xref: /openbmc/linux/fs/btrfs/compression.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include <linux/sched/mm.h>
36 #include <linux/log2.h>
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "volumes.h"
42 #include "ordered-data.h"
43 #include "compression.h"
44 #include "extent_io.h"
45 #include "extent_map.h"
46 
47 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
48 
49 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
50 {
51 	switch (type) {
52 	case BTRFS_COMPRESS_ZLIB:
53 	case BTRFS_COMPRESS_LZO:
54 	case BTRFS_COMPRESS_ZSTD:
55 	case BTRFS_COMPRESS_NONE:
56 		return btrfs_compress_types[type];
57 	}
58 
59 	return NULL;
60 }
61 
62 static int btrfs_decompress_bio(struct compressed_bio *cb);
63 
64 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
65 				      unsigned long disk_size)
66 {
67 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
68 
69 	return sizeof(struct compressed_bio) +
70 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
71 }
72 
73 static int check_compressed_csum(struct btrfs_inode *inode,
74 				 struct compressed_bio *cb,
75 				 u64 disk_start)
76 {
77 	int ret;
78 	struct page *page;
79 	unsigned long i;
80 	char *kaddr;
81 	u32 csum;
82 	u32 *cb_sum = &cb->sums;
83 
84 	if (inode->flags & BTRFS_INODE_NODATASUM)
85 		return 0;
86 
87 	for (i = 0; i < cb->nr_pages; i++) {
88 		page = cb->compressed_pages[i];
89 		csum = ~(u32)0;
90 
91 		kaddr = kmap_atomic(page);
92 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
93 		btrfs_csum_final(csum, (u8 *)&csum);
94 		kunmap_atomic(kaddr);
95 
96 		if (csum != *cb_sum) {
97 			btrfs_print_data_csum_error(inode, disk_start, csum,
98 					*cb_sum, cb->mirror_num);
99 			ret = -EIO;
100 			goto fail;
101 		}
102 		cb_sum++;
103 
104 	}
105 	ret = 0;
106 fail:
107 	return ret;
108 }
109 
110 /* when we finish reading compressed pages from the disk, we
111  * decompress them and then run the bio end_io routines on the
112  * decompressed pages (in the inode address space).
113  *
114  * This allows the checksumming and other IO error handling routines
115  * to work normally
116  *
117  * The compressed pages are freed here, and it must be run
118  * in process context
119  */
120 static void end_compressed_bio_read(struct bio *bio)
121 {
122 	struct compressed_bio *cb = bio->bi_private;
123 	struct inode *inode;
124 	struct page *page;
125 	unsigned long index;
126 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
127 	int ret = 0;
128 
129 	if (bio->bi_status)
130 		cb->errors = 1;
131 
132 	/* if there are more bios still pending for this compressed
133 	 * extent, just exit
134 	 */
135 	if (!refcount_dec_and_test(&cb->pending_bios))
136 		goto out;
137 
138 	/*
139 	 * Record the correct mirror_num in cb->orig_bio so that
140 	 * read-repair can work properly.
141 	 */
142 	ASSERT(btrfs_io_bio(cb->orig_bio));
143 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
144 	cb->mirror_num = mirror;
145 
146 	/*
147 	 * Some IO in this cb have failed, just skip checksum as there
148 	 * is no way it could be correct.
149 	 */
150 	if (cb->errors == 1)
151 		goto csum_failed;
152 
153 	inode = cb->inode;
154 	ret = check_compressed_csum(BTRFS_I(inode), cb,
155 				    (u64)bio->bi_iter.bi_sector << 9);
156 	if (ret)
157 		goto csum_failed;
158 
159 	/* ok, we're the last bio for this extent, lets start
160 	 * the decompression.
161 	 */
162 	ret = btrfs_decompress_bio(cb);
163 
164 csum_failed:
165 	if (ret)
166 		cb->errors = 1;
167 
168 	/* release the compressed pages */
169 	index = 0;
170 	for (index = 0; index < cb->nr_pages; index++) {
171 		page = cb->compressed_pages[index];
172 		page->mapping = NULL;
173 		put_page(page);
174 	}
175 
176 	/* do io completion on the original bio */
177 	if (cb->errors) {
178 		bio_io_error(cb->orig_bio);
179 	} else {
180 		int i;
181 		struct bio_vec *bvec;
182 
183 		/*
184 		 * we have verified the checksum already, set page
185 		 * checked so the end_io handlers know about it
186 		 */
187 		ASSERT(!bio_flagged(bio, BIO_CLONED));
188 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
189 			SetPageChecked(bvec->bv_page);
190 
191 		bio_endio(cb->orig_bio);
192 	}
193 
194 	/* finally free the cb struct */
195 	kfree(cb->compressed_pages);
196 	kfree(cb);
197 out:
198 	bio_put(bio);
199 }
200 
201 /*
202  * Clear the writeback bits on all of the file
203  * pages for a compressed write
204  */
205 static noinline void end_compressed_writeback(struct inode *inode,
206 					      const struct compressed_bio *cb)
207 {
208 	unsigned long index = cb->start >> PAGE_SHIFT;
209 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
210 	struct page *pages[16];
211 	unsigned long nr_pages = end_index - index + 1;
212 	int i;
213 	int ret;
214 
215 	if (cb->errors)
216 		mapping_set_error(inode->i_mapping, -EIO);
217 
218 	while (nr_pages > 0) {
219 		ret = find_get_pages_contig(inode->i_mapping, index,
220 				     min_t(unsigned long,
221 				     nr_pages, ARRAY_SIZE(pages)), pages);
222 		if (ret == 0) {
223 			nr_pages -= 1;
224 			index += 1;
225 			continue;
226 		}
227 		for (i = 0; i < ret; i++) {
228 			if (cb->errors)
229 				SetPageError(pages[i]);
230 			end_page_writeback(pages[i]);
231 			put_page(pages[i]);
232 		}
233 		nr_pages -= ret;
234 		index += ret;
235 	}
236 	/* the inode may be gone now */
237 }
238 
239 /*
240  * do the cleanup once all the compressed pages hit the disk.
241  * This will clear writeback on the file pages and free the compressed
242  * pages.
