xref: /openbmc/linux/fs/btrfs/compression.c (revision cd9255be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 #include "zoned.h"
32 
33 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
34 
35 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
36 {
37 	switch (type) {
38 	case BTRFS_COMPRESS_ZLIB:
39 	case BTRFS_COMPRESS_LZO:
40 	case BTRFS_COMPRESS_ZSTD:
41 	case BTRFS_COMPRESS_NONE:
42 		return btrfs_compress_types[type];
43 	default:
44 		break;
45 	}
46 
47 	return NULL;
48 }
49 
50 bool btrfs_compress_is_valid_type(const char *str, size_t len)
51 {
52 	int i;
53 
54 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
55 		size_t comp_len = strlen(btrfs_compress_types[i]);
56 
57 		if (len < comp_len)
58 			continue;
59 
60 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
61 			return true;
62 	}
63 	return false;
64 }
65 
66 static int compression_compress_pages(int type, struct list_head *ws,
67                struct address_space *mapping, u64 start, struct page **pages,
68                unsigned long *out_pages, unsigned long *total_in,
69                unsigned long *total_out)
70 {
71 	switch (type) {
72 	case BTRFS_COMPRESS_ZLIB:
73 		return zlib_compress_pages(ws, mapping, start, pages,
74 				out_pages, total_in, total_out);
75 	case BTRFS_COMPRESS_LZO:
76 		return lzo_compress_pages(ws, mapping, start, pages,
77 				out_pages, total_in, total_out);
78 	case BTRFS_COMPRESS_ZSTD:
79 		return zstd_compress_pages(ws, mapping, start, pages,
80 				out_pages, total_in, total_out);
81 	case BTRFS_COMPRESS_NONE:
82 	default:
83 		/*
84 		 * This can happen when compression races with remount setting
85 		 * it to 'no compress', while caller doesn't call
86 		 * inode_need_compress() to check if we really need to
87 		 * compress.
88 		 *
89 		 * Not a big deal, just need to inform caller that we
90 		 * haven't allocated any pages yet.
91 		 */
92 		*out_pages = 0;
93 		return -E2BIG;
94 	}
95 }
96 
97 static int compression_decompress_bio(int type, struct list_head *ws,
98 		struct compressed_bio *cb)
99 {
100 	switch (type) {
101 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
102 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
103 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
104 	case BTRFS_COMPRESS_NONE:
105 	default:
106 		/*
107 		 * This can't happen, the type is validated several times
108 		 * before we get here.
109 		 */
110 		BUG();
111 	}
112 }
113 
114 static int compression_decompress(int type, struct list_head *ws,
115                unsigned char *data_in, struct page *dest_page,
116                unsigned long start_byte, size_t srclen, size_t destlen)
117 {
118 	switch (type) {
119 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
120 						start_byte, srclen, destlen);
121 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
122 						start_byte, srclen, destlen);
123 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
124 						start_byte, srclen, destlen);
125 	case BTRFS_COMPRESS_NONE:
126 	default:
127 		/*
128 		 * This can't happen, the type is validated several times
129 		 * before we get here.
130 		 */
131 		BUG();
132 	}
133 }
134 
135 static int btrfs_decompress_bio(struct compressed_bio *cb);
136 
137 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
138 				      unsigned long disk_size)
139 {
140 	return sizeof(struct compressed_bio) +
141 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
142 }
143 
144 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
145 				 u64 disk_start)
146 {
147 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
148 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149 	const u32 csum_size = fs_info->csum_size;
150 	const u32 sectorsize = fs_info->sectorsize;
151 	struct page *page;
152 	unsigned int i;
153 	char *kaddr;
154 	u8 csum[BTRFS_CSUM_SIZE];
155 	struct compressed_bio *cb = bio->bi_private;
156 	u8 *cb_sum = cb->sums;
157 
158 	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
159 		return 0;
160 
161 	shash->tfm = fs_info->csum_shash;
162 
163 	for (i = 0; i < cb->nr_pages; i++) {
164 		u32 pg_offset;
165 		u32 bytes_left = PAGE_SIZE;
166 		page = cb->compressed_pages[i];
167 
168 		/* Determine the remaining bytes inside the page first */
169 		if (i == cb->nr_pages - 1)
170 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
171 
172 		/* Hash through the page sector by sector */
173 		for (pg_offset = 0; pg_offset < bytes_left;
174 		     pg_offset += sectorsize) {
175 			kaddr = page_address(page);
176 			crypto_shash_digest(shash, kaddr + pg_offset,
177 					    sectorsize, csum);
178 
179 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
180 				btrfs_print_data_csum_error(inode, disk_start,
181 						csum, cb_sum, cb->mirror_num);
182 				if (btrfs_bio(bio)->device)
183 					btrfs_dev_stat_inc_and_print(
184 						btrfs_bio(bio)->device,
185 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
186 				return -EIO;
187 			}
188 			cb_sum += csum_size;
189 			disk_start += sectorsize;
190 		}
191 	}
192 	return 0;
193 }
194 
195 /* when we finish reading compressed pages from the disk, we
196  * decompress them and then run the bio end_io routines on the
197  * decompressed pages (in the inode address space).
198  *
199  * This allows the checksumming and other IO error handling routines
200  * to work normally
201  *
202  * The compressed pages are freed here, and it must be run
203  * in process context
204  */
205 static void end_compressed_bio_read(struct bio *bio)
206 {
207 	struct compressed_bio *cb = bio->bi_private;
208 	struct inode *inode;
209 	struct page *page;
210 	unsigned int index;
211 	unsigned int mirror = btrfs_bio(bio)->mirror_num;
212 	int ret = 0;
213 
214 	if (bio->bi_status)
215 		cb->errors = 1;
216 
217 	/* if there are more bios still pending for this compressed
218 	 * extent, just exit
219 	 */
220 	if (!refcount_dec_and_test(&cb->pending_bios))
221 		goto out;
222 
223 	/*
224 	 * Record the correct mirror_num in cb->orig_bio so that
225 	 * read-repair can work properly.
226 	 */
227 	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
228 	cb->mirror_num = mirror;
229 
230 	/*
231 	 * Some IO in this cb have failed, just skip checksum as there
232 	 * is no way it could be correct.
233 	 */
234 	if (cb->errors == 1)
235 		goto csum_failed;
236 
237 	inode = cb->inode;
238 	ret = check_compressed_csum(BTRFS_I(inode), bio,
239 				    bio->bi_iter.bi_sector << 9);
240 	if (ret)
241 		goto csum_failed;
242 
243 	/* ok, we're the last bio for this extent, lets start
244 	 * the decompression.
