xref: /openbmc/linux/fs/btrfs/compression.c (revision c819e2cf)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44 
45 struct compressed_bio {
46 	/* number of bios pending for this compressed extent */
47 	atomic_t pending_bios;
48 
49 	/* the pages with the compressed data on them */
50 	struct page **compressed_pages;
51 
52 	/* inode that owns this data */
53 	struct inode *inode;
54 
55 	/* starting offset in the inode for our pages */
56 	u64 start;
57 
58 	/* number of bytes in the inode we're working on */
59 	unsigned long len;
60 
61 	/* number of bytes on disk */
62 	unsigned long compressed_len;
63 
64 	/* the compression algorithm for this bio */
65 	int compress_type;
66 
67 	/* number of compressed pages in the array */
68 	unsigned long nr_pages;
69 
70 	/* IO errors */
71 	int errors;
72 	int mirror_num;
73 
74 	/* for reads, this is the bio we are copying the data into */
75 	struct bio *orig_bio;
76 
77 	/*
78 	 * the start of a variable length array of checksums only
79 	 * used by reads
80 	 */
81 	u32 sums;
82 };
83 
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 				   u64 disk_start, struct bio_vec *bvec,
86 				   int vcnt, size_t srclen);
87 
88 static inline int compressed_bio_size(struct btrfs_root *root,
89 				      unsigned long disk_size)
90 {
91 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92 
93 	return sizeof(struct compressed_bio) +
94 		(DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
95 }
96 
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 					u64 first_byte, gfp_t gfp_flags)
99 {
100 	int nr_vecs;
101 
102 	nr_vecs = bio_get_nr_vecs(bdev);
103 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
104 }
105 
106 static int check_compressed_csum(struct inode *inode,
107 				 struct compressed_bio *cb,
108 				 u64 disk_start)
109 {
110 	int ret;
111 	struct page *page;
112 	unsigned long i;
113 	char *kaddr;
114 	u32 csum;
115 	u32 *cb_sum = &cb->sums;
116 
117 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
118 		return 0;
119 
120 	for (i = 0; i < cb->nr_pages; i++) {
121 		page = cb->compressed_pages[i];
122 		csum = ~(u32)0;
123 
124 		kaddr = kmap_atomic(page);
125 		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
126 		btrfs_csum_final(csum, (char *)&csum);
127 		kunmap_atomic(kaddr);
128 
129 		if (csum != *cb_sum) {
130 			btrfs_info(BTRFS_I(inode)->root->fs_info,
131 			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
132 			   btrfs_ino(inode), disk_start, csum, *cb_sum,
133 			   cb->mirror_num);
134 			ret = -EIO;
135 			goto fail;
136 		}
137 		cb_sum++;
138 
139 	}
140 	ret = 0;
141 fail:
142 	return ret;
143 }
144 
145 /* when we finish reading compressed pages from the disk, we
146  * decompress them and then run the bio end_io routines on the
147  * decompressed pages (in the inode address space).
148  *
149  * This allows the checksumming and other IO error handling routines
150  * to work normally
151  *
152  * The compressed pages are freed here, and it must be run
153  * in process context
154  */
155 static void end_compressed_bio_read(struct bio *bio, int err)
156 {
157 	struct compressed_bio *cb = bio->bi_private;
158 	struct inode *inode;
159 	struct page *page;
160 	unsigned long index;
161 	int ret;
162 
163 	if (err)
164 		cb->errors = 1;
165 
166 	/* if there are more bios still pending for this compressed
167 	 * extent, just exit
168 	 */
169 	if (!atomic_dec_and_test(&cb->pending_bios))
170 		goto out;
171 
172 	inode = cb->inode;
173 	ret = check_compressed_csum(inode, cb,
174 				    (u64)bio->bi_iter.bi_sector << 9);
175 	if (ret)
176 		goto csum_failed;
177 
178 	/* ok, we're the last bio for this extent, lets start
179 	 * the decompression.