243  *
244  * This also calls the writeback end hooks for the file pages so that
245  * metadata and checksums can be updated in the file.
246  */
247 static void end_compressed_bio_write(struct bio *bio)
248 {
249 	struct extent_io_tree *tree;
250 	struct compressed_bio *cb = bio->bi_private;
251 	struct inode *inode;
252 	struct page *page;
253 	unsigned long index;
254 
255 	if (bio->bi_status)
256 		cb->errors = 1;
257 
258 	/* if there are more bios still pending for this compressed
259 	 * extent, just exit
260 	 */
261 	if (!refcount_dec_and_test(&cb->pending_bios))
262 		goto out;
263 
264 	/* ok, we're the last bio for this extent, step one is to
265 	 * call back into the FS and do all the end_io operations
266 	 */
267 	inode = cb->inode;
268 	tree = &BTRFS_I(inode)->io_tree;
269 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
270 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
271 					 cb->start,
272 					 cb->start + cb->len - 1,
273 					 NULL,
274 					 bio->bi_status ?
275 					 BLK_STS_OK : BLK_STS_NOTSUPP);
276 	cb->compressed_pages[0]->mapping = NULL;
277 
278 	end_compressed_writeback(inode, cb);
279 	/* note, our inode could be gone now */
280 
281 	/*
282 	 * release the compressed pages, these came from alloc_page and
283 	 * are not attached to the inode at all
284 	 */
285 	index = 0;
286 	for (index = 0; index < cb->nr_pages; index++) {
287 		page = cb->compressed_pages[index];
288 		page->mapping = NULL;
289 		put_page(page);
290 	}
291 
292 	/* finally free the cb struct */
293 	kfree(cb->compressed_pages);
294 	kfree(cb);
295 out:
296 	bio_put(bio);
297 }
298 
299 /*
300  * worker function to build and submit bios for previously compressed pages.
301  * The corresponding pages in the inode should be marked for writeback
302  * and the compressed pages should have a reference on them for dropping
303  * when the IO is complete.
304  *
305  * This also checksums the file bytes and gets things ready for
306  * the end io hooks.
307  */
308 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
309 				 unsigned long len, u64 disk_start,
310 				 unsigned long compressed_len,
311 				 struct page **compressed_pages,
312 				 unsigned long nr_pages,
313 				 unsigned int write_flags)
314 {
315 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
316 	struct bio *bio = NULL;
317 	struct compressed_bio *cb;
318 	unsigned long bytes_left;
319 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
320 	int pg_index = 0;
321 	struct page *page;
322 	u64 first_byte = disk_start;
323 	struct block_device *bdev;
324 	blk_status_t ret;
325 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
326 
327 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
328 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
329 	if (!cb)
330 		return BLK_STS_RESOURCE;
331 	refcount_set(&cb->pending_bios, 0);
332 	cb->errors = 0;
333 	cb->inode = inode;
334 	cb->start = start;
335 	cb->len = len;
336 	cb->mirror_num = 0;
337 	cb->compressed_pages = compressed_pages;
338 	cb->compressed_len = compressed_len;
339 	cb->orig_bio = NULL;
340 	cb->nr_pages = nr_pages;
341 
342 	bdev = fs_info->fs_devices->latest_bdev;
343 
344 	bio = btrfs_bio_alloc(bdev, first_byte);
345 	bio->bi_opf = REQ_OP_WRITE | write_flags;
346 	bio->bi_private = cb;
347 	bio->bi_end_io = end_compressed_bio_write;
348 	refcount_set(&cb->pending_bios, 1);
349 
350 	/* create and submit bios for the compressed pages */
351 	bytes_left = compressed_len;
352 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
353 		int submit = 0;
354 
355 		page = compressed_pages[pg_index];
356 		page->mapping = inode->i_mapping;
357 		if (bio->bi_iter.bi_size)
358 			submit = io_tree->ops->merge_bio_hook(page, 0,
359 							   PAGE_SIZE,
360 							   bio, 0);
361 
362 		page->mapping = NULL;
363 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
364 		    PAGE_SIZE) {
365 			/*
366 			 * inc the count before we submit the bio so
367 			 * we know the end IO handler won't happen before
368 			 * we inc the count.  Otherwise, the cb might get
369 			 * freed before we're done setting it up
370 			 */
371 			refcount_inc(&cb->pending_bios);
372 			ret = btrfs_bio_wq_end_io(fs_info, bio,
373 						  BTRFS_WQ_ENDIO_DATA);
374 			BUG_ON(ret); /* -ENOMEM */
375 
376 			if (!skip_sum) {
377 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
378 				BUG_ON(ret); /* -ENOMEM */
379 			}
380 
381 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
382 			if (ret) {
383 				bio->bi_status = ret;
384 				bio_endio(bio);
385 			}
386 
387 			bio = btrfs_bio_alloc(bdev, first_byte);
388 			bio->bi_opf = REQ_OP_WRITE | write_flags;
389 			bio->bi_private = cb;
390 			bio->bi_end_io = end_compressed_bio_write;
391 			bio_add_page(bio, page, PAGE_SIZE, 0);
392 		}
393 		if (bytes_left < PAGE_SIZE) {
394 			btrfs_info(fs_info,
395 					"bytes left %lu compress len %lu nr %lu",
396 			       bytes_left, cb->compressed_len, cb->nr_pages);
397 		}
398 		bytes_left -= PAGE_SIZE;
399 		first_byte += PAGE_SIZE;
400 		cond_resched();
401 	}
402 
403 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
404 	BUG_ON(ret); /* -ENOMEM */
405 
406 	if (!skip_sum) {
407 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
408 		BUG_ON(ret); /* -ENOMEM */
409 	}
410 
411 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
412 	if (ret) {
413 		bio->bi_status = ret;
414 		bio_endio(bio);
415 	}
416 
417 	return 0;
418 }
419 
420 static u64 bio_end_offset(struct bio *bio)
421 {
422 	struct bio_vec *last = bio_last_bvec_all(bio);
423 
424 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
425 }
426 
427 static noinline int add_ra_bio_pages(struct inode *inode,
428 				     u64 compressed_end,
429 				     struct compressed_bio *cb)
430 {
431 	unsigned long end_index;
432 	unsigned long pg_index;
433 	u64 last_offset;
434 	u64 isize = i_size_read(inode);
435 	int ret;
436 	struct page *page;
437 	unsigned long nr_pages = 0;
438 	struct extent_map *em;
439 	struct address_space *mapping = inode->i_mapping;
440 	struct extent_map_tree *em_tree;
441 	struct extent_io_tree *tree;
442 	u64 end;
443 	int misses = 0;
444 
445 	last_offset = bio_end_offset(cb->orig_bio);
446 	em_tree = &BTRFS_I(inode)->extent_tree;
447 	tree = &BTRFS_I(inode)->io_tree;
448 
449 	if (isize == 0)
450 		return 0;
451 
452 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
453 
454 	while (last_offset < compressed_end) {
455 		pg_index = last_offset >> PAGE_SHIFT;
456 
457 		if (pg_index > end_index)
458 			break;
459 
460 		rcu_read_lock();
461 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
462 		rcu_read_unlock();
463 		if (page && !radix_tree_exceptional_entry(page)) {
464 			misses++;
465 			if (misses > 4)
466 				break;
467 			goto next;
468 		}
469 
470 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
471 								 ~__GFP_FS));
472 		if (!page)
473 			break;
474 
475 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
476 			put_page(page);
477 			goto next;
478 		}
479 
480 		end = last_offset + PAGE_SIZE - 1;
481 		/*
482 		 * at this point, we have a locked page in the page cache
483 		 * for these bytes in the file.  But, we have to make
484 		 * sure they map to this compressed extent on disk.
