1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 #include "zoned.h" 32 33 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 34 35 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 36 { 37 switch (type) { 38 case BTRFS_COMPRESS_ZLIB: 39 case BTRFS_COMPRESS_LZO: 40 case BTRFS_COMPRESS_ZSTD: 41 case BTRFS_COMPRESS_NONE: 42 return btrfs_compress_types[type]; 43 default: 44 break; 45 } 46 47 return NULL; 48 } 49 50 bool btrfs_compress_is_valid_type(const char *str, size_t len) 51 { 52 int i; 53 54 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 55 size_t comp_len = strlen(btrfs_compress_types[i]); 56 57 if (len < comp_len) 58 continue; 59 60 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 61 return true; 62 } 63 return false; 64 } 65 66 static int compression_compress_pages(int type, struct list_head *ws, 67 struct address_space *mapping, u64 start, struct page **pages, 68 unsigned long *out_pages, unsigned long *total_in, 69 unsigned long *total_out) 70 { 71 switch (type) { 72 case BTRFS_COMPRESS_ZLIB: 73 return zlib_compress_pages(ws, mapping, start, pages, 74 out_pages, total_in, total_out); 75 case BTRFS_COMPRESS_LZO: 76 return lzo_compress_pages(ws, mapping, start, pages, 77 out_pages, total_in, total_out); 78 case BTRFS_COMPRESS_ZSTD: 79 return zstd_compress_pages(ws, mapping, start, pages, 80 out_pages, total_in, total_out); 81 case BTRFS_COMPRESS_NONE: 82 default: 83 /* 84 * This can happen when compression races with remount setting 85 * it to 'no compress', while caller doesn't call 86 * inode_need_compress() to check if we really need to 87 * compress. 88 * 89 * Not a big deal, just need to inform caller that we 90 * haven't allocated any pages yet. 91 */ 92 *out_pages = 0; 93 return -E2BIG; 94 } 95 } 96 97 static int compression_decompress_bio(int type, struct list_head *ws, 98 struct compressed_bio *cb) 99 { 100 switch (type) { 101 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 102 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 103 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 104 case BTRFS_COMPRESS_NONE: 105 default: 106 /* 107 * This can't happen, the type is validated several times 108 * before we get here. 109 */ 110 BUG(); 111 } 112 } 113 114 static int compression_decompress(int type, struct list_head *ws, 115 unsigned char *data_in, struct page *dest_page, 116 unsigned long start_byte, size_t srclen, size_t destlen) 117 { 118 switch (type) { 119 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 120 start_byte, srclen, destlen); 121 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 122 start_byte, srclen, destlen); 123 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 124 start_byte, srclen, destlen); 125 case BTRFS_COMPRESS_NONE: 126 default: 127 /* 128 * This can't happen, the type is validated several times 129 * before we get here. 130 */ 131 BUG(); 132 } 133 } 134 135 static int btrfs_decompress_bio(struct compressed_bio *cb); 136 137 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 138 unsigned long disk_size) 139 { 140 return sizeof(struct compressed_bio) + 141 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size; 142 } 143 144 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 145 u64 disk_start) 146 { 147 struct btrfs_fs_info *fs_info = inode->root->fs_info; 148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 149 const u32 csum_size = fs_info->csum_size; 150 const u32 sectorsize = fs_info->sectorsize; 151 struct page *page; 152 unsigned long i; 153 char *kaddr; 154 u8 csum[BTRFS_CSUM_SIZE]; 155 struct compressed_bio *cb = bio->bi_private; 156 u8 *cb_sum = cb->sums; 157 158 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM)) 159 return 0; 160 161 shash->tfm = fs_info->csum_shash; 162 163 for (i = 0; i < cb->nr_pages; i++) { 164 u32 pg_offset; 165 u32 bytes_left = PAGE_SIZE; 166 page = cb->compressed_pages[i]; 167 168 /* Determine the remaining bytes inside the page first */ 169 if (i == cb->nr_pages - 1) 170 bytes_left = cb->compressed_len - i * PAGE_SIZE; 171 172 /* Hash through the page sector by sector */ 173 for (pg_offset = 0; pg_offset < bytes_left; 174 pg_offset += sectorsize) { 175 kaddr = kmap_atomic(page); 176 crypto_shash_digest(shash, kaddr + pg_offset, 177 sectorsize, csum); 178 kunmap_atomic(kaddr); 179 180 if (memcmp(&csum, cb_sum, csum_size) != 0) { 181 btrfs_print_data_csum_error(inode, disk_start, 182 csum, cb_sum, cb->mirror_num); 183 if (btrfs_io_bio(bio)->device) 184 btrfs_dev_stat_inc_and_print( 185 btrfs_io_bio(bio)->device, 186 BTRFS_DEV_STAT_CORRUPTION_ERRS); 187 return -EIO; 188 } 189 cb_sum += csum_size; 190 disk_start += sectorsize; 191 } 192 } 193 return 0; 194 } 195 196 /* when we finish reading compressed pages from the disk, we 197 * decompress them and then run the bio end_io routines on the 198 * decompressed pages (in the inode address space). 199 * 200 * This allows the checksumming and other IO error handling routines 201 * to work normally 202 * 203 * The compressed pages are freed here, and it must be run 204 * in process context 205 */ 206 static void end_compressed_bio_read(struct bio *bio) 207 { 208 struct compressed_bio *cb = bio->bi_private; 209 struct inode *inode; 210 struct page *page; 211 unsigned long index; 212 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 213 int ret = 0; 214 215 if (bio->bi_status) 216 cb->errors = 1; 217 218 /* if there are more bios still pending for this compressed 219 * extent, just exit 220 */ 221 if (!refcount_dec_and_test(&cb->pending_bios)) 222 goto out; 223 224 /* 225 * Record the correct mirror_num in cb->orig_bio so that 226 * read-repair can work properly. 227 */ 228 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 229 cb->mirror_num = mirror; 230 231 /* 232 * Some IO in this cb have failed, just skip checksum as there 233 * is no way it could be correct. 234 */ 235 if (cb->errors == 1) 236 goto csum_failed; 237 238 inode = cb->inode; 239 ret = check_compressed_csum(BTRFS_I(inode), bio, 240 bio->bi_iter.bi_sector << 9); 241 if (ret) 242 goto csum_failed; 243 244 /* ok, we're the last bio for this extent, lets start 245 * the decompression. 