1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "ordered-data.h" 41 #include "compression.h" 42 #include "extent_io.h" 43 #include "extent_map.h" 44 45 struct compressed_bio { 46 /* number of bios pending for this compressed extent */ 47 atomic_t pending_bios; 48 49 /* the pages with the compressed data on them */ 50 struct page **compressed_pages; 51 52 /* inode that owns this data */ 53 struct inode *inode; 54 55 /* starting offset in the inode for our pages */ 56 u64 start; 57 58 /* number of bytes in the inode we're working on */ 59 unsigned long len; 60 61 /* number of bytes on disk */ 62 unsigned long compressed_len; 63 64 /* the compression algorithm for this bio */ 65 int compress_type; 66 67 /* number of compressed pages in the array */ 68 unsigned long nr_pages; 69 70 /* IO errors */ 71 int errors; 72 int mirror_num; 73 74 /* for reads, this is the bio we are copying the data into */ 75 struct bio *orig_bio; 76 77 /* 78 * the start of a variable length array of checksums only 79 * used by reads 80 */ 81 u32 sums; 82 }; 83 84 static int btrfs_decompress_biovec(int type, struct page **pages_in, 85 u64 disk_start, struct bio_vec *bvec, 86 int vcnt, size_t srclen); 87 88 static inline int compressed_bio_size(struct btrfs_root *root, 89 unsigned long disk_size) 90 { 91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 92 93 return sizeof(struct compressed_bio) + 94 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size; 95 } 96 97 static struct bio *compressed_bio_alloc(struct block_device *bdev, 98 u64 first_byte, gfp_t gfp_flags) 99 { 100 int nr_vecs; 101 102 nr_vecs = bio_get_nr_vecs(bdev); 103 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags); 104 } 105 106 static int check_compressed_csum(struct inode *inode, 107 struct compressed_bio *cb, 108 u64 disk_start) 109 { 110 int ret; 111 struct page *page; 112 unsigned long i; 113 char *kaddr; 114 u32 csum; 115 u32 *cb_sum = &cb->sums; 116 117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 118 return 0; 119 120 for (i = 0; i < cb->nr_pages; i++) { 121 page = cb->compressed_pages[i]; 122 csum = ~(u32)0; 123 124 kaddr = kmap_atomic(page); 125 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE); 126 btrfs_csum_final(csum, (char *)&csum); 127 kunmap_atomic(kaddr); 128 129 if (csum != *cb_sum) { 130 btrfs_info(BTRFS_I(inode)->root->fs_info, 131 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d", 132 btrfs_ino(inode), disk_start, csum, *cb_sum, 133 cb->mirror_num); 134 ret = -EIO; 135 goto fail; 136 } 137 cb_sum++; 138 139 } 140 ret = 0; 141 fail: 142 return ret; 143 } 144 145 /* when we finish reading compressed pages from the disk, we 146 * decompress them and then run the bio end_io routines on the 147 * decompressed pages (in the inode address space). 148 * 149 * This allows the checksumming and other IO error handling routines 150 * to work normally 151 * 152 * The compressed pages are freed here, and it must be run 153 * in process context 154 */ 155 static void end_compressed_bio_read(struct bio *bio, int err) 156 { 157 struct compressed_bio *cb = bio->bi_private; 158 struct inode *inode; 159 struct page *page; 160 unsigned long index; 161 int ret; 162 163 if (err) 164 cb->errors = 1; 165 166 /* if there are more bios still pending for this compressed 167 * extent, just exit 168 */ 169 if (!atomic_dec_and_test(&cb->pending_bios)) 170 goto out; 171 172 inode = cb->inode; 173 ret = check_compressed_csum(inode, cb, 174 (u64)bio->bi_iter.bi_sector << 9); 175 if (ret) 176 goto csum_failed; 177 178 /* ok, we're the last bio for this extent, lets start 179 * the decompression. 