485 		 */
486 		set_page_extent_mapped(page);
487 		lock_extent(tree, last_offset, end);
488 		read_lock(&em_tree->lock);
489 		em = lookup_extent_mapping(em_tree, last_offset,
490 					   PAGE_SIZE);
491 		read_unlock(&em_tree->lock);
492 
493 		if (!em || last_offset < em->start ||
494 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
495 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
496 			free_extent_map(em);
497 			unlock_extent(tree, last_offset, end);
498 			unlock_page(page);
499 			put_page(page);
500 			break;
501 		}
502 		free_extent_map(em);
503 
504 		if (page->index == end_index) {
505 			char *userpage;
506 			size_t zero_offset = isize & (PAGE_SIZE - 1);
507 
508 			if (zero_offset) {
509 				int zeros;
510 				zeros = PAGE_SIZE - zero_offset;
511 				userpage = kmap_atomic(page);
512 				memset(userpage + zero_offset, 0, zeros);
513 				flush_dcache_page(page);
514 				kunmap_atomic(userpage);
515 			}
516 		}
517 
518 		ret = bio_add_page(cb->orig_bio, page,
519 				   PAGE_SIZE, 0);
520 
521 		if (ret == PAGE_SIZE) {
522 			nr_pages++;
523 			put_page(page);
524 		} else {
525 			unlock_extent(tree, last_offset, end);
526 			unlock_page(page);
527 			put_page(page);
528 			break;
529 		}
530 next:
531 		last_offset += PAGE_SIZE;
532 	}
533 	return 0;
534 }
535 
536 /*
537  * for a compressed read, the bio we get passed has all the inode pages
538  * in it.  We don't actually do IO on those pages but allocate new ones
539  * to hold the compressed pages on disk.
540  *
541  * bio->bi_iter.bi_sector points to the compressed extent on disk
542  * bio->bi_io_vec points to all of the inode pages
543  *
544  * After the compressed pages are read, we copy the bytes into the
545  * bio we were passed and then call the bio end_io calls
546  */
547 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
548 				 int mirror_num, unsigned long bio_flags)
549 {
550 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
551 	struct extent_io_tree *tree;
552 	struct extent_map_tree *em_tree;
553 	struct compressed_bio *cb;
554 	unsigned long compressed_len;
555 	unsigned long nr_pages;
556 	unsigned long pg_index;
557 	struct page *page;
558 	struct block_device *bdev;
559 	struct bio *comp_bio;
560 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
561 	u64 em_len;
562 	u64 em_start;
563 	struct extent_map *em;
564 	blk_status_t ret = BLK_STS_RESOURCE;
565 	int faili = 0;
566 	u32 *sums;
567 
568 	tree = &BTRFS_I(inode)->io_tree;
569 	em_tree = &BTRFS_I(inode)->extent_tree;
570 
571 	/* we need the actual starting offset of this extent in the file */
572 	read_lock(&em_tree->lock);
573 	em = lookup_extent_mapping(em_tree,
574 				   page_offset(bio_first_page_all(bio)),
575 				   PAGE_SIZE);
576 	read_unlock(&em_tree->lock);
577 	if (!em)
578 		return BLK_STS_IOERR;
579 
580 	compressed_len = em->block_len;
581 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
582 	if (!cb)
583 		goto out;
584 
585 	refcount_set(&cb->pending_bios, 0);
586 	cb->errors = 0;
587 	cb->inode = inode;
588 	cb->mirror_num = mirror_num;
589 	sums = &cb->sums;
590 
591 	cb->start = em->orig_start;
592 	em_len = em->len;
593 	em_start = em->start;
594 
595 	free_extent_map(em);
596 	em = NULL;
597 
598 	cb->len = bio->bi_iter.bi_size;
599 	cb->compressed_len = compressed_len;
600 	cb->compress_type = extent_compress_type(bio_flags);
601 	cb->orig_bio = bio;
602 
603 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
604 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
605 				       GFP_NOFS);
606 	if (!cb->compressed_pages)
607 		goto fail1;
608 
609 	bdev = fs_info->fs_devices->latest_bdev;
610 
611 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
612 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
613 							      __GFP_HIGHMEM);
614 		if (!cb->compressed_pages[pg_index]) {
615 			faili = pg_index - 1;
616 			ret = BLK_STS_RESOURCE;
617 			goto fail2;
618 		}
619 	}
620 	faili = nr_pages - 1;
621 	cb->nr_pages = nr_pages;
622 
623 	add_ra_bio_pages(inode, em_start + em_len, cb);
624 
625 	/* include any pages we added in add_ra-bio_pages */
626 	cb->len = bio->bi_iter.bi_size;
627 
628 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
629 	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
630 	comp_bio->bi_private = cb;
631 	comp_bio->bi_end_io = end_compressed_bio_read;
632 	refcount_set(&cb->pending_bios, 1);
633 
634 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
635 		int submit = 0;
636 
637 		page = cb->compressed_pages[pg_index];
638 		page->mapping = inode->i_mapping;
639 		page->index = em_start >> PAGE_SHIFT;
640 
641 		if (comp_bio->bi_iter.bi_size)
642 			submit = tree->ops->merge_bio_hook(page, 0,
643 							PAGE_SIZE,
644 							comp_bio, 0);
645 
646 		page->mapping = NULL;
647 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
648 		    PAGE_SIZE) {
649 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
650 						  BTRFS_WQ_ENDIO_DATA);
651 			BUG_ON(ret); /* -ENOMEM */
652 
653 			/*
654 			 * inc the count before we submit the bio so
655 			 * we know the end IO handler won't happen before
656 			 * we inc the count.  Otherwise, the cb might get
657 			 * freed before we're done setting it up
658 			 */
659 			refcount_inc(&cb->pending_bios);
660 
661 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
662 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
663 							    sums);
664 				BUG_ON(ret); /* -ENOMEM */
665 			}
666 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
667 					     fs_info->sectorsize);
668 
669 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
670 			if (ret) {
