tree *tree; 676 int sectors_missed = 0; 677 678 em_tree = &BTRFS_I(inode)->extent_tree; 679 tree = &BTRFS_I(inode)->io_tree; 680 681 if (isize == 0) 682 return 0; 683 684 /* 685 * For current subpage support, we only support 64K page size, 686 * which means maximum compressed extent size (128K) is just 2x page 687 * size. 688 * This makes readahead less effective, so here disable readahead for 689 * subpage for now, until full compressed write is supported. 690 */ 691 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 692 return 0; 693 694 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 695 696 while (cur < compressed_end) { 697 u64 page_end; 698 u64 pg_index = cur >> PAGE_SHIFT; 699 u32 add_size; 700 701 if (pg_index > end_index) 702 break; 703 704 page = xa_load(&mapping->i_pages, pg_index); 705 if (page && !xa_is_value(page)) { 706 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 707 fs_info->sectorsize_bits; 708 709 /* Beyond threshold, no need to continue */ 710 if (sectors_missed > 4) 711 break; 712 713 /* 714 * Jump to next page start as we already have page for 715 * current offset. 716 */ 717 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 718 continue; 719 } 720 721 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 722 ~__GFP_FS)); 723 if (!page) 724 break; 725 726 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 727 put_page(page); 728 /* There is already a page, skip to page end */ 729 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 730 continue; 731 } 732 733 ret = set_page_extent_mapped(page); 734 if (ret < 0) { 735 unlock_page(page); 736 put_page(page); 737 break; 738 } 739 740 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 741 lock_extent(tree, cur, page_end); 742 read_lock(&em_tree->lock); 743 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 744 read_unlock(&em_tree->lock); 745 746 /* 747 * At this point, we have a locked page in the page cache for 748 * these bytes in the file. But, we have to make sure they map 749 * to this compressed extent on disk. 750 */ 751 if (!em || cur < em->start || 752 (cur + fs_info->sectorsize > extent_map_end(em)) || 753 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 754 free_extent_map(em); 755 unlock_extent(tree, cur, page_end); 756 unlock_page(page); 757 put_page(page); 758 break; 759 } 760 free_extent_map(em); 761 762 if (page->index == end_index) { 763 size_t zero_offset = offset_in_page(isize); 764 765 if (zero_offset) { 766 int zeros; 767 zeros = PAGE_SIZE - zero_offset; 768 memzero_page(page, zero_offset, zeros); 769 flush_dcache_page(page); 770 } 771 } 772 773 add_size = min(em->start + em->len, page_end + 1) - cur; 774 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur)); 775 if (ret != add_size) { 776 unlock_extent(tree, cur, page_end); 777 unlock_page(page); 778 put_page(page); 779 break; 780 } 781 /* 782 * If it's subpage, we also need to increase its 783 * subpage::readers number, as at endio we will decrease 784 * subpage::readers and to unlock the page. 785 */ 786 if (fs_info->sectorsize < PAGE_SIZE) 787 btrfs_subpage_start_reader(fs_info, page, cur, add_size); 788 put_page(page); 789 cur += add_size; 790 } 791 return 0; 792 } 793 794 /* 795 * for a compressed read, the bio we get passed has all the inode pages 796 * in it. We don't actually do IO on those pages but allocate new ones 797 * to hold the compressed pages on disk. 798 * 799 * bio->bi_iter.bi_sector points to the compressed extent on disk 800 * bio->bi_io_vec points to all of the inode pages 801 * 802 * After the compressed pages are read, we copy the bytes into the 803 * bio we were passed and then call the bio end_io calls 804 */ 805 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 806 int mirror_num, unsigned long bio_flags) 807 { 808 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 809 struct extent_map_tree *em_tree; 810 struct compressed_bio *cb; 811 unsigned int compressed_len; 812 unsigned int nr_pages; 813 unsigned int pg_index; 814 struct bio *comp_bio = NULL; 815 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 816 u64 cur_disk_byte = disk_bytenr; 817 u64 next_stripe_start; 818 u64 file_offset; 819 u64 em_len; 820 u64 em_start; 821 struct extent_map *em; 822 blk_status_t ret; 823 int faili = 0; 824 u8 *sums; 825 826 em_tree = &BTRFS_I(inode)->extent_tree; 827 828 file_offset = bio_first_bvec_all(bio)->bv_offset + 829 page_offset(bio_first_page_all(bio)); 830 831 /* we need the actual starting offset of this extent