180 */ 181 ret = btrfs_decompress_biovec(cb->compress_type, 182 cb->compressed_pages, 183 cb->start, 184 cb->orig_bio->bi_io_vec, 185 cb->orig_bio->bi_vcnt, 186 cb->compressed_len); 187 csum_failed: 188 if (ret) 189 cb->errors = 1; 190 191 /* release the compressed pages */ 192 index = 0; 193 for (index = 0; index < cb->nr_pages; index++) { 194 page = cb->compressed_pages[index]; 195 page->mapping = NULL; 196 page_cache_release(page); 197 } 198 199 /* do io completion on the original bio */ 200 if (cb->errors) { 201 bio_io_error(cb->orig_bio); 202 } else { 203 int i; 204 struct bio_vec *bvec; 205 206 /* 207 * we have verified the checksum already, set page 208 * checked so the end_io handlers know about it 209 */ 210 bio_for_each_segment_all(bvec, cb->orig_bio, i) 211 SetPageChecked(bvec->bv_page); 212 213 bio_endio(cb->orig_bio, 0); 214 } 215 216 /* finally free the cb struct */ 217 kfree(cb->compressed_pages); 218 kfree(cb); 219 out: 220 bio_put(bio); 221 } 222 223 /* 224 * Clear the writeback bits on all of the file 225 * pages for a compressed write 226 */ 227 static noinline void end_compressed_writeback(struct inode *inode, 228 const struct compressed_bio *cb) 229 { 230 unsigned long index = cb->start >> PAGE_CACHE_SHIFT; 231 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT; 232 struct page *pages[16]; 233 unsigned long nr_pages = end_index - index + 1; 234 int i; 235 int ret; 236 237 if (cb->errors) 238 mapping_set_error(inode->i_mapping, -EIO); 239 240 while (nr_pages > 0) { 241 ret = find_get_pages_contig(inode->i_mapping, index, 242 min_t(unsigned long, 243 nr_pages, ARRAY_SIZE(pages)), pages); 244 if (ret == 0) { 245 nr_pages -= 1; 246 index += 1; 247 continue; 248 } 249 for (i = 0; i < ret; i++) { 250 if (cb->errors) 251 SetPageError(pages[i]); 252 end_page_writeback(pages[i]); 253 page_cache_release(pages[i]); 254 } 255 nr_pages -= ret; 256 index += ret; 257 } 258 /* the inode may be gone now */ 259 } 260 261 /* 262 * do the cleanup once all the compressed pages hit the disk. 263 * This will clear writeback on the file pages and free the compressed 264 * pages. 265 * 266 * This also calls the writeback end hooks for the file pages so that 267 * metadata and checksums can be updated in the file. 268 */ 269 static void end_compressed_bio_write(struct bio *bio, int err) 270 { 271 struct extent_io_tree *tree; 272 struct compressed_bio *cb = bio->bi_private; 273 struct inode *inode; 274 struct page *page; 275 unsigned long index; 276 277 if (err) 278 cb->errors = 1; 279 280 /* if there are more bios still pending for this compressed 281 * extent, just exit 282 */ 283 if (!atomic_dec_and_test(&cb->pending_bios)) 284 goto out; 285 286 /* ok, we're the last bio for this extent, step one is to 287 * call back into the FS and do all the end_io operations 288 */ 289 inode = cb->inode; 290 tree = &BTRFS_I(inode)->io_tree; 291 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 292 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 293 cb->start, 294 cb->start + cb->len - 1, 295 NULL, 296 err ? 0 : 1); 297 cb->compressed_pages[0]->mapping = NULL; 298 299 end_compressed_writeback(inode, cb); 300 /* note, our inode could be gone now */ 301 302 /* 303 * release the compressed pages, these came from alloc_page and 304 * are not attached to the inode at all 305 */ 306 index = 0; 307 for (index = 0; index < cb->nr_pages; index++) { 308 page = cb->compressed_pages[index]; 309 page->mapping = NULL; 310 page_cache_release(page); 311 } 312 313 /* finally free the cb struct */ 314 kfree(cb->compressed_pages); 315 kfree(cb); 316 out: 317 bio_put(bio); 318 } 319 320 /* 321 * worker function to build and submit bios for previously compressed pages. 