246 */ 247 ret = btrfs_decompress_bio(cb); 248 249 csum_failed: 250 if (ret) 251 cb->errors = 1; 252 253 /* release the compressed pages */ 254 index = 0; 255 for (index = 0; index < cb->nr_pages; index++) { 256 page = cb->compressed_pages[index]; 257 page->mapping = NULL; 258 put_page(page); 259 } 260 261 /* do io completion on the original bio */ 262 if (cb->errors) { 263 bio_io_error(cb->orig_bio); 264 } else { 265 struct bio_vec *bvec; 266 struct bvec_iter_all iter_all; 267 268 /* 269 * we have verified the checksum already, set page 270 * checked so the end_io handlers know about it 271 */ 272 ASSERT(!bio_flagged(bio, BIO_CLONED)); 273 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 274 SetPageChecked(bvec->bv_page); 275 276 bio_endio(cb->orig_bio); 277 } 278 279 /* finally free the cb struct */ 280 kfree(cb->compressed_pages); 281 kfree(cb); 282 out: 283 bio_put(bio); 284 } 285 286 /* 287 * Clear the writeback bits on all of the file 288 * pages for a compressed write 289 */ 290 static noinline void end_compressed_writeback(struct inode *inode, 291 const struct compressed_bio *cb) 292 { 293 unsigned long index = cb->start >> PAGE_SHIFT; 294 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 295 struct page *pages[16]; 296 unsigned long nr_pages = end_index - index + 1; 297 int i; 298 int ret; 299 300 if (cb->errors) 301 mapping_set_error(inode->i_mapping, -EIO); 302 303 while (nr_pages > 0) { 304 ret = find_get_pages_contig(inode->i_mapping, index, 305 min_t(unsigned long, 306 nr_pages, ARRAY_SIZE(pages)), pages); 307 if (ret == 0) { 308 nr_pages -= 1; 309 index += 1; 310 continue; 311 } 312 for (i = 0; i < ret; i++) { 313 if (cb->errors) 314 SetPageError(pages[i]); 315 end_page_writeback(pages[i]); 316 put_page(pages[i]); 317 } 318 nr_pages -= ret; 319 index += ret; 320 } 321 /* the inode may be gone now */ 322 } 323 324 /* 325 * do the cleanup once all the compressed pages hit the disk. 326 * This will clear writeback on the file pages and free the compressed 327 * pages. 328 * 329 * This also calls the writeback end hooks for the file pages so that 330 * metadata and checksums can be updated in the file. 331 */ 332 static void end_compressed_bio_write(struct bio *bio) 333 { 334 struct compressed_bio *cb = bio->bi_private; 335 struct inode *inode; 336 struct page *page; 337 unsigned long index; 338 339 if (bio->bi_status) 340 cb->errors = 1; 341 342 /* if there are more bios still pending for this compressed 343 * extent, just exit 344 */ 345 if (!refcount_dec_and_test(&cb->pending_bios)) 346 goto out; 347 348 /* ok, we're the last bio for this extent, step one is to 349 * call back into the FS and do all the end_io operations 350 */ 351 inode = cb->inode; 352 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 353 btrfs_record_physical_zoned(inode, cb->start, bio); 354 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 355 cb->start, cb->start + cb->len - 1, 356 bio->bi_status == BLK_STS_OK); 357 cb->compressed_pages[0]->mapping = NULL; 358 359 end_compressed_writeback(inode, cb); 360 /* note, our inode could be gone now */ 361 362 /* 363 * release the compressed pages, these came from alloc_page and 364 * are not attached to the inode at all 365 */ 366 index = 0; 367 for (index = 0; index < cb->nr_pages; index++) { 368 page = cb->compressed_pages[index]; 369 page->mapping = NULL; 370 put_page(page); 371 } 372 373 /* finally free the cb struct */ 374 kfree(cb->compressed_pages); 375 kfree(cb); 376 out: 377 bio_put(bio); 378 } 379 380 /* 381 * worker function to build and submit bios for previously compressed pages. 382 * The corresponding pages in the inode should be marked for writeback 383 * and the compressed pages should have a reference on them for dropping 384 * when the IO is complete. 385 * 386 * This also checksums the file bytes and gets things ready for 387 * the end io hooks. 388 */ 389 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 390 unsigned long len, u64 disk_start, 391 unsigned long compressed_len, 392 struct page **compressed_pages, 393 unsigned long nr_pages, 394 unsigned int write_flags, 395 struct cgroup_subsys_state *blkcg_css) 396 { 397 struct btrfs_fs_info *fs_info = inode->root->fs_info; 398 struct bio *bio = NULL; 399 struct compressed_bio *cb; 400 unsigned long bytes_left; 401 int pg_index = 0; 402 struct page *page; 403 u64 first_byte = disk_start; 404 blk_status_t ret; 405 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 406 const bool use_append = btrfs_use_zone_append(inode, disk_start); 407 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE; 408 409 WARN_ON(!PAGE_ALIGNED(start)); 410 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 411 if (!cb) 412 return BLK_STS_RESOURCE; 413 refcount_set(&cb->pending_bios, 0); 414 cb->errors = 0; 415 cb->inode = &inode->vfs_inode; 416 cb->start = start; 417 cb->len = len; 418 cb->mirror_num = 0; 419 cb->compressed_pages = compressed_pages; 420 cb->compressed_len = compressed_len; 421 cb->orig_bio = NULL; 422 cb->nr_pages = nr_pages; 423 424 bio = btrfs_bio_alloc(first_byte); 425 bio->bi_opf = bio_op | write_flags; 426 bio->bi_private = cb; 427 bio->bi_end_io = end_compressed_bio_write; 428 429 if (use_append) { 430 struct extent_map *em; 431 struct map_lookup *map; 432 struct block_device *bdev; 433 434 em = btrfs_get_chunk_map(fs_info, disk_start, PAGE_SIZE); 435 if (IS_ERR(em)) { 436 kfree(cb); 437 bio_put(bio); 438 return BLK_STS_NOTSUPP; 439 } 440 441 map = em->map_lookup; 442 /* We only support single profile for now */ 443 ASSERT(map->num_stripes == 1); 444 bdev = map->stripes[0].dev->bdev; 445 446 bio_set_dev(bio, bdev); 447 free_extent_map(em); 448 } 449 450 if (blkcg_css) { 451 bio->bi_opf |= REQ_CGROUP_PUNT; 452 kthread_associate_blkcg(blkcg_css); 453 } 454 refcount_set(&cb->pending_bios, 1); 455 456 /* create and submit bios for the compressed pages */ 457 bytes_left = compressed_len; 458 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 459 int submit = 0; 460 int len = 0; 461 462 page = compressed_pages[pg_index]; 463 page->mapping = inode->vfs_inode.i_mapping; 464 if (bio->bi_iter.bi_size) 465 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 466 0); 467 468 /* 469 * Page can only be added to bio if the current bio fits in 470 * stripe. 