180 	 */
181 	ret = btrfs_decompress_biovec(cb->compress_type,
182 				      cb->compressed_pages,
183 				      cb->start,
184 				      cb->orig_bio->bi_io_vec,
185 				      cb->orig_bio->bi_vcnt,
186 				      cb->compressed_len);
187 csum_failed:
188 	if (ret)
189 		cb->errors = 1;
190 
191 	/* release the compressed pages */
192 	index = 0;
193 	for (index = 0; index < cb->nr_pages; index++) {
194 		page = cb->compressed_pages[index];
195 		page->mapping = NULL;
196 		page_cache_release(page);
197 	}
198 
199 	/* do io completion on the original bio */
200 	if (cb->errors) {
201 		bio_io_error(cb->orig_bio);
202 	} else {
203 		int i;
204 		struct bio_vec *bvec;
205 
206 		/*
207 		 * we have verified the checksum already, set page
208 		 * checked so the end_io handlers know about it
209 		 */
210 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
211 			SetPageChecked(bvec->bv_page);
212 
213 		bio_endio(cb->orig_bio, 0);
214 	}
215 
216 	/* finally free the cb struct */
217 	kfree(cb->compressed_pages);
218 	kfree(cb);
219 out:
220 	bio_put(bio);
221 }
222 
223 /*
224  * Clear the writeback bits on all of the file
225  * pages for a compressed write
226  */
227 static noinline void end_compressed_writeback(struct inode *inode,
228 					      const struct compressed_bio *cb)
229 {
230 	unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
231 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
232 	struct page *pages[16];
233 	unsigned long nr_pages = end_index - index + 1;
234 	int i;
235 	int ret;
236 
237 	if (cb->errors)
238 		mapping_set_error(inode->i_mapping, -EIO);
239 
240 	while (nr_pages > 0) {
241 		ret = find_get_pages_contig(inode->i_mapping, index,
242 				     min_t(unsigned long,
243 				     nr_pages, ARRAY_SIZE(pages)), pages);
244 		if (ret == 0) {
245 			nr_pages -= 1;
246 			index += 1;
247 			continue;
248 		}
249 		for (i = 0; i < ret; i++) {
250 			if (cb->errors)
251 				SetPageError(pages[i]);
252 			end_page_writeback(pages[i]);
253 			page_cache_release(pages[i]);
254 		}
255 		nr_pages -= ret;
256 		index += ret;
257 	}
258 	/* the inode may be gone now */
259 }
260 
261 /*
262  * do the cleanup once all the compressed pages hit the disk.
263  * This will clear writeback on the file pages and free the compressed
264  * pages.
265  *
266  * This also calls the writeback end hooks for the file pages so that
267  * metadata and checksums can be updated in the file.
268  */
269 static void end_compressed_bio_write(struct bio *bio, int err)
270 {
271 	struct extent_io_tree *tree;
272 	struct compressed_bio *cb = bio->bi_private;
273 	struct inode *inode;
274 	struct page *page;
275 	unsigned long index;
276 
277 	if (err)
278 		cb->errors = 1;
279 
280 	/* if there are more bios still pending for this compressed
281 	 * extent, just exit
282 	 */
283 	if (!atomic_dec_and_test(&cb->pending_bios))
284 		goto out;
285 
286 	/* ok, we're the last bio for this extent, step one is to
287 	 * call back into the FS and do all the end_io operations
288 	 */
289 	inode = cb->inode;
290 	tree = &BTRFS_I(inode)->io_tree;
291 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
292 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
293 					 cb->start,
294 					 cb->start + cb->len - 1,
295 					 NULL,
296 					 err ? 0 : 1);
297 	cb->compressed_pages[0]->mapping = NULL;
298 
299 	end_compressed_writeback(inode, cb);
300 	/* note, our inode could be gone now */
301 
302 	/*
303 	 * release the compressed pages, these came from alloc_page and
304 	 * are not attached to the inode at all
305 	 */
306 	index = 0;
307 	for (index = 0; index < cb->nr_pages; index++) {
308 		page = cb->compressed_pages[index];
309 		page->mapping = NULL;
310 		page_cache_release(page);
311 	}
312 
313 	/* finally free the cb struct */
314 	kfree(cb->compressed_pages);
315 	kfree(cb);
316 out:
317 	bio_put(bio);
318 }
319 
320 /*
321  * worker function to build and submit bios for previously compressed pages.