322 * The corresponding pages in the inode should be marked for writeback 323 * and the compressed pages should have a reference on them for dropping 324 * when the IO is complete. 325 * 326 * This also checksums the file bytes and gets things ready for 327 * the end io hooks. 328 */ 329 int btrfs_submit_compressed_write(struct inode *inode, u64 start, 330 unsigned long len, u64 disk_start, 331 unsigned long compressed_len, 332 struct page **compressed_pages, 333 unsigned long nr_pages) 334 { 335 struct bio *bio = NULL; 336 struct btrfs_root *root = BTRFS_I(inode)->root; 337 struct compressed_bio *cb; 338 unsigned long bytes_left; 339 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 340 int pg_index = 0; 341 struct page *page; 342 u64 first_byte = disk_start; 343 struct block_device *bdev; 344 int ret; 345 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 346 347 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1)); 348 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 349 if (!cb) 350 return -ENOMEM; 351 atomic_set(&cb->pending_bios, 0); 352 cb->errors = 0; 353 cb->inode = inode; 354 cb->start = start; 355 cb->len = len; 356 cb->mirror_num = 0; 357 cb->compressed_pages = compressed_pages; 358 cb->compressed_len = compressed_len; 359 cb->orig_bio = NULL; 360 cb->nr_pages = nr_pages; 361 362 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 363 364 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 365 if (!bio) { 366 kfree(cb); 367 return -ENOMEM; 368 } 369 bio->bi_private = cb; 370 bio->bi_end_io = end_compressed_bio_write; 371 atomic_inc(&cb->pending_bios); 372 373 /* create and submit bios for the compressed pages */ 374 bytes_left = compressed_len; 375 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 376 page = compressed_pages[pg_index]; 377 page->mapping = inode->i_mapping; 378 if (bio->bi_iter.bi_size) 379 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0, 380 PAGE_CACHE_SIZE, 381 bio, 0); 382 else 383 ret = 0; 384 385 page->mapping = NULL; 386 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < 387 PAGE_CACHE_SIZE) { 388 bio_get(bio); 389 390 /* 391 * inc the count before we submit the bio so 392 * we know the end IO handler won't happen before 393 * we inc the count. Otherwise, the cb might get 394 * freed before we're done setting it up 395 */ 396 atomic_inc(&cb->pending_bios); 397 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 398 BTRFS_WQ_ENDIO_DATA); 399 BUG_ON(ret); /* -ENOMEM */ 400 401 if (!skip_sum) { 402 ret = btrfs_csum_one_bio(root, inode, bio, 403 start, 1); 404 BUG_ON(ret); /* -ENOMEM */ 405 } 406 407 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 408 BUG_ON(ret); /* -ENOMEM */ 409 410 bio_put(bio); 411 412 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 413 BUG_ON(!bio); 414 bio->bi_private = cb; 415 bio->bi_end_io = end_compressed_bio_write; 416 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 417 } 418 if (bytes_left < PAGE_CACHE_SIZE) { 419 btrfs_info(BTRFS_I(inode)->root->fs_info, 420 "bytes left %lu compress len %lu nr %lu", 421 bytes_left, cb->compressed_len, cb->nr_pages); 422 } 423 bytes_left -= PAGE_CACHE_SIZE; 424 first_byte += PAGE_CACHE_SIZE; 425 cond_resched(); 426 } 427 bio_get(bio); 428 429 ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA); 430 BUG_ON(ret); /* -ENOMEM */ 431 432 if (!skip_sum) { 433 ret = btrfs_csum_one_bio(root, inode, bio, start, 1); 434 BUG_ON(ret); /* -ENOMEM */ 435 } 436 437 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 438 BUG_ON(ret); /* -ENOMEM */ 439 440 bio_put(bio); 441 return 0; 442 } 443 444 static noinline int add_ra_bio_pages(struct inode *inode, 445 u64 compressed_end, 446 struct compressed_bio *cb) 447 { 448 unsigned long end_index; 449 unsigned long pg_index; 450 u64 last_offset; 