1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "ordered-data.h" 41 #include "compression.h" 42 #include "extent_io.h" 43 #include "extent_map.h" 44 45 struct compressed_bio { 46 /* number of bios pending for this compressed extent */ 47 atomic_t pending_bios; 48 49 /* the pages with the compressed data on them */ 50 struct page **compressed_pages; 51 52 /* inode that owns this data */ 53 struct inode *inode; 54 55 /* starting offset in the inode for our pages */ 56 u64 start; 57 58 /* number of bytes in the inode we're working on */ 59 unsigned long len; 60 61 /* number of bytes on disk */ 62 unsigned long compressed_len; 63 64 /* the compression algorithm for this bio */ 65 int compress_type; 66 67 /* number of compressed pages in the array */ 68 unsigned long nr_pages; 69 70 /* IO errors */ 71 int errors; 72 int mirror_num; 73 74 /* for reads, this is the bio we are copying the data into */ 75 struct bio *orig_bio; 76 77 /* 78 * the start of a variable length array of checksums only 79 * used by reads 80 */ 81 u32 sums; 82 }; 83 84 static int btrfs_decompress_biovec(int type, struct page **pages_in, 85 u64 disk_start, struct bio_vec *bvec, 86 int vcnt, size_t srclen); 87 88 static inline int compressed_bio_size(struct btrfs_root *root, 89 unsigned long disk_size) 90 { 91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 92 93 return sizeof(struct compressed_bio) + 94 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size; 95 } 96 97 static struct bio *compressed_bio_alloc(struct block_device *bdev, 98 u64 first_byte, gfp_t gfp_flags) 99 { 100 return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags); 101 } 102 103 static int check_compressed_csum(struct inode *inode, 104 struct compressed_bio *cb, 105 u64 disk_start) 106 { 107 int ret; 108 struct page *page; 109 unsigned long i; 110 char *kaddr; 111 u32 csum; 112 u32 *cb_sum = &cb->sums; 113 114 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 115 return 0; 116 117 for (i = 0; i < cb->nr_pages; i++) { 118 page = cb->compressed_pages[i]; 119 csum = ~(u32)0; 120 121 kaddr = kmap_atomic(page); 122 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 123 btrfs_csum_final(csum, (char *)&csum); 124 kunmap_atomic(kaddr); 125 126 if (csum != *cb_sum) { 127 btrfs_info(BTRFS_I(inode)->root->fs_info, 128 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d", 129 btrfs_ino(inode), disk_start, csum, *cb_sum, 130 cb->mirror_num); 131 ret = -EIO; 132 goto fail; 133 } 134 cb_sum++; 135 136 } 137 ret = 0; 138 fail: 139 return ret; 140 } 141 142 /* when we finish reading compressed pages from the disk, we 143 * decompress them and then run the bio end_io routines on the 144 * decompressed pages (in the inode address space). 145 * 146 * This allows the checksumming and other IO error handling routines 147 * to work normally 148 * 149 * The compressed pages are freed here, and it must be run 150 * in process context 151 */ 152 static void end_compressed_bio_read(struct bio *bio) 153 { 154 struct compressed_bio *cb = bio->bi_private; 155 struct inode *inode; 156 struct page *page; 157 unsigned long index; 158 int ret; 159 160 if (bio->bi_error) 161 cb->errors = 1; 162 163 /* if there are more bios still pending for this compressed 164 * extent, just exit 165 */ 166 if (!atomic_dec_and_test(&cb->pending_bios)) 167 goto out; 168 169 inode = cb->inode; 170 ret = check_compressed_csum(inode, cb, 171 (u64)bio->bi_iter.bi_sector << 9); 172 if (ret) 173 goto csum_failed; 174 175 /* ok, we're the last bio for this extent, lets start 176 * the decompression. 