in the file */ 832 read_lock(&em_tree->lock); 833 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 834 read_unlock(&em_tree->lock); 835 if (!em) { 836 ret = BLK_STS_IOERR; 837 goto out; 838 } 839 840 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE); 841 compressed_len = em->block_len; 842 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 843 if (!cb) { 844 ret = BLK_STS_RESOURCE; 845 goto out; 846 } 847 848 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits); 849 cb->status = BLK_STS_OK; 850 cb->inode = inode; 851 cb->mirror_num = mirror_num; 852 sums = cb->sums; 853 854 cb->start = em->orig_start; 855 em_len = em->len; 856 em_start = em->start; 857 858 free_extent_map(em); 859 em = NULL; 860 861 cb->len = bio->bi_iter.bi_size; 862 cb->compressed_len = compressed_len; 863 cb->compress_type = extent_compress_type(bio_flags); 864 cb->orig_bio = bio; 865 866 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 867 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 868 GFP_NOFS); 869 if (!cb->compressed_pages) { 870 ret = BLK_STS_RESOURCE; 871 goto fail1; 872 } 873 874 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 875 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS); 876 if (!cb->compressed_pages[pg_index]) { 877 faili = pg_index - 1; 878 ret = BLK_STS_RESOURCE; 879 goto fail2; 880 } 881 } 882 faili = nr_pages - 1; 883 cb->nr_pages = nr_pages; 884 885 add_ra_bio_pages(inode, em_start + em_len, cb); 886 887 /* include any pages we added in add_ra-bio_pages */ 888 cb->len = bio->bi_iter.bi_size; 889 890 while (cur_disk_byte < disk_bytenr + compressed_len) { 891 u64 offset = cur_disk_byte - disk_bytenr; 892 unsigned int index = offset >> PAGE_SHIFT; 893 unsigned int real_size; 894 unsigned int added; 895 struct page *page = cb->compressed_pages[index]; 896 bool submit = false; 897 898 /* Allocate new bio if submitted or not yet allocated */ 899 if (!comp_bio) { 900 comp_bio = alloc_compressed_bio(cb, cur_disk_byte, 901 REQ_OP_READ, end_compressed_bio_read, 902 &next_stripe_start); 903 if (IS_ERR(comp_bio)) { 904 ret = errno_to_blk_status(PTR_ERR(comp_bio)); 905 comp_bio = NULL; 906 goto finish_cb; 907 } 908 } 909 /* 910 * We should never reach next_stripe_start start as we will 911 * submit comp_bio when reach the boundary immediately. 912 */ 913 ASSERT(cur_disk_byte != next_stripe_start); 914 /* 915 * We have various limit on the real read size: 916 * - stripe boundary 917 * - page boundary 918 * - compressed length boundary 919 */ 920 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte); 921 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 922 real_size = min_t(u64, real_size, compressed_len - offset); 923 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 924 925 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset)); 926 /* 927 * Maximum compressed extent is smaller than bio size limit, 928 * thus bio_add_page() should always success. 929 */ 930 ASSERT(added == real_size); 931 cur_disk_byte += added; 932 933 /* Reached stripe boundary, need to submit */ 934 if (cur_disk_byte == next_stripe_start) 935 submit = true; 936 937 /* Has finished the range, need to submit */ 938 if (cur_disk_byte == disk_bytenr + compressed_len) 939 submit = true; 940 941 if (submit) { 942 unsigned int nr_sectors; 943 944 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 945 if (ret) 946 goto finish_cb; 947 948 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 949 fs_info->sectorsize); 950 sums += fs_info->csum_size * nr_sectors; 951 952 ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num); 953 if (ret) 954 goto finish_cb; 955 comp_bio = NULL; 956 } 957 } 958 return BLK_STS_OK; 959 960 fail2: 961 while (faili >= 0) { 962 __free_page(cb->compressed_pages[faili]); 963 faili--; 964 } 965 966 kfree(cb->compressed_pages); 967 fail1: 968 kfree(cb); 969 out: 970 free_extent_map(em); 971 bio->bi_status = ret; 972 bio_endio(bio); 973 return ret; 974 finish_cb: 975 if (comp_bio) { 976 comp_bio->bi_status = ret; 977 bio_endio(comp_bio); 978 } 979 /* All bytes of @cb is submitted, endio will free @cb */ 980 if (cur_disk_byte == disk_bytenr + compressed_len) 981 return ret; 982 983 wait_var_event(cb, refcount_read(&cb->pending_sectors) == 984 (disk_bytenr + compressed_len - cur_disk_byte) >> 985 fs_info->sectorsize_bits); 986 /* 987 * Even with previous bio ended, we should still have io not yet 988 * submitted, thus need to finish @cb manually. 