451 u64 isize = i_size_read(inode); 452 int ret; 453 struct page *page; 454 unsigned long nr_pages = 0; 455 struct extent_map *em; 456 struct address_space *mapping = inode->i_mapping; 457 struct extent_map_tree *em_tree; 458 struct extent_io_tree *tree; 459 u64 end; 460 int misses = 0; 461 462 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; 463 last_offset = (page_offset(page) + PAGE_CACHE_SIZE); 464 em_tree = &BTRFS_I(inode)->extent_tree; 465 tree = &BTRFS_I(inode)->io_tree; 466 467 if (isize == 0) 468 return 0; 469 470 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 471 472 while (last_offset < compressed_end) { 473 pg_index = last_offset >> PAGE_CACHE_SHIFT; 474 475 if (pg_index > end_index) 476 break; 477 478 rcu_read_lock(); 479 page = radix_tree_lookup(&mapping->page_tree, pg_index); 480 rcu_read_unlock(); 481 if (page && !radix_tree_exceptional_entry(page)) { 482 misses++; 483 if (misses > 4) 484 break; 485 goto next; 486 } 487 488 page = __page_cache_alloc(mapping_gfp_mask(mapping) & 489 ~__GFP_FS); 490 if (!page) 491 break; 492 493 if (add_to_page_cache_lru(page, mapping, pg_index, 494 GFP_NOFS)) { 495 page_cache_release(page); 496 goto next; 497 } 498 499 end = last_offset + PAGE_CACHE_SIZE - 1; 500 /* 501 * at this point, we have a locked page in the page cache 502 * for these bytes in the file. But, we have to make 503 * sure they map to this compressed extent on disk. 504 */ 505 set_page_extent_mapped(page); 506 lock_extent(tree, last_offset, end); 507 read_lock(&em_tree->lock); 508 em = lookup_extent_mapping(em_tree, last_offset, 509 PAGE_CACHE_SIZE); 510 read_unlock(&em_tree->lock); 511 512 if (!em || last_offset < em->start || 513 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) || 514 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 515 free_extent_map(em); 516 unlock_extent(tree, last_offset, end); 517 unlock_page(page); 518 page_cache_release(page); 519 break; 520 } 521 free_extent_map(em); 522 523 if (page->index == end_index) { 524 char *userpage; 525 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1); 526 527 if (zero_offset) { 528 int zeros; 529 zeros = PAGE_CACHE_SIZE - zero_offset; 530 userpage = kmap_atomic(page); 531 memset(userpage + zero_offset, 0, zeros); 532 flush_dcache_page(page); 533 kunmap_atomic(userpage); 534 } 535 } 536 537 ret = bio_add_page(cb->orig_bio, page, 538 PAGE_CACHE_SIZE, 0); 539 540 if (ret == PAGE_CACHE_SIZE) { 541 nr_pages++; 542 page_cache_release(page); 543 } else { 544 unlock_extent(tree, last_offset, end); 545 unlock_page(page); 546 page_cache_release(page); 547 break; 548 } 549 next: 550 last_offset += PAGE_CACHE_SIZE; 551 } 552 return 0; 553 } 554 555 /* 556 * for a compressed read, the bio we get passed has all the inode pages 557 * in it. We don't actually do IO on those pages but allocate new ones 558 * to hold the compressed pages on disk. 559 * 560 * bio->bi_iter.bi_sector points to the compressed extent on disk 561 * bio->bi_io_vec points to all of the inode pages 562 * bio->bi_vcnt is a count of pages 563 * 564 * After the compressed pages are read, we copy the bytes into the 565 * bio we were passed and then call the bio end_io calls 566 */ 567 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 568 int mirror_num, unsigned long bio_flags) 569 { 570 struct extent_io_tree *tree; 571 struct extent_map_tree *em_tree; 572 struct compressed_bio *cb; 573 struct btrfs_root *root = BTRFS_I(inode)->root; 574 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 575 unsigned long compressed_len; 576 unsigned long nr_pages; 577 unsigned long pg_index; 578 struct page *page; 579 struct block_device *bdev; 580 struct bio *comp_bio; 581 