245 	 */
246 	ret = btrfs_decompress_bio(cb);
247 
248 csum_failed:
249 	if (ret)
250 		cb->errors = 1;
251 
252 	/* release the compressed pages */
253 	index = 0;
254 	for (index = 0; index < cb->nr_pages; index++) {
255 		page = cb->compressed_pages[index];
256 		page->mapping = NULL;
257 		put_page(page);
258 	}
259 
260 	/* do io completion on the original bio */
261 	if (cb->errors) {
262 		bio_io_error(cb->orig_bio);
263 	} else {
264 		struct bio_vec *bvec;
265 		struct bvec_iter_all iter_all;
266 
267 		/*
268 		 * we have verified the checksum already, set page
269 		 * checked so the end_io handlers know about it
270 		 */
271 		ASSERT(!bio_flagged(bio, BIO_CLONED));
272 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
273 			SetPageChecked(bvec->bv_page);
274 
275 		bio_endio(cb->orig_bio);
276 	}
277 
278 	/* finally free the cb struct */
279 	kfree(cb->compressed_pages);
280 	kfree(cb);
281 out:
282 	bio_put(bio);
283 }
284 
285 /*
286  * Clear the writeback bits on all of the file
287  * pages for a compressed write
288  */
289 static noinline void end_compressed_writeback(struct inode *inode,
290 					      const struct compressed_bio *cb)
291 {
292 	unsigned long index = cb->start >> PAGE_SHIFT;
293 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
294 	struct page *pages[16];
295 	unsigned long nr_pages = end_index - index + 1;
296 	int i;
297 	int ret;
298 
299 	if (cb->errors)
300 		mapping_set_error(inode->i_mapping, -EIO);
301 
302 	while (nr_pages > 0) {
303 		ret = find_get_pages_contig(inode->i_mapping, index,
304 				     min_t(unsigned long,
305 				     nr_pages, ARRAY_SIZE(pages)), pages);
306 		if (ret == 0) {
307 			nr_pages -= 1;
308 			index += 1;
309 			continue;
310 		}
311 		for (i = 0; i < ret; i++) {
312 			if (cb->errors)
313 				SetPageError(pages[i]);
314 			end_page_writeback(pages[i]);
315 			put_page(pages[i]);
316 		}
317 		nr_pages -= ret;
318 		index += ret;
319 	}
320 	/* the inode may be gone now */
321 }
322 
323 /*
324  * do the cleanup once all the compressed pages hit the disk.
325  * This will clear writeback on the file pages and free the compressed
326  * pages.
327  *
328  * This also calls the writeback end hooks for the file pages so that
329  * metadata and checksums can be updated in the file.
330  */
331 static void end_compressed_bio_write(struct bio *bio)
332 {
333 	struct compressed_bio *cb = bio->bi_private;
334 	struct inode *inode;
335 	struct page *page;
336 	unsigned int index;
337 
338 	if (bio->bi_status)
339 		cb->errors = 1;
340 
341 	/* if there are more bios still pending for this compressed
342 	 * extent, just exit
343 	 */
344 	if (!refcount_dec_and_test(&cb->pending_bios))
345 		goto out;
346 
347 	/* ok, we're the last bio for this extent, step one is to
348 	 * call back into the FS and do all the end_io operations
349 	 */
350 	inode = cb->inode;
351 	btrfs_record_physical_zoned(inode, cb->start, bio);
352 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
353 			cb->start, cb->start + cb->len - 1,
354 			!cb->errors);
355 
356 	end_compressed_writeback(inode, cb);
357 	/* note, our inode could be gone now */
358 
359 	/*
360 	 * release the compressed pages, these came from alloc_page and
361 	 * are not attached to the inode at all
362 	 */
363 	index = 0;
364 	for (index = 0; index < cb->nr_pages; index++) {
365 		page = cb->compressed_pages[index];
366 		page->mapping = NULL;
367 		put_page(page);
368 	}
369 
370 	/* finally free the cb struct */
371 	kfree(cb->compressed_pages);
372 	kfree(cb);
373 out:
374 	bio_put(bio);
375 }
376 
377 /*
378  * worker function to build and submit bios for previously compressed pages.
379  * The corresponding pages in the inode should be marked for writeback
380  * and the compressed pages should have a reference on them for dropping
381  * when the IO is complete.
382  *
383  * This also checksums the file bytes and gets things ready for
384  * the end io hooks.
385  */
386 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
387 				 unsigned int len, u64 disk_start,
388 				 unsigned int compressed_len,
389 				 struct page **compressed_pages,
390 				 unsigned int nr_pages,
391 				 unsigned int write_flags,
392 				 struct cgroup_subsys_state *blkcg_css)
393 {
394 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
395 	struct bio *bio = NULL;
396 	struct compressed_bio *cb;
397 	unsigned long bytes_left;
398 	int pg_index = 0;
399 	struct page *page;
400 	u64 first_byte = disk_start;
401 	blk_status_t ret;
402 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
403 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
404 	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
405 
406 	WARN_ON(!PAGE_ALIGNED(start));
407 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
408 	if (!cb)
409 		return BLK_STS_RESOURCE;
410 	refcount_set(&cb->pending_bios, 0);
411 	cb->errors = 0;
412 	cb->inode = &inode->vfs_inode;
413 	cb->start = start;
414 	cb->len = len;
415 	cb->mirror_num = 0;
416 	cb->compressed_pages = compressed_pages;
417 	cb->compressed_len = compressed_len;
418 	cb->orig_bio = NULL;
419 	cb->nr_pages = nr_pages;
420 
421 	bio = btrfs_bio_alloc(BIO_MAX_VECS);
422 	bio->bi_iter.bi_sector = first_byte >> SECTOR_SHIFT;
423 	bio->bi_opf = bio_op | write_flags;
424 	bio->bi_private = cb;
425 	bio->bi_end_io = end_compressed_bio_write;
426 
427 	if (use_append) {
428 		struct btrfs_device *device;
429 
430 		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
431 		if (IS_ERR(device)) {
432 			kfree(cb);
433 			bio_put(bio);
434 			return BLK_STS_NOTSUPP;
435 		}
436 
437 		bio_set_dev(bio, device->bdev);
438 	}
439 
440 	if (blkcg_css) {
441 		bio->bi_opf |= REQ_CGROUP_PUNT;
442 		kthread_associate_blkcg(blkcg_css);
443 	}
444 	refcount_set(&cb->pending_bios, 1);
445 
446 	/* create and submit bios for the compressed pages */
447 	bytes_left = compressed_len;
448 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
449 		int submit = 0;
450 		int len = 0;
451 
452 		page = compressed_pages[pg_index];
453 		page->mapping = inode->vfs_inode.i_mapping;
454 		if (bio->bi_iter.bi_size)
455 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
456 							  0);
457 
458 		/*
459 		 * Page can only be added to bio if the current bio fits in
460 		 * stripe.