989 */ 990 ASSERT(refcount_read(&cb->pending_sectors)); 991 /* Now we are the only one referring @cb, can finish it safely. */ 992 finish_compressed_bio_read(cb); 993 return ret; 994 } 995 996 /* 997 * Heuristic uses systematic sampling to collect data from the input data 998 * range, the logic can be tuned by the following constants: 999 * 1000 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 1001 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 1002 */ 1003 #define SAMPLING_READ_SIZE (16) 1004 #define SAMPLING_INTERVAL (256) 1005 1006 /* 1007 * For statistical analysis of the input data we consider bytes that form a 1008 * Galois Field of 256 objects. Each object has an attribute count, ie. how 1009 * many times the object appeared in the sample. 1010 */ 1011 #define BUCKET_SIZE (256) 1012 1013 /* 1014 * The size of the sample is based on a statistical sampling rule of thumb. 1015 * The common way is to perform sampling tests as long as the number of 1016 * elements in each cell is at least 5. 1017 * 1018 * Instead of 5, we choose 32 to obtain more accurate results. 1019 * If the data contain the maximum number of symbols, which is 256, we obtain a 1020 * sample size bound by 8192. 1021 * 1022 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 1023 * from up to 512 locations. 1024 */ 1025 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 1026 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 1027 1028 struct bucket_item { 1029 u32 count; 1030 }; 1031 1032 struct heuristic_ws { 1033 /* Partial copy of input data */ 1034 u8 *sample; 1035 u32 sample_size; 1036 /* Buckets store counters for each byte value */ 1037 struct bucket_item *bucket; 1038 /* Sorting buffer */ 1039 struct bucket_item *bucket_b; 1040 struct list_head list; 1041 }; 1042 1043 static struct workspace_manager heuristic_wsm; 1044 1045 static void free_heuristic_ws(struct list_head *ws) 1046 { 1047 struct heuristic_ws *workspace; 1048 1049 workspace = list_entry(ws, struct heuristic_ws, list); 1050 1051 kvfree(workspace->sample); 1052 kfree(workspace->bucket); 1053 kfree(workspace->bucket_b); 1054 kfree(workspace); 1055 } 1056 1057 static struct list_head *alloc_heuristic_ws(unsigned int level) 1058 { 1059 struct heuristic_ws *ws; 1060 1061 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 1062 if (!ws) 1063 return ERR_PTR(-ENOMEM); 1064 1065 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 1066 if (!ws->sample) 1067 goto fail; 1068 1069 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 1070 if (!ws->bucket) 1071 goto fail; 1072 1073 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 1074 if (!ws->bucket_b) 1075 goto fail; 1076 1077 INIT_LIST_HEAD(&ws->list); 1078 return &ws->list; 1079 fail: 1080 free_heuristic_ws(&ws->list); 1081 return ERR_PTR(-ENOMEM); 1082 } 1083 1084 const struct btrfs_compress_op btrfs_heuristic_compress = { 1085 .workspace_manager = &heuristic_wsm, 1086 }; 1087 1088 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 1089 /* The heuristic is represented as compression type 0 */ 1090 &btrfs_heuristic_compress, 1091 &btrfs_zlib_compress, 1092 &btrfs_lzo_compress, 1093 &btrfs_zstd_compress, 1094 }; 1095 1096 static struct list_head *alloc_workspace(int type, unsigned int level) 1097 { 1098 switch (type) { 1099 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 1100 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 1101 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 1102 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 1103 default: 1104 /* 1105 * This can't happen, the type is validated several times 1106 * before we get here. 1107 */ 1108 BUG(); 1109 } 1110 } 1111 1112 static void free_workspace(int type, struct list_head *ws) 1113 { 1114 switch (type) { 1115 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 1116 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 1117 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 1118 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 1119 default: 1120 /* 1121 * This can't happen, the type is validated several times 1122 * before we get here. 1123 */ 1124 BUG(); 1125 } 1126 } 1127 1128 static void btrfs_init_workspace_manager(int type) 1129 { 1130 struct workspace_manager *wsm; 1131 struct list_head *workspace; 1132 1133 wsm = btrfs_compress_op[type]->workspace_manager; 1134 INIT_LIST_HEAD(&wsm->idle_ws); 1135 spin_lock_init(&wsm->ws_lock); 1136 atomic_set(&wsm->total_ws, 0); 1137 init_waitqueue_head(&wsm->ws_wait); 1138 1139 /* 1140 * Preallocate one workspace for