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 582 u64 em_len; 583 u64 em_start; 584 struct extent_map *em; 585 int ret = -ENOMEM; 586 int faili = 0; 587 u32 *sums; 588 589 tree = &BTRFS_I(inode)->io_tree; 590 em_tree = &BTRFS_I(inode)->extent_tree; 591 592 /* we need the actual starting offset of this extent in the file */ 593 read_lock(&em_tree->lock); 594 em = lookup_extent_mapping(em_tree, 595 page_offset(bio->bi_io_vec->bv_page), 596 PAGE_CACHE_SIZE); 597 read_unlock(&em_tree->lock); 598 if (!em) 599 return -EIO; 600 601 compressed_len = em->block_len; 602 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 603 if (!cb) 604 goto out; 605 606 atomic_set(&cb->pending_bios, 0); 607 cb->errors = 0; 608 cb->inode = inode; 609 cb->mirror_num = mirror_num; 610 sums = &cb->sums; 611 612 cb->start = em->orig_start; 613 em_len = em->len; 614 em_start = em->start; 615 616 free_extent_map(em); 617 em = NULL; 618 619 cb->len = uncompressed_len; 620 cb->compressed_len = compressed_len; 621 cb->compress_type = extent_compress_type(bio_flags); 622 cb->orig_bio = bio; 623 624 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE); 625 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages, 626 GFP_NOFS); 627 if (!cb->compressed_pages) 628 goto fail1; 629 630 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 631 632 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 633 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 634 __GFP_HIGHMEM); 635 if (!cb->compressed_pages[pg_index]) { 636 faili = pg_index - 1; 637 ret = -ENOMEM; 638 goto fail2; 639 } 640 } 641 faili = nr_pages - 1; 642 cb->nr_pages = nr_pages; 643 644 /* In the parent-locked case, we only locked the range we are 645 * interested in. In all other cases, we can opportunistically 646 * cache decompressed data that goes beyond the requested range. */ 647 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED)) 648 add_ra_bio_pages(inode, em_start + em_len, cb); 649 650 /* include any pages we added in add_ra-bio_pages */ 651 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 652 cb->len = uncompressed_len; 653 654 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); 655 if (!comp_bio) 656 goto fail2; 657 comp_bio->bi_private = cb; 658 comp_bio->bi_end_io = end_compressed_bio_read; 659 atomic_inc(&cb->pending_bios); 660 661 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 662 page = cb->compressed_pages[pg_index]; 663 page->mapping = inode->i_mapping; 664 page->index = em_start >> PAGE_CACHE_SHIFT; 665 666 if (comp_bio->bi_iter.bi_size) 667 ret = tree->ops->merge_bio_hook(READ, page, 0, 668 PAGE_CACHE_SIZE, 669 comp_bio, 0); 670 else 671 ret = 0; 672 673 page->mapping = NULL; 674 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) < 675 PAGE_CACHE_SIZE) { 676 bio_get(comp_bio); 677 678 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 679 BTRFS_WQ_ENDIO_DATA); 680 BUG_ON(ret); /* -ENOMEM */ 681 682 /* 683 * inc the count before we submit the bio so 684 * we know the end IO handler won't happen before 685 * we inc the count. Otherwise, the cb might get 686 * freed before we're done setting it up 687 */ 688 atomic_inc(&cb->pending_bios); 689 690 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 691 ret = btrfs_lookup_bio_sums(root, inode, 692 comp_bio, sums); 693 BUG_ON(ret); /* -ENOMEM */ 694 } 695 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 696 root->sectorsize); 697 698 ret = btrfs_map_bio(root, READ, comp_bio, 699 mirror_num, 0); 700 if (ret) 701 bio_endio(comp_bio, ret); 702 703 bio_put(comp_bio); 704 705 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, 706 GFP_NOFS); 707 BUG_ON(!comp_bio); 708 comp_bio->bi_private = cb; 709 comp_bio->bi_end_io = end_compressed_bio_read; 710 711 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0); 712 } 713 cur_disk_byte += PAGE_CACHE_SIZE; 714 } 715 bio_get(comp_bio); 716 717 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 718 BTRFS_WQ_ENDIO_DATA); 719 BUG_ON(ret); /* -ENOMEM */ 720 721 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 722 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums); 723 BUG_ON(ret); /* -ENOMEM */ 724 } 725 726 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0); 727 if (ret) 728 bio_endio(comp_bio, ret); 729 730 bio_put(comp_bio); 731 return 0; 732 733 fail2: 734 while (faili >= 0) { 735 __free_page(cb->compressed_pages[faili]); 736 faili--; 737 } 738 739 kfree(cb->compressed_pages); 740 fail1: 741 kfree(cb); 742 out: 743 free_extent_map(em); 744 return ret; 745 } 746 747 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES]; 748 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES]; 749 static int comp_num_workspace[BTRFS_COMPRESS_TYPES]; 750 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES]; 751 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES]; 752 753 static struct btrfs_compress_op *btrfs_compress_op[] = { 754 &btrfs_zlib_compress, 755 &btrfs_lzo_compress, 756 }; 757 758 void __init btrfs_init_compress(void) 759 { 760 int i; 761 762 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 763 INIT_LIST_HEAD(&comp_idle_workspace[i]); 764 spin_lock_init(&comp_workspace_lock[i]); 765 atomic_set(&comp_alloc_workspace[i], 0); 766 init_waitqueue_head(&comp_workspace_wait[i]); 767 } 768 } 769 770 /* 771 * this finds an available workspace or allocates a new one 772 * ERR_PTR is returned if things go bad. 773 */ 774 static struct list_head *find_workspace(int type) 775 { 776 struct list_head *workspace; 777 int cpus = num_online_cpus(); 778 int idx = type - 1; 779 780 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 781 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 782 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 783 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 784 int *num_workspace = &comp_num_workspace[idx]; 785 again: 786 spin_lock(workspace_lock); 787 if (!list_empty(idle_workspace)) { 788 workspace = idle_workspace->next; 789 list_del(workspace); 790 (*num_workspace)--; 791 spin_unlock(workspace_lock); 792 return workspace; 793 794 } 795 if (atomic_read(alloc_workspace) > cpus) { 796 DEFINE_WAIT(wait); 797 798 spin_unlock(workspace_lock); 799 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE); 800 if (atomic_read(alloc_workspace) > cpus && !*num_workspace) 801 schedule(); 802 finish_wait(workspace_wait, &wait); 803 goto again; 804 } 805 atomic_inc(alloc_workspace); 806 spin_unlock(workspace_lock); 807 808 workspace = btrfs_compress_op[idx]->alloc_workspace(); 809 if (IS_ERR(workspace)) { 810 atomic_dec(alloc_workspace); 811 wake_up(workspace_wait); 812 } 813 return workspace; 814 } 815 816 /* 817 * put a workspace struct back on the list or free it if we have enough 818 * idle ones sitting around 819 */ 820 static void free_workspace(int type, struct list_head *workspace) 821 { 822 int idx = type - 1; 823 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 824 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 825 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 826 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 827 int *num_workspace = &comp_num_workspace[idx]; 828 829 spin_lock(workspace_lock); 830 if (*num_workspace < num_online_cpus()) { 831 list_add(workspace, idle_workspace); 832 (*num_workspace)++; 833 spin_unlock(workspace_lock); 834 goto wake; 835 } 836 spin_unlock(workspace_lock); 837 838 btrfs_compress_op[idx]->free_workspace(workspace); 