177 */ 178 ret = btrfs_decompress_biovec(cb->compress_type, 179 cb->compressed_pages, 180 cb->start, 181 cb->orig_bio->bi_io_vec, 182 cb->orig_bio->bi_vcnt, 183 cb->compressed_len); 184 csum_failed: 185 if (ret) 186 cb->errors = 1; 187 188 /* release the compressed pages */ 189 index = 0; 190 for (index = 0; index < cb->nr_pages; index++) { 191 page = cb->compressed_pages[index]; 192 page->mapping = NULL; 193 put_page(page); 194 } 195 196 /* do io completion on the original bio */ 197 if (cb->errors) { 198 bio_io_error(cb->orig_bio); 199 } else { 200 int i; 201 struct bio_vec *bvec; 202 203 /* 204 * we have verified the checksum already, set page 205 * checked so the end_io handlers know about it 206 */ 207 bio_for_each_segment_all(bvec, cb->orig_bio, i) 208 SetPageChecked(bvec->bv_page); 209 210 bio_endio(cb->orig_bio); 211 } 212 213 /* finally free the cb struct */ 214 kfree(cb->compressed_pages); 215 kfree(cb); 216 out: 217 bio_put(bio); 218 } 219 220 /* 221 * Clear the writeback bits on all of the file 222 * pages for a compressed write 223 */ 224 static noinline void end_compressed_writeback(struct inode *inode, 225 const struct compressed_bio *cb) 226 { 227 unsigned long index = cb->start >> PAGE_SHIFT; 228 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 229 struct page *pages[16]; 230 unsigned long nr_pages = end_index - index + 1; 231 int i; 232 int ret; 233 234 if (cb->errors) 235 mapping_set_error(inode->i_mapping, -EIO); 236 237 while (nr_pages > 0) { 238 ret = find_get_pages_contig(inode->i_mapping, index, 239 min_t(unsigned long, 240 nr_pages, ARRAY_SIZE(pages)), pages); 241 if (ret == 0) { 242 nr_pages -= 1; 243 index += 1; 244 continue; 245 } 246 for (i = 0; i < ret; i++) { 247 if (cb->errors) 248 SetPageError(pages[i]); 249 end_page_writeback(pages[i]); 250 put_page(pages[i]); 251 } 252 nr_pages -= ret; 253 index += ret; 254 } 255 /* the inode may be gone now */ 256 } 257 258 /* 259 * do the cleanup once all the compressed pages hit the disk. 260 * This will clear writeback on the file pages and free the compressed 261 * pages. 262 * 263 * This also calls the writeback end hooks for the file pages so that 264 * metadata and checksums can be updated in the file. 265 */ 266 static void end_compressed_bio_write(struct bio *bio) 267 { 268 struct extent_io_tree *tree; 269 struct compressed_bio *cb = bio->bi_private; 270 struct inode *inode; 271 struct page *page; 272 unsigned long index; 273 274 if (bio->bi_error) 275 cb->errors = 1; 276 277 /* if there are more bios still pending for this compressed 278 * extent, just exit 279 */ 280 if (!atomic_dec_and_test(&cb->pending_bios)) 281 goto out; 282 283 /* ok, we're the last bio for this extent, step one is to 284 * call back into the FS and do all the end_io operations 285 */ 286 inode = cb->inode; 287 tree = &BTRFS_I(inode)->io_tree; 288 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 289 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 290 cb->start, 291 cb->start + cb->len - 1, 292 NULL, 293 bio->bi_error ? 0 : 1); 294 cb->compressed_pages[0]->mapping = NULL; 295 296 end_compressed_writeback(inode, cb); 297 /* note, our inode could be gone now */ 298 299 /* 300 * release the compressed pages, these came from alloc_page and 301 * are not attached to the inode at all 302 */ 303 index = 0; 304 for (index = 0; index < cb->nr_pages; index++) { 305 page = cb->compressed_pages[index]; 306 page->mapping = NULL; 307 put_page(page); 308 } 309 310 /* finally free the cb struct */ 311 kfree(cb->compressed_pages); 312 kfree(cb); 313 out: 314 bio_put(bio); 315 } 316 317 /* 318 * worker function to build and submit bios for previously compressed pages. 319 * The corresponding pages in the inode should be marked for writeback 320 * and the compressed pages should have a reference on them for dropping 321 * when the IO is complete. 322 * 323 * This also checksums the file bytes and gets things ready for 324 * the end io hooks. 