1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/pagevec.h> 12 #include <linux/highmem.h> 13 #include <linux/kthread.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/psi.h> 20 #include <linux/slab.h> 21 #include <linux/sched/mm.h> 22 #include <linux/log2.h> 23 #include <crypto/hash.h> 24 #include "misc.h" 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "btrfs_inode.h" 29 #include "volumes.h" 30 #include "ordered-data.h" 31 #include "compression.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "subpage.h" 35 #include "zoned.h" 36 37 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 38 39 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 40 { 41 switch (type) { 42 case BTRFS_COMPRESS_ZLIB: 43 case BTRFS_COMPRESS_LZO: 44 case BTRFS_COMPRESS_ZSTD: 45 case BTRFS_COMPRESS_NONE: 46 return btrfs_compress_types[type]; 47 default: 48 break; 49 } 50 51 return NULL; 52 } 53 54 bool btrfs_compress_is_valid_type(const char *str, size_t len) 55 { 56 int i; 57 58 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 59 size_t comp_len = strlen(btrfs_compress_types[i]); 60 61 if (len < comp_len) 62 continue; 63 64 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 65 return true; 66 } 67 return false; 68 } 69 70 static int compression_compress_pages(int type, struct list_head *ws, 71 struct address_space *mapping, u64 start, struct page **pages, 72 unsigned long *out_pages, unsigned long *total_in, 73 unsigned long *total_out) 74 { 75 switch (type) { 76 case BTRFS_COMPRESS_ZLIB: 77 return zlib_compress_pages(ws, mapping, start, pages, 78 out_pages, total_in, total_out); 79 case BTRFS_COMPRESS_LZO: 80 return lzo_compress_pages(ws, mapping, start, pages, 81 out_pages, total_in, total_out); 82 case BTRFS_COMPRESS_ZSTD: 83 return zstd_compress_pages(ws, mapping, start, pages, 84 out_pages, total_in, total_out); 85 case BTRFS_COMPRESS_NONE: 86 default: 87 /* 88 * This can happen when compression races with remount setting 89 * it to 'no compress', while caller doesn't call 90 * inode_need_compress() to check if we really need to 91 * compress. 92 * 93 * Not a big deal, just need to inform caller that we 94 * haven't allocated any pages yet. 95 */ 96 *out_pages = 0; 97 return -E2BIG; 98 } 99 } 100 101 static int compression_decompress_bio(struct list_head *ws, 102 struct compressed_bio *cb) 103 { 104 switch (cb->compress_type) { 105 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 106 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 107 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 108 case BTRFS_COMPRESS_NONE: 109 default: 110 /* 111 * This can't happen, the type is validated several times 112 * before we get here. 113 */ 114 BUG(); 115 } 116 } 117 118 static int compression_decompress(int type, struct list_head *ws, 119 unsigned char *data_in, struct page *dest_page, 120 unsigned long start_byte, size_t srclen, size_t destlen) 121 { 122 switch (type) { 123 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 124 start_byte, srclen, destlen); 125 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 126 start_byte, srclen, destlen); 127 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 128 start_byte, srclen, destlen); 129 case BTRFS_COMPRESS_NONE: 130 default: 131 /* 132 * This can't happen, the type is validated several times 133 * before we get here. 134 */ 135 BUG(); 136 } 137 } 138 139 static int btrfs_decompress_bio(struct compressed_bio *cb); 140 141 static void finish_compressed_bio_read(struct compressed_bio *cb) 142 { 143 unsigned int index; 144 struct page *page; 145 146 if (cb->status == BLK_STS_OK) 147 cb->status = errno_to_blk_status(btrfs_decompress_bio(cb)); 148 149 /* Release the compressed pages */ 150 for (index = 0; index < cb->nr_pages; index++) { 151 page = cb->compressed_pages[index]; 152 page->mapping = NULL; 153 put_page(page); 154 } 155 156 /* Do io completion on the original bio */ 157 btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status); 158 159 /* Finally free the cb struct */ 160 kfree(cb->compressed_pages); 161 kfree(cb); 162 } 163 164 /* 165 * Verify the checksums and kick off repair if needed on the uncompressed data 166 * before decompressing it into the original bio and freeing the uncompressed 167 * pages. 168 */ 169 static void end_compressed_bio_read(struct btrfs_bio *bbio) 170 { 171 struct compressed_bio *cb = bbio->private; 172 struct inode *inode = cb->inode; 173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 174 struct btrfs_inode *bi = BTRFS_I(inode); 175 bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) && 176 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 177 blk_status_t status = bbio->bio.bi_status; 178 struct bvec_iter iter; 179 struct bio_vec bv; 180 u32 offset; 181 182 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) { 183 u64 start = bbio->file_offset + offset; 184 185 if (!status && 186 (!csum || !btrfs_check_data_csum(inode, bbio, offset, 187 bv.bv_page, bv.bv_offset))) { 188 btrfs_clean_io_failure(bi, start, bv.bv_page, 189 bv.bv_offset); 190 } else { 191 int ret; 192 193 refcount_inc(&cb->pending_ios); 194 ret = btrfs_repair_one_sector(inode, bbio, offset, 195 bv.bv_page, bv.bv_offset, 196 btrfs_submit_data_read_bio); 197 if (ret) { 198 refcount_dec(&cb->pending_ios); 199 status = errno_to_blk_status(ret); 200 } 201 } 202 } 203 204 if (status) 205 cb->status = status; 206 207 if (refcount_dec_and_test(&cb->pending_ios)) 208 finish_compressed_bio_read(cb); 209 btrfs_bio_free_csum(bbio); 210 bio_put(&bbio->bio); 211 } 212 213 /* 214 * Clear the writeback bits on all of the file 215 * pages for a compressed write 216 */ 217 static noinline void end_compressed_writeback(struct inode *inode, 218 const struct compressed_bio *cb) 219 { 220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 221 unsigned long index = cb->start >> PAGE_SHIFT; 222 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 223 struct folio_batch fbatch; 224 const int errno = blk_status_to_errno(cb->status); 225 int i; 226 int ret; 227 228 if (errno) 229 mapping_set_error(inode->i_mapping, errno); 230 231 folio_batch_init(&fbatch); 232 while (index <= end_index) { 233 ret = filemap_get_folios(inode->i_mapping, &index, end_index, 234 &fbatch); 235 236 if (ret == 0) 237 return; 238 239 for (i = 0; i < ret; i++) { 240 struct folio *folio = fbatch.folios[i]; 241 242 if (errno) 243 folio_set_error(folio); 244 btrfs_page_clamp_clear_writeback(fs_info, &folio->page, 245 cb->start, cb->len); 246 } 247 folio_batch_release(&fbatch); 248 } 249 /* the inode may be gone now */ 250 } 251 252 static void finish_compressed_bio_write(struct compressed_bio *cb) 253 { 254 struct inode *inode = cb->inode; 255 unsigned int index; 256 257 /* 258 * Ok, we're the last bio for this extent, step one is to call back 259 * into the FS and do all the end_io operations. 