671 				comp_bio->bi_status = ret;
672 				bio_endio(comp_bio);
673 			}
674 
675 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
676 			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
677 			comp_bio->bi_private = cb;
678 			comp_bio->bi_end_io = end_compressed_bio_read;
679 
680 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
681 		}
682 		cur_disk_byte += PAGE_SIZE;
683 	}
684 
685 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
686 	BUG_ON(ret); /* -ENOMEM */
687 
688 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
689 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
690 		BUG_ON(ret); /* -ENOMEM */
691 	}
692 
693 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
694 	if (ret) {
695 		comp_bio->bi_status = ret;
696 		bio_endio(comp_bio);
697 	}
698 
699 	return 0;
700 
701 fail2:
702 	while (faili >= 0) {
703 		__free_page(cb->compressed_pages[faili]);
704 		faili--;
705 	}
706 
707 	kfree(cb->compressed_pages);
708 fail1:
709 	kfree(cb);
710 out:
711 	free_extent_map(em);
712 	return ret;
713 }
714 
715 /*
716  * Heuristic uses systematic sampling to collect data from the input data
717  * range, the logic can be tuned by the following constants:
718  *
719  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
720  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
721  */
722 #define SAMPLING_READ_SIZE	(16)
723 #define SAMPLING_INTERVAL	(256)
724 
725 /*
726  * For statistical analysis of the input data we consider bytes that form a
727  * Galois Field of 256 objects. Each object has an attribute count, ie. how
728  * many times the object appeared in the sample.
729  */
730 #define BUCKET_SIZE		(256)
731 
732 /*
733  * The size of the sample is based on a statistical sampling rule of thumb.
734  * The common way is to perform sampling tests as long as the number of
735  * elements in each cell is at least 5.
736  *
737  * Instead of 5, we choose 32 to obtain more accurate results.
738  * If the data contain the maximum number of symbols, which is 256, we obtain a
739  * sample size bound by 8192.
740  *
741  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
742  * from up to 512 locations.
743  */
744 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
745 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
746 
747 struct bucket_item {
748 	u32 count;
749 };
750 
751 struct heuristic_ws {
752 	/* Partial copy of input data */
753 	u8 *sample;
754 	u32 sample_size;
755 	/* Buckets store counters for each byte value */
756 	struct bucket_item *bucket;
757 	/* Sorting buffer */
758 	struct bucket_item *bucket_b;
759 	struct list_head list;
760 };
761 
762 static void free_heuristic_ws(struct list_head *ws)
763 {
764 	struct heuristic_ws *workspace;
765 
766 	workspace = list_entry(ws, struct heuristic_ws, list);
767 
768 	kvfree(workspace->sample);
769 	kfree(workspace->bucket);
770 	kfree(workspace->bucket_b);
771 	kfree(workspace);
772 }
773 
774 static struct list_head *alloc_heuristic_ws(void)
775 {
776 	struct heuristic_ws *ws;
777 
778 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
779 	if (!ws)
780 		return ERR_PTR(-ENOMEM);
781 
782 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
783 	if (!ws->sample)
784 		goto fail;
785 
786 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
787 	if (!ws->bucket)
788 		goto fail;
789 
790 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
791 	if (!ws->bucket_b)
792 		goto fail;
793 
794 	INIT_LIST_HEAD(&ws->list);
795 	return &ws->list;
796 fail:
797 	free_heuristic_ws(&ws->list);
798 	return ERR_PTR(-ENOMEM);
799 }
800 
801 struct workspaces_list {
802 	struct list_head idle_ws;
803 	spinlock_t ws_lock;
804 	/* Number of free workspaces */
805 	int free_ws;
806 	/* Total number of allocated workspaces */
807 	atomic_t total_ws;
808 	/* Waiters for a free workspace */
809 	wait_queue_head_t ws_wait;
810 };
811 
812 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
813 
814 static struct workspaces_list btrfs_heuristic_ws;
815 
816 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
817 	&btrfs_zlib_compress,
818 	&btrfs_lzo_compress,
819 	&btrfs_zstd_compress,
820 };
821 
822 void __init btrfs_init_compress(void)
823 {
824 	struct list_head *workspace;
825 	int i;
826 
827 	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
828 	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
829 	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
830 	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
831 
832 	workspace = alloc_heuristic_ws();
833 	if (IS_ERR(workspace)) {
834 		pr_warn(
835 	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
836 	} else {
837 		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
838 		btrfs_heuristic_ws.free_ws = 1;
839 		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
840 	}
841 
842 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
843 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
844 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
845 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
846 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
847 
848 		/*
849 		 * Preallocate one workspace for each compression type so
850 		 * we can guarantee forward progress in the worst case
851 		 */
852 		workspace = btrfs_compress_op[i]->alloc_workspace();
853 		if (IS_ERR(workspace)) {
854 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
855 		} else {
856 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
857 			btrfs_comp_ws[i].free_ws = 1;
858 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
859 		}
860 	}
861 }
862 
863 /*
864  * This finds an available workspace or allocates a new one.