325 */ 326 int btrfs_submit_compressed_write(struct inode *inode, u64 start, 327 unsigned long len, u64 disk_start, 328 unsigned long compressed_len, 329 struct page **compressed_pages, 330 unsigned long nr_pages) 331 { 332 struct bio *bio = NULL; 333 struct btrfs_root *root = BTRFS_I(inode)->root; 334 struct compressed_bio *cb; 335 unsigned long bytes_left; 336 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 337 int pg_index = 0; 338 struct page *page; 339 u64 first_byte = disk_start; 340 struct block_device *bdev; 341 int ret; 342 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 343 344 WARN_ON(start & ((u64)PAGE_SIZE - 1)); 345 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 346 if (!cb) 347 return -ENOMEM; 348 atomic_set(&cb->pending_bios, 0); 349 cb->errors = 0; 350 cb->inode = inode; 351 cb->start = start; 352 cb->len = len; 353 cb->mirror_num = 0; 354 cb->compressed_pages = compressed_pages; 355 cb->compressed_len = compressed_len; 356 cb->orig_bio = NULL; 357 cb->nr_pages = nr_pages; 358 359 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 360 361 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 362 if (!bio) { 363 kfree(cb); 364 return -ENOMEM; 365 } 366 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 367 bio->bi_private = cb; 368 bio->bi_end_io = end_compressed_bio_write; 369 atomic_inc(&cb->pending_bios); 370 371 /* create and submit bios for the compressed pages */ 372 bytes_left = compressed_len; 373 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 374 page = compressed_pages[pg_index]; 375 page->mapping = inode->i_mapping; 376 if (bio->bi_iter.bi_size) 377 ret = io_tree->ops->merge_bio_hook(page, 0, 378 PAGE_SIZE, 379 bio, 0); 380 else 381 ret = 0; 382 383 page->mapping = NULL; 384 if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) < 385 PAGE_SIZE) { 386 bio_get(bio); 387 388 /* 389 * inc the count before we submit the bio so 390 * we know the end IO handler won't happen before 391 * we inc the count. Otherwise, the cb might get 392 * freed before we're done setting it up 393 */ 394 atomic_inc(&cb->pending_bios); 395 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 396 BTRFS_WQ_ENDIO_DATA); 397 BUG_ON(ret); /* -ENOMEM */ 398 399 if (!skip_sum) { 400 ret = btrfs_csum_one_bio(root, inode, bio, 401 start, 1); 402 BUG_ON(ret); /* -ENOMEM */ 403 } 404 405 ret = btrfs_map_bio(root, bio, 0, 1); 406 if (ret) { 407 bio->bi_error = ret; 408 bio_endio(bio); 409 } 410 411 bio_put(bio); 412 413 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 414 BUG_ON(!bio); 415 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 416 bio->bi_private = cb; 417 bio->bi_end_io = end_compressed_bio_write; 418 bio_add_page(bio, page, PAGE_SIZE, 0); 419 } 420 if (bytes_left < PAGE_SIZE) { 421 btrfs_info(BTRFS_I(inode)->root->fs_info, 422 "bytes left %lu compress len %lu nr %lu", 423 bytes_left, cb->compressed_len, cb->nr_pages); 424 } 425 bytes_left -= PAGE_SIZE; 426 first_byte += PAGE_SIZE; 427 cond_resched(); 428 } 429 bio_get(bio); 430 431 ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA); 432 BUG_ON(ret); /* -ENOMEM */ 433 434 if (!skip_sum) { 435 ret = btrfs_csum_one_bio(root, inode, bio, start, 1); 436 BUG_ON(ret); /* -ENOMEM */ 437 } 438 439 ret = btrfs_map_bio(root, bio, 0, 1); 440 if (ret) { 441 bio->bi_error = ret; 442 bio_endio(bio); 443 } 444 445 bio_put(bio); 446 return 0; 447 } 448 449 static noinline int add_ra_bio_pages(struct inode *inode, 450 u64 compressed_end, 451 struct compressed_bio *cb) 452 { 453 unsigned long end_index; 454 unsigned long pg_index; 455 u64 last_offset; 456 u64 isize = i_size_read(inode); 457 int ret; 458 struct page *page; 459 unsigned long nr_pages = 0; 460 struct extent_map *em; 461 struct address_space *mapping = inode->i_mapping; 462 struct extent_map_tree *em_tree; 463 struct extent_io_tree *tree; 464 u64 end; 465 int misses = 0; 466 467 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; 468 last_offset = (page_offset(page) + PAGE_SIZE); 