471 */ 472 if (!submit) { 473 if (pg_index == 0 && use_append) 474 len = bio_add_zone_append_page(bio, page, 475 PAGE_SIZE, 0); 476 else 477 len = bio_add_page(bio, page, PAGE_SIZE, 0); 478 } 479 480 page->mapping = NULL; 481 if (submit || len < PAGE_SIZE) { 482 /* 483 * inc the count before we submit the bio so 484 * we know the end IO handler won't happen before 485 * we inc the count. Otherwise, the cb might get 486 * freed before we're done setting it up 487 */ 488 refcount_inc(&cb->pending_bios); 489 ret = btrfs_bio_wq_end_io(fs_info, bio, 490 BTRFS_WQ_ENDIO_DATA); 491 BUG_ON(ret); /* -ENOMEM */ 492 493 if (!skip_sum) { 494 ret = btrfs_csum_one_bio(inode, bio, start, 1); 495 BUG_ON(ret); /* -ENOMEM */ 496 } 497 498 ret = btrfs_map_bio(fs_info, bio, 0); 499 if (ret) { 500 bio->bi_status = ret; 501 bio_endio(bio); 502 } 503 504 bio = btrfs_bio_alloc(first_byte); 505 bio->bi_opf = bio_op | write_flags; 506 bio->bi_private = cb; 507 bio->bi_end_io = end_compressed_bio_write; 508 if (blkcg_css) 509 bio->bi_opf |= REQ_CGROUP_PUNT; 510 /* 511 * Use bio_add_page() to ensure the bio has at least one 512 * page. 513 */ 514 bio_add_page(bio, page, PAGE_SIZE, 0); 515 } 516 if (bytes_left < PAGE_SIZE) { 517 btrfs_info(fs_info, 518 "bytes left %lu compress len %lu nr %lu", 519 bytes_left, cb->compressed_len, cb->nr_pages); 520 } 521 bytes_left -= PAGE_SIZE; 522 first_byte += PAGE_SIZE; 523 cond_resched(); 524 } 525 526 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 527 BUG_ON(ret); /* -ENOMEM */ 528 529 if (!skip_sum) { 530 ret = btrfs_csum_one_bio(inode, bio, start, 1); 531 BUG_ON(ret); /* -ENOMEM */ 532 } 533 534 ret = btrfs_map_bio(fs_info, bio, 0); 535 if (ret) { 536 bio->bi_status = ret; 537 bio_endio(bio); 538 } 539 540 if (blkcg_css) 541 kthread_associate_blkcg(NULL); 542 543 return 0; 544 } 545 546 static u64 bio_end_offset(struct bio *bio) 547 { 548 struct bio_vec *last = bio_last_bvec_all(bio); 549 550 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 551 } 552 553 static noinline int add_ra_bio_pages(struct inode *inode, 554 u64 compressed_end, 555 struct compressed_bio *cb) 556 { 557 unsigned long end_index; 558 unsigned long pg_index; 559 u64 last_offset; 560 u64 isize = i_size_read(inode); 561 int ret; 562 struct page *page; 563 unsigned long nr_pages = 0; 564 struct extent_map *em; 565 struct address_space *mapping = inode->i_mapping; 566 struct extent_map_tree *em_tree; 567 struct extent_io_tree *tree; 568 u64 end; 569 int misses = 0; 570 571 last_offset = bio_end_offset(cb->orig_bio); 572 em_tree = &BTRFS_I(inode)->extent_tree; 573 tree = &BTRFS_I(inode)->io_tree; 574 575 if (isize == 0) 576 return 0; 577 578 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 579 580 while (last_offset < compressed_end) { 581 pg_index = last_offset >> PAGE_SHIFT; 582 583 if (pg_index > end_index) 584 break; 585 586 page = xa_load(&mapping->i_pages, pg_index); 587 if (page && !xa_is_value(page)) { 588 misses++; 589 if (misses > 4) 590 break; 591 goto next; 592 } 593 594 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 595 ~__GFP_FS)); 596 if (!page) 597 break; 598 599 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 600 put_page(page); 601 goto next; 602 } 603 604 /* 605 * at this point, we have a locked page in the page cache 606 * for these bytes in the file. But, we have to make 607 * sure they map to this compressed extent on disk. 608 */ 609 ret = set_page_extent_mapped(page); 610 if (ret < 0) { 611 unlock_page(page); 612 put_page(page); 613 break; 614 } 615 616 end = last_offset + PAGE_SIZE - 1; 617 lock_extent(tree, last_offset, end); 618 read_lock(&em_tree->lock); 619 em = lookup_extent_mapping(em_tree, last_offset, 620 PAGE_SIZE); 621 read_unlock(&em_tree->lock); 622 623 if (!em || last_offset < em->start || 624 (last_offset + PAGE_SIZE > extent_map_end(em)) || 625 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 626 free_extent_map(em); 627 unlock_extent(tree, last_offset, end); 628 unlock_page(page); 629 put_page(page); 630 break; 631 } 632 free_extent_map(em); 633 634 if (page->index == end_index) { 635 size_t zero_offset = offset_in_page(isize); 636 637 if (zero_offset) { 638 int zeros; 639 zeros = PAGE_SIZE - zero_offset; 640 memzero_page(page, zero_offset, zeros); 641 flush_dcache_page(page); 642 } 643 } 644 645 ret = bio_add_page(cb->orig_bio, page, 646 PAGE_SIZE, 0); 647 648 if (ret == PAGE_SIZE) { 649 nr_pages++; 650 put_page(page); 651 } else { 652 unlock_extent(tree, last_offset, end); 653 unlock_page(page); 654 put_page(page); 655 break; 656 } 657 next: 658 last_offset += PAGE_SIZE; 659 } 660 return 0; 661 } 662 663 /* 664 * for a compressed read, the bio we get passed has all the inode pages 665 * in it. We don't actually do IO on those pages but allocate new ones 666 * to hold the compressed pages on disk. 667 * 668 * bio->bi_iter.bi_sector points to the compressed extent on disk 669 * bio->bi_io_vec points to all of the inode pages 670 * 671 * After the compressed pages are read, we copy the bytes into the 672 * bio we were passed and then call the bio end_io calls 673 */ 674 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 675 int mirror_num, unsigned long bio_flags) 676 { 677 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 678 struct extent_map_tree *em_tree; 679 struct compressed_bio *cb; 680 unsigned long compressed_len; 681 unsigned long nr_pages; 682 unsigned long pg_index; 683 struct page *page; 684 struct bio *comp_bio; 685 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9; 686 u64 em_len; 687 u64 em_start; 688 struct extent_map *em; 689 blk_status_t ret = BLK_STS_RESOURCE; 690 int faili = 0; 691 u8 *sums; 692 693 em_tree = &BTRFS_I(inode)->extent_tree; 694 695 /* we need the actual starting offset of this extent in the file */ 696 read_lock(&em_tree->lock); 697 em = lookup_extent_mapping(em_tree, 698 page_offset(bio_first_page_all(bio)), 699 fs_info->sectorsize); 700 read_unlock(&em_tree->lock); 701 if (!em) 702 return BLK_STS_IOERR; 703 704 compressed_len = em->block_len; 705 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 706 if (!cb) 707 goto out; 708 709 refcount_set(&cb->pending_bios, 0); 710 cb->errors = 0; 711 cb->inode = inode; 712 cb->mirror_num = mirror_num; 713 sums = cb->sums; 714 715 cb->start = em->orig_start; 716 em_len = em->len; 717 em_start = em->start; 718 719 free_extent_map(em); 720 em = NULL; 721 722 cb->len = bio->bi_iter.bi_size; 723 cb->compressed_len = compressed_len; 724 cb->compress_type = extent_compress_type(bio_flags); 725 cb->orig_bio = bio; 726 727 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 728 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 729 GFP_NOFS); 730 if (!cb->compressed_pages) 731 goto fail1; 732 733 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 734 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 735 __GFP_HIGHMEM); 736 if (!cb->compressed_pages[pg_index]) { 737 faili = pg_index - 1; 738 ret = BLK_STS_RESOURCE; 739 goto fail2; 740 } 741 } 742 faili = nr_pages - 1; 743 cb->nr_pages = nr_pages; 744 745 add_ra_bio_pages(inode, em_start + em_len, cb); 746 747 /* include any pages we added in add_ra-bio_pages */ 748 cb->len = bio->bi_iter.bi_size; 749 750 comp_bio = btrfs_bio_alloc(cur_disk_byte); 751 comp_bio->bi_opf = REQ_OP_READ; 752 comp_bio->bi_private = cb; 753 comp_bio->bi_end_io = end_compressed_bio_read; 754 refcount_set(&cb->pending_bios, 1); 755 756 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 757 u32 pg_len = PAGE_SIZE; 758 int submit = 0; 759 760 /* 761 * To handle subpage case, we need to make sure the bio only 762 * covers the range we need. 763 * 764 * If we're at the last page, truncate the length to only cover 765 * the remaining part. 766 */ 767 if (pg_index == nr_pages - 1) 768 pg_len = min_t(u32, PAGE_SIZE, 769 compressed_len - pg_index * PAGE_SIZE); 770 771 page = cb->compressed_pages[pg_index]; 772 page->mapping = inode->i_mapping; 773 page->index = em_start >> PAGE_SHIFT; 774 775 if (comp_bio->bi_iter.bi_size) 776 submit = btrfs_bio_fits_in_stripe(page, pg_len, 777 comp_bio, 0); 778 779 page->mapping = NULL; 780 if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) { 781 unsigned int nr_sectors; 782 783 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 784 BTRFS_WQ_ENDIO_DATA); 785 BUG_ON(ret); /* -ENOMEM */ 786 787 /* 788 * inc the count before we submit the bio so 789 * we know the end IO handler won't happen before 790 * we inc the count. Otherwise, the cb might get 791 * freed before we're done setting it up 792 */ 793 refcount_inc(&cb->pending_bios); 794 795 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 796 BUG_ON(ret); /* -ENOMEM */ 797 798 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 799 fs_info->sectorsize); 800 sums += fs_info->csum_size * nr_sectors; 801 802 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 803 if (ret) { 804 comp_bio->bi_status = ret; 805 bio_endio(comp_bio); 806 } 807 808 comp_bio = btrfs_bio_alloc(cur_disk_byte); 809 comp_bio->bi_opf = REQ_OP_READ; 810 comp_bio->bi_private = cb; 811 comp_bio->bi_end_io = end_compressed_bio_read; 812 813 bio_add_page(comp_bio, page, pg_len, 0); 814 } 815 cur_disk_byte += pg_len; 816 } 817 818 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 819 BUG_ON(ret); /* -ENOMEM */ 820 821 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 822 BUG_ON(ret); /* -ENOMEM */ 823 824 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 825 if (ret) { 826 comp_bio->bi_status = ret; 827 bio_endio(comp_bio); 828 } 829 830 return 0; 831 832 fail2: 833 while (faili >= 0) { 834 __free_page(cb->compressed_pages[faili]); 835 faili--; 836 } 837 838 kfree(cb->compressed_pages); 839 fail1: 840 kfree(cb); 841 out: 842 free_extent_map(em); 843 return ret; 844 } 845 846 /* 847 * Heuristic uses systematic sampling to collect data from the input data 848 * range, the logic can be tuned by the following constants: 849 * 850 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 851 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 852 */ 853 #define SAMPLING_READ_SIZE (16) 854 #define SAMPLING_INTERVAL (256) 855 856 /* 857 * For statistical analysis of the input data we consider bytes that form a 858 * Galois Field of 256 objects. Each object has an attribute count, ie. how 859 * many times the object appeared in the sample. 860 */ 861 #define BUCKET_SIZE (256) 862 863 /* 864 * The size of the sample is based on a statistical sampling rule of thumb. 865 * The common way is to perform sampling tests as long as the number of 866 * elements in each cell is at least 5. 867 * 868 * Instead of 5, we choose 32 to obtain more accurate results. 869 * If the data contain the maximum number of symbols, which is 256, we obtain a 870 * sample size bound by 8192. 871 * 872 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 873 * from up to 512 locations. 874 */ 875 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 876 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 877 878 struct bucket_item { 879 u32 count; 880 }; 881 882 struct heuristic_ws { 883 /* Partial copy of input data */ 884 u8 *sample; 885 u32 sample_size; 886 /* Buckets store counters for each byte value */ 887 struct bucket_item *bucket; 888 /* Sorting buffer */ 889 struct bucket_item *bucket_b; 890 struct list_head list; 891 }; 892 893 static struct workspace_manager heuristic_wsm; 894 895 static void free_heuristic_ws(struct list_head *ws) 896 { 897 struct heuristic_ws *workspace; 898 899 workspace = list_entry(ws, struct heuristic_ws, list); 900 901 kvfree(workspace->sample); 902 kfree(workspace->bucket); 903 kfree(workspace->bucket_b); 904 kfree(workspace); 905 } 906 907 static struct list_head *alloc_heuristic_ws(unsigned int level) 908 { 909 struct heuristic_ws *ws; 910 911 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 912 if (!ws) 913 return ERR_PTR(-ENOMEM); 914 915 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 916 if (!ws->sample) 917 goto fail; 918 919 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 920 if (!ws->bucket) 921 goto fail; 922 923 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 924 if (!ws->bucket_b) 925 goto fail; 926 927 INIT_LIST_HEAD(&ws->list); 928 return &ws->list; 929 fail: 930 free_heuristic_ws(&ws->list); 931 return ERR_PTR(-ENOMEM); 932 } 933 934 const struct btrfs_compress_op btrfs_heuristic_compress = { 935 .workspace_manager = &heuristic_wsm, 