260 */ 261 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL, 262 cb->start, cb->start + cb->len - 1, 263 cb->status == BLK_STS_OK); 264 265 if (cb->writeback) 266 end_compressed_writeback(inode, cb); 267 /* Note, our inode could be gone now */ 268 269 /* 270 * Release the compressed pages, these came from alloc_page and 271 * are not attached to the inode at all 272 */ 273 for (index = 0; index < cb->nr_pages; index++) { 274 struct page *page = cb->compressed_pages[index]; 275 276 page->mapping = NULL; 277 put_page(page); 278 } 279 280 /* Finally free the cb struct */ 281 kfree(cb->compressed_pages); 282 kfree(cb); 283 } 284 285 static void btrfs_finish_compressed_write_work(struct work_struct *work) 286 { 287 struct compressed_bio *cb = 288 container_of(work, struct compressed_bio, write_end_work); 289 290 finish_compressed_bio_write(cb); 291 } 292 293 /* 294 * Do the cleanup once all the compressed pages hit the disk. This will clear 295 * writeback on the file pages and free the compressed pages. 296 * 297 * This also calls the writeback end hooks for the file pages so that metadata 298 * and checksums can be updated in the file. 299 */ 300 static void end_compressed_bio_write(struct btrfs_bio *bbio) 301 { 302 struct compressed_bio *cb = bbio->private; 303 304 if (bbio->bio.bi_status) 305 cb->status = bbio->bio.bi_status; 306 307 if (refcount_dec_and_test(&cb->pending_ios)) { 308 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 309 310 btrfs_record_physical_zoned(cb->inode, cb->start, &bbio->bio); 311 queue_work(fs_info->compressed_write_workers, &cb->write_end_work); 312 } 313 bio_put(&bbio->bio); 314 } 315 316 /* 317 * Allocate a compressed_bio, which will be used to read/write on-disk 318 * (aka, compressed) * data. 319 * 320 * @cb: The compressed_bio structure, which records all the needed 321 * information to bind the compressed data to the uncompressed 322 * page cache. 323 * @disk_byten: The logical bytenr where the compressed data will be read 324 * from or written to. 325 * @endio_func: The endio function to call after the IO for compressed data 326 * is finished. 327 * @next_stripe_start: Return value of logical bytenr of where next stripe starts. 328 * Let the caller know to only fill the bio up to the stripe 329 * boundary. 330 */ 331 332 333 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr, 334 blk_opf_t opf, 335 btrfs_bio_end_io_t endio_func, 336 u64 *next_stripe_start) 337 { 338 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 339 struct btrfs_io_geometry geom; 340 struct extent_map *em; 341 struct bio *bio; 342 int ret; 343 344 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, endio_func, cb); 345 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 346 347 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize); 348 if (IS_ERR(em)) { 349 bio_put(bio); 350 return ERR_CAST(em); 351 } 352 353 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 354 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev); 355 356 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom); 357 free_extent_map(em); 358 if (ret < 0) { 359 bio_put(bio); 360 return ERR_PTR(ret); 361 } 362 *next_stripe_start = disk_bytenr + geom.len; 363 refcount_inc(&cb->pending_ios); 364 return bio; 365 } 366 367 /* 368 * worker function to build and submit bios for previously compressed pages. 369 * The corresponding pages in the inode should be marked for writeback 370 * and the compressed pages should have a reference on them for dropping 371 * when the IO is complete. 372 * 373 * This also checksums the file bytes and gets things ready for 374 * the end io hooks. 375 */ 376 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 377 unsigned int len, u64 disk_start, 378 unsigned int compressed_len, 379 struct page **compressed_pages, 380 unsigned int nr_pages, 381 blk_opf_t write_flags, 382 struct cgroup_subsys_state *blkcg_css, 383 bool writeback) 384 { 385 struct btrfs_fs_info *fs_info = inode->root->fs_info; 386 struct bio *bio = NULL; 387 struct compressed_bio *cb; 388 u64 cur_disk_bytenr = disk_start; 389 u64 next_stripe_start; 390 blk_status_t ret = BLK_STS_OK; 391 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 392 const bool use_append = btrfs_use_zone_append(inode, disk_start); 393 const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE; 394 395 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 396 IS_ALIGNED(len, fs_info->sectorsize)); 397 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS); 398 if (!cb) 399 return BLK_STS_RESOURCE; 400 refcount_set(&cb->pending_ios, 1); 401 cb->status = BLK_STS_OK; 402 cb->inode = &inode->vfs_inode; 403 cb->start = start; 404 cb->len = len; 405 cb->compressed_pages = compressed_pages; 406 cb->compressed_len = compressed_len; 407 cb->writeback = writeback; 408 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); 409 cb->nr_pages = nr_pages; 410 411 if (blkcg_css) 412 kthread_associate_blkcg(blkcg_css); 413 414 while (cur_disk_bytenr < disk_start + compressed_len) { 415 u64 offset = cur_disk_bytenr - disk_start; 416 unsigned int index = offset >> PAGE_SHIFT; 417 unsigned int real_size; 418 unsigned int added; 419 struct page *page = compressed_pages[index]; 420 bool submit = false; 421 422 /* Allocate new bio if submitted or not yet allocated */ 423 if (!bio) { 424 bio = alloc_compressed_bio(cb, cur_disk_bytenr, 425 bio_op | write_flags, end_compressed_bio_write, 426 &next_stripe_start); 427 if (IS_ERR(bio)) { 428 ret = errno_to_blk_status(PTR_ERR(bio)); 429 break; 430 } 431 if (blkcg_css) 432 bio->bi_opf |= REQ_CGROUP_PUNT; 433 } 434 /* 435 * We should never reach next_stripe_start start as we will 436 * submit comp_bio when reach the boundary immediately. 