461 		 */
462 		if (!submit) {
463 			if (pg_index == 0 && use_append)
464 				len = bio_add_zone_append_page(bio, page,
465 							       PAGE_SIZE, 0);
466 			else
467 				len = bio_add_page(bio, page, PAGE_SIZE, 0);
468 		}
469 
470 		page->mapping = NULL;
471 		if (submit || len < PAGE_SIZE) {
472 			/*
473 			 * inc the count before we submit the bio so
474 			 * we know the end IO handler won't happen before
475 			 * we inc the count.  Otherwise, the cb might get
476 			 * freed before we're done setting it up
477 			 */
478 			refcount_inc(&cb->pending_bios);
479 			ret = btrfs_bio_wq_end_io(fs_info, bio,
480 						  BTRFS_WQ_ENDIO_DATA);
481 			BUG_ON(ret); /* -ENOMEM */
482 
483 			if (!skip_sum) {
484 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
485 				BUG_ON(ret); /* -ENOMEM */
486 			}
487 
488 			ret = btrfs_map_bio(fs_info, bio, 0);
489 			if (ret) {
490 				bio->bi_status = ret;
491 				bio_endio(bio);
492 			}
493 
494 			bio = btrfs_bio_alloc(BIO_MAX_VECS);
495 			bio->bi_iter.bi_sector = first_byte >> SECTOR_SHIFT;
496 			bio->bi_opf = bio_op | write_flags;
497 			bio->bi_private = cb;
498 			bio->bi_end_io = end_compressed_bio_write;
499 			if (blkcg_css)
500 				bio->bi_opf |= REQ_CGROUP_PUNT;
501 			/*
502 			 * Use bio_add_page() to ensure the bio has at least one
503 			 * page.
504 			 */
505 			bio_add_page(bio, page, PAGE_SIZE, 0);
506 		}
507 		if (bytes_left < PAGE_SIZE) {
508 			btrfs_info(fs_info,
509 					"bytes left %lu compress len %u nr %u",
510 			       bytes_left, cb->compressed_len, cb->nr_pages);
511 		}
512 		bytes_left -= PAGE_SIZE;
513 		first_byte += PAGE_SIZE;
514 		cond_resched();
515 	}
516 
517 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
518 	BUG_ON(ret); /* -ENOMEM */
519 
520 	if (!skip_sum) {
521 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
522 		BUG_ON(ret); /* -ENOMEM */
523 	}
524 
525 	ret = btrfs_map_bio(fs_info, bio, 0);
526 	if (ret) {
527 		bio->bi_status = ret;
528 		bio_endio(bio);
529 	}
530 
531 	if (blkcg_css)
532 		kthread_associate_blkcg(NULL);
533 
534 	return 0;
535 }
536 
537 static u64 bio_end_offset(struct bio *bio)
538 {
539 	struct bio_vec *last = bio_last_bvec_all(bio);
540 
541 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
542 }
543 
544 static noinline int add_ra_bio_pages(struct inode *inode,
545 				     u64 compressed_end,
546 				     struct compressed_bio *cb)
547 {
548 	unsigned long end_index;
549 	unsigned long pg_index;
550 	u64 last_offset;
551 	u64 isize = i_size_read(inode);
552 	int ret;
553 	struct page *page;
554 	struct extent_map *em;
555 	struct address_space *mapping = inode->i_mapping;
556 	struct extent_map_tree *em_tree;
557 	struct extent_io_tree *tree;
558 	u64 end;
559 	int misses = 0;
560 
561 	last_offset = bio_end_offset(cb->orig_bio);
562 	em_tree = &BTRFS_I(inode)->extent_tree;
563 	tree = &BTRFS_I(inode)->io_tree;
564 
565 	if (isize == 0)
566 		return 0;
567 
568 	/*
569 	 * For current subpage support, we only support 64K page size,
570 	 * which means maximum compressed extent size (128K) is just 2x page
571 	 * size.
572 	 * This makes readahead less effective, so here disable readahead for
573 	 * subpage for now, until full compressed write is supported.
574 	 */
575 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
576 		return 0;
577 
578 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
579 
580 	while (last_offset < compressed_end) {
581 		pg_index = last_offset >> PAGE_SHIFT;
582 
583 		if (pg_index > end_index)
584 			break;
585 
586 		page = xa_load(&mapping->i_pages, pg_index);
587 		if (page && !xa_is_value(page)) {
588 			misses++;
589 			if (misses > 4)
590 				break;
591 			goto next;
592 		}
593 
594 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
595 								 ~__GFP_FS));
596 		if (!page)
597 			break;
598 
599 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
600 			put_page(page);
601 			goto next;
602 		}
603 
604 		/*
605 		 * at this point, we have a locked page in the page cache
606 		 * for these bytes in the file.  But, we have to make
607 		 * sure they map to this compressed extent on disk.
608 		 */
609 		ret = set_page_extent_mapped(page);
610 		if (ret < 0) {
611 			unlock_page(page);
612 			put_page(page);
613 			break;
614 		}
615 
616 		end = last_offset + PAGE_SIZE - 1;
617 		lock_extent(tree, last_offset, end);
618 		read_lock(&em_tree->lock);
619 		em = lookup_extent_mapping(em_tree, last_offset,
620 					   PAGE_SIZE);
621 		read_unlock(&em_tree->lock);
622 
623 		if (!em || last_offset < em->start ||
624 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
625 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
626 			free_extent_map(em);
627 			unlock_extent(tree, last_offset, end);
628 			unlock_page(page);
629 			put_page(page);
630 			break;
631 		}
632 		free_extent_map(em);
633 
634 		if (page->index == end_index) {
635 			size_t zero_offset = offset_in_page(isize);
636 
637 			if (zero_offset) {
638 				int zeros;
639 				zeros = PAGE_SIZE - zero_offset;
640 				memzero_page(page, zero_offset, zeros);
641 				flush_dcache_page(page);
642 			}
643 		}
644 
645 		ret = bio_add_page(cb->orig_bio, page,
646 				   PAGE_SIZE, 0);
647 
648 		if (ret == PAGE_SIZE) {
649 			put_page(page);
650 		} else {
651 			unlock_extent(tree, last_offset, end);
652 			unlock_page(page);
653 			put_page(page);
654 			break;
655 		}
656 next:
657 		last_offset += PAGE_SIZE;
658 	}
659 	return 0;
660 }
661 
662 /*
663  * for a compressed read, the bio we get passed has all the inode pages
664  * in it.  We don't actually do IO on those pages but allocate new ones
665  * to hold the compressed pages on disk.