936 }; 937 938 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 939 /* The heuristic is represented as compression type 0 */ 940 &btrfs_heuristic_compress, 941 &btrfs_zlib_compress, 942 &btrfs_lzo_compress, 943 &btrfs_zstd_compress, 944 }; 945 946 static struct list_head *alloc_workspace(int type, unsigned int level) 947 { 948 switch (type) { 949 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 950 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 951 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 952 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 953 default: 954 /* 955 * This can't happen, the type is validated several times 956 * before we get here. 957 */ 958 BUG(); 959 } 960 } 961 962 static void free_workspace(int type, struct list_head *ws) 963 { 964 switch (type) { 965 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 966 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 967 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 968 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 969 default: 970 /* 971 * This can't happen, the type is validated several times 972 * before we get here. 973 */ 974 BUG(); 975 } 976 } 977 978 static void btrfs_init_workspace_manager(int type) 979 { 980 struct workspace_manager *wsm; 981 struct list_head *workspace; 982 983 wsm = btrfs_compress_op[type]->workspace_manager; 984 INIT_LIST_HEAD(&wsm->idle_ws); 985 spin_lock_init(&wsm->ws_lock); 986 atomic_set(&wsm->total_ws, 0); 987 init_waitqueue_head(&wsm->ws_wait); 988 989 /* 990 * Preallocate one workspace for each compression type so we can 991 * guarantee forward progress in the worst case 992 */ 993 workspace = alloc_workspace(type, 0); 994 if (IS_ERR(workspace)) { 995 pr_warn( 996 "BTRFS: cannot preallocate compression workspace, will try later\n"); 997 } else { 998 atomic_set(&wsm->total_ws, 1); 999 wsm->free_ws = 1; 1000 list_add(workspace, &wsm->idle_ws); 1001 } 1002 } 1003 1004 static void btrfs_cleanup_workspace_manager(int type) 1005 { 1006 struct workspace_manager *wsman; 1007 struct list_head *ws; 1008 1009 wsman = btrfs_compress_op[type]->workspace_manager; 1010 while (!list_empty(&wsman->idle_ws)) { 1011 ws = wsman->idle_ws.next; 1012 list_del(ws); 1013 free_workspace(type, ws); 1014 atomic_dec(&wsman->total_ws); 1015 } 1016 } 1017 1018 /* 1019 * This finds an available workspace or allocates a new one. 1020 * If it's not possible to allocate a new one, waits until there's one. 1021 * Preallocation makes a forward progress guarantees and we do not return 1022 * errors. 1023 */ 1024 struct list_head *btrfs_get_workspace(int type, unsigned int level) 1025 { 1026 struct workspace_manager *wsm; 1027 struct list_head *workspace; 1028 int cpus = num_online_cpus(); 1029 unsigned nofs_flag; 1030 struct list_head *idle_ws; 1031 spinlock_t *ws_lock; 1032 atomic_t *total_ws; 1033 wait_queue_head_t *ws_wait; 1034 int *free_ws; 1035 1036 wsm = btrfs_compress_op[type]->workspace_manager; 1037 idle_ws = &wsm->idle_ws; 1038 ws_lock = &wsm->ws_lock; 1039 total_ws = &wsm->total_ws; 1040 ws_wait = &wsm->ws_wait; 1041 free_ws = &wsm->free_ws; 1042 1043 again: 1044 spin_lock(ws_lock); 1045 if (!list_empty(idle_ws)) { 1046 workspace = idle_ws->next; 1047 list_del(workspace); 1048 (*free_ws)--; 1049 spin_unlock(ws_lock); 1050 return workspace; 1051 1052 } 1053 if (atomic_read(total_ws) > cpus) { 1054 DEFINE_WAIT(wait); 1055 1056 spin_unlock(ws_lock); 1057 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1058 if (atomic_read(total_ws) > cpus && !*free_ws) 1059 schedule(); 1060 finish_wait(ws_wait, &wait); 1061 goto again; 1062 } 1063 atomic_inc(total_ws); 1064 spin_unlock(ws_lock); 1065 1066 /* 1067 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1068 * to turn it off here because we might get called from the restricted 1069 * context of btrfs_compress_bio/btrfs_compress_pages 1070 */ 1071 nofs_flag = memalloc_nofs_save(); 1072 workspace = alloc_workspace(type, level); 1073 memalloc_nofs_restore(nofs_flag); 1074 1075 if (IS_ERR(workspace)) { 1076 atomic_dec(total_ws); 1077 wake_up(ws_wait); 1078 1079 /* 1080 * Do not return the error but go back to waiting. There's a 1081 * workspace preallocated for each type and the compression 1082 * time is bounded so we get to a workspace eventually. This 1083 * makes our caller's life easier. 1084 * 1085 * To prevent silent and low-probability deadlocks (when the 1086 * initial preallocation fails), check if there are any 1087 * workspaces at all. 1088 */ 1089 if (atomic_read(total_ws) == 0) { 1090 static DEFINE_RATELIMIT_STATE(_rs, 1091 /* once per minute */ 60 * HZ, 1092 /* no burst */ 1); 1093 1094 if (__ratelimit(&_rs)) { 1095 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1096 } 1097 } 1098 goto again; 1099 } 1100 return workspace; 1101 } 1102 1103 static struct list_head *get_workspace(int type, int level) 1104 { 1105 switch (type) { 1106 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1107 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1108 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1109 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1110 default: 1111 /* 1112 * This can't happen, the type is validated several times 1113 * before we get here. 1114 */ 1115 BUG(); 1116 } 1117 } 1118 1119 /* 1120 * put a workspace struct back on the list or free it if we have enough 1121 * idle ones sitting around 1122 */ 1123 void btrfs_put_workspace(int type, struct list_head *ws) 1124 { 1125 struct workspace_manager *wsm; 1126 struct list_head *idle_ws; 1127 spinlock_t *ws_lock; 1128 atomic_t *total_ws; 1129 wait_queue_head_t *ws_wait; 1130 int *free_ws; 1131 1132 wsm = btrfs_compress_op[type]->workspace_manager; 1133 idle_ws = &wsm->idle_ws; 1134 ws_lock = &wsm->ws_lock; 1135 total_ws = &wsm->total_ws; 1136 ws_wait = &wsm->ws_wait; 1137 free_ws = &wsm->free_ws; 1138 1139 spin_lock(ws_lock); 1140 if (*free_ws <= num_online_cpus()) { 1141 list_add(ws, idle_ws); 1142 (*free_ws)++; 1143 spin_unlock(ws_lock); 1144 goto wake; 1145 } 1146 spin_unlock(ws_lock); 1147 1148 free_workspace(type, ws); 1149 atomic_dec(total_ws); 1150 wake: 1151 cond_wake_up(ws_wait); 1152 } 1153 1154 static void put_workspace(int type, struct