865  * If it's not possible to allocate a new one, waits until there's one.
866  * Preallocation makes a forward progress guarantees and we do not return
867  * errors.
868  */
869 static struct list_head *__find_workspace(int type, bool heuristic)
870 {
871 	struct list_head *workspace;
872 	int cpus = num_online_cpus();
873 	int idx = type - 1;
874 	unsigned nofs_flag;
875 	struct list_head *idle_ws;
876 	spinlock_t *ws_lock;
877 	atomic_t *total_ws;
878 	wait_queue_head_t *ws_wait;
879 	int *free_ws;
880 
881 	if (heuristic) {
882 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
883 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
884 		total_ws = &btrfs_heuristic_ws.total_ws;
885 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
886 		free_ws	 = &btrfs_heuristic_ws.free_ws;
887 	} else {
888 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
889 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
890 		total_ws = &btrfs_comp_ws[idx].total_ws;
891 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
892 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
893 	}
894 
895 again:
896 	spin_lock(ws_lock);
897 	if (!list_empty(idle_ws)) {
898 		workspace = idle_ws->next;
899 		list_del(workspace);
900 		(*free_ws)--;
901 		spin_unlock(ws_lock);
902 		return workspace;
903 
904 	}
905 	if (atomic_read(total_ws) > cpus) {
906 		DEFINE_WAIT(wait);
907 
908 		spin_unlock(ws_lock);
909 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
910 		if (atomic_read(total_ws) > cpus && !*free_ws)
911 			schedule();
912 		finish_wait(ws_wait, &wait);
913 		goto again;
914 	}
915 	atomic_inc(total_ws);
916 	spin_unlock(ws_lock);
917 
918 	/*
919 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
920 	 * to turn it off here because we might get called from the restricted
921 	 * context of btrfs_compress_bio/btrfs_compress_pages
922 	 */
923 	nofs_flag = memalloc_nofs_save();
924 	if (heuristic)
925 		workspace = alloc_heuristic_ws();
926 	else
927 		workspace = btrfs_compress_op[idx]->alloc_workspace();
928 	memalloc_nofs_restore(nofs_flag);
929 
930 	if (IS_ERR(workspace)) {
931 		atomic_dec(total_ws);
932 		wake_up(ws_wait);
933 
934 		/*
935 		 * Do not return the error but go back to waiting. There's a
936 		 * workspace preallocated for each type and the compression
937 		 * time is bounded so we get to a workspace eventually. This
938 		 * makes our caller's life easier.
939 		 *
940 		 * To prevent silent and low-probability deadlocks (when the
941 		 * initial preallocation fails), check if there are any
942 		 * workspaces at all.
943 		 */
944 		if (atomic_read(total_ws) == 0) {
945 			static DEFINE_RATELIMIT_STATE(_rs,
946 					/* once per minute */ 60 * HZ,
947 					/* no burst */ 1);
948 
949 			if (__ratelimit(&_rs)) {
950 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
951 			}
952 		}
953 		goto again;
954 	}
955 	return workspace;
956 }
957 
958 static struct list_head *find_workspace(int type)
959 {
960 	return __find_workspace(type, false);
961 }
962 
963 /*
964  * put a workspace struct back on the list or free it if we have enough
965  * idle ones sitting around
966  */
967 static void __free_workspace(int type, struct list_head *workspace,
968 			     bool heuristic)
969 {
970 	int idx = type - 1;
971 	struct list_head *idle_ws;
972 	spinlock_t *ws_lock;
973 	atomic_t *total_ws;
974 	wait_queue_head_t *ws_wait;
975 	int *free_ws;
976 
977 	if (heuristic) {
978 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
979 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
980 		total_ws = &btrfs_heuristic_ws.total_ws;
981 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
982 		free_ws	 = &btrfs_heuristic_ws.free_ws;
983 	} else {
984 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
985 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
986 		total_ws = &btrfs_comp_ws[idx].total_ws;
987 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
988 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
989 	}
990 
991 	spin_lock(ws_lock);
992 	if (*free_ws <= num_online_cpus()) {
993 		list_add(workspace, idle_ws);
994 		(*free_ws)++;
995 		spin_unlock(ws_lock);
996 		goto wake;
997 	}
998 	spin_unlock(ws_lock);
999 
1000 	if (heuristic)
1001 		free_heuristic_ws(workspace);
1002 	else
1003 		btrfs_compress_op[idx]->free_workspace(workspace);
1004 	atomic_dec(total_ws);
1005 wake:
1006 	/*
1007 	 * Make sure counter is updated before we wake up waiters.
1008 	 */
1009 	smp_mb();
1010 	if (waitqueue_active(ws_wait))
1011 		wake_up(ws_wait);
1012 }
1013 
1014 static void free_workspace(int type, struct list_head *ws)
1015 {
1016 	return __free_workspace(type, ws, false);
1017 }
1018 
1019 /*
1020  * cleanup function for module exit
1021  */
1022 static void free_workspaces(void)
1023 {
1024 	struct list_head *workspace;
1025 	int i;
1026 
1027 	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1028 		workspace = btrfs_heuristic_ws.idle_ws.next;
1029 		list_del(workspace);
1030 		free_heuristic_ws(workspace);
1031 		atomic_dec(&btrfs_heuristic_ws.total_ws);
1032 	}
1033 
1034 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1035 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1036 			workspace = btrfs_comp_ws[i].idle_ws.next;
1037 			list_del(workspace);
1038 			btrfs_compress_op[i]->free_workspace(workspace);
1039 			atomic_dec(&btrfs_comp_ws[i].total_ws);
1040 		}
1041 	}
1042 }
1043 
1044 /*
1045  * Given an address space and start and length, compress the bytes into @pages
1046  * that are allocated on demand.