322  * The corresponding pages in the inode should be marked for writeback
323  * and the compressed pages should have a reference on them for dropping
324  * when the IO is complete.
325  *
326  * This also checksums the file bytes and gets things ready for
327  * the end io hooks.
328  */
329 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
330 				 unsigned long len, u64 disk_start,
331 				 unsigned long compressed_len,
332 				 struct page **compressed_pages,
333 				 unsigned long nr_pages)
334 {
335 	struct bio *bio = NULL;
336 	struct btrfs_root *root = BTRFS_I(inode)->root;
337 	struct compressed_bio *cb;
338 	unsigned long bytes_left;
339 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
340 	int pg_index = 0;
341 	struct page *page;
342 	u64 first_byte = disk_start;
343 	struct block_device *bdev;
344 	int ret;
345 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
346 
347 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
348 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
349 	if (!cb)
350 		return -ENOMEM;
351 	atomic_set(&cb->pending_bios, 0);
352 	cb->errors = 0;
353 	cb->inode = inode;
354 	cb->start = start;
355 	cb->len = len;
356 	cb->mirror_num = 0;
357 	cb->compressed_pages = compressed_pages;
358 	cb->compressed_len = compressed_len;
359 	cb->orig_bio = NULL;
360 	cb->nr_pages = nr_pages;
361 
362 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
363 
364 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
365 	if (!bio) {
366 		kfree(cb);
367 		return -ENOMEM;
368 	}
369 	bio->bi_private = cb;
370 	bio->bi_end_io = end_compressed_bio_write;
371 	atomic_inc(&cb->pending_bios);
372 
373 	/* create and submit bios for the compressed pages */
374 	bytes_left = compressed_len;
375 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
376 		page = compressed_pages[pg_index];
377 		page->mapping = inode->i_mapping;
378 		if (bio->bi_iter.bi_size)
379 			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
380 							   PAGE_CACHE_SIZE,
381 							   bio, 0);
382 		else
383 			ret = 0;
384 
385 		page->mapping = NULL;
386 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
387 		    PAGE_CACHE_SIZE) {
388 			bio_get(bio);
389 
390 			/*
391 			 * inc the count before we submit the bio so
392 			 * we know the end IO handler won't happen before
393 			 * we inc the count.  Otherwise, the cb might get
394 			 * freed before we're done setting it up
395 			 */
396 			atomic_inc(&cb->pending_bios);
397 			ret = btrfs_bio_wq_end_io(root->fs_info, bio,
398 					BTRFS_WQ_ENDIO_DATA);
399 			BUG_ON(ret); /* -ENOMEM */
400 
401 			if (!skip_sum) {
402 				ret = btrfs_csum_one_bio(root, inode, bio,
403 							 start, 1);
404 				BUG_ON(ret); /* -ENOMEM */
405 			}
406 
407 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
408 			BUG_ON(ret); /* -ENOMEM */
409 
410 			bio_put(bio);
411 
412 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
413 			BUG_ON(!bio);
414 			bio->bi_private = cb;
415 			bio->bi_end_io = end_compressed_bio_write;
416 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
417 		}
418 		if (bytes_left < PAGE_CACHE_SIZE) {
419 			btrfs_info(BTRFS_I(inode)->root->fs_info,
420 					"bytes left %lu compress len %lu nr %lu",
421 			       bytes_left, cb->compressed_len, cb->nr_pages);
422 		}
423 		bytes_left -= PAGE_CACHE_SIZE;
424 		first_byte += PAGE_CACHE_SIZE;
425 		cond_resched();
426 	}
427 	bio_get(bio);
428 
429 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
430 	BUG_ON(ret); /* -ENOMEM */
431 
432 	if (!skip_sum) {