each compression type so we can 1141 * guarantee forward progress in the worst case 1142 */ 1143 workspace = alloc_workspace(type, 0); 1144 if (IS_ERR(workspace)) { 1145 pr_warn( 1146 "BTRFS: cannot preallocate compression workspace, will try later\n"); 1147 } else { 1148 atomic_set(&wsm->total_ws, 1); 1149 wsm->free_ws = 1; 1150 list_add(workspace, &wsm->idle_ws); 1151 } 1152 } 1153 1154 static void btrfs_cleanup_workspace_manager(int type) 1155 { 1156 struct workspace_manager *wsman; 1157 struct list_head *ws; 1158 1159 wsman = btrfs_compress_op[type]->workspace_manager; 1160 while (!list_empty(&wsman->idle_ws)) { 1161 ws = wsman->idle_ws.next; 1162 list_del(ws); 1163 free_workspace(type, ws); 1164 atomic_dec(&wsman->total_ws); 1165 } 1166 } 1167 1168 /* 1169 * This finds an available workspace or allocates a new one. 1170 * If it's not possible to allocate a new one, waits until there's one. 1171 * Preallocation makes a forward progress guarantees and we do not return 1172 * errors. 1173 */ 1174 struct list_head *btrfs_get_workspace(int type, unsigned int level) 1175 { 1176 struct workspace_manager *wsm; 1177 struct list_head *workspace; 1178 int cpus = num_online_cpus(); 1179 unsigned nofs_flag; 1180 struct list_head *idle_ws; 1181 spinlock_t *ws_lock; 1182 atomic_t *total_ws; 1183 wait_queue_head_t *ws_wait; 1184 int *free_ws; 1185 1186 wsm = btrfs_compress_op[type]->workspace_manager; 1187 idle_ws = &wsm->idle_ws; 1188 ws_lock = &wsm->ws_lock; 1189 total_ws = &wsm->total_ws; 1190 ws_wait = &wsm->ws_wait; 1191 free_ws = &wsm->free_ws; 1192 1193 again: 1194 spin_lock(ws_lock); 1195 if (!list_empty(idle_ws)) { 1196 workspace = idle_ws->next; 1197 list_del(workspace); 1198 (*free_ws)--; 1199 spin_unlock(ws_lock); 1200 return workspace; 1201 1202 } 1203 if (atomic_read(total_ws) > cpus) { 1204 DEFINE_WAIT(wait); 1205 1206 spin_unlock(ws_lock); 1207 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1208 if (atomic_read(total_ws) > cpus && !*free_ws) 1209 schedule(); 1210 finish_wait(ws_wait, &wait); 1211 goto again; 1212 } 1213 atomic_inc(total_ws); 1214 spin_unlock(ws_lock); 1215 1216 /* 1217 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1218 * to turn it off here because we might get called from the restricted 1219 * context of btrfs_compress_bio/btrfs_compress_pages 1220 */ 1221 nofs_flag = memalloc_nofs_save(); 1222 workspace = alloc_workspace(type, level); 1223 memalloc_nofs_restore(nofs_flag); 1224 1225 if (IS_ERR(workspace)) { 1226 atomic_dec(total_ws); 1227 wake_up(ws_wait); 1228 1229 /* 1230 * Do not return the error but go back to waiting. There's a 1231 * workspace preallocated for each type and the compression 1232 * time is bounded so we get to a workspace eventually. This 1233 * makes our caller's life easier. 1234 * 1235 * To prevent silent and low-probability deadlocks (when the 1236 * initial preallocation fails), check if there are any 1237 * workspaces at all. 1238 */ 1239 if (atomic_read(total_ws) == 0) { 1240 static DEFINE_RATELIMIT_STATE(_rs, 1241 /* once per minute */ 60 * HZ, 1242 /* no burst */ 1); 1243 1244 if (__ratelimit(&_rs)) { 1245 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1246 } 1247 } 1248 goto again; 1249 } 1250 return workspace; 1251 } 1252 1253 static struct list_head *get_workspace(int type, int level) 1254 { 1255 switch (type) { 1256 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1257 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1258 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1259 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1260 default: 1261 /* 1262 * This can't happen, the type is validated several times 1263 * before we get here. 1264 */ 1265 BUG(); 1266 } 1267 } 1268 1269 /* 1270 * put a workspace struct back on the list or free it if we have enough 1271 * idle ones sitting around 1272 */ 1273 void btrfs_put_workspace(int type, struct list_head *ws) 1274 { 1275 struct workspace_manager *wsm; 1276 struct list_head *idle_ws; 1277 spinlock_t *ws_lock; 1278 atomic_t *total_ws; 1279 wait_queue_head_t *ws_wait; 1280 int *free_ws; 1281 1282 wsm = btrfs_compress_op[type]->workspace_manager; 1283 idle_ws = &wsm->idle_ws; 1284 ws_lock = &wsm->ws_lock; 1285 total_ws = &wsm->total_ws; 1286 ws_wait = &wsm->ws_wait; 1287 free_ws = &wsm->free_ws; 1288 1289 spin_lock(ws_lock); 1290 if (*free_ws <= num_online_cpus()) { 1291 list_add(ws, idle_ws); 1292 (*free_ws)++; 1293 spin_unlock(ws_lock); 1294 goto wake; 1295 } 1296 spin_unlock(ws_lock); 1297 