437 */ 438 ASSERT(cur_disk_bytenr != next_stripe_start); 439 440 /* 441 * We have various limits on the real read size: 442 * - stripe boundary 443 * - page boundary 444 * - compressed length boundary 445 */ 446 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr); 447 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 448 real_size = min_t(u64, real_size, compressed_len - offset); 449 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 450 451 if (use_append) 452 added = bio_add_zone_append_page(bio, page, real_size, 453 offset_in_page(offset)); 454 else 455 added = bio_add_page(bio, page, real_size, 456 offset_in_page(offset)); 457 /* Reached zoned boundary */ 458 if (added == 0) 459 submit = true; 460 461 cur_disk_bytenr += added; 462 /* Reached stripe boundary */ 463 if (cur_disk_bytenr == next_stripe_start) 464 submit = true; 465 466 /* Finished the range */ 467 if (cur_disk_bytenr == disk_start + compressed_len) 468 submit = true; 469 470 if (submit) { 471 if (!skip_sum) { 472 ret = btrfs_csum_one_bio(inode, bio, start, true); 473 if (ret) { 474 btrfs_bio_end_io(btrfs_bio(bio), ret); 475 break; 476 } 477 } 478 479 ASSERT(bio->bi_iter.bi_size); 480 btrfs_submit_bio(fs_info, bio, 0); 481 bio = NULL; 482 } 483 cond_resched(); 484 } 485 486 if (blkcg_css) 487 kthread_associate_blkcg(NULL); 488 489 if (refcount_dec_and_test(&cb->pending_ios)) 490 finish_compressed_bio_write(cb); 491 return ret; 492 } 493 494 static u64 bio_end_offset(struct bio *bio) 495 { 496 struct bio_vec *last = bio_last_bvec_all(bio); 497 498 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 499 } 500 501 /* 502 * Add extra pages in the same compressed file extent so that we don't need to 503 * re-read the same extent again and again. 504 * 505 * NOTE: this won't work well for subpage, as for subpage read, we lock the 506 * full page then submit bio for each compressed/regular extents. 507 * 508 * This means, if we have several sectors in the same page points to the same 509 * on-disk compressed data, we will re-read the same extent many times and 510 * this function can only help for the next page. 511 */ 512 static noinline int add_ra_bio_pages(struct inode *inode, 513 u64 compressed_end, 514 struct compressed_bio *cb, 515 int *memstall, unsigned long *pflags) 516 { 517 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 518 unsigned long end_index; 519 u64 cur = bio_end_offset(cb->orig_bio); 520 u64 isize = i_size_read(inode); 521 int ret; 522 struct page *page; 523 struct extent_map *em; 524 struct address_space *mapping = inode->i_mapping; 525 struct extent_map_tree *em_tree; 526 struct extent_io_tree *tree; 527 int sectors_missed = 0; 528 529 em_tree = &BTRFS_I(inode)->extent_tree; 530 tree = &BTRFS_I(inode)->io_tree; 531 532 if (isize == 0) 533 return 0; 534 535 /* 536 * For current subpage support, we only support 64K page size, 537 * which means maximum compressed extent size (128K) is just 2x page 538 * size. 539 * This makes readahead less effective, so here disable readahead for 540 * subpage for now, until full compressed write is supported. 541 */ 542 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 543 return 0; 544 545 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 546 547 while (cur < compressed_end) { 548 u64 page_end; 549 u64 pg_index = cur >> PAGE_SHIFT; 550 u32 add_size; 551 552 if (pg_index > end_index) 553 break; 554 555 page = xa_load(&mapping->i_pages, pg_index); 556 if (page && !xa_is_value(page)) { 557 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 558 fs_info->sectorsize_bits; 559 560 /* Beyond threshold, no need to continue */ 561 if (sectors_missed > 4) 562 break; 563 564 /* 565 * Jump to next page start as we already have page for 566 * current offset. 567 */ 568 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 569 continue; 570 } 571 572 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 573 ~__GFP_FS)); 574 if (!page) 575 break; 576 577 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 578 put_page(page); 579 /* There is already a page, skip to page end */ 580 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 581 continue; 582 } 583 584 if (!*memstall && PageWorkingset(page)) { 585 psi_memstall_enter(pflags); 586 *memstall = 1; 587 } 588 589 ret = set_page_extent_mapped(page); 590 if (ret < 0) { 591 unlock_page(page); 592 put_page(page); 593 break; 594 } 595 596 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 597 lock_extent(tree, cur, page_end, NULL); 598 read_lock(&em_tree->lock); 599 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 600 read_unlock(&em_tree->lock); 601 602 /* 603 * At this point, we have a locked page in the page cache for 604 * these bytes in the file. But, we have to make sure they map 605 * to this compressed extent on disk. 606 */ 607 if (!em || cur < em->start || 608 (cur + fs_info->sectorsize > extent_map_end(em)) || 609 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 610 free_extent_map(em); 611 unlock_extent(tree, cur, page_end, NULL); 612 unlock_page(page); 613 put_page(page); 614 break; 615 } 616 free_extent_map(em); 617 618 if (page->index == end_index) { 619 size_t zero_offset = offset_in_page(isize); 620 621 if (zero_offset) { 622 int zeros; 623 zeros = PAGE_SIZE - zero_offset; 624 memzero_page(page, zero_offset, zeros); 625 } 626 } 627 628 add_size = min(em->start + em->len, page_end + 1) - cur; 629 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur)); 630 if (ret != add_size) { 631 unlock_extent(tree, cur, page_end, NULL); 632 unlock_page(page); 633 put_page(page); 634 break; 635 } 636 /* 637 * If it's subpage, we also need to increase its 638 * subpage::readers number, as at endio we will decrease 639 * subpage::readers and to unlock the page. 640 */ 641 if (fs_info->sectorsize < PAGE_SIZE) 642 btrfs_subpage_start_reader(fs_info, page, cur, add_size); 643 put_page(page); 644 cur += add_size; 645 } 646 return 0; 647 } 648 649 /* 650 * for a compressed read, the bio we get passed has all the inode pages 651 * in it. We don't actually do IO on those pages but allocate new ones 652 * to hold the compressed pages on disk. 653 * 654 * bio->bi_iter.bi_sector points to the compressed extent on disk 655 * bio->bi_io_vec points to all of the inode pages 656 * 657 * After the compressed pages are read, we copy the bytes into the 658 * bio we were passed and then call the bio