433 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
434 		BUG_ON(ret); /* -ENOMEM */
435 	}
436 
437 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
438 	BUG_ON(ret); /* -ENOMEM */
439 
440 	bio_put(bio);
441 	return 0;
442 }
443 
444 static noinline int add_ra_bio_pages(struct inode *inode,
445 				     u64 compressed_end,
446 				     struct compressed_bio *cb)
447 {
448 	unsigned long end_index;
449 	unsigned long pg_index;
450 	u64 last_offset;
451 	u64 isize = i_size_read(inode);
452 	int ret;
453 	struct page *page;
454 	unsigned long nr_pages = 0;
455 	struct extent_map *em;
456 	struct address_space *mapping = inode->i_mapping;
457 	struct extent_map_tree *em_tree;
458 	struct extent_io_tree *tree;
459 	u64 end;
460 	int misses = 0;
461 
462 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
463 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
464 	em_tree = &BTRFS_I(inode)->extent_tree;
465 	tree = &BTRFS_I(inode)->io_tree;
466 
467 	if (isize == 0)
468 		return 0;
469 
470 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
471 
472 	while (last_offset < compressed_end) {
473 		pg_index = last_offset >> PAGE_CACHE_SHIFT;
474 
475 		if (pg_index > end_index)
476 			break;
477 
478 		rcu_read_lock();
479 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
480 		rcu_read_unlock();
481 		if (page && !radix_tree_exceptional_entry(page)) {
482 			misses++;
483 			if (misses > 4)
484 				break;
485 			goto next;
486 		}
487 
488 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
489 								~__GFP_FS);
490 		if (!page)
491 			break;
492 
493 		if (add_to_page_cache_lru(page, mapping, pg_index,
494 								GFP_NOFS)) {
495 			page_cache_release(page);
496 			goto next;
497 		}
498 
499 		end = last_offset + PAGE_CACHE_SIZE - 1;
500 		/*
501 		 * at this point, we have a locked page in the page cache
502 		 * for these bytes in the file.  But, we have to make
503 		 * sure they map to this compressed extent on disk.
504 		 */
505 		set_page_extent_mapped(page);
506 		lock_extent(tree, last_offset, end);
507 		read_lock(&em_tree->lock);
508 		em = lookup_extent_mapping(em_tree, last_offset,
509 					   PAGE_CACHE_SIZE);
510 		read_unlock(&em_tree->lock);
511 
512 		if (!em || last_offset < em->start ||
513 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
514 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
515 			free_extent_map(em);
516 			unlock_extent(tree, last_offset, end);
517 			unlock_page(page);
518 			page_cache_release(page);
519 			break;
520 		}
521 		free_extent_map(em);
522 
523 		if (page->index == end_index) {
524 			char *userpage;
525 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
526 
527 			if (zero_offset) {
528 				int zeros;
529 				zeros = PAGE_CACHE_SIZE - zero_offset;
530 				userpage = kmap_atomic(page);
531 				memset(userpage + zero_offset, 0, zeros);
532 				flush_dcache_page(page);
533 				kunmap_atomic(userpage);
534 			}
535 		}
536 
537 		ret = bio_add_page(cb->orig_bio, page,
538 				   PAGE_CACHE_SIZE, 0);
539 
540 		if (ret == PAGE_CACHE_SIZE) {
541 			nr_pages++;
542 			page_cache_release(page);
543 		} else {
544 			unlock_extent(tree, last_offset, end);
545 			unlock_page(page);
546 			page_cache_release(page);
547 			break;
548 		}
549 next:
550 		last_offset += PAGE_CACHE_SIZE;
551 	}
552 	return 0;
553 }
554 
555 /*
556  * for a compressed read, the bio we get passed has all the inode pages
557  * in it.  We don't actually do IO on those pages but allocate new ones
558  * to hold the compressed pages on disk.