1298 free_workspace(type, ws); 1299 atomic_dec(total_ws); 1300 wake: 1301 cond_wake_up(ws_wait); 1302 } 1303 1304 static void put_workspace(int type, struct list_head *ws) 1305 { 1306 switch (type) { 1307 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1308 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1309 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1310 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1311 default: 1312 /* 1313 * This can't happen, the type is validated several times 1314 * before we get here. 1315 */ 1316 BUG(); 1317 } 1318 } 1319 1320 /* 1321 * Adjust @level according to the limits of the compression algorithm or 1322 * fallback to default 1323 */ 1324 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1325 { 1326 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1327 1328 if (level == 0) 1329 level = ops->default_level; 1330 else 1331 level = min(level, ops->max_level); 1332 1333 return level; 1334 } 1335 1336 /* 1337 * Given an address space and start and length, compress the bytes into @pages 1338 * that are allocated on demand. 1339 * 1340 * @type_level is encoded algorithm and level, where level 0 means whatever 1341 * default the algorithm chooses and is opaque here; 1342 * - compression algo are 0-3 1343 * - the level are bits 4-7 1344 * 1345 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1346 * and returns number of actually allocated pages 1347 * 1348 * @total_in is used to return the number of bytes actually read. It 1349 * may be smaller than the input length if we had to exit early because we 1350 * ran out of room in the pages array or because we cross the 1351 * max_out threshold. 1352 * 1353 * @total_out is an in/out parameter, must be set to the input length and will 1354 * be also used to return the total number of compressed bytes 1355 */ 1356 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1357 u64 start, struct page **pages, 1358 unsigned long *out_pages, 1359 unsigned long *total_in, 1360 unsigned long *total_out) 1361 { 1362 int type = btrfs_compress_type(type_level); 1363 int level = btrfs_compress_level(type_level); 1364 struct list_head *workspace; 1365 int ret; 1366 1367 level = btrfs_compress_set_level(type, level); 1368 workspace = get_workspace(type, level); 1369 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1370 out_pages, total_in, total_out); 1371 put_workspace(type, workspace); 1372 return ret; 1373 } 1374 1375 static int btrfs_decompress_bio(struct compressed_bio *cb) 1376 { 1377 struct list_head *workspace; 1378 int ret; 1379 int type = cb->compress_type; 1380 1381 workspace = get_workspace(type, 0); 1382 ret = compression_decompress_bio(workspace, cb); 1383 put_workspace(type, workspace); 1384 1385 return ret; 1386 } 1387 1388 /* 1389 * a less complex decompression routine. Our compressed data fits in a 1390 * single page, and we want to read a single page out of it. 1391 * start_byte tells us the offset into the compressed data we're interested in 1392 */ 1393 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1394 unsigned long start_byte, size_t srclen, size_t destlen) 1395 { 1396 struct list_head *workspace; 1397 int ret; 1398 1399 workspace = get_workspace(type, 0); 1400 ret = compression_decompress(type, workspace, data_in, dest_page, 1401 start_byte, srclen, destlen); 1402 put_workspace(type, workspace); 1403 1404 return ret; 1405 } 1406 1407 void __init btrfs_init_compress(void) 1408 { 1409 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1410 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1411 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1412 zstd_init_workspace_manager(); 1413 } 1414 1415 void __cold btrfs_exit_compress(void) 1416 { 1417 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1418 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1419 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1420 zstd_cleanup_workspace_manager(); 1421 } 1422 1423 /* 1424 * Copy decompressed data from working buffer to pages. 1425 * 1426 * @buf: The decompressed data buffer 1427 * @buf_len: The decompressed data length 1428 * @decompressed: Number of bytes that are already decompressed inside the 1429 * compressed extent 1430 * @cb: The compressed extent descriptor 1431 * @orig_bio: The original bio that the caller wants to read for 1432 * 1433 * An easier to understand graph is like below: 1434 * 1435 * |<- orig_bio ->| |<- orig_bio->| 1436 * |<------- full decompressed extent ----->| 1437 * |<----------- @cb range ---->| 1438 * | |<-- @buf_len -->| 1439 * |<--- @decompressed --->| 1440 * 1441 * Note that, @cb can be a subpage of the full decompressed extent, but 1442 * @cb->start always has the same as the orig_file_offset value of the full 1443 * decompressed extent. 