839 atomic_dec(alloc_workspace); 840 wake: 841 smp_mb(); 842 if (waitqueue_active(workspace_wait)) 843 wake_up(workspace_wait); 844 } 845 846 /* 847 * cleanup function for module exit 848 */ 849 static void free_workspaces(void) 850 { 851 struct list_head *workspace; 852 int i; 853 854 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 855 while (!list_empty(&comp_idle_workspace[i])) { 856 workspace = comp_idle_workspace[i].next; 857 list_del(workspace); 858 btrfs_compress_op[i]->free_workspace(workspace); 859 atomic_dec(&comp_alloc_workspace[i]); 860 } 861 } 862 } 863 864 /* 865 * given an address space and start/len, compress the bytes. 866 * 867 * pages are allocated to hold the compressed result and stored 868 * in 'pages' 869 * 870 * out_pages is used to return the number of pages allocated. There 871 * may be pages allocated even if we return an error 872 * 873 * total_in is used to return the number of bytes actually read. It 874 * may be smaller then len if we had to exit early because we 875 * ran out of room in the pages array or because we cross the 876 * max_out threshold. 877 * 878 * total_out is used to return the total number of compressed bytes 879 * 880 * max_out tells us the max number of bytes that we're allowed to 881 * stuff into pages 882 */ 883 int btrfs_compress_pages(int type, struct address_space *mapping, 884 u64 start, unsigned long len, 885 struct page **pages, 886 unsigned long nr_dest_pages, 887 unsigned long *out_pages, 888 unsigned long *total_in, 889 unsigned long *total_out, 890 unsigned long max_out) 891 { 892 struct list_head *workspace; 893 int ret; 894 895 workspace = find_workspace(type); 896 if (IS_ERR(workspace)) 897 return PTR_ERR(workspace); 898 899 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 900 start, len, pages, 901 nr_dest_pages, out_pages, 902 total_in, total_out, 903 max_out); 904 free_workspace(type, workspace); 905 return ret; 906 } 907 908 /* 909 * pages_in is an array of pages with compressed data. 910 * 911 * disk_start is the starting logical offset of this array in the file 912 * 913 * bvec is a bio_vec of pages from the file that we want to decompress into 914 * 915 * vcnt is the count of pages in the biovec 916 * 917 * srclen is the number of bytes in pages_in 918 * 919 * The basic idea is that we have a bio that was created by readpages. 920 * The pages in the bio are for the uncompressed data, and they may not 921 * be contiguous. They all correspond to the range of bytes covered by 922 * the compressed extent. 923 */ 924 static int btrfs_decompress_biovec(int type, struct page **pages_in, 925 u64 disk_start, struct bio_vec *bvec, 926 int vcnt, size_t srclen) 927 { 928 struct list_head *workspace; 929 int ret; 930 931 workspace = find_workspace(type); 932 if (IS_ERR(workspace)) 933 return PTR_ERR(workspace); 934 935 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, 936 disk_start, 937 bvec, vcnt, srclen); 938 free_workspace(type, workspace); 939 return ret; 940 } 941 942 /* 943 * a less complex decompression routine. Our compressed data fits in a 944 * single page, and we want to read a single page out of it. 945 * start_byte tells us the offset into the compressed data we're interested in 946 */ 947 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 948 unsigned long start_byte, size_t srclen, size_t destlen) 949 { 950 struct list_head *workspace; 951 int ret; 952 953 workspace = find_workspace(type); 954 if (IS_ERR(workspace)) 955 return PTR_ERR(workspace); 956 957 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 958 dest_page, start_byte, 959 srclen, destlen); 960 961 free_workspace(type, workspace); 962 return ret; 963 } 964 965 void btrfs_exit_compress(void) 966 { 967 free_workspaces(); 968 } 969 970 /* 971 * Copy uncompressed data from working buffer to pages. 