666  *
667  * bio->bi_iter.bi_sector points to the compressed extent on disk
668  * bio->bi_io_vec points to all of the inode pages
669  *
670  * After the compressed pages are read, we copy the bytes into the
671  * bio we were passed and then call the bio end_io calls
672  */
673 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
674 				 int mirror_num, unsigned long bio_flags)
675 {
676 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
677 	struct extent_map_tree *em_tree;
678 	struct compressed_bio *cb;
679 	unsigned int compressed_len;
680 	unsigned int nr_pages;
681 	unsigned int pg_index;
682 	struct page *page;
683 	struct bio *comp_bio;
684 	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
685 	u64 file_offset;
686 	u64 em_len;
687 	u64 em_start;
688 	struct extent_map *em;
689 	blk_status_t ret = BLK_STS_RESOURCE;
690 	int faili = 0;
691 	u8 *sums;
692 
693 	em_tree = &BTRFS_I(inode)->extent_tree;
694 
695 	file_offset = bio_first_bvec_all(bio)->bv_offset +
696 		      page_offset(bio_first_page_all(bio));
697 
698 	/* we need the actual starting offset of this extent in the file */
699 	read_lock(&em_tree->lock);
700 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
701 	read_unlock(&em_tree->lock);
702 	if (!em)
703 		return BLK_STS_IOERR;
704 
705 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
706 	compressed_len = em->block_len;
707 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
708 	if (!cb)
709 		goto out;
710 
711 	refcount_set(&cb->pending_bios, 0);
712 	cb->errors = 0;
713 	cb->inode = inode;
714 	cb->mirror_num = mirror_num;
715 	sums = cb->sums;
716 
717 	cb->start = em->orig_start;
718 	em_len = em->len;
719 	em_start = em->start;
720 
721 	free_extent_map(em);
722 	em = NULL;
723 
724 	cb->len = bio->bi_iter.bi_size;
725 	cb->compressed_len = compressed_len;
726 	cb->compress_type = extent_compress_type(bio_flags);
727 	cb->orig_bio = bio;
728 
729 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
730 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
731 				       GFP_NOFS);
732 	if (!cb->compressed_pages)
733 		goto fail1;
734 
735 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
736 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
737 		if (!cb->compressed_pages[pg_index]) {
738 			faili = pg_index - 1;
739 			ret = BLK_STS_RESOURCE;
740 			goto fail2;
741 		}
742 	}
743 	faili = nr_pages - 1;
744 	cb->nr_pages = nr_pages;
745 
746 	add_ra_bio_pages(inode, em_start + em_len, cb);
747 
748 	/* include any pages we added in add_ra-bio_pages */
749 	cb->len = bio->bi_iter.bi_size;
750 
751 	comp_bio = btrfs_bio_alloc(BIO_MAX_VECS);
752 	comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
753 	comp_bio->bi_opf = REQ_OP_READ;
754 	comp_bio->bi_private = cb;
755 	comp_bio->bi_end_io = end_compressed_bio_read;
756 	refcount_set(&cb->pending_bios, 1);
757 
758 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
759 		u32 pg_len = PAGE_SIZE;
760 		int submit = 0;
761 
762 		/*
763 		 * To handle subpage case, we need to make sure the bio only
764 		 * covers the range we need.
765 		 *
766 		 * If we're at the last page, truncate the length to only cover
767 		 * the remaining part.
768 		 */
769 		if (pg_index == nr_pages - 1)
770 			pg_len = min_t(u32, PAGE_SIZE,
771 					compressed_len - pg_index * PAGE_SIZE);
772 
773 		page = cb->compressed_pages[pg_index];
774 		page->mapping = inode->i_mapping;
775 		page->index = em_start >> PAGE_SHIFT;
776 
777 		if (comp_bio->bi_iter.bi_size)
778 			submit = btrfs_bio_fits_in_stripe(page, pg_len,
779 							  comp_bio, 0);
780 
781 		page->mapping = NULL;
782 		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
783 			unsigned int nr_sectors;
784 
785 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
786 						  BTRFS_WQ_ENDIO_DATA);
787 			BUG_ON(ret); /* -ENOMEM */
788 
789 			/*
790 			 * inc the count before we submit the bio so
791 			 * we know the end IO handler won't happen before
792 			 * we inc the count.  Otherwise, the cb might get
793 			 * freed before we're done setting it up
794 			 */
795 			refcount_inc(&cb->pending_bios);
796 
797 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
798 			BUG_ON(ret); /* -ENOMEM */
799 
800 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
801 						  fs_info->sectorsize);
802 			sums += fs_info->csum_size * nr_sectors;
803 
804 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
805 			if (ret) {
806 				comp_bio->bi_status = ret;
807 				bio_endio(comp_bio);
808 			}
809 
810 			comp_bio = btrfs_bio_alloc(BIO_MAX_VECS);
811 			comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
812 			comp_bio->bi_opf = REQ_OP_READ;
813 			comp_bio->bi_private = cb;
814 			comp_bio->bi_end_io = end_compressed_bio_read;
815 
816 			bio_add_page(comp_bio, page, pg_len, 0);
817 		}
818 		cur_disk_byte += pg_len;
819 	}
820 
821 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
822 	BUG_ON(ret); /* -ENOMEM */
823 
824 	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
825 	BUG_ON(ret); /* -ENOMEM */
826 
827 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
828 	if (ret) {
829 		comp_bio->bi_status = ret;
830 		bio_endio(comp_bio);
831 	}
832 
833 	return 0;
834 
835 fail2:
836 	while (faili >= 0) {
837 		__free_page(cb->compressed_pages[faili]);
838 		faili--;
839 	}
840 
841 	kfree(cb->compressed_pages);
842 fail1:
843 	kfree(cb);
844 out:
845 	free_extent_map(em);
846 	return ret;
847 }
848 
849 /*
850  * Heuristic uses systematic sampling to collect data from the input data
851  * range, the logic can be tuned by the following constants:
852  *
853  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
854  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
855  */
856 #define SAMPLING_READ_SIZE	(16)
857 #define SAMPLING_INTERVAL	(256)
858 
859 /*
860  * For statistical analysis of the input data we consider bytes that form a
861  * Galois Field of 256 objects. Each object has an attribute count, ie. how
862  * many times the object appeared in the sample.
863  */
864 #define BUCKET_SIZE		(256)
865 
866 /*
867  * The size of the sample is based on a statistical sampling rule of thumb.
868  * The common way is to perform sampling tests as long as the number of
869  * elements in each cell is at least 5.
870  *
871  * Instead of 5, we choose 32 to obtain more accurate results.
872  * If the data contain the maximum number of symbols, which is 256, we obtain a
873  * sample size bound by 8192.
874  *
875  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
876  * from up to 512 locations.