1444 * 1445 * When reading compressed extent, we have to read the full compressed extent, 1446 * while @orig_bio may only want part of the range. 1447 * Thus this function will ensure only data covered by @orig_bio will be copied 1448 * to. 1449 * 1450 * Return 0 if we have copied all needed contents for @orig_bio. 1451 * Return >0 if we need continue decompress. 1452 */ 1453 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1454 struct compressed_bio *cb, u32 decompressed) 1455 { 1456 struct bio *orig_bio = cb->orig_bio; 1457 /* Offset inside the full decompressed extent */ 1458 u32 cur_offset; 1459 1460 cur_offset = decompressed; 1461 /* The main loop to do the copy */ 1462 while (cur_offset < decompressed + buf_len) { 1463 struct bio_vec bvec; 1464 size_t copy_len; 1465 u32 copy_start; 1466 /* Offset inside the full decompressed extent */ 1467 u32 bvec_offset; 1468 1469 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1470 /* 1471 * cb->start may underflow, but subtracting that value can still 1472 * give us correct offset inside the full decompressed extent. 1473 */ 1474 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1475 1476 /* Haven't reached the bvec range, exit */ 1477 if (decompressed + buf_len <= bvec_offset) 1478 return 1; 1479 1480 copy_start = max(cur_offset, bvec_offset); 1481 copy_len = min(bvec_offset + bvec.bv_len, 1482 decompressed + buf_len) - copy_start; 1483 ASSERT(copy_len); 1484 1485 /* 1486 * Extra range check to ensure we didn't go beyond 1487 * @buf + @buf_len. 1488 */ 1489 ASSERT(copy_start - decompressed < buf_len); 1490 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1491 buf + copy_start - decompressed, copy_len); 1492 flush_dcache_page(bvec.bv_page); 1493 cur_offset += copy_len; 1494 1495 bio_advance(orig_bio, copy_len); 1496 /* Finished the bio */ 1497 if (!orig_bio->bi_iter.bi_size) 1498 return 0; 1499 } 1500 return 1; 1501 } 1502 1503 /* 1504 * Shannon Entropy calculation 1505 * 1506 * Pure byte distribution analysis fails to determine compressibility of data. 1507 * Try calculating entropy to estimate the average minimum number of bits 1508 * needed to encode the sampled data. 1509 * 1510 * For convenience, return the percentage of needed bits, instead of amount of 1511 * bits directly. 1512 * 1513 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1514 * and can be compressible with high probability 1515 * 1516 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1517 * 1518 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1519 */ 1520 #define ENTROPY_LVL_ACEPTABLE (65) 1521 #define ENTROPY_LVL_HIGH (80) 1522 1523 /* 1524 * For increasead precision in shannon_entropy calculation, 1525 * let's do pow(n, M) to save more digits after comma: 1526 * 1527 * - maximum int bit length is 64 1528 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1529 * - 13 * 4 = 52 < 64 -> M = 4 1530 * 1531 * So use pow(n, 4). 1532 */ 1533 static inline u32 ilog2_w(u64 n) 1534 { 1535 return ilog2(n * n * n * n); 1536 } 1537 1538 static u32 shannon_entropy(struct heuristic_ws *ws) 1539 { 1540 const u32 entropy_max = 8 * ilog2_w(2); 1541 u32 entropy_sum = 0; 1542 u32 p, p_base, sz_base; 1543 u32 i; 1544 1545 sz_base = ilog2_w(ws->sample_size); 1546 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1547 p = ws->bucket[i].count; 1548 p_base = ilog2_w(p); 1549 entropy_sum += p * (sz_base - p_base); 1550 } 1551 1552 entropy_sum /= ws->sample_size; 1553 return entropy_sum * 100 / entropy_max; 1554 } 1555 1556 #define RADIX_BASE 4U 1557 #define COUNTERS_SIZE (1U << RADIX_BASE) 1558 1559 static u8 get4bits(u64 num, int shift) { 1560 u8 low4bits; 1561 1562 num >>= shift; 1563 /* Reverse order */ 1564 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1565 return low4bits; 1566 } 1567 1568 /* 1569 * Use 4 bits as radix base 1570 * Use 16 u32 counters for calculating new position in buf array 1571 * 1572 * @array - array that will be sorted 1573 * @array_buf - buffer array to store sorting results 1574 * must be equal in size to @array 1575 * @num - array size 1576 */ 1577 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1578 int num) 1579 { 1580 u64 max_num; 1581 u64 buf_num; 1582 u32 counters[COUNTERS_SIZE]; 