list_head *ws) 1155 { 1156 switch (type) { 1157 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1158 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1159 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1160 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1161 default: 1162 /* 1163 * This can't happen, the type is validated several times 1164 * before we get here. 1165 */ 1166 BUG(); 1167 } 1168 } 1169 1170 /* 1171 * Adjust @level according to the limits of the compression algorithm or 1172 * fallback to default 1173 */ 1174 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1175 { 1176 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1177 1178 if (level == 0) 1179 level = ops->default_level; 1180 else 1181 level = min(level, ops->max_level); 1182 1183 return level; 1184 } 1185 1186 /* 1187 * Given an address space and start and length, compress the bytes into @pages 1188 * that are allocated on demand. 1189 * 1190 * @type_level is encoded algorithm and level, where level 0 means whatever 1191 * default the algorithm chooses and is opaque here; 1192 * - compression algo are 0-3 1193 * - the level are bits 4-7 1194 * 1195 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1196 * and returns number of actually allocated pages 1197 * 1198 * @total_in is used to return the number of bytes actually read. It 1199 * may be smaller than the input length if we had to exit early because we 1200 * ran out of room in the pages array or because we cross the 1201 * max_out threshold. 1202 * 1203 * @total_out is an in/out parameter, must be set to the input length and will 1204 * be also used to return the total number of compressed bytes 1205 * 1206 * @max_out tells us the max number of bytes that we're allowed to 1207 * stuff into pages 1208 */ 1209 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1210 u64 start, struct page **pages, 1211 unsigned long *out_pages, 1212 unsigned long *total_in, 1213 unsigned long *total_out) 1214 { 1215 int type = btrfs_compress_type(type_level); 1216 int level = btrfs_compress_level(type_level); 1217 struct list_head *workspace; 1218 int ret; 1219 1220 level = btrfs_compress_set_level(type, level); 1221 workspace = get_workspace(type, level); 1222 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1223 out_pages, total_in, total_out); 1224 put_workspace(type, workspace); 1225 return ret; 1226 } 1227 1228 /* 1229 * pages_in is an array of pages with compressed data. 1230 * 1231 * disk_start is the starting logical offset of this array in the file 1232 * 1233 * orig_bio contains the pages from the file that we want to decompress into 1234 * 1235 * srclen is the number of bytes in pages_in 1236 * 1237 * The basic idea is that we have a bio that was created by readpages. 1238 * The pages in the bio are for the uncompressed data, and they may not 1239 * be contiguous. They all correspond to the range of bytes covered by 1240 * the compressed extent. 1241 */ 1242 static int btrfs_decompress_bio(struct compressed_bio *cb) 1243 { 1244 struct list_head *workspace; 1245 int ret; 1246 int type = cb->compress_type; 1247 1248 workspace = get_workspace(type, 0); 1249 ret = compression_decompress_bio(type, workspace, cb); 1250 put_workspace(type, workspace); 1251 1252 return ret; 1253 } 1254 1255 /* 1256 * a less complex decompression routine. Our compressed data fits in a 1257 * single page, and we want to read a single page out of it. 1258 * start_byte tells us the offset into the compressed data we're interested in 1259 */ 1260 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1261 unsigned long start_byte, size_t srclen, size_t destlen) 1262 { 1263 struct list_head *workspace; 1264 int ret; 1265 1266 workspace = get_workspace(type, 0); 1267 ret = compression_decompress(type, workspace, data_in, dest_page, 1268 start_byte, srclen, destlen); 1269 put_workspace(type, workspace); 1270 1271 return ret; 1272 } 1273 1274 void __init btrfs_init_compress(void) 1275 { 1276 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1277 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1278 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1279 zstd_init_workspace_manager(); 1280 } 1281 1282 void __cold btrfs_exit_compress(void) 1283 { 1284 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1285 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1286 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1287 zstd_cleanup_workspace_manager(); 1288 } 1289 1290 /* 1291 * Copy uncompressed data from working buffer to pages. 1292 * 1293 * buf_start is the byte offset we're of the start of our workspace buffer. 1294 * 1295 * total_out is the last byte of the buffer 1296 */ 1297 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1298 unsigned long total_out, u64 disk_start, 1299 struct bio *bio) 1300 { 1301 unsigned long buf_offset; 1302 unsigned long current_buf_start; 1303 unsigned long start_byte; 1304 unsigned long prev_start_byte; 1305 unsigned long working_bytes = total_out - buf_start; 1306 unsigned long bytes; 1307 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1308 1309 /* 1310 * start byte is the first byte of the page we're currently 1311 * copying into relative to the start of the compressed data. 1312 */ 1313 start_byte = page_offset(bvec.bv_page) - disk_start; 1314 1315 /* we haven't yet hit data corresponding to this page */ 1316 if (total_out <= start_byte) 1317 return 1; 1318 1319 /* 1320 * the start of the data we care about is offset into 1321 * the middle of our working buffer 1322 */ 1323 if (total_out > start_byte && buf_start < start_byte) { 1324 buf_offset = start_byte - buf_start; 1325 working_bytes -= buf_offset; 1326 } else { 1327 buf_offset = 0; 1328 } 1329 current_buf_start = buf_start; 1330 1331 /* copy bytes from the working buffer into the pages */ 1332 while (working_bytes > 0) { 1333 bytes = min_t(unsigned long, bvec.bv_len, 1334 PAGE_SIZE - (buf_offset % PAGE_SIZE)); 1335 bytes = min(bytes, working_bytes); 1336 1337 memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset, 1338 bytes); 1339 flush_dcache_page(bvec.bv_page); 1340 1341 buf_offset += bytes; 1342 working_bytes -= bytes; 1343 current_buf_start += bytes; 1344 