877  */
878 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
879 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
880 
881 struct bucket_item {
882 	u32 count;
883 };
884 
885 struct heuristic_ws {
886 	/* Partial copy of input data */
887 	u8 *sample;
888 	u32 sample_size;
889 	/* Buckets store counters for each byte value */
890 	struct bucket_item *bucket;
891 	/* Sorting buffer */
892 	struct bucket_item *bucket_b;
893 	struct list_head list;
894 };
895 
896 static struct workspace_manager heuristic_wsm;
897 
898 static void free_heuristic_ws(struct list_head *ws)
899 {
900 	struct heuristic_ws *workspace;
901 
902 	workspace = list_entry(ws, struct heuristic_ws, list);
903 
904 	kvfree(workspace->sample);
905 	kfree(workspace->bucket);
906 	kfree(workspace->bucket_b);
907 	kfree(workspace);
908 }
909 
910 static struct list_head *alloc_heuristic_ws(unsigned int level)
911 {
912 	struct heuristic_ws *ws;
913 
914 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
915 	if (!ws)
916 		return ERR_PTR(-ENOMEM);
917 
918 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
919 	if (!ws->sample)
920 		goto fail;
921 
922 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
923 	if (!ws->bucket)
924 		goto fail;
925 
926 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
927 	if (!ws->bucket_b)
928 		goto fail;
929 
930 	INIT_LIST_HEAD(&ws->list);
931 	return &ws->list;
932 fail:
933 	free_heuristic_ws(&ws->list);
934 	return ERR_PTR(-ENOMEM);
935 }
936 
937 const struct btrfs_compress_op btrfs_heuristic_compress = {
938 	.workspace_manager = &heuristic_wsm,
939 };
940 
941 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
942 	/* The heuristic is represented as compression type 0 */
943 	&btrfs_heuristic_compress,
944 	&btrfs_zlib_compress,
945 	&btrfs_lzo_compress,
946 	&btrfs_zstd_compress,
947 };
948 
949 static struct list_head *alloc_workspace(int type, unsigned int level)
950 {
951 	switch (type) {
952 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
953 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
954 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
955 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
956 	default:
957 		/*
958 		 * This can't happen, the type is validated several times
959 		 * before we get here.
960 		 */
961 		BUG();
962 	}
963 }
964 
965 static void free_workspace(int type, struct list_head *ws)
966 {
967 	switch (type) {
968 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
969 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
970 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
971 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
972 	default:
973 		/*
974 		 * This can't happen, the type is validated several times
975 		 * before we get here.
976 		 */
977 		BUG();
978 	}
979 }
980 
981 static void btrfs_init_workspace_manager(int type)
982 {
983 	struct workspace_manager *wsm;
984 	struct list_head *workspace;
985 
986 	wsm = btrfs_compress_op[type]->workspace_manager;
987 	INIT_LIST_HEAD(&wsm->idle_ws);
988 	spin_lock_init(&wsm->ws_lock);
989 	atomic_set(&wsm->total_ws, 0);
990 	init_waitqueue_head(&wsm->ws_wait);
991 
992 	/*
993 	 * Preallocate one workspace for each compression type so we can
994 	 * guarantee forward progress in the worst case
995 	 */
996 	workspace = alloc_workspace(type, 0);
997 	if (IS_ERR(workspace)) {
998 		pr_warn(
999 	"BTRFS: cannot preallocate compression workspace, will try later\n");
1000 	} else {
1001 		atomic_set(&wsm->total_ws, 1);
1002 		wsm->free_ws = 1;
1003 		list_add(workspace, &wsm->idle_ws);
1004 	}
1005 }
1006 
1007 static void btrfs_cleanup_workspace_manager(int type)
1008 {
1009 	struct workspace_manager *wsman;
1010 	struct list_head *ws;
1011 
1012 	wsman = btrfs_compress_op[type]->workspace_manager;
1013 	while (!list_empty(&wsman->idle_ws)) {
1014 		ws = wsman->idle_ws.next;
1015 		list_del(ws);
1016 		free_workspace(type, ws);
1017 		atomic_dec(&wsman->total_ws);
1018 	}
1019 }
1020 
1021 /*
1022  * This finds an available workspace or allocates a new one.
1023  * If it's not possible to allocate a new one, waits until there's one.
1024  * Preallocation makes a forward progress guarantees and we do not return
1025  * errors.
1026  */
1027 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1028 {
1029 	struct workspace_manager *wsm;
1030 	struct list_head *workspace;
1031 	int cpus = num_online_cpus();
1032 	unsigned nofs_flag;
1033 	struct list_head *idle_ws;
1034 	spinlock_t *ws_lock;
1035 	atomic_t *total_ws;
1036 	wait_queue_head_t *ws_wait;
1037 	int *free_ws;
1038 
1039 	wsm = btrfs_compress_op[type]->workspace_manager;
1040 	idle_ws	 = &wsm->idle_ws;
1041 	ws_lock	 = &wsm->ws_lock;
1042 	total_ws = &wsm->total_ws;
1043 	ws_wait	 = &wsm->ws_wait;
1044 	free_ws	 = &wsm->free_ws;
1045 
1046 again:
1047 	spin_lock(ws_lock);
1048 	if (!list_empty(idle_ws)) {
1049 		workspace = idle_ws->next;
1050 		list_del(workspace);
1051 		(*free_ws)--;
1052 		spin_unlock(ws_lock);
1053 		return workspace;
1054 
1055 	}
1056 	if (atomic_read(total_ws) > cpus) {
1057 		DEFINE_WAIT(wait);
1058 
1059 		spin_unlock(ws_lock);
1060 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1061 		if (atomic_read(total_ws) > cpus && !*free_ws)
1062 			schedule();
1063 		finish_wait(ws_wait, &wait);
1064 		goto again;
1065 	}
1066 	atomic_inc(total_ws);
1067 	spin_unlock(ws_lock);
1068 
1069 	/*
1070 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1071 	 * to turn it off here because we might get called from the restricted
1072 	 * context of btrfs_compress_bio/btrfs_compress_pages
1073 	 */
1074 	nofs_flag = memalloc_nofs_save();
1075 	workspace = alloc_workspace(type, level);
1076 	memalloc_nofs_restore(nofs_flag);
1077 
1078 	if (IS_ERR(workspace)) {
1079 		atomic_dec(total_ws);
1080 		wake_up(ws_wait);
1081 
1082 		/*
1083 		 * Do not return the error but go back to waiting. There's a
1084 		 * workspace preallocated for each type and the compression
1085 		 * time is bounded so we get to a workspace eventually. This
1086 		 * makes our caller's life easier.
1087 		 *
1088 		 * To prevent silent and low-probability deadlocks (when the
1089 		 * initial preallocation fails), check if there are any
1090 		 * workspaces at all.
1091 		 */
1092 		if (atomic_read(total_ws) == 0) {
1093 			static DEFINE_RATELIMIT_STATE(_rs,
1094 					/* once per minute */ 60 * HZ,
1095 					/* no burst */ 1);
1096 
1097 			if (__ratelimit(&_rs)) {
1098 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1099 			}
1100 		}
1101 		goto again;
1102 	}
1103 	return workspace;
1104 }
1105 
1106 static struct list_head *get_workspace(int type, int level)
1107 {
1108 	switch (type) {
1109 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1110 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1111 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1112 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1113 	default:
1114 		/*
1115 		 * This can't happen, the type is validated several times
1116 		 * before we get here.