559  *
560  * bio->bi_iter.bi_sector points to the compressed extent on disk
561  * bio->bi_io_vec points to all of the inode pages
562  * bio->bi_vcnt is a count of pages
563  *
564  * After the compressed pages are read, we copy the bytes into the
565  * bio we were passed and then call the bio end_io calls
566  */
567 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
568 				 int mirror_num, unsigned long bio_flags)
569 {
570 	struct extent_io_tree *tree;
571 	struct extent_map_tree *em_tree;
572 	struct compressed_bio *cb;
573 	struct btrfs_root *root = BTRFS_I(inode)->root;
574 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
575 	unsigned long compressed_len;
576 	unsigned long nr_pages;
577 	unsigned long pg_index;
578 	struct page *page;
579 	struct block_device *bdev;
580 	struct bio *comp_bio;
581 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
582 	u64 em_len;
583 	u64 em_start;
584 	struct extent_map *em;
585 	int ret = -ENOMEM;
586 	int faili = 0;
587 	u32 *sums;
588 
589 	tree = &BTRFS_I(inode)->io_tree;
590 	em_tree = &BTRFS_I(inode)->extent_tree;
591 
592 	/* we need the actual starting offset of this extent in the file */
593 	read_lock(&em_tree->lock);
594 	em = lookup_extent_mapping(em_tree,
595 				   page_offset(bio->bi_io_vec->bv_page),
596 				   PAGE_CACHE_SIZE);
597 	read_unlock(&em_tree->lock);
598 	if (!em)
599 		return -EIO;
600 
601 	compressed_len = em->block_len;
602 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
603 	if (!cb)
604 		goto out;
605 
606 	atomic_set(&cb->pending_bios, 0);
607 	cb->errors = 0;
608 	cb->inode = inode;
609 	cb->mirror_num = mirror_num;
610 	sums = &cb->sums;
611 
612 	cb->start = em->orig_start;
613 	em_len = em->len;
614 	em_start = em->start;
615 
616 	free_extent_map(em);
617 	em = NULL;
618 
619 	cb->len = uncompressed_len;
620 	cb->compressed_len = compressed_len;
621 	cb->compress_type = extent_compress_type(bio_flags);
622 	cb->orig_bio = bio;
623 
624 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
625 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
626 				       GFP_NOFS);
627 	if (!cb->compressed_pages)
628 		goto fail1;
629 
630 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
631 
632 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
633 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
634 							      __GFP_HIGHMEM);
635 		if (!cb->compressed_pages[pg_index]) {
636 			faili = pg_index - 1;
637 			ret = -ENOMEM;
638 			goto fail2;
639 		}
640 	}
641 	faili = nr_pages - 1;
642 	cb->nr_pages = nr_pages;
643 
644 	/* In the parent-locked case, we only locked the range we are
645 	 * interested in.  In all other cases, we can opportunistically
646 	 * cache decompressed data that goes beyond the requested range. */
647 	if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
648 		add_ra_bio_pages(inode, em_start + em_len, cb);
649 
650 	/* include any pages we added in add_ra-bio_pages */
651 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
652 	cb->len = uncompressed_len;
653 
654 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
655 	if (!comp_bio)
656 		goto fail2;
657 	comp_bio->bi_private = cb;
658 	comp_bio->bi_end_io = end_compressed_bio_read;
659 	atomic_inc(&cb->pending_bios);
660 
661 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
662 		page = cb->compressed_pages[pg_index];
663 		page->mapping = inode->i_mapping;
664 		page->index = em_start >> PAGE_CACHE_SHIFT;
665 
666 		if (comp_bio->bi_iter.bi_size)
667 			ret = tree->ops->merge_bio_hook(READ, page, 0,
668 							PAGE_CACHE_SIZE,
669 							comp_bio, 0);
670 		else
671 			ret = 0;
672 
673 		page->mapping = NULL;
674 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
675 		    PAGE_CACHE_SIZE) {
676 			bio_get(comp_bio);
677 
678 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
679 					BTRFS_WQ_ENDIO_DATA);
680 			BUG_ON(ret); /* -ENOMEM */
681 
682 			/*
683 			 * inc the count before we submit the bio so
684 			 * we know the end IO handler won't happen before
685 			 * we inc the count.  Otherwise, the cb might get
686 			 * freed before we're done setting it up
687 			 */
688 			atomic_inc(&cb->pending_bios);
689 
690 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
691 				ret = btrfs_lookup_bio_sums(root, inode,
692 							comp_bio, sums);
693 				BUG_ON(ret); /* -ENOMEM */
694 			}
695 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
696 					     root->sectorsize);
697 
698 			ret = btrfs_map_bio(root, READ, comp_bio,
699 					    mirror_num, 0);
700 			if (ret)
701 				bio_endio(comp_bio, ret);
702 
703 			bio_put(comp_bio);
704 