end_io calls 659 */ 660 void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 661 int mirror_num) 662 { 663 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 664 struct extent_map_tree *em_tree; 665 struct compressed_bio *cb; 666 unsigned int compressed_len; 667 struct bio *comp_bio = NULL; 668 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 669 u64 cur_disk_byte = disk_bytenr; 670 u64 next_stripe_start; 671 u64 file_offset; 672 u64 em_len; 673 u64 em_start; 674 struct extent_map *em; 675 unsigned long pflags; 676 int memstall = 0; 677 blk_status_t ret; 678 int ret2; 679 int i; 680 681 em_tree = &BTRFS_I(inode)->extent_tree; 682 683 file_offset = bio_first_bvec_all(bio)->bv_offset + 684 page_offset(bio_first_page_all(bio)); 685 686 /* we need the actual starting offset of this extent in the file */ 687 read_lock(&em_tree->lock); 688 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 689 read_unlock(&em_tree->lock); 690 if (!em) { 691 ret = BLK_STS_IOERR; 692 goto out; 693 } 694 695 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE); 696 compressed_len = em->block_len; 697 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS); 698 if (!cb) { 699 ret = BLK_STS_RESOURCE; 700 goto out; 701 } 702 703 refcount_set(&cb->pending_ios, 1); 704 cb->status = BLK_STS_OK; 705 cb->inode = inode; 706 707 cb->start = em->orig_start; 708 em_len = em->len; 709 em_start = em->start; 710 711 cb->len = bio->bi_iter.bi_size; 712 cb->compressed_len = compressed_len; 713 cb->compress_type = em->compress_type; 714 cb->orig_bio = bio; 715 716 free_extent_map(em); 717 em = NULL; 718 719 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 720 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS); 721 if (!cb->compressed_pages) { 722 ret = BLK_STS_RESOURCE; 723 goto fail; 724 } 725 726 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages); 727 if (ret2) { 728 ret = BLK_STS_RESOURCE; 729 goto fail; 730 } 731 732 add_ra_bio_pages(inode, em_start + em_len, cb, &memstall, &pflags); 733 734 /* include any pages we added in add_ra-bio_pages */ 735 cb->len = bio->bi_iter.bi_size; 736 737 while (cur_disk_byte < disk_bytenr + compressed_len) { 738 u64 offset = cur_disk_byte - disk_bytenr; 739 unsigned int index = offset >> PAGE_SHIFT; 740 unsigned int real_size; 741 unsigned int added; 742 struct page *page = cb->compressed_pages[index]; 743 bool submit = false; 744 745 /* Allocate new bio if submitted or not yet allocated */ 746 if (!comp_bio) { 747 comp_bio = alloc_compressed_bio(cb, cur_disk_byte, 748 REQ_OP_READ, end_compressed_bio_read, 749 &next_stripe_start); 750 if (IS_ERR(comp_bio)) { 751 cb->status = errno_to_blk_status(PTR_ERR(comp_bio)); 752 break; 753 } 754 } 755 /* 756 * We should never reach next_stripe_start start as we will 757 * submit comp_bio when reach the boundary immediately. 758 */ 759 ASSERT(cur_disk_byte != next_stripe_start); 760 /* 761 * We have various limit on the real read size: 762 * - stripe boundary 763 * - page boundary 764 * - compressed length boundary 765 */ 766 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte); 767 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 768 real_size = min_t(u64, real_size, compressed_len - offset); 769 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 770 771 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset)); 772 /* 773 * Maximum compressed extent is smaller than bio size limit, 774 * thus bio_add_page() should always success. 775 */ 776 ASSERT(added == real_size); 777 cur_disk_byte += added; 778 779 /* Reached stripe boundary, need to submit */ 780 if (cur_disk_byte == next_stripe_start) 781 submit = true; 782 783 /* Has finished the range, need to submit */ 784 if (cur_disk_byte == disk_bytenr + compressed_len) 785 submit = true; 786 787 if (submit) { 788 /* Save the original iter for read repair */ 789 if (bio_op(comp_bio) == REQ_OP_READ) 790 btrfs_bio(comp_bio)->iter = comp_bio->bi_iter; 791 792 /* 793 * Save the initial offset of this chunk, as there 794 * is no direct correlation between compressed pages and 795 * the original file offset. The field is only used for 796 * priting error messages. 797 */ 798 btrfs_bio(comp_bio)->file_offset = file_offset; 799 800 ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL); 801 if (ret) { 802 btrfs_bio_end_io(btrfs_bio(comp_bio), ret); 803 break; 804 } 805 806 ASSERT(comp_bio->bi_iter.bi_size); 807 btrfs_submit_bio(fs_info, comp_bio, mirror_num); 808 comp_bio = NULL; 809 } 810 } 811 812 if (memstall) 813 psi_memstall_leave(&pflags); 814 815 if (refcount_dec_and_test(&cb->pending_ios)) 816 finish_compressed_bio_read(cb); 817 return; 818 819 fail: 820 if (cb->compressed_pages) { 821 for (i = 0; i < cb->nr_pages; i++) { 822 if (cb->compressed_pages[i]) 823 __free_page(cb->compressed_pages[i]); 824 } 825 } 826 827 kfree(cb->compressed_pages); 828 kfree(cb); 829 out: 830 free_extent_map(em); 831 btrfs_bio_end_io(btrfs_bio(bio), ret); 832 return; 833 } 834 835 /* 836 * Heuristic uses systematic sampling to collect data from the input data 837 * range, the logic can be tuned by the following constants: 838 * 839 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 840 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 841 */ 842 #define SAMPLING_READ_SIZE (16) 843 #define SAMPLING_INTERVAL (256) 844 845 /* 846 * For statistical analysis of the input data we consider bytes that form a 847 * Galois Field of 256 objects. Each object has an attribute count, ie. how 848 * many times the object appeared in the sample. 849 */ 850 #define BUCKET_SIZE (256) 851 852 /* 853 * The size of the sample is based on a statistical sampling rule of thumb. 854 * The common way is to perform sampling tests as long as the number of 855 * elements in each cell is at least 5. 856 * 857 * Instead of 5, we choose 32 to obtain more accurate results. 858 * If the data contain the maximum number of symbols, which is 256, we obtain a 859 * sample size bound by 8192. 860 * 861 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 862 * from up to 512 locations. 