1117 		 */
1118 		BUG();
1119 	}
1120 }
1121 
1122 /*
1123  * put a workspace struct back on the list or free it if we have enough
1124  * idle ones sitting around
1125  */
1126 void btrfs_put_workspace(int type, struct list_head *ws)
1127 {
1128 	struct workspace_manager *wsm;
1129 	struct list_head *idle_ws;
1130 	spinlock_t *ws_lock;
1131 	atomic_t *total_ws;
1132 	wait_queue_head_t *ws_wait;
1133 	int *free_ws;
1134 
1135 	wsm = btrfs_compress_op[type]->workspace_manager;
1136 	idle_ws	 = &wsm->idle_ws;
1137 	ws_lock	 = &wsm->ws_lock;
1138 	total_ws = &wsm->total_ws;
1139 	ws_wait	 = &wsm->ws_wait;
1140 	free_ws	 = &wsm->free_ws;
1141 
1142 	spin_lock(ws_lock);
1143 	if (*free_ws <= num_online_cpus()) {
1144 		list_add(ws, idle_ws);
1145 		(*free_ws)++;
1146 		spin_unlock(ws_lock);
1147 		goto wake;
1148 	}
1149 	spin_unlock(ws_lock);
1150 
1151 	free_workspace(type, ws);
1152 	atomic_dec(total_ws);
1153 wake:
1154 	cond_wake_up(ws_wait);
1155 }
1156 
1157 static void put_workspace(int type, struct list_head *ws)
1158 {
1159 	switch (type) {
1160 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1161 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1162 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1163 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1164 	default:
1165 		/*
1166 		 * This can't happen, the type is validated several times
1167 		 * before we get here.
1168 		 */
1169 		BUG();
1170 	}
1171 }
1172 
1173 /*
1174  * Adjust @level according to the limits of the compression algorithm or
1175  * fallback to default
1176  */
1177 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1178 {
1179 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1180 
1181 	if (level == 0)
1182 		level = ops->default_level;
1183 	else
1184 		level = min(level, ops->max_level);
1185 
1186 	return level;
1187 }
1188 
1189 /*
1190  * Given an address space and start and length, compress the bytes into @pages
1191  * that are allocated on demand.
1192  *
1193  * @type_level is encoded algorithm and level, where level 0 means whatever
1194  * default the algorithm chooses and is opaque here;
1195  * - compression algo are 0-3
1196  * - the level are bits 4-7
1197  *
1198  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1199  * and returns number of actually allocated pages
1200  *
1201  * @total_in is used to return the number of bytes actually read.  It
1202  * may be smaller than the input length if we had to exit early because we
1203  * ran out of room in the pages array or because we cross the
1204  * max_out threshold.
1205  *
1206  * @total_out is an in/out parameter, must be set to the input length and will
1207  * be also used to return the total number of compressed bytes
1208  */
1209 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1210 			 u64 start, struct page **pages,
1211 			 unsigned long *out_pages,
1212 			 unsigned long *total_in,
1213 			 unsigned long *total_out)
1214 {
1215 	int type = btrfs_compress_type(type_level);
1216 	int level = btrfs_compress_level(type_level);
1217 	struct list_head *workspace;
1218 	int ret;
1219 
1220 	level = btrfs_compress_set_level(type, level);
1221 	workspace = get_workspace(type, level);
1222 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1223 					 out_pages, total_in, total_out);
1224 	put_workspace(type, workspace);
1225 	return ret;
1226 }
1227 
1228 static int btrfs_decompress_bio(struct compressed_bio *cb)
1229 {
1230 	struct list_head *workspace;
1231 	int ret;
1232 	int type = cb->compress_type;
1233 
1234 	workspace = get_workspace(type, 0);
1235 	ret = compression_decompress_bio(type, workspace, cb);
1236 	put_workspace(type, workspace);
1237 
1238 	return ret;
1239 }
1240 
1241 /*
1242  * a less complex decompression routine.  Our compressed data fits in a
1243  * single page, and we want to read a single page out of it.
1244  * start_byte tells us the offset into the compressed data we're interested in
1245  */
1246 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1247 		     unsigned long start_byte, size_t srclen, size_t destlen)
1248 {
1249 	struct list_head *workspace;
1250 	int ret;
1251 
1252 	workspace = get_workspace(type, 0);
1253 	ret = compression_decompress(type, workspace, data_in, dest_page,
1254 				     start_byte, srclen, destlen);
1255 	put_workspace(type, workspace);
1256 
1257 	return ret;
1258 }
1259 
1260 void __init btrfs_init_compress(void)
1261 {
1262 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1263 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1264 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1265 	zstd_init_workspace_manager();
1266 }
1267 
1268 void __cold btrfs_exit_compress(void)
1269 {
1270 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1271 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1272 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1273 	zstd_cleanup_workspace_manager();
1274 }
1275 
1276 /*
1277  * Copy decompressed data from working buffer to pages.
1278  *
1279  * @buf:		The decompressed data buffer
1280  * @buf_len:		The decompressed data length
1281  * @decompressed:	Number of bytes that are already decompressed inside the
1282  * 			compressed extent
1283  * @cb:			The compressed extent descriptor
1284  * @orig_bio:		The original bio that the caller wants to read for
1285  *
1286  * An easier to understand graph is like below:
1287  *
1288  * 		|<- orig_bio ->|     |<- orig_bio->|
1289  * 	|<-------      full decompressed extent      ----->|
1290  * 	|<-----------    @cb range   ---->|
1291  * 	|			|<-- @buf_len -->|
1292  * 	|<--- @decompressed --->|
1293  *
1294  * Note that, @cb can be a subpage of the full decompressed extent, but
1295  * @cb->start always has the same as the orig_file_offset value of the full
1296  * decompressed extent.
1297  *
1298  * When reading compressed extent, we have to read the full compressed extent,
1299  * while @orig_bio may only want part of the range.
1300  * Thus this function will ensure only data covered by @orig_bio will be copied
1301  * to.
1302  *
1303  * Return 0 if we have copied all needed contents for @orig_bio.
1304  * Return >0 if we need continue decompress.
1305  */
1306 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1307 			      struct compressed_bio *cb, u32 decompressed)
1308 {
1309 	struct bio *orig_bio = cb->orig_bio;
1310 	/* Offset inside the full decompressed extent */
1311 	u32 cur_offset;
1312 
1313 	cur_offset = decompressed;
1314 	/* The main loop to do the copy */
1315 	while (cur_offset < decompressed + buf_len) {
1316 		struct bio_vec bvec;
1317 		size_t copy_len;
1318 		u32 copy_start;
1319 		/* Offset inside the full decompressed extent */
1320 		u32 bvec_offset;
1321 
1322 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1323 		/*
1324 		 * cb->start may underflow, but subtracting that value can still
1325 		 * give us correct offset inside the full decompressed extent.