972 * 973 * buf_start is the byte offset we're of the start of our workspace buffer. 974 * 975 * total_out is the last byte of the buffer 976 */ 977 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, 978 unsigned long total_out, u64 disk_start, 979 struct bio_vec *bvec, int vcnt, 980 unsigned long *pg_index, 981 unsigned long *pg_offset) 982 { 983 unsigned long buf_offset; 984 unsigned long current_buf_start; 985 unsigned long start_byte; 986 unsigned long working_bytes = total_out - buf_start; 987 unsigned long bytes; 988 char *kaddr; 989 struct page *page_out = bvec[*pg_index].bv_page; 990 991 /* 992 * start byte is the first byte of the page we're currently 993 * copying into relative to the start of the compressed data. 994 */ 995 start_byte = page_offset(page_out) - disk_start; 996 997 /* we haven't yet hit data corresponding to this page */ 998 if (total_out <= start_byte) 999 return 1; 1000 1001 /* 1002 * the start of the data we care about is offset into 1003 * the middle of our working buffer 1004 */ 1005 if (total_out > start_byte && buf_start < start_byte) { 1006 buf_offset = start_byte - buf_start; 1007 working_bytes -= buf_offset; 1008 } else { 1009 buf_offset = 0; 1010 } 1011 current_buf_start = buf_start; 1012 1013 /* copy bytes from the working buffer into the pages */ 1014 while (working_bytes > 0) { 1015 bytes = min(PAGE_CACHE_SIZE - *pg_offset, 1016 PAGE_CACHE_SIZE - buf_offset); 1017 bytes = min(bytes, working_bytes); 1018 kaddr = kmap_atomic(page_out); 1019 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); 1020 kunmap_atomic(kaddr); 1021 flush_dcache_page(page_out); 1022 1023 *pg_offset += bytes; 1024 buf_offset += bytes; 1025 working_bytes -= bytes; 1026 current_buf_start += bytes; 1027 1028 /* check if we need to pick another page */ 1029 if (*pg_offset == PAGE_CACHE_SIZE) { 1030 (*pg_index)++; 1031 if (*pg_index >= vcnt) 1032 return 0; 1033 1034 page_out = bvec[*pg_index].bv_page; 1035 *pg_offset = 0; 1036 start_byte = page_offset(page_out) - disk_start; 1037 1038 /* 1039 * make sure our new page is covered by this 1040 * working buffer 1041 */ 1042 if (total_out <= start_byte) 1043 return 1; 1044 1045 /* 1046 * the next page in the biovec might not be adjacent 1047 * to the last page, but it might still be found 1048 * inside this working buffer. bump our offset pointer 1049 */ 1050 if (total_out > start_byte && 1051 current_buf_start < start_byte) { 1052 buf_offset = start_byte - buf_start; 1053 working_bytes = total_out - start_byte; 1054 current_buf_start = buf_start + buf_offset; 1055 } 1056 } 1057 } 1058 1059 return 1; 1060 } 1061 1062 /* 1063 * When uncompressing data, we need to make sure and zero any parts of 1064 * the biovec that were not filled in by the decompression code. pg_index 1065 * and pg_offset indicate the last page and the last offset of that page 1066 * that have been filled in. This will zero everything remaining in the 1067 * biovec. 1068 */ 1069 void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt, 1070 unsigned long pg_index, 1071 unsigned long pg_offset) 1072 { 1073 while (pg_index < vcnt) { 1074 struct page *page = bvec[pg_index].bv_page; 1075 unsigned long off = bvec[pg_index].bv_offset; 1076 unsigned long len = bvec[pg_index].bv_len; 1077 1078 if (pg_offset < off) 1079 pg_offset = off; 1080 if (pg_offset < off + len) { 1081 unsigned long bytes = off + len - pg_offset; 1082 char *kaddr; 1083 1084 kaddr = kmap_atomic(page); 1085 memset(kaddr + pg_offset, 0, bytes); 1086 kunmap_atomic(kaddr); 1087 } 1088 pg_index++; 1089 pg_offset = 0; 1090 } 1091 } 1092