863 */ 864 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 865 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 866 867 struct bucket_item { 868 u32 count; 869 }; 870 871 struct heuristic_ws { 872 /* Partial copy of input data */ 873 u8 *sample; 874 u32 sample_size; 875 /* Buckets store counters for each byte value */ 876 struct bucket_item *bucket; 877 /* Sorting buffer */ 878 struct bucket_item *bucket_b; 879 struct list_head list; 880 }; 881 882 static struct workspace_manager heuristic_wsm; 883 884 static void free_heuristic_ws(struct list_head *ws) 885 { 886 struct heuristic_ws *workspace; 887 888 workspace = list_entry(ws, struct heuristic_ws, list); 889 890 kvfree(workspace->sample); 891 kfree(workspace->bucket); 892 kfree(workspace->bucket_b); 893 kfree(workspace); 894 } 895 896 static struct list_head *alloc_heuristic_ws(unsigned int level) 897 { 898 struct heuristic_ws *ws; 899 900 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 901 if (!ws) 902 return ERR_PTR(-ENOMEM); 903 904 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 905 if (!ws->sample) 906 goto fail; 907 908 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 909 if (!ws->bucket) 910 goto fail; 911 912 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 913 if (!ws->bucket_b) 914 goto fail; 915 916 INIT_LIST_HEAD(&ws->list); 917 return &ws->list; 918 fail: 919 free_heuristic_ws(&ws->list); 920 return ERR_PTR(-ENOMEM); 921 } 922 923 const struct btrfs_compress_op btrfs_heuristic_compress = { 924 .workspace_manager = &heuristic_wsm, 925 }; 926 927 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 928 /* The heuristic is represented as compression type 0 */ 929 &btrfs_heuristic_compress, 930 &btrfs_zlib_compress, 931 &btrfs_lzo_compress, 932 &btrfs_zstd_compress, 933 }; 934 935 static struct list_head *alloc_workspace(int type, unsigned int level) 936 { 937 switch (type) { 938 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 939 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 940 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 941 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 942 default: 943 /* 944 * This can't happen, the type is validated several times 945 * before we get here. 946 */ 947 BUG(); 948 } 949 } 950 951 static void free_workspace(int type, struct list_head *ws) 952 { 953 switch (type) { 954 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 955 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 956 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 957 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 958 default: 959 /* 960 * This can't happen, the type is validated several times 961 * before we get here. 962 */ 963 BUG(); 964 } 965 } 966 967 static void btrfs_init_workspace_manager(int type) 968 { 969 struct workspace_manager *wsm; 970 struct list_head *workspace; 971 972 wsm = btrfs_compress_op[type]->workspace_manager; 973 INIT_LIST_HEAD(&wsm->idle_ws); 974 spin_lock_init(&wsm->ws_lock); 975 atomic_set(&wsm->total_ws, 0); 976 init_waitqueue_head(&wsm->ws_wait); 977 978 /* 979 * Preallocate one workspace for each compression type so we can 980 * guarantee forward progress in the worst case 981 */ 982 workspace = alloc_workspace(type, 0); 983 if (IS_ERR(workspace)) { 984 pr_warn( 985 "BTRFS: cannot preallocate compression workspace, will try later\n"); 986 } else { 987 atomic_set(&wsm->total_ws, 1); 988 wsm->free_ws = 1; 989 list_add(workspace, &wsm->idle_ws); 990 } 991 } 992 993 static void btrfs_cleanup_workspace_manager(int type) 994 { 995 struct workspace_manager *wsman; 996 struct list_head *ws; 997 998 wsman = btrfs_compress_op[type]->workspace_manager; 999 while (!list_empty(&wsman->idle_ws)) { 1000 ws = wsman->idle_ws.next; 1001 list_del(ws); 1002 free_workspace(type, ws); 1003 atomic_dec(&wsman->total_ws); 1004 } 1005 } 1006 1007 /* 1008 * This finds an available workspace or allocates a new one. 1009 * If it's not possible to allocate a new one, waits until there's one. 1010 * Preallocation makes a forward progress guarantees and we do not return 1011 * errors. 1012 */ 1013 struct list_head *btrfs_get_workspace(int type, unsigned int level) 1014 { 1015 struct workspace_manager *wsm; 1016 struct list_head *workspace; 1017 int cpus = num_online_cpus(); 1018 unsigned nofs_flag; 1019 struct list_head *idle_ws; 1020 spinlock_t *ws_lock; 1021 atomic_t *total_ws; 1022 wait_queue_head_t *ws_wait; 1023 int *free_ws; 1024 1025 wsm = btrfs_compress_op[type]->workspace_manager; 1026 idle_ws = &wsm->idle_ws; 1027 ws_lock = &wsm->ws_lock; 1028 total_ws = &wsm->total_ws; 1029 ws_wait = &wsm->ws_wait; 1030 free_ws = &wsm->free_ws; 1031 1032 again: 1033 spin_lock(ws_lock); 1034 if (!list_empty(idle_ws)) { 1035 workspace = idle_ws->next; 1036 list_del(workspace); 1037 (*free_ws)--; 1038 spin_unlock(ws_lock); 1039 return workspace; 1040 1041 } 1042 if (atomic_read(total_ws) > cpus) { 1043 DEFINE_WAIT(wait); 1044 1045 spin_unlock(ws_lock); 1046 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1047 if (atomic_read(total_ws) > cpus && !*free_ws) 1048 schedule(); 1049 finish_wait(ws_wait, &wait); 1050 goto again; 1051 } 1052 atomic_inc(total_ws); 1053 spin_unlock(ws_lock); 1054 1055 /* 1056 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1057 * to turn it off here because we might get called from the restricted 1058 * context of btrfs_compress_bio/btrfs_compress_pages 1059 */ 1060 nofs_flag = memalloc_nofs_save(); 1061 workspace = alloc_workspace(type, level); 1062 memalloc_nofs_restore(nofs_flag); 1063 1064 if (IS_ERR(workspace)) { 1065 atomic_dec(total_ws); 1066 wake_up(ws_wait); 1067 1068 /* 1069 * Do not return the error but go back to waiting. There's a 1070 * workspace preallocated for each type and the compression 1071 * time is bounded so we get to a workspace eventually. This 1072 * makes our caller's life easier. 