705 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
706 							GFP_NOFS);
707 			BUG_ON(!comp_bio);
708 			comp_bio->bi_private = cb;
709 			comp_bio->bi_end_io = end_compressed_bio_read;
710 
711 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
712 		}
713 		cur_disk_byte += PAGE_CACHE_SIZE;
714 	}
715 	bio_get(comp_bio);
716 
717 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
718 			BTRFS_WQ_ENDIO_DATA);
719 	BUG_ON(ret); /* -ENOMEM */
720 
721 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
722 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
723 		BUG_ON(ret); /* -ENOMEM */
724 	}
725 
726 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
727 	if (ret)
728 		bio_endio(comp_bio, ret);
729 
730 	bio_put(comp_bio);
731 	return 0;
732 
733 fail2:
734 	while (faili >= 0) {
735 		__free_page(cb->compressed_pages[faili]);
736 		faili--;
737 	}
738 
739 	kfree(cb->compressed_pages);
740 fail1:
741 	kfree(cb);
742 out:
743 	free_extent_map(em);
744 	return ret;
745 }
746 
747 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
748 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
749 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
750 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
751 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
752 
753 static struct btrfs_compress_op *btrfs_compress_op[] = {
754 	&btrfs_zlib_compress,
755 	&btrfs_lzo_compress,
756 };
757 
758 void __init btrfs_init_compress(void)
759 {
760 	int i;
761 
762 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
763 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
764 		spin_lock_init(&comp_workspace_lock[i]);
765 		atomic_set(&comp_alloc_workspace[i], 0);
766 		init_waitqueue_head(&comp_workspace_wait[i]);
767 	}
768 }
769 
770 /*
771  * this finds an available workspace or allocates a new one
772  * ERR_PTR is returned if things go bad.
773  */
774 static struct list_head *find_workspace(int type)
775 {
776 	struct list_head *workspace;
777 	int cpus = num_online_cpus();
778 	int idx = type - 1;
779 
780 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
781 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
782 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
783 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
784 	int *num_workspace			= &comp_num_workspace[idx];
785 again:
786 	spin_lock(workspace_lock);
787 	if (!list_empty(idle_workspace)) {
788 		workspace = idle_workspace->next;
789 		list_del(workspace);
790 		(*num_workspace)--;
791 		spin_unlock(workspace_lock);
792 		return workspace;
793 
794 	}
795 	if (atomic_read(alloc_workspace) > cpus) {
796 		DEFINE_WAIT(wait);
797 
798 		spin_unlock(workspace_lock);
799 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
800 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
801 			schedule();
802 		finish_wait(workspace_wait, &wait);
803 		goto again;
804 	}
805 	atomic_inc(alloc_workspace);
806 	spin_unlock(workspace_lock);
807 
808 	workspace = btrfs_compress_op[idx]->alloc_workspace();
809 	if (IS_ERR(workspace)) {
810 		atomic_dec(alloc_workspace);
811 		wake_up(workspace_wait);
812 	}
813 	return workspace;
814 }
815 
816 /*
817  * put a workspace struct back on the list or free it if we have enough
818  * idle ones sitting around
819  */
820 static void free_workspace(int type, struct list_head *workspace)
821 {
822 	int idx = type - 1;
823 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
824 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
825 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
826 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
827 	int *num_workspace			= &comp_num_workspace[idx];
828 
829 	spin_lock(workspace_lock);
830 	if (*num_workspace < num_online_cpus()) {
831 		list_add(workspace, idle_workspace);
832 		(*num_workspace)++;
833 		spin_unlock(workspace_lock);
834 		goto wake;
835 	}
836 	spin_unlock(workspace_lock);
837 
838 	btrfs_compress_op[idx]->free_workspace(workspace);
839 	atomic_dec(alloc_workspace);
840 wake:
841 	smp_mb();
842 	if (waitqueue_active(workspace_wait))
843 		wake_up(workspace_wait);
844 }
845 
846 /*
847  * cleanup function for module exit
848  */
849 static void free_workspaces(void)
850 {
851 	struct list_head *workspace;
852 	int i;
853 
854 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
855 		while (!list_empty(&comp_idle_workspace[i])) {
856 			workspace = comp_idle_workspace[i].next;
857 			list_del(workspace);
858 			btrfs_compress_op[i]->free_workspace(workspace);
859 			atomic_dec(&comp_alloc_workspace[i]);
860 		}
861 	}
862 }
863 
864 /*
865  * given an address space and start/len, compress the bytes.