1326 		 */
1327 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1328 
1329 		/* Haven't reached the bvec range, exit */
1330 		if (decompressed + buf_len <= bvec_offset)
1331 			return 1;
1332 
1333 		copy_start = max(cur_offset, bvec_offset);
1334 		copy_len = min(bvec_offset + bvec.bv_len,
1335 			       decompressed + buf_len) - copy_start;
1336 		ASSERT(copy_len);
1337 
1338 		/*
1339 		 * Extra range check to ensure we didn't go beyond
1340 		 * @buf + @buf_len.
1341 		 */
1342 		ASSERT(copy_start - decompressed < buf_len);
1343 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1344 			       buf + copy_start - decompressed, copy_len);
1345 		flush_dcache_page(bvec.bv_page);
1346 		cur_offset += copy_len;
1347 
1348 		bio_advance(orig_bio, copy_len);
1349 		/* Finished the bio */
1350 		if (!orig_bio->bi_iter.bi_size)
1351 			return 0;
1352 	}
1353 	return 1;
1354 }
1355 
1356 /*
1357  * Shannon Entropy calculation
1358  *
1359  * Pure byte distribution analysis fails to determine compressibility of data.
1360  * Try calculating entropy to estimate the average minimum number of bits
1361  * needed to encode the sampled data.
1362  *
1363  * For convenience, return the percentage of needed bits, instead of amount of
1364  * bits directly.
1365  *
1366  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1367  *			    and can be compressible with high probability
1368  *
1369  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1370  *
1371  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1372  */
1373 #define ENTROPY_LVL_ACEPTABLE		(65)
1374 #define ENTROPY_LVL_HIGH		(80)
1375 
1376 /*
1377  * For increasead precision in shannon_entropy calculation,
1378  * let's do pow(n, M) to save more digits after comma:
1379  *
1380  * - maximum int bit length is 64
1381  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1382  * - 13 * 4 = 52 < 64		-> M = 4
1383  *
1384  * So use pow(n, 4).
1385  */
1386 static inline u32 ilog2_w(u64 n)
1387 {
1388 	return ilog2(n * n * n * n);
1389 }
1390 
1391 static u32 shannon_entropy(struct heuristic_ws *ws)
1392 {
1393 	const u32 entropy_max = 8 * ilog2_w(2);
1394 	u32 entropy_sum = 0;
1395 	u32 p, p_base, sz_base;
1396 	u32 i;
1397 
1398 	sz_base = ilog2_w(ws->sample_size);
1399 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1400 		p = ws->bucket[i].count;
1401 		p_base = ilog2_w(p);
1402 		entropy_sum += p * (sz_base - p_base);
1403 	}
1404 
1405 	entropy_sum /= ws->sample_size;
1406 	return entropy_sum * 100 / entropy_max;
1407 }
1408 
1409 #define RADIX_BASE		4U
1410 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1411 
1412 static u8 get4bits(u64 num, int shift) {
1413 	u8 low4bits;
1414 
1415 	num >>= shift;
1416 	/* Reverse order */
1417 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1418 	return low4bits;
1419 }
1420 
1421 /*
1422  * Use 4 bits as radix base
1423  * Use 16 u32 counters for calculating new position in buf array
1424  *
1425  * @array     - array that will be sorted
1426  * @array_buf - buffer array to store sorting results
1427  *              must be equal in size to @array
1428  * @num       - array size
1429  */
1430 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1431 		       int num)
1432 {
1433 	u64 max_num;
1434 	u64 buf_num;
1435 	u32 counters[COUNTERS_SIZE];
1436 	u32 new_addr;
1437 	u32 addr;
1438 	int bitlen;
1439 	int shift;
1440 	int i;
1441 
1442 	/*
1443 	 * Try avoid useless loop iterations for small numbers stored in big
1444 	 * counters.  Example: 48 33 4 ... in 64bit array
1445 	 */
1446 	max_num = array[0].count;
1447 	for (i = 1; i < num; i++) {
1448 		buf_num = array[i].count;
1449 		if (buf_num > max_num)
1450 			max_num = buf_num;
1451 	}
1452 
1453 	buf_num = ilog2(max_num);
1454 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1455 
1456 	shift = 0;
1457 	while (shift < bitlen) {
1458 		memset(counters, 0, sizeof(counters));
1459 
1460 		for (i = 0; i < num; i++) {
1461 			buf_num = array[i].count;
1462 			addr = get4bits(buf_num, shift);
1463 			counters[addr]++;
1464 		}
1465 
1466 		for (i = 1; i < COUNTERS_SIZE; i++)
1467 			counters[i] += counters[i - 1];
1468 
1469 		for (i = num - 1; i >= 0; i--) {
1470 			buf_num = array[i].count;
1471 			addr = get4bits(buf_num, shift);
1472 			counters[addr]--;
1473 			new_addr = counters[addr];
1474 			array_buf[new_addr] = array[i];
1475 		}
1476 
1477 		shift += RADIX_BASE;
1478 
1479 		/*
1480 		 * Normal radix expects to move data from a temporary array, to
1481 		 * the main one.  But that requires some CPU time. Avoid that
1482 		 * by doing another sort iteration to original array instead of
1483 		 * memcpy()
1484 		 */
1485 		memset(counters, 0, sizeof(counters));
1486 
1487 		for (i = 0; i < num; i ++) {
1488 			buf_num = array_buf[i].count;
1489 			addr = get4bits(buf_num, shift);
1490 			counters[addr]++;
1491 		}
1492 
1493 		for (i = 1; i < COUNTERS_SIZE; i++)
1494 			counters[i] += counters[i - 1];
1495 
1496 		for (i = num - 1; i >= 0; i--) {
1497 			buf_num = array_buf[i].count;
1498 			addr = get4bits(buf_num, shift);
1499 			counters[addr]--;
1500 			new_addr = counters[addr];
1501 			array[new_addr] = array_buf[i];
1502 		}
1503 
1504 		shift += RADIX_BASE;
1505 	}
1506 }
1507 
1508 /*
1509  * Size of the core byte set - how many bytes cover 90% of the sample
1510  *
1511  * There are several types of structured binary data that use nearly all byte
1512  * values. The distribution can be uniform and counts in all buckets will be
1513  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1514  *
1515  * Other possibility is normal (Gaussian) distribution, where the data could
1516  * be potentially compressible, but we have to take a few more steps to decide
1517  * how much.