1345 /* check if we need to pick another page */ 1346 bio_advance(bio, bytes); 1347 if (!bio->bi_iter.bi_size) 1348 return 0; 1349 bvec = bio_iter_iovec(bio, bio->bi_iter); 1350 prev_start_byte = start_byte; 1351 start_byte = page_offset(bvec.bv_page) - disk_start; 1352 1353 /* 1354 * We need to make sure we're only adjusting 1355 * our offset into compression working buffer when 1356 * we're switching pages. Otherwise we can incorrectly 1357 * keep copying when we were actually done. 1358 */ 1359 if (start_byte != prev_start_byte) { 1360 /* 1361 * make sure our new page is covered by this 1362 * working buffer 1363 */ 1364 if (total_out <= start_byte) 1365 return 1; 1366 1367 /* 1368 * the next page in the biovec might not be adjacent 1369 * to the last page, but it might still be found 1370 * inside this working buffer. bump our offset pointer 1371 */ 1372 if (total_out > start_byte && 1373 current_buf_start < start_byte) { 1374 buf_offset = start_byte - buf_start; 1375 working_bytes = total_out - start_byte; 1376 current_buf_start = buf_start + buf_offset; 1377 } 1378 } 1379 } 1380 1381 return 1; 1382 } 1383 1384 /* 1385 * Shannon Entropy calculation 1386 * 1387 * Pure byte distribution analysis fails to determine compressibility of data. 1388 * Try calculating entropy to estimate the average minimum number of bits 1389 * needed to encode the sampled data. 1390 * 1391 * For convenience, return the percentage of needed bits, instead of amount of 1392 * bits directly. 1393 * 1394 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1395 * and can be compressible with high probability 1396 * 1397 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1398 * 1399 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1400 */ 1401 #define ENTROPY_LVL_ACEPTABLE (65) 1402 #define ENTROPY_LVL_HIGH (80) 1403 1404 /* 1405 * For increasead precision in shannon_entropy calculation, 1406 * let's do pow(n, M) to save more digits after comma: 1407 * 1408 * - maximum int bit length is 64 1409 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1410 * - 13 * 4 = 52 < 64 -> M = 4 1411 * 1412 * So use pow(n, 4). 1413 */ 1414 static inline u32 ilog2_w(u64 n) 1415 { 1416 return ilog2(n * n * n * n); 1417 } 1418 1419 static u32 shannon_entropy(struct heuristic_ws *ws) 1420 { 1421 const u32 entropy_max = 8 * ilog2_w(2); 1422 u32 entropy_sum = 0; 1423 u32 p, p_base, sz_base; 1424 u32 i; 1425 1426 sz_base = ilog2_w(ws->sample_size); 1427 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1428 p = ws->bucket[i].count; 1429 p_base = ilog2_w(p); 1430 entropy_sum += p * (sz_base - p_base); 1431 } 1432 1433 entropy_sum /= ws->sample_size; 1434 return entropy_sum * 100 / entropy_max; 1435 } 1436 1437 #define RADIX_BASE 4U 1438 #define COUNTERS_SIZE (1U << RADIX_BASE) 1439 1440 static u8 get4bits(u64 num, int shift) { 1441 u8 low4bits; 1442 1443 num >>= shift; 1444 /* Reverse order */ 1445 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1446 return low4bits; 1447 } 1448 1449 /* 1450 * Use 4 bits as radix base 1451 * Use 16 u32 counters for calculating new position in buf array 1452 * 1453 * @array - array that will be sorted 1454 * @array_buf - buffer array to store sorting results 1455 * must be equal in size to @array 1456 * @num - array size 1457 */ 1458 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1459 int num) 1460 { 1461 u64 max_num; 1462 u64 buf_num; 1463 u32 counters[COUNTERS_SIZE]; 1464 u32 new_addr; 1465 u32 addr; 1466 int bitlen; 1467 int shift; 1468 int i; 1469 1470 /* 1471 * Try avoid useless loop iterations for small numbers stored in big 1472 * counters. Example: 48 33 4 ... in 64bit array 1473 */ 1474 max_num = array[0].count; 1475 for (i = 1; i < num; i++) { 1476 buf_num = array[i].count; 1477 if (buf_num > max_num) 1478 max_num = buf_num; 1479 } 1480 1481 buf_num = ilog2(max_num); 1482 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1483 1484 shift = 0; 1485 while (shift < bitlen) { 1486 memset(counters, 0, sizeof(counters)); 1487 1488 for (i = 0; i < num; i++) { 1489 buf_num = array[i].count; 1490 addr = get4bits(buf_num, shift); 1491 counters[addr]++; 1492 } 1493 1494 for (i = 1; i < COUNTERS_SIZE; i++) 1495 counters[i] += counters[i - 1]; 1496 1497 for (i = num - 1; i >= 0; i--) { 1498 buf_num = array[i].count; 1499 addr = get4bits(buf_num, shift); 1500 counters[addr]--; 1501 new_addr = counters[addr]; 1502 array_buf[new_addr] = array[i]; 1503 } 1504 1505 shift += RADIX_BASE; 1506 1507 /* 1508 * Normal radix expects to move data from a temporary array, to 1509 * the main one. But that requires some CPU time. Avoid that 1510 * by doing another sort iteration to original array instead of 1511 * memcpy() 1512 */ 1513 memset(counters, 0, sizeof(counters)); 1514 1515 for (i = 0; i < num; i ++) { 1516 buf_num = array_buf[i].count; 1517 addr = get4bits(buf_num, shift); 1518 counters[addr]++; 1519 } 1520 1521 for (i = 1; i < COUNTERS_SIZE; i++) 1522 counters[i] += counters[i - 1]; 1523 1524 for (i = num - 1; i >= 0; i--) { 1525 buf_num = array_buf[i].count; 1526 addr = get4bits(buf_num, shift); 1527 counters[addr]--; 1528 new_addr = counters[addr]; 1529 array[new_addr] = array_buf[i]; 1530 } 1531 1532 shift += RADIX_BASE; 1533 } 1534 } 1535 1536 /* 1537 * Size of the core byte set - how many bytes cover 90% of the sample 1538 * 1539 * There are several types of structured binary data that use nearly all byte 1540 * values. The distribution can be uniform and counts in all buckets will be 1541 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1542 * 1543 * Other possibility is normal (Gaussian) distribution, where the data could 1544 * be potentially compressible, but we have to take a few more steps to decide 1545 * how much. 1546 * 1547 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1548 * compression algo can easy fix that 1549 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1550 * probability is not compressible 1551 */ 1552 #define BYTE_CORE_SET_LOW (64) 1553 #define BYTE_CORE_SET_HIGH (200) 1554 1555 static int byte_core_set_size(struct heuristic_ws *ws) 1556 { 1557 u32 i; 1558 u32 coreset_sum = 0; 1559 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1560 struct bucket_item *bucket = ws->bucket; 1561 1562 /* Sort in reverse order */ 1563 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1564 1565 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1566 coreset_sum += bucket[i].count; 1567 1568 if (coreset_sum > core_set_threshold) 1569 return i; 1570 1571 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1572 coreset_sum += bucket[i].count; 1573 if (coreset_sum > core_set_threshold) 1574 break; 1575 } 1576 1577 return i; 1578 } 1579 1580 /* 1581 * Count byte values in buckets. 