1583 u32 new_addr; 1584 u32 addr; 1585 int bitlen; 1586 int shift; 1587 int i; 1588 1589 /* 1590 * Try avoid useless loop iterations for small numbers stored in big 1591 * counters. Example: 48 33 4 ... in 64bit array 1592 */ 1593 max_num = array[0].count; 1594 for (i = 1; i < num; i++) { 1595 buf_num = array[i].count; 1596 if (buf_num > max_num) 1597 max_num = buf_num; 1598 } 1599 1600 buf_num = ilog2(max_num); 1601 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1602 1603 shift = 0; 1604 while (shift < bitlen) { 1605 memset(counters, 0, sizeof(counters)); 1606 1607 for (i = 0; i < num; i++) { 1608 buf_num = array[i].count; 1609 addr = get4bits(buf_num, shift); 1610 counters[addr]++; 1611 } 1612 1613 for (i = 1; i < COUNTERS_SIZE; i++) 1614 counters[i] += counters[i - 1]; 1615 1616 for (i = num - 1; i >= 0; i--) { 1617 buf_num = array[i].count; 1618 addr = get4bits(buf_num, shift); 1619 counters[addr]--; 1620 new_addr = counters[addr]; 1621 array_buf[new_addr] = array[i]; 1622 } 1623 1624 shift += RADIX_BASE; 1625 1626 /* 1627 * Normal radix expects to move data from a temporary array, to 1628 * the main one. But that requires some CPU time. Avoid that 1629 * by doing another sort iteration to original array instead of 1630 * memcpy() 1631 */ 1632 memset(counters, 0, sizeof(counters)); 1633 1634 for (i = 0; i < num; i ++) { 1635 buf_num = array_buf[i].count; 1636 addr = get4bits(buf_num, shift); 1637 counters[addr]++; 1638 } 1639 1640 for (i = 1; i < COUNTERS_SIZE; i++) 1641 counters[i] += counters[i - 1]; 1642 1643 for (i = num - 1; i >= 0; i--) { 1644 buf_num = array_buf[i].count; 1645 addr = get4bits(buf_num, shift); 1646 counters[addr]--; 1647 new_addr = counters[addr]; 1648 array[new_addr] = array_buf[i]; 1649 } 1650 1651 shift += RADIX_BASE; 1652 } 1653 } 1654 1655 /* 1656 * Size of the core byte set - how many bytes cover 90% of the sample 1657 * 1658 * There are several types of structured binary data that use nearly all byte 1659 * values. The distribution can be uniform and counts in all buckets will be 1660 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1661 * 1662 * Other possibility is normal (Gaussian) distribution, where the data could 1663 * be potentially compressible, but we have to take a few more steps to decide 1664 * how much. 1665 * 1666 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1667 * compression algo can easy fix that 1668 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1669 * probability is not compressible 1670 */ 1671 #define BYTE_CORE_SET_LOW (64) 1672 #define BYTE_CORE_SET_HIGH (200) 1673 1674 static int byte_core_set_size(struct heuristic_ws *ws) 1675 { 1676 u32 i; 1677 u32 coreset_sum = 0; 1678 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1679 struct bucket_item *bucket = ws->bucket; 1680 1681 /* Sort in reverse order */ 1682 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1683 1684 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1685 coreset_sum += bucket[i].count; 1686 1687 if (coreset_sum > core_set_threshold) 1688 return i; 1689 1690 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1691 coreset_sum += bucket[i].count; 1692 if (coreset_sum > core_set_threshold) 1693 break; 1694 } 1695 1696 return i; 1697 } 1698 1699 /* 1700 * Count byte values in buckets. 1701 * This heuristic can detect textual data (configs, xml, json, html, etc). 1702 * Because in most text-like data byte set is restricted to limited number of 1703 * possible characters, and that restriction in most cases makes data easy to 1704 * compress. 1705 * 1706 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1707 * less - compressible 1708 * more - need additional analysis 1709 */ 1710 #define BYTE_SET_THRESHOLD (64) 1711 1712 static u32 byte_set_size(const struct heuristic_ws *ws) 1713 { 1714 u32 i; 1715 u32 byte_set_size = 0; 1716 1717 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1718 if (ws->bucket[i].count > 0) 1719 byte_set_size++; 1720 } 1721 1722 /* 1723 * Continue collecting count of byte values in buckets. If the byte 1724 * set size is bigger then the threshold, it's pointless to continue, 1725 * the detection technique would fail for this type of data. 1726 */ 1727 for (; i < BUCKET_SIZE; i++) { 1728 if (ws->bucket[i].count > 0) { 1729 byte_set_size++; 1730 if (byte_set_size > BYTE_SET_THRESHOLD) 1731 return byte_set_size; 1732 } 1733 } 1734 1735 return byte_set_size; 1736 } 1737 1738 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1739 { 1740 const u32 half_of_sample = ws->sample_size / 2; 1741 const u8 *data = ws->sample; 1742 1743 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1744 } 1745 1746 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1747 struct heuristic_ws *ws) 1748 { 1749 struct page *page; 1750 u64 index, index_end; 1751 u32 i, curr_sample_pos; 1752 u8 *in_data; 1753 1754 /* 1755 * Compression handles the input data by chunks of 128KiB 1756 * (defined by BTRFS_MAX_UNCOMPRESSED) 1757 * 1758 * We do the same for the heuristic and loop over the whole range. 