1518  *
1519  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1520  *                       compression algo can easy fix that
1521  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1522  *                       probability is not compressible
1523  */
1524 #define BYTE_CORE_SET_LOW		(64)
1525 #define BYTE_CORE_SET_HIGH		(200)
1526 
1527 static int byte_core_set_size(struct heuristic_ws *ws)
1528 {
1529 	u32 i;
1530 	u32 coreset_sum = 0;
1531 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1532 	struct bucket_item *bucket = ws->bucket;
1533 
1534 	/* Sort in reverse order */
1535 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1536 
1537 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1538 		coreset_sum += bucket[i].count;
1539 
1540 	if (coreset_sum > core_set_threshold)
1541 		return i;
1542 
1543 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1544 		coreset_sum += bucket[i].count;
1545 		if (coreset_sum > core_set_threshold)
1546 			break;
1547 	}
1548 
1549 	return i;
1550 }
1551 
1552 /*
1553  * Count byte values in buckets.
1554  * This heuristic can detect textual data (configs, xml, json, html, etc).
1555  * Because in most text-like data byte set is restricted to limited number of
1556  * possible characters, and that restriction in most cases makes data easy to
1557  * compress.
1558  *
1559  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1560  *	less - compressible
1561  *	more - need additional analysis
1562  */
1563 #define BYTE_SET_THRESHOLD		(64)
1564 
1565 static u32 byte_set_size(const struct heuristic_ws *ws)
1566 {
1567 	u32 i;
1568 	u32 byte_set_size = 0;
1569 
1570 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1571 		if (ws->bucket[i].count > 0)
1572 			byte_set_size++;
1573 	}
1574 
1575 	/*
1576 	 * Continue collecting count of byte values in buckets.  If the byte
1577 	 * set size is bigger then the threshold, it's pointless to continue,
1578 	 * the detection technique would fail for this type of data.
1579 	 */
1580 	for (; i < BUCKET_SIZE; i++) {
1581 		if (ws->bucket[i].count > 0) {
1582 			byte_set_size++;
1583 			if (byte_set_size > BYTE_SET_THRESHOLD)
1584 				return byte_set_size;
1585 		}
1586 	}
1587 
1588 	return byte_set_size;
1589 }
1590 
1591 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1592 {
1593 	const u32 half_of_sample = ws->sample_size / 2;
1594 	const u8 *data = ws->sample;
1595 
1596 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1597 }
1598 
1599 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1600 				     struct heuristic_ws *ws)
1601 {
1602 	struct page *page;
1603 	u64 index, index_end;
1604 	u32 i, curr_sample_pos;
1605 	u8 *in_data;
1606 
1607 	/*
1608 	 * Compression handles the input data by chunks of 128KiB
1609 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1610 	 *
1611 	 * We do the same for the heuristic and loop over the whole range.
1612 	 *
1613 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1614 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1615 	 */
1616 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1617 		end = start + BTRFS_MAX_UNCOMPRESSED;
1618 
1619 	index = start >> PAGE_SHIFT;
1620 	index_end = end >> PAGE_SHIFT;
1621 
1622 	/* Don't miss unaligned end */
1623 	if (!IS_ALIGNED(end, PAGE_SIZE))
1624 		index_end++;
1625 
1626 	curr_sample_pos = 0;
1627 	while (index < index_end) {
1628 		page = find_get_page(inode->i_mapping, index);
1629 		in_data = kmap_local_page(page);
1630 		/* Handle case where the start is not aligned to PAGE_SIZE */
1631 		i = start % PAGE_SIZE;
1632 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1633 			/* Don't sample any garbage from the last page */
1634 			if (start > end - SAMPLING_READ_SIZE)
1635 				break;
1636 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1637 					SAMPLING_READ_SIZE);
1638 			i += SAMPLING_INTERVAL;
1639 			start += SAMPLING_INTERVAL;
1640 			curr_sample_pos += SAMPLING_READ_SIZE;
1641 		}
1642 		kunmap_local(in_data);
1643 		put_page(page);
1644 
1645 		index++;
1646 	}
1647 
1648 	ws->sample_size = curr_sample_pos;
1649 }
1650 
1651 /*
1652  * Compression heuristic.
1653  *
1654  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1655  * quickly (compared to direct compression) detect data characteristics
1656  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1657  * data.
1658  *
1659  * The following types of analysis can be performed:
1660  * - detect mostly zero data
1661  * - detect data with low "byte set" size (text, etc)
1662  * - detect data with low/high "core byte" set
1663  *
1664  * Return non-zero if the compression should be done, 0 otherwise.
1665  */
1666 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1667 {
1668 	struct list_head *ws_list = get_workspace(0, 0);
1669 	struct heuristic_ws *ws;
1670 	u32 i;
1671 	u8 byte;
1672 	int ret = 0;
1673 
1674 	ws = list_entry(ws_list, struct heuristic_ws, list);
1675 
1676 	heuristic_collect_sample(inode, start, end, ws);
1677 
1678 	if (sample_repeated_patterns(ws)) {
1679 		ret = 1;
1680 		goto out;
1681 	}
1682 
1683 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1684 
1685 	for (i = 0; i < ws->sample_size; i++) {
1686 		byte = ws->sample[i];
1687 		ws->bucket[byte].count++;
1688 	}
1689 
1690 	i = byte_set_size(ws);
1691 	if (i < BYTE_SET_THRESHOLD) {
1692 		ret = 2;
1693 		goto out;
1694 	}
1695 
1696 	i = byte_core_set_size(ws);
1697 	if (i <= BYTE_CORE_SET_LOW) {
1698 		ret = 3;
1699 		goto out;
1700 	}
1701 
1702 	if (i >= BYTE_CORE_SET_HIGH) {
1703 		ret = 0;
1704 		goto out;
1705 	}
1706 
1707 	i = shannon_entropy(ws);
1708 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1709 		ret = 4;
1710 		goto out;
1711 	}
1712 
1713 	/*
1714 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1715 	 * needed to give green light to compression.
1716 	 *
1717 	 * For now just assume that compression at that level is not worth the
1718 	 * resources because:
1719 	 *
1720 	 * 1. it is possible to defrag the data later
1721 	 *
1722 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1723 	 * values, every bucket has counter at level ~54. The heuristic would
1724 	 * be confused. This can happen when data have some internal repeated
1725 	 * patterns like "abbacbbc...". This can be detected by analyzing
1726 	 * pairs of bytes, which is too costly.
1727 	 */
1728 	if (i < ENTROPY_LVL_HIGH) {
1729 		ret = 5;
1730 		goto out;
1731 	} else {
1732 		ret = 0;
1733 		goto out;
1734 	}
1735 
1736 out:
1737 	put_workspace(0, ws_list);
1738 	return ret;
1739 }
1740 
1741 /*
1742  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1743  * level, unrecognized string will set the default level
1744  */
1745 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1746 {
1747 	unsigned int level = 0;
1748 	int ret;
1749 
1750 	if (!type)
1751 		return 0;
1752 
1753 	if (str[0] == ':') {
1754 		ret = kstrtouint(str + 1, 10, &level);
1755 		if (ret)
1756 			level = 0;
1757 	}
1758 
1759 	level = btrfs_compress_set_level(type, level);
1760 
1761 	return level;
1762 }
1763