1073 * 1074 * To prevent silent and low-probability deadlocks (when the 1075 * initial preallocation fails), check if there are any 1076 * workspaces at all. 1077 */ 1078 if (atomic_read(total_ws) == 0) { 1079 static DEFINE_RATELIMIT_STATE(_rs, 1080 /* once per minute */ 60 * HZ, 1081 /* no burst */ 1); 1082 1083 if (__ratelimit(&_rs)) { 1084 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1085 } 1086 } 1087 goto again; 1088 } 1089 return workspace; 1090 } 1091 1092 static struct list_head *get_workspace(int type, int level) 1093 { 1094 switch (type) { 1095 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1096 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1097 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1098 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1099 default: 1100 /* 1101 * This can't happen, the type is validated several times 1102 * before we get here. 1103 */ 1104 BUG(); 1105 } 1106 } 1107 1108 /* 1109 * put a workspace struct back on the list or free it if we have enough 1110 * idle ones sitting around 1111 */ 1112 void btrfs_put_workspace(int type, struct list_head *ws) 1113 { 1114 struct workspace_manager *wsm; 1115 struct list_head *idle_ws; 1116 spinlock_t *ws_lock; 1117 atomic_t *total_ws; 1118 wait_queue_head_t *ws_wait; 1119 int *free_ws; 1120 1121 wsm = btrfs_compress_op[type]->workspace_manager; 1122 idle_ws = &wsm->idle_ws; 1123 ws_lock = &wsm->ws_lock; 1124 total_ws = &wsm->total_ws; 1125 ws_wait = &wsm->ws_wait; 1126 free_ws = &wsm->free_ws; 1127 1128 spin_lock(ws_lock); 1129 if (*free_ws <= num_online_cpus()) { 1130 list_add(ws, idle_ws); 1131 (*free_ws)++; 1132 spin_unlock(ws_lock); 1133 goto wake; 1134 } 1135 spin_unlock(ws_lock); 1136 1137 free_workspace(type, ws); 1138 atomic_dec(total_ws); 1139 wake: 1140 cond_wake_up(ws_wait); 1141 } 1142 1143 static void put_workspace(int type, struct list_head *ws) 1144 { 1145 switch (type) { 1146 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1147 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1148 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1149 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1150 default: 1151 /* 1152 * This can't happen, the type is validated several times 1153 * before we get here. 1154 */ 1155 BUG(); 1156 } 1157 } 1158 1159 /* 1160 * Adjust @level according to the limits of the compression algorithm or 1161 * fallback to default 1162 */ 1163 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1164 { 1165 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1166 1167 if (level == 0) 1168 level = ops->default_level; 1169 else 1170 level = min(level, ops->max_level); 1171 1172 return level; 1173 } 1174 1175 /* 1176 * Given an address space and start and length, compress the bytes into @pages 1177 * that are allocated on demand. 1178 * 1179 * @type_level is encoded algorithm and level, where level 0 means whatever 1180 * default the algorithm chooses and is opaque here; 1181 * - compression algo are 0-3 1182 * - the level are bits 4-7 1183 * 1184 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1185 * and returns number of actually allocated pages 1186 * 1187 * @total_in is used to return the number of bytes actually read. It 1188 * may be smaller than the input length if we had to exit early because we 1189 * ran out of room in the pages array or because we cross the 1190 * max_out threshold. 1191 * 1192 * @total_out is an in/out parameter, must be set to the input length and will 1193 * be also used to return the total number of compressed bytes 1194 */ 1195 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1196 u64 start, struct page **pages, 1197 unsigned long *out_pages, 1198 unsigned long *total_in, 1199 unsigned long *total_out) 1200 { 1201 int type = btrfs_compress_type(type_level); 1202 int level = btrfs_compress_level(type_level); 1203 struct list_head *workspace; 1204 int ret; 1205 1206 level = btrfs_compress_set_level(type, level); 1207 workspace = get_workspace(type, level); 1208 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1209 out_pages, total_in, total_out); 1210 put_workspace(type, workspace); 1211 return ret; 1212 } 1213 1214 static int btrfs_decompress_bio(struct compressed_bio *cb) 1215 { 1216 struct list_head *workspace; 1217 int ret; 1218 int type = cb->compress_type; 1219 1220 workspace = get_workspace(type, 0); 1221 ret = compression_decompress_bio(workspace, cb); 1222 put_workspace(type, workspace); 1223 1224 return ret; 1225 } 1226 1227 /* 1228 * a less complex decompression routine. Our compressed data fits in a 1229 * single page, and we want to read a single page out of it. 1230 * start_byte tells us the offset into the compressed data we're interested in 1231 */ 1232 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1233 unsigned long start_byte, size_t srclen, size_t destlen) 1234 { 1235 struct list_head *workspace; 1236 int ret; 1237 1238 workspace = get_workspace(type, 0); 1239 ret = compression_decompress(type, workspace, data_in, dest_page, 1240 start_byte, srclen, destlen); 1241 put_workspace(type, workspace); 1242 1243 return ret; 1244 } 1245 1246 void __init btrfs_init_compress(void) 1247 { 1248 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1249 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1250 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1251 zstd_init_workspace_manager(); 1252 } 1253 1254 void __cold btrfs_exit_compress(void) 1255 { 1256 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1257 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1258 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1259 zstd_cleanup_workspace_manager(); 1260 } 1261 1262 /* 1263 * Copy decompressed data from working buffer to pages. 1264 * 1265 * @buf: The decompressed data buffer 1266 * @buf_len: The decompressed data length 1267 * @decompressed: Number of bytes that are already decompressed inside the 1268 * compressed extent 1269 * @cb: The compressed extent descriptor 1270 * @orig_bio: The original bio that the caller wants to read for 1271 * 1272 * An easier to understand graph is like below: 1273 * 1274 * |<- orig_bio ->| |<- orig_bio->| 1275 * |<------- full decompressed extent ----->| 1276 * |<----------- @cb range ---->| 1277 * | |<-- @buf_len -->| 1278 * |<--- @decompressed --->| 1279 * 1280 * Note that, @cb can be a subpage of the full decompressed extent, but 1281 * @cb->start always has the same as the orig_file_offset value of the full 1282 * decompressed extent. 1283 * 1284 * When reading compressed extent, we have to read the full compressed extent, 1285 * while @orig_bio may only want part of the range. 1286 * Thus this function will ensure only data covered by @orig_bio will be copied 1287 * to. 1288 * 1289 * Return 0 if we have copied all needed contents for @orig_bio. 1290 * Return >0 if we need continue decompress. 