1759 * 1760 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1761 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1762 */ 1763 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1764 end = start + BTRFS_MAX_UNCOMPRESSED; 1765 1766 index = start >> PAGE_SHIFT; 1767 index_end = end >> PAGE_SHIFT; 1768 1769 /* Don't miss unaligned end */ 1770 if (!IS_ALIGNED(end, PAGE_SIZE)) 1771 index_end++; 1772 1773 curr_sample_pos = 0; 1774 while (index < index_end) { 1775 page = find_get_page(inode->i_mapping, index); 1776 in_data = kmap_local_page(page); 1777 /* Handle case where the start is not aligned to PAGE_SIZE */ 1778 i = start % PAGE_SIZE; 1779 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1780 /* Don't sample any garbage from the last page */ 1781 if (start > end - SAMPLING_READ_SIZE) 1782 break; 1783 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1784 SAMPLING_READ_SIZE); 1785 i += SAMPLING_INTERVAL; 1786 start += SAMPLING_INTERVAL; 1787 curr_sample_pos += SAMPLING_READ_SIZE; 1788 } 1789 kunmap_local(in_data); 1790 put_page(page); 1791 1792 index++; 1793 } 1794 1795 ws->sample_size = curr_sample_pos; 1796 } 1797 1798 /* 1799 * Compression heuristic. 1800 * 1801 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1802 * quickly (compared to direct compression) detect data characteristics 1803 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1804 * data. 1805 * 1806 * The following types of analysis can be performed: 1807 * - detect mostly zero data 1808 * - detect data with low "byte set" size (text, etc) 1809 * - detect data with low/high "core byte" set 1810 * 1811 * Return non-zero if the compression should be done, 0 otherwise. 1812 */ 1813 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1814 { 1815 struct list_head *ws_list = get_workspace(0, 0); 1816 struct heuristic_ws *ws; 1817 u32 i; 1818 u8 byte; 1819 int ret = 0; 1820 1821 ws = list_entry(ws_list, struct heuristic_ws, list); 1822 1823 heuristic_collect_sample(inode, start, end, ws); 1824 1825 if (sample_repeated_patterns(ws)) { 1826 ret = 1; 1827 goto out; 1828 } 1829 1830 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1831 1832 for (i = 0; i < ws->sample_size; i++) { 1833 byte = ws->sample[i]; 1834 ws->bucket[byte].count++; 1835 } 1836 1837 i = byte_set_size(ws); 1838 if (i < BYTE_SET_THRESHOLD) { 1839 ret = 2; 1840 goto out; 1841 } 1842 1843 i = byte_core_set_size(ws); 1844 if (i <= BYTE_CORE_SET_LOW) { 1845 ret = 3; 1846 goto out; 1847 } 1848 1849 if (i >= BYTE_CORE_SET_HIGH) { 1850 ret = 0; 1851 goto out; 1852 } 1853 1854 i = shannon_entropy(ws); 1855 if (i <= ENTROPY_LVL_ACEPTABLE) { 1856 ret = 4; 1857 goto out; 1858 } 1859 1860 /* 1861 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1862 * needed to give green light to compression. 1863 * 1864 * For now just assume that compression at that level is not worth the 1865 * resources because: 1866 * 1867 * 1. it is possible to defrag the data later 1868 * 1869 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1870 * values, every bucket has counter at level ~54. The heuristic would 1871 * be confused. This can happen when data have some internal repeated 1872 * patterns like "abbacbbc...". This can be detected by analyzing 1873 * pairs of bytes, which is too costly. 1874 */ 1875 if (i < ENTROPY_LVL_HIGH) { 1876 ret = 5; 1877 goto out; 1878 } else { 1879 ret = 0; 1880 goto out; 1881 } 1882 1883 out: 1884 put_workspace(0, ws_list); 1885 return ret; 1886 } 1887 1888 /* 1889 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1890 * level, unrecognized string will set the default level 1891 */ 1892 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1893 { 1894 unsigned int level = 0; 1895 int ret; 1896 1897 if (!type) 1898 return 0; 1899 1900 if (str[0] == ':') { 1901 ret = kstrtouint(str + 1, 10, &level); 1902 if (ret) 1903 level = 0; 1904 } 1905 1906 level = btrfs_compress_set_level(type, level); 1907 1908 return level; 1909 } 1910