1047  *
1048  * @type_level is encoded algorithm and level, where level 0 means whatever
1049  * default the algorithm chooses and is opaque here;
1050  * - compression algo are 0-3
1051  * - the level are bits 4-7
1052  *
1053  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1054  * and returns number of actually allocated pages
1055  *
1056  * @total_in is used to return the number of bytes actually read.  It
1057  * may be smaller than the input length if we had to exit early because we
1058  * ran out of room in the pages array or because we cross the
1059  * max_out threshold.
1060  *
1061  * @total_out is an in/out parameter, must be set to the input length and will
1062  * be also used to return the total number of compressed bytes
1063  *
1064  * @max_out tells us the max number of bytes that we're allowed to
1065  * stuff into pages
1066  */
1067 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1068 			 u64 start, struct page **pages,
1069 			 unsigned long *out_pages,
1070 			 unsigned long *total_in,
1071 			 unsigned long *total_out)
1072 {
1073 	struct list_head *workspace;
1074 	int ret;
1075 	int type = type_level & 0xF;
1076 
1077 	workspace = find_workspace(type);
1078 
1079 	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1080 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1081 						      start, pages,
1082 						      out_pages,
1083 						      total_in, total_out);
1084 	free_workspace(type, workspace);
1085 	return ret;
1086 }
1087 
1088 /*
1089  * pages_in is an array of pages with compressed data.
1090  *
1091  * disk_start is the starting logical offset of this array in the file
1092  *
1093  * orig_bio contains the pages from the file that we want to decompress into
1094  *
1095  * srclen is the number of bytes in pages_in
1096  *
1097  * The basic idea is that we have a bio that was created by readpages.
1098  * The pages in the bio are for the uncompressed data, and they may not
1099  * be contiguous.  They all correspond to the range of bytes covered by
1100  * the compressed extent.
1101  */
1102 static int btrfs_decompress_bio(struct compressed_bio *cb)
1103 {
1104 	struct list_head *workspace;
1105 	int ret;
1106 	int type = cb->compress_type;
1107 
1108 	workspace = find_workspace(type);
1109 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1110 	free_workspace(type, workspace);
1111 
1112 	return ret;
1113 }
1114 
1115 /*
1116  * a less complex decompression routine.  Our compressed data fits in a
1117  * single page, and we want to read a single page out of it.
1118  * start_byte tells us the offset into the compressed data we're interested in
1119  */
1120 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1121 		     unsigned long start_byte, size_t srclen, size_t destlen)
1122 {
1123 	struct list_head *workspace;
1124 	int ret;
1125 
1126 	workspace = find_workspace(type);
1127 
1128 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1129 						  dest_page, start_byte,
1130 						  srclen, destlen);
1131 
1132 	free_workspace(type, workspace);
1133 	return ret;
1134 }
1135 
1136 void btrfs_exit_compress(void)
1137 {
1138 	free_workspaces();
1139 }
1140 
1141 /*
1142  * Copy uncompressed data from working buffer to pages.
1143  *
1144  * buf_start is the byte offset we're of the start of our workspace buffer.
1145  *
1146  * total_out is the last byte of the buffer
1147  */
1148 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1149 			      unsigned long total_out, u64 disk_start,
1150 			      struct bio *bio)
1151 {
1152 	unsigned long buf_offset;
1153 	unsigned long current_buf_start;
1154 	unsigned long start_byte;
1155 	unsigned long prev_start_byte;
1156 	unsigned long working_bytes = total_out - buf_start;
1157 	unsigned long bytes;
1158 	char *kaddr;
1159 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1160 
1161 	/*
1162 	 * start byte is the first byte of the page we're currently
1163 	 * copying into relative to the start of the compressed data.
1164 	 */
1165 	start_byte = page_offset(bvec.bv_page) - disk_start;
1166 
1167 	/* we haven't yet hit data corresponding to this page */
1168 	if (total_out <= start_byte)
1169 		return 1;
1170 
1171 	/*
1172 	 * the start of the data we care about is offset into
1173 	 * the middle of our working buffer
1174 	 */
1175 	if (total_out > start_byte && buf_start < start_byte) {
1176 		buf_offset = start_byte - buf_start;
1177 		working_bytes -= buf_offset;
1178 	} else {
1179 		buf_offset = 0;
1180 	}
1181 	current_buf_start = buf_start;
1182 
1183 	/* copy bytes from the working buffer into the pages */
1184 	while (working_bytes > 0) {
1185 		bytes = min_t(unsigned long, bvec.bv_len,
1186 				PAGE_SIZE - buf_offset);
1187 		bytes = min(bytes, working_bytes);
1188 
1189 		kaddr = kmap_atomic(bvec.bv_page);
1190 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1191 		kunmap_atomic(kaddr);
1192 		flush_dcache_page(bvec.bv_page);
1193 
1194 		buf_offset += bytes;
1195 		working_bytes -= bytes;
1196 		current_buf_start += bytes;
1197 
1198 		/* check if we need to pick another page */
1199 		bio_advance(bio, bytes);
1200 		if (!bio->bi_iter.bi_size)
1201 			return 0;
1202 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1203 		prev_start_byte = start_byte;
1204 		start_byte = page_offset(bvec.bv_page) - disk_start;
1205 
1206 		/*
1207 		 * We need to make sure we're only adjusting
1208 		 * our offset into compression working buffer when
1209 		 * we're switching pages.  Otherwise we can incorrectly
1210 		 * keep copying when we were actually done.
1211 		 */
1212 		if (start_byte != prev_start_byte) {
1213 			/*
1214 			 * make sure our new page is covered by this
1215 			 * working buffer
1216 			 */
1217 			if (total_out <= start_byte)
1218 				return 1;
1219 
1220 			/*
1221 			 * the next page in the biovec might not be adjacent
1222 			 * to the last page, but it might still be found
1223 			 * inside this working buffer. bump our offset pointer
1224 			 */
1225 			if (total_out > start_byte &&
1226 			    current_buf_start < start_byte) {
1227 				buf_offset = start_byte - buf_start;
1228 				working_bytes = total_out - start_byte;
1229 				current_buf_start = buf_start + buf_offset;
1230 			}
1231 		}
1232 	}
1233 
1234 	return 1;
1235 }
1236 
1237 /*
1238  * Shannon Entropy calculation
1239  *
1240  * Pure byte distribution analysis fails to determine compressiability of data.