866  *
867  * pages are allocated to hold the compressed result and stored
868  * in 'pages'
869  *
870  * out_pages is used to return the number of pages allocated.  There
871  * may be pages allocated even if we return an error
872  *
873  * total_in is used to return the number of bytes actually read.  It
874  * may be smaller then len if we had to exit early because we
875  * ran out of room in the pages array or because we cross the
876  * max_out threshold.
877  *
878  * total_out is used to return the total number of compressed bytes
879  *
880  * max_out tells us the max number of bytes that we're allowed to
881  * stuff into pages
882  */
883 int btrfs_compress_pages(int type, struct address_space *mapping,
884 			 u64 start, unsigned long len,
885 			 struct page **pages,
886 			 unsigned long nr_dest_pages,
887 			 unsigned long *out_pages,
888 			 unsigned long *total_in,
889 			 unsigned long *total_out,
890 			 unsigned long max_out)
891 {
892 	struct list_head *workspace;
893 	int ret;
894 
895 	workspace = find_workspace(type);
896 	if (IS_ERR(workspace))
897 		return PTR_ERR(workspace);
898 
899 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
900 						      start, len, pages,
901 						      nr_dest_pages, out_pages,
902 						      total_in, total_out,
903 						      max_out);
904 	free_workspace(type, workspace);
905 	return ret;
906 }
907 
908 /*
909  * pages_in is an array of pages with compressed data.
910  *
911  * disk_start is the starting logical offset of this array in the file
912  *
913  * bvec is a bio_vec of pages from the file that we want to decompress into
914  *
915  * vcnt is the count of pages in the biovec
916  *
917  * srclen is the number of bytes in pages_in
918  *
919  * The basic idea is that we have a bio that was created by readpages.
920  * The pages in the bio are for the uncompressed data, and they may not
921  * be contiguous.  They all correspond to the range of bytes covered by
922  * the compressed extent.
923  */
924 static int btrfs_decompress_biovec(int type, struct page **pages_in,
925 				   u64 disk_start, struct bio_vec *bvec,
926 				   int vcnt, size_t srclen)
927 {
928 	struct list_head *workspace;
929 	int ret;
930 
931 	workspace = find_workspace(type);
932 	if (IS_ERR(workspace))
933 		return PTR_ERR(workspace);
934 
935 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
936 							 disk_start,
937 							 bvec, vcnt, srclen);
938 	free_workspace(type, workspace);
939 	return ret;
940 }
941 
942 /*
943  * a less complex decompression routine.  Our compressed data fits in a
944  * single page, and we want to read a single page out of it.
945  * start_byte tells us the offset into the compressed data we're interested in
946  */
947 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
948 		     unsigned long start_byte, size_t srclen, size_t destlen)
949 {
950 	struct list_head *workspace;
951 	int ret;
952 
953 	workspace = find_workspace(type);
954 	if (IS_ERR(workspace))
955 		return PTR_ERR(workspace);
956 
957 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
958 						  dest_page, start_byte,
959 						  srclen, destlen);
960 
961 	free_workspace(type, workspace);
962 	return ret;
963 }
964 
965 void btrfs_exit_compress(void)
966 {
967 	free_workspaces();
968 }
969 
970 /*
971  * Copy uncompressed data from working buffer to pages.
972  *
973  * buf_start is the byte offset we're of the start of our workspace buffer.