1291 */ 1292 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1293 struct compressed_bio *cb, u32 decompressed) 1294 { 1295 struct bio *orig_bio = cb->orig_bio; 1296 /* Offset inside the full decompressed extent */ 1297 u32 cur_offset; 1298 1299 cur_offset = decompressed; 1300 /* The main loop to do the copy */ 1301 while (cur_offset < decompressed + buf_len) { 1302 struct bio_vec bvec; 1303 size_t copy_len; 1304 u32 copy_start; 1305 /* Offset inside the full decompressed extent */ 1306 u32 bvec_offset; 1307 1308 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1309 /* 1310 * cb->start may underflow, but subtracting that value can still 1311 * give us correct offset inside the full decompressed extent. 1312 */ 1313 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1314 1315 /* Haven't reached the bvec range, exit */ 1316 if (decompressed + buf_len <= bvec_offset) 1317 return 1; 1318 1319 copy_start = max(cur_offset, bvec_offset); 1320 copy_len = min(bvec_offset + bvec.bv_len, 1321 decompressed + buf_len) - copy_start; 1322 ASSERT(copy_len); 1323 1324 /* 1325 * Extra range check to ensure we didn't go beyond 1326 * @buf + @buf_len. 1327 */ 1328 ASSERT(copy_start - decompressed < buf_len); 1329 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1330 buf + copy_start - decompressed, copy_len); 1331 cur_offset += copy_len; 1332 1333 bio_advance(orig_bio, copy_len); 1334 /* Finished the bio */ 1335 if (!orig_bio->bi_iter.bi_size) 1336 return 0; 1337 } 1338 return 1; 1339 } 1340 1341 /* 1342 * Shannon Entropy calculation 1343 * 1344 * Pure byte distribution analysis fails to determine compressibility of data. 1345 * Try calculating entropy to estimate the average minimum number of bits 1346 * needed to encode the sampled data. 1347 * 1348 * For convenience, return the percentage of needed bits, instead of amount of 1349 * bits directly. 1350 * 1351 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1352 * and can be compressible with high probability 1353 * 1354 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1355 * 1356 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1357 */ 1358 #define ENTROPY_LVL_ACEPTABLE (65) 1359 #define ENTROPY_LVL_HIGH (80) 1360 1361 /* 1362 * For increasead precision in shannon_entropy calculation, 1363 * let's do pow(n, M) to save more digits after comma: 1364 * 1365 * - maximum int bit length is 64 1366 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1367 * - 13 * 4 = 52 < 64 -> M = 4 1368 * 1369 * So use pow(n, 4). 1370 */ 1371 static inline u32 ilog2_w(u64 n) 1372 { 1373 return ilog2(n * n * n * n); 1374 } 1375 1376 static u32 shannon_entropy(struct heuristic_ws *ws) 1377 { 1378 const u32 entropy_max = 8 * ilog2_w(2); 1379 u32 entropy_sum = 0; 1380 u32 p, p_base, sz_base; 1381 u32 i; 1382 1383 sz_base = ilog2_w(ws->sample_size); 1384 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1385 p = ws->bucket[i].count; 1386 p_base = ilog2_w(p); 1387 entropy_sum += p * (sz_base - p_base); 1388 } 1389 1390 entropy_sum /= ws->sample_size; 1391 return entropy_sum * 100 / entropy_max; 1392 } 1393 1394 #define RADIX_BASE 4U 1395 #define COUNTERS_SIZE (1U << RADIX_BASE) 1396 1397 static u8 get4bits(u64 num, int shift) { 1398 u8 low4bits; 1399 1400 num >>= shift; 1401 /* Reverse order */ 1402 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1403 return low4bits; 1404 } 1405 1406 /* 1407 * Use 4 bits as radix base 1408 * Use 16 u32 counters for calculating new position in buf array 1409 * 1410 * @array - array that will be sorted 1411 * @array_buf - buffer array to store sorting results 1412 * must be equal in size to @array 1413 * @num - array size 1414 */ 1415 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1416 int num) 1417 { 1418 u64 max_num; 1419 u64 buf_num; 1420 u32 counters[COUNTERS_SIZE]; 1421 u32 new_addr; 1422 u32 addr; 1423 int bitlen; 1424 int shift; 1425 int i; 1426 1427 /* 1428 * Try avoid useless loop iterations for small numbers stored in big 1429 * counters. Example: 48 33 4 ... in 64bit array 1430 */ 1431 max_num = array[0].count; 1432 for (i = 1; i < num; i++) { 1433 buf_num = array[i].count; 1434 if (buf_num > max_num) 1435 max_num = buf_num; 1436 } 1437 1438 buf_num = ilog2(max_num); 1439 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1440 1441 shift = 0; 1442 while (shift < bitlen) { 1443 memset(counters, 0, sizeof(counters)); 1444 1445 for (i = 0; i < num; i++) { 1446 buf_num = array[i].count; 1447 addr = get4bits(buf_num, shift); 1448 counters[addr]++; 1449 } 1450 1451 for (i = 1; i < COUNTERS_SIZE; i++) 1452 counters[i] += counters[i - 1]; 1453 1454 for (i = num - 1; i >= 0; i--) { 1455 buf_num = array[i].count; 1456 addr = get4bits(buf_num, shift); 1457 counters[addr]--; 1458 new_addr = counters[addr]; 1459 array_buf[new_addr] = array[i]; 1460 } 1461 1462 shift += RADIX_BASE; 1463 1464 /* 1465 * Normal radix expects to move data from a temporary array, to 1466 * the main one. But that requires some CPU time. Avoid that 1467 * by doing another sort iteration to original array instead of 1468 * memcpy() 1469 */ 1470 memset(counters, 0, sizeof(counters)); 1471 1472 for (i = 0; i < num; i ++) { 1473 buf_num = array_buf[i].count; 1474 addr = get4bits(buf_num, shift); 1475 counters[addr]++; 1476 } 1477 1478 for (i = 1; i < COUNTERS_SIZE; i++) 1479 counters[i] += counters[i - 1]; 1480 1481 for (i = num - 1; i >= 0; i--) { 1482 buf_num = array_buf[i].count; 1483 addr = get4bits(buf_num, shift); 1484 counters[addr]--; 1485 new_addr = counters[addr]; 1486 array[new_addr] = array_buf[i]; 1487 } 1488 1489 shift += RADIX_BASE; 1490 } 1491 } 1492 1493 /* 1494 * Size of the core byte set - how many bytes cover 90% of the sample 1495 * 1496 * There are several types of structured binary data that use nearly all byte 1497 * values. The distribution can be uniform and counts in all buckets will be 1498 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1499 * 1500 * Other possibility is normal (Gaussian) distribution, where the data could 1501 * be potentially compressible, but we have to take a few more steps to decide 1502 * how much. 1503 * 1504 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1505 * compression algo can easy fix that 1506 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1507 * probability is not compressible 1508 */ 1509 #define BYTE_CORE_SET_LOW (64) 1510 #define BYTE_CORE_SET_HIGH (200) 1511 1512 static int byte_core_set_size(struct heuristic_ws *ws) 1513 { 1514 u32 i; 1515 u32 coreset_sum = 0; 1516 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1517 struct bucket_item *bucket = ws->bucket; 1518 1519 /* Sort in reverse order */ 1520 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1521 1522 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1523 coreset_sum += bucket[i].count; 1524 1525 if (coreset_sum > core_set_threshold) 1526 return i; 1527 1528 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1529 coreset_sum += bucket[i].count; 1530 if (coreset_sum > core_set_threshold) 1531 break; 1532 } 1533 1534 return i; 1535 } 1536 1537 /* 1538 * Count byte values in buckets. 