1241  * Try calculating entropy to estimate the average minimum number of bits
1242  * needed to encode the sampled data.
1243  *
1244  * For convenience, return the percentage of needed bits, instead of amount of
1245  * bits directly.
1246  *
1247  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1248  *			    and can be compressible with high probability
1249  *
1250  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1251  *
1252  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1253  */
1254 #define ENTROPY_LVL_ACEPTABLE		(65)
1255 #define ENTROPY_LVL_HIGH		(80)
1256 
1257 /*
1258  * For increasead precision in shannon_entropy calculation,
1259  * let's do pow(n, M) to save more digits after comma:
1260  *
1261  * - maximum int bit length is 64
1262  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1263  * - 13 * 4 = 52 < 64		-> M = 4
1264  *
1265  * So use pow(n, 4).
1266  */
1267 static inline u32 ilog2_w(u64 n)
1268 {
1269 	return ilog2(n * n * n * n);
1270 }
1271 
1272 static u32 shannon_entropy(struct heuristic_ws *ws)
1273 {
1274 	const u32 entropy_max = 8 * ilog2_w(2);
1275 	u32 entropy_sum = 0;
1276 	u32 p, p_base, sz_base;
1277 	u32 i;
1278 
1279 	sz_base = ilog2_w(ws->sample_size);
1280 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1281 		p = ws->bucket[i].count;
1282 		p_base = ilog2_w(p);
1283 		entropy_sum += p * (sz_base - p_base);
1284 	}
1285 
1286 	entropy_sum /= ws->sample_size;
1287 	return entropy_sum * 100 / entropy_max;
1288 }
1289 
1290 #define RADIX_BASE		4U
1291 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1292 
1293 static u8 get4bits(u64 num, int shift) {
1294 	u8 low4bits;
1295 
1296 	num >>= shift;
1297 	/* Reverse order */
1298 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1299 	return low4bits;
1300 }
1301 
1302 /*
1303  * Use 4 bits as radix base
1304  * Use 16 u32 counters for calculating new possition in buf array
1305  *
1306  * @array     - array that will be sorted
1307  * @array_buf - buffer array to store sorting results
1308  *              must be equal in size to @array
1309  * @num       - array size
1310  */
1311 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1312 		       int num)
1313 {
1314 	u64 max_num;
1315 	u64 buf_num;
1316 	u32 counters[COUNTERS_SIZE];
1317 	u32 new_addr;
1318 	u32 addr;
1319 	int bitlen;
1320 	int shift;
1321 	int i;
1322 
1323 	/*
1324 	 * Try avoid useless loop iterations for small numbers stored in big
1325 	 * counters.  Example: 48 33 4 ... in 64bit array
1326 	 */
1327 	max_num = array[0].count;
1328 	for (i = 1; i < num; i++) {
1329 		buf_num = array[i].count;
1330 		if (buf_num > max_num)
1331 			max_num = buf_num;
1332 	}
1333 
1334 	buf_num = ilog2(max_num);
1335 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1336 
1337 	shift = 0;
1338 	while (shift < bitlen) {
1339 		memset(counters, 0, sizeof(counters));
1340 
1341 		for (i = 0; i < num; i++) {
1342 			buf_num = array[i].count;
1343 			addr = get4bits(buf_num, shift);
1344 			counters[addr]++;
1345 		}
1346 
1347 		for (i = 1; i < COUNTERS_SIZE; i++)
1348 			counters[i] += counters[i - 1];
1349 
1350 		for (i = num - 1; i >= 0; i--) {
1351 			buf_num = array[i].count;
1352 			addr = get4bits(buf_num, shift);
1353 			counters[addr]--;
1354 			new_addr = counters[addr];
1355 			array_buf[new_addr] = array[i];
1356 		}
1357 
1358 		shift += RADIX_BASE;
1359 
1360 		/*
1361 		 * Normal radix expects to move data from a temporary array, to
1362 		 * the main one.  But that requires some CPU time. Avoid that
1363 		 * by doing another sort iteration to original array instead of
1364 		 * memcpy()
1365 		 */
1366 		memset(counters, 0, sizeof(counters));
1367 
1368 		for (i = 0; i < num; i ++) {
1369 			buf_num = array_buf[i].count;
1370 			addr = get4bits(buf_num, shift);
1371 			counters[addr]++;
1372 		}
1373 
1374 		for (i = 1; i < COUNTERS_SIZE; i++)
1375 			counters[i] += counters[i - 1];
1376 
1377 		for (i = num - 1; i >= 0; i--) {
1378 			buf_num = array_buf[i].count;
1379 			addr = get4bits(buf_num, shift);
1380 			counters[addr]--;
1381 			new_addr = counters[addr];
1382 			array[new_addr] = array_buf[i];
1383 		}
1384 
1385 		shift += RADIX_BASE;
1386 	}
1387 }
1388 
1389 /*
1390  * Size of the core byte set - how many bytes cover 90% of the sample
1391  *
1392  * There are several types of structured binary data that use nearly all byte
1393  * values. The distribution can be uniform and counts in all buckets will be
1394  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1395  *
1396  * Other possibility is normal (Gaussian) distribution, where the data could
1397  * be potentially compressible, but we have to take a few more steps to decide
1398  * how much.
1399  *
1400  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1401  *                       compression algo can easy fix that
1402  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1403  *                       probability is not compressible
1404  */
1405 #define BYTE_CORE_SET_LOW		(64)
1406 #define BYTE_CORE_SET_HIGH		(200)
1407 
1408 static int byte_core_set_size(struct heuristic_ws *ws)
1409 {
1410 	u32 i;
1411 	u32 coreset_sum = 0;
1412 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1413 	struct bucket_item *bucket = ws->bucket;
1414 
1415 	/* Sort in reverse order */
1416 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1417 
1418 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1419 		coreset_sum += bucket[i].count;
1420 
1421 	if (coreset_sum > core_set_threshold)
1422 		return i;
1423 
1424 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1425 		coreset_sum += bucket[i].count;
1426 		if (coreset_sum > core_set_threshold)
1427 			break;
1428 	}
1429 
1430 	return i;
1431 }
1432 
1433 /*
1434  * Count byte values in buckets.