1582 * This heuristic can detect textual data (configs, xml, json, html, etc). 1583 * Because in most text-like data byte set is restricted to limited number of 1584 * possible characters, and that restriction in most cases makes data easy to 1585 * compress. 1586 * 1587 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1588 * less - compressible 1589 * more - need additional analysis 1590 */ 1591 #define BYTE_SET_THRESHOLD (64) 1592 1593 static u32 byte_set_size(const struct heuristic_ws *ws) 1594 { 1595 u32 i; 1596 u32 byte_set_size = 0; 1597 1598 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1599 if (ws->bucket[i].count > 0) 1600 byte_set_size++; 1601 } 1602 1603 /* 1604 * Continue collecting count of byte values in buckets. If the byte 1605 * set size is bigger then the threshold, it's pointless to continue, 1606 * the detection technique would fail for this type of data. 1607 */ 1608 for (; i < BUCKET_SIZE; i++) { 1609 if (ws->bucket[i].count > 0) { 1610 byte_set_size++; 1611 if (byte_set_size > BYTE_SET_THRESHOLD) 1612 return byte_set_size; 1613 } 1614 } 1615 1616 return byte_set_size; 1617 } 1618 1619 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1620 { 1621 const u32 half_of_sample = ws->sample_size / 2; 1622 const u8 *data = ws->sample; 1623 1624 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1625 } 1626 1627 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1628 struct heuristic_ws *ws) 1629 { 1630 struct page *page; 1631 u64 index, index_end; 1632 u32 i, curr_sample_pos; 1633 u8 *in_data; 1634 1635 /* 1636 * Compression handles the input data by chunks of 128KiB 1637 * (defined by BTRFS_MAX_UNCOMPRESSED) 1638 * 1639 * We do the same for the heuristic and loop over the whole range. 1640 * 1641 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1642 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1643 */ 1644 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1645 end = start + BTRFS_MAX_UNCOMPRESSED; 1646 1647 index = start >> PAGE_SHIFT; 1648 index_end = end >> PAGE_SHIFT; 1649 1650 /* Don't miss unaligned end */ 1651 if (!IS_ALIGNED(end, PAGE_SIZE)) 1652 index_end++; 1653 1654 curr_sample_pos = 0; 1655 while (index < index_end) { 1656 page = find_get_page(inode->i_mapping, index); 1657 in_data = kmap_local_page(page); 1658 /* Handle case where the start is not aligned to PAGE_SIZE */ 1659 i = start % PAGE_SIZE; 1660 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1661 /* Don't sample any garbage from the last page */ 1662 if (start > end - SAMPLING_READ_SIZE) 1663 break; 1664 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1665 SAMPLING_READ_SIZE); 1666 i += SAMPLING_INTERVAL; 1667 start += SAMPLING_INTERVAL; 1668 curr_sample_pos += SAMPLING_READ_SIZE; 1669 } 1670 kunmap_local(in_data); 1671 put_page(page); 1672 1673 index++; 1674 } 1675 1676 ws->sample_size = curr_sample_pos; 1677 } 1678 1679 /* 1680 * Compression heuristic. 1681 * 1682 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1683 * quickly (compared to direct compression) detect data characteristics 1684 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1685 * data. 1686 * 1687 * The following types of analysis can be performed: 1688 * - detect mostly zero data 1689 * - detect data with low "byte set" size (text, etc) 1690 * - detect data with low/high "core byte" set 1691 * 1692 * Return non-zero if the compression should be done, 0 otherwise. 1693 */ 1694 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1695 { 1696 struct list_head *ws_list = get_workspace(0, 0); 1697 struct heuristic_ws *ws; 1698 u32 i; 1699 u8 byte; 1700 int ret = 0; 1701 1702 ws = list_entry(ws_list, struct heuristic_ws, list); 1703 1704 heuristic_collect_sample(inode, start, end, ws); 1705 1706 if (sample_repeated_patterns(ws)) { 1707 ret = 1; 1708 goto out; 1709 } 1710 1711 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1712 1713 for (i = 0; i < ws->sample_size; i++) { 1714 byte = ws->sample[i]; 1715 ws->bucket[byte].count++; 1716 } 1717 1718 i = byte_set_size(ws); 1719 if (i < BYTE_SET_THRESHOLD) { 1720 ret = 2; 1721 goto out; 1722 } 1723 1724 i = byte_core_set_size(ws); 1725 if (i <= BYTE_CORE_SET_LOW) { 1726 ret = 3; 1727 goto out; 1728 } 1729 1730 if (i >= BYTE_CORE_SET_HIGH) { 1731 ret = 0; 1732 goto out; 1733 } 1734 1735 i = shannon_entropy(ws); 1736 if (i <= ENTROPY_LVL_ACEPTABLE) { 1737 ret = 4; 1738 goto out; 1739 } 1740 1741 /* 1742 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1743 * needed to give green light to compression. 1744 * 1745 * For now just assume that compression at that level is not worth the 1746 * resources because: 1747 * 1748 * 1. it is possible to defrag the data later 1749 * 1750 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1751 * values, every bucket has counter at level ~54. The heuristic would 1752 * be confused. This can happen when data have some internal repeated 1753 * patterns like "abbacbbc...". This can be detected by analyzing 1754 * pairs of bytes, which is too costly. 1755 */ 1756 if (i < ENTROPY_LVL_HIGH) { 1757 ret = 5; 1758 goto out; 1759 } else { 1760 ret = 0; 1761 goto out; 1762 } 1763 1764 out: 1765 put_workspace(0, ws_list); 1766 return ret; 1767 } 1768 1769 /* 1770 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1771 * level, unrecognized string will set the default level 1772 */ 1773 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1774 { 1775 unsigned int level = 0; 1776 int ret; 1777 1778 if (!type) 1779 return 0; 1780 1781 if (str[0] == ':') { 1782 ret = kstrtouint(str + 1, 10, &level); 1783 if (ret) 1784 level = 0; 1785 } 1786 1787 level = btrfs_compress_set_level(type, level); 1788 1789 return level; 1790 } 1791