1539 * This heuristic can detect textual data (configs, xml, json, html, etc). 1540 * Because in most text-like data byte set is restricted to limited number of 1541 * possible characters, and that restriction in most cases makes data easy to 1542 * compress. 1543 * 1544 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1545 * less - compressible 1546 * more - need additional analysis 1547 */ 1548 #define BYTE_SET_THRESHOLD (64) 1549 1550 static u32 byte_set_size(const struct heuristic_ws *ws) 1551 { 1552 u32 i; 1553 u32 byte_set_size = 0; 1554 1555 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1556 if (ws->bucket[i].count > 0) 1557 byte_set_size++; 1558 } 1559 1560 /* 1561 * Continue collecting count of byte values in buckets. If the byte 1562 * set size is bigger then the threshold, it's pointless to continue, 1563 * the detection technique would fail for this type of data. 1564 */ 1565 for (; i < BUCKET_SIZE; i++) { 1566 if (ws->bucket[i].count > 0) { 1567 byte_set_size++; 1568 if (byte_set_size > BYTE_SET_THRESHOLD) 1569 return byte_set_size; 1570 } 1571 } 1572 1573 return byte_set_size; 1574 } 1575 1576 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1577 { 1578 const u32 half_of_sample = ws->sample_size / 2; 1579 const u8 *data = ws->sample; 1580 1581 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1582 } 1583 1584 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1585 struct heuristic_ws *ws) 1586 { 1587 struct page *page; 1588 u64 index, index_end; 1589 u32 i, curr_sample_pos; 1590 u8 *in_data; 1591 1592 /* 1593 * Compression handles the input data by chunks of 128KiB 1594 * (defined by BTRFS_MAX_UNCOMPRESSED) 1595 * 1596 * We do the same for the heuristic and loop over the whole range. 1597 * 1598 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1599 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1600 */ 1601 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1602 end = start + BTRFS_MAX_UNCOMPRESSED; 1603 1604 index = start >> PAGE_SHIFT; 1605 index_end = end >> PAGE_SHIFT; 1606 1607 /* Don't miss unaligned end */ 1608 if (!IS_ALIGNED(end, PAGE_SIZE)) 1609 index_end++; 1610 1611 curr_sample_pos = 0; 1612 while (index < index_end) { 1613 page = find_get_page(inode->i_mapping, index); 1614 in_data = kmap_local_page(page); 1615 /* Handle case where the start is not aligned to PAGE_SIZE */ 1616 i = start % PAGE_SIZE; 1617 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1618 /* Don't sample any garbage from the last page */ 1619 if (start > end - SAMPLING_READ_SIZE) 1620 break; 1621 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1622 SAMPLING_READ_SIZE); 1623 i += SAMPLING_INTERVAL; 1624 start += SAMPLING_INTERVAL; 1625 curr_sample_pos += SAMPLING_READ_SIZE; 1626 } 1627 kunmap_local(in_data); 1628 put_page(page); 1629 1630 index++; 1631 } 1632 1633 ws->sample_size = curr_sample_pos; 1634 } 1635 1636 /* 1637 * Compression heuristic. 1638 * 1639 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1640 * quickly (compared to direct compression) detect data characteristics 1641 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1642 * data. 1643 * 1644 * The following types of analysis can be performed: 1645 * - detect mostly zero data 1646 * - detect data with low "byte set" size (text, etc) 1647 * - detect data with low/high "core byte" set 1648 * 1649 * Return non-zero if the compression should be done, 0 otherwise. 1650 */ 1651 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1652 { 1653 struct list_head *ws_list = get_workspace(0, 0); 1654 struct heuristic_ws *ws; 1655 u32 i; 1656 u8 byte; 1657 int ret = 0; 1658 1659 ws = list_entry(ws_list, struct heuristic_ws, list); 1660 1661 heuristic_collect_sample(inode, start, end, ws); 1662 1663 if (sample_repeated_patterns(ws)) { 1664 ret = 1; 1665 goto out; 1666 } 1667 1668 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1669 1670 for (i = 0; i < ws->sample_size; i++) { 1671 byte = ws->sample[i]; 1672 ws->bucket[byte].count++; 1673 } 1674 1675 i = byte_set_size(ws); 1676 if (i < BYTE_SET_THRESHOLD) { 1677 ret = 2; 1678 goto out; 1679 } 1680 1681 i = byte_core_set_size(ws); 1682 if (i <= BYTE_CORE_SET_LOW) { 1683 ret = 3; 1684 goto out; 1685 } 1686 1687 if (i >= BYTE_CORE_SET_HIGH) { 1688 ret = 0; 1689 goto out; 1690 } 1691 1692 i = shannon_entropy(ws); 1693 if (i <= ENTROPY_LVL_ACEPTABLE) { 1694 ret = 4; 1695 goto out; 1696 } 1697 1698 /* 1699 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1700 * needed to give green light to compression. 1701 * 1702 * For now just assume that compression at that level is not worth the 1703 * resources because: 1704 * 1705 * 1. it is possible to defrag the data later 1706 * 1707 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1708 * values, every bucket has counter at level ~54. The heuristic would 1709 * be confused. This can happen when data have some internal repeated 1710 * patterns like "abbacbbc...". This can be detected by analyzing 1711 * pairs of bytes, which is too costly. 1712 */ 1713 if (i < ENTROPY_LVL_HIGH) { 1714 ret = 5; 1715 goto out; 1716 } else { 1717 ret = 0; 1718 goto out; 1719 } 1720 1721 out: 1722 put_workspace(0, ws_list); 1723 return ret; 1724 } 1725 1726 /* 1727 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1728 * level, unrecognized string will set the default level 1729 */ 1730 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1731 { 1732 unsigned int level = 0; 1733 int ret; 1734 1735 if (!type) 1736 return 0; 1737 1738 if (str[0] == ':') { 1739 ret = kstrtouint(str + 1, 10, &level); 1740 if (ret) 1741 level = 0; 1742 } 1743 1744 level = btrfs_compress_set_level(type, level); 1745 1746 return level; 1747 } 1748