1435  * This heuristic can detect textual data (configs, xml, json, html, etc).
1436  * Because in most text-like data byte set is restricted to limited number of
1437  * possible characters, and that restriction in most cases makes data easy to
1438  * compress.
1439  *
1440  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1441  *	less - compressible
1442  *	more - need additional analysis
1443  */
1444 #define BYTE_SET_THRESHOLD		(64)
1445 
1446 static u32 byte_set_size(const struct heuristic_ws *ws)
1447 {
1448 	u32 i;
1449 	u32 byte_set_size = 0;
1450 
1451 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1452 		if (ws->bucket[i].count > 0)
1453 			byte_set_size++;
1454 	}
1455 
1456 	/*
1457 	 * Continue collecting count of byte values in buckets.  If the byte
1458 	 * set size is bigger then the threshold, it's pointless to continue,
1459 	 * the detection technique would fail for this type of data.
1460 	 */
1461 	for (; i < BUCKET_SIZE; i++) {
1462 		if (ws->bucket[i].count > 0) {
1463 			byte_set_size++;
1464 			if (byte_set_size > BYTE_SET_THRESHOLD)
1465 				return byte_set_size;
1466 		}
1467 	}
1468 
1469 	return byte_set_size;
1470 }
1471 
1472 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1473 {
1474 	const u32 half_of_sample = ws->sample_size / 2;
1475 	const u8 *data = ws->sample;
1476 
1477 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1478 }
1479 
1480 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1481 				     struct heuristic_ws *ws)
1482 {
1483 	struct page *page;
1484 	u64 index, index_end;
1485 	u32 i, curr_sample_pos;
1486 	u8 *in_data;
1487 
1488 	/*
1489 	 * Compression handles the input data by chunks of 128KiB
1490 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1491 	 *
1492 	 * We do the same for the heuristic and loop over the whole range.
1493 	 *
1494 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1495 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1496 	 */
1497 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1498 		end = start + BTRFS_MAX_UNCOMPRESSED;
1499 
1500 	index = start >> PAGE_SHIFT;
1501 	index_end = end >> PAGE_SHIFT;
1502 
1503 	/* Don't miss unaligned end */
1504 	if (!IS_ALIGNED(end, PAGE_SIZE))
1505 		index_end++;
1506 
1507 	curr_sample_pos = 0;
1508 	while (index < index_end) {
1509 		page = find_get_page(inode->i_mapping, index);
1510 		in_data = kmap(page);
1511 		/* Handle case where the start is not aligned to PAGE_SIZE */
1512 		i = start % PAGE_SIZE;
1513 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1514 			/* Don't sample any garbage from the last page */
1515 			if (start > end - SAMPLING_READ_SIZE)
1516 				break;
1517 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1518 					SAMPLING_READ_SIZE);
1519 			i += SAMPLING_INTERVAL;
1520 			start += SAMPLING_INTERVAL;
1521 			curr_sample_pos += SAMPLING_READ_SIZE;
1522 		}
1523 		kunmap(page);
1524 		put_page(page);
1525 
1526 		index++;
1527 	}
1528 
1529 	ws->sample_size = curr_sample_pos;
1530 }
1531 
1532 /*
1533  * Compression heuristic.
1534  *
1535  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1536  * quickly (compared to direct compression) detect data characteristics
1537  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1538  * data.
1539  *
1540  * The following types of analysis can be performed:
1541  * - detect mostly zero data
1542  * - detect data with low "byte set" size (text, etc)
1543  * - detect data with low/high "core byte" set
1544  *
1545  * Return non-zero if the compression should be done, 0 otherwise.
1546  */
1547 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1548 {
1549 	struct list_head *ws_list = __find_workspace(0, true);
1550 	struct heuristic_ws *ws;
1551 	u32 i;
1552 	u8 byte;
1553 	int ret = 0;
1554 
1555 	ws = list_entry(ws_list, struct heuristic_ws, list);
1556 
1557 	heuristic_collect_sample(inode, start, end, ws);
1558 
1559 	if (sample_repeated_patterns(ws)) {
1560 		ret = 1;
1561 		goto out;
1562 	}
1563 
1564 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1565 
1566 	for (i = 0; i < ws->sample_size; i++) {
1567 		byte = ws->sample[i];
1568 		ws->bucket[byte].count++;
1569 	}
1570 
1571 	i = byte_set_size(ws);
1572 	if (i < BYTE_SET_THRESHOLD) {
1573 		ret = 2;
1574 		goto out;
1575 	}
1576 
1577 	i = byte_core_set_size(ws);
1578 	if (i <= BYTE_CORE_SET_LOW) {
1579 		ret = 3;
1580 		goto out;
1581 	}
1582 
1583 	if (i >= BYTE_CORE_SET_HIGH) {
1584 		ret = 0;
1585 		goto out;
1586 	}
1587 
1588 	i = shannon_entropy(ws);
1589 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1590 		ret = 4;
1591 		goto out;
1592 	}
1593 
1594 	/*
1595 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1596 	 * needed to give green light to compression.
1597 	 *
1598 	 * For now just assume that compression at that level is not worth the
1599 	 * resources because:
1600 	 *
1601 	 * 1. it is possible to defrag the data later
1602 	 *
1603 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1604 	 * values, every bucket has counter at level ~54. The heuristic would
1605 	 * be confused. This can happen when data have some internal repeated
1606 	 * patterns like "abbacbbc...". This can be detected by analyzing
1607 	 * pairs of bytes, which is too costly.
1608 	 */
1609 	if (i < ENTROPY_LVL_HIGH) {
1610 		ret = 5;
1611 		goto out;
1612 	} else {
1613 		ret = 0;
1614 		goto out;
1615 	}
1616 
1617 out:
1618 	__free_workspace(0, ws_list, true);
1619 	return ret;
1620 }
1621 
1622 unsigned int btrfs_compress_str2level(const char *str)
1623 {
1624 	if (strncmp(str, "zlib", 4) != 0)
1625 		return 0;
1626 
1627 	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1628 	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1629 		return str[5] - '0';
1630 
1631 	return BTRFS_ZLIB_DEFAULT_LEVEL;
1632 }
1633