974  *
975  * total_out is the last byte of the buffer
976  */
977 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
978 			      unsigned long total_out, u64 disk_start,
979 			      struct bio_vec *bvec, int vcnt,
980 			      unsigned long *pg_index,
981 			      unsigned long *pg_offset)
982 {
983 	unsigned long buf_offset;
984 	unsigned long current_buf_start;
985 	unsigned long start_byte;
986 	unsigned long working_bytes = total_out - buf_start;
987 	unsigned long bytes;
988 	char *kaddr;
989 	struct page *page_out = bvec[*pg_index].bv_page;
990 
991 	/*
992 	 * start byte is the first byte of the page we're currently
993 	 * copying into relative to the start of the compressed data.
994 	 */
995 	start_byte = page_offset(page_out) - disk_start;
996 
997 	/* we haven't yet hit data corresponding to this page */
998 	if (total_out <= start_byte)
999 		return 1;
1000 
1001 	/*
1002 	 * the start of the data we care about is offset into
1003 	 * the middle of our working buffer
1004 	 */
1005 	if (total_out > start_byte && buf_start < start_byte) {
1006 		buf_offset = start_byte - buf_start;
1007 		working_bytes -= buf_offset;
1008 	} else {
1009 		buf_offset = 0;
1010 	}
1011 	current_buf_start = buf_start;
1012 
1013 	/* copy bytes from the working buffer into the pages */
1014 	while (working_bytes > 0) {
1015 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1016 			    PAGE_CACHE_SIZE - buf_offset);
1017 		bytes = min(bytes, working_bytes);
1018 		kaddr = kmap_atomic(page_out);
1019 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1020 		kunmap_atomic(kaddr);
1021 		flush_dcache_page(page_out);
1022 
1023 		*pg_offset += bytes;
1024 		buf_offset += bytes;
1025 		working_bytes -= bytes;
1026 		current_buf_start += bytes;
1027 
1028 		/* check if we need to pick another page */
1029 		if (*pg_offset == PAGE_CACHE_SIZE) {
1030 			(*pg_index)++;
1031 			if (*pg_index >= vcnt)
1032 				return 0;
1033 
1034 			page_out = bvec[*pg_index].bv_page;
1035 			*pg_offset = 0;
1036 			start_byte = page_offset(page_out) - disk_start;
1037 
1038 			/*
1039 			 * make sure our new page is covered by this
1040 			 * working buffer
1041 			 */
1042 			if (total_out <= start_byte)
1043 				return 1;
1044 
1045 			/*
1046 			 * the next page in the biovec might not be adjacent
1047 			 * to the last page, but it might still be found
1048 			 * inside this working buffer. bump our offset pointer
1049 			 */
1050 			if (total_out > start_byte &&
1051 			    current_buf_start < start_byte) {
1052 				buf_offset = start_byte - buf_start;
1053 				working_bytes = total_out - start_byte;
1054 				current_buf_start = buf_start + buf_offset;
1055 			}
1056 		}
1057 	}
1058 
1059 	return 1;
1060 }
1061 
1062 /*
1063  * When uncompressing data, we need to make sure and zero any parts of
1064  * the biovec that were not filled in by the decompression code.  pg_index
1065  * and pg_offset indicate the last page and the last offset of that page
1066  * that have been filled in.  This will zero everything remaining in the
1067  * biovec.
1068  */
1069 void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1070 				   unsigned long pg_index,
1071 				   unsigned long pg_offset)
1072 {
1073 	while (pg_index < vcnt) {
1074 		struct page *page = bvec[pg_index].bv_page;
1075 		unsigned long off = bvec[pg_index].bv_offset;
1076 		unsigned long len = bvec[pg_index].bv_len;
1077 
1078 		if (pg_offset < off)
1079 			pg_offset = off;
1080 		if (pg_offset < off + len) {
1081 			unsigned long bytes = off + len - pg_offset;
1082 			char *kaddr;
1083 
1084 			kaddr = kmap_atomic(page);
1085 			memset(kaddr + pg_offset, 0, bytes);
1086 			kunmap_atomic(kaddr);
1087 		}
1088 		pg_index++;
1089 		pg_offset = 0;
1090 	}
1091 }
1092