469 em_tree = &BTRFS_I(inode)->extent_tree; 470 tree = &BTRFS_I(inode)->io_tree; 471 472 if (isize == 0) 473 return 0; 474 475 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 476 477 while (last_offset < compressed_end) { 478 pg_index = last_offset >> PAGE_SHIFT; 479 480 if (pg_index > end_index) 481 break; 482 483 rcu_read_lock(); 484 page = radix_tree_lookup(&mapping->page_tree, pg_index); 485 rcu_read_unlock(); 486 if (page && !radix_tree_exceptional_entry(page)) { 487 misses++; 488 if (misses > 4) 489 break; 490 goto next; 491 } 492 493 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 494 ~__GFP_FS)); 495 if (!page) 496 break; 497 498 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 499 put_page(page); 500 goto next; 501 } 502 503 end = last_offset + PAGE_SIZE - 1; 504 /* 505 * at this point, we have a locked page in the page cache 506 * for these bytes in the file. But, we have to make 507 * sure they map to this compressed extent on disk. 508 */ 509 set_page_extent_mapped(page); 510 lock_extent(tree, last_offset, end); 511 read_lock(&em_tree->lock); 512 em = lookup_extent_mapping(em_tree, last_offset, 513 PAGE_SIZE); 514 read_unlock(&em_tree->lock); 515 516 if (!em || last_offset < em->start || 517 (last_offset + PAGE_SIZE > extent_map_end(em)) || 518 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 519 free_extent_map(em); 520 unlock_extent(tree, last_offset, end); 521 unlock_page(page); 522 put_page(page); 523 break; 524 } 525 free_extent_map(em); 526 527 if (page->index == end_index) { 528 char *userpage; 529 size_t zero_offset = isize & (PAGE_SIZE - 1); 530 531 if (zero_offset) { 532 int zeros; 533 zeros = PAGE_SIZE - zero_offset; 534 userpage = kmap_atomic(page); 535 memset(userpage + zero_offset, 0, zeros); 536 flush_dcache_page(page); 537 kunmap_atomic(userpage); 538 } 539 } 540 541 ret = bio_add_page(cb->orig_bio, page, 542 PAGE_SIZE, 0); 543 544 if (ret == PAGE_SIZE) { 545 nr_pages++; 546 put_page(page); 547 } else { 548 unlock_extent(tree, last_offset, end); 549 unlock_page(page); 550 put_page(page); 551 break; 552 } 553 next: 554 last_offset += PAGE_SIZE; 555 } 556 return 0; 557 } 558 559 /* 560 * for a compressed read, the bio we get passed has all the inode pages 561 * in it. We don't actually do IO on those pages but allocate new ones 562 * to hold the compressed pages on disk. 563 * 564 * bio->bi_iter.bi_sector points to the compressed extent on disk 565 * bio->bi_io_vec points to all of the inode pages 566 * bio->bi_vcnt is a count of pages 567 * 568 * After the compressed pages are read, we copy the bytes into the 569 * bio we were passed and then call the bio end_io calls 570 */ 571 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 572 int mirror_num, unsigned long bio_flags) 573 { 574 struct extent_io_tree *tree; 575 struct extent_map_tree *em_tree; 576 struct compressed_bio *cb; 577 struct btrfs_root *root = BTRFS_I(inode)->root; 578 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_SIZE; 579 unsigned long compressed_len; 580 unsigned long nr_pages; 581 unsigned long pg_index; 582 struct page *page; 583 struct block_device *bdev; 584 struct bio *comp_bio; 585 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 586 u64 em_len; 587 u64 em_start; 588 struct extent_map *em; 589 int ret = -ENOMEM; 590 int faili = 0; 591 u32 *sums; 592 593 tree = &BTRFS_I(inode)->io_tree; 594 em_tree = &BTRFS_I(inode)->extent_tree; 595 596 /* we need the actual starting offset of this extent in the file */ 597 read_lock(&em_tree->lock); 598 em = lookup_extent_mapping(em_tree, 599 page_offset(bio->bi_io_vec->bv_page), 600 PAGE_SIZE); 601 read_unlock(&em_tree->lock); 602 if (!em) 603 return -EIO; 604 605 compressed_len = em->block_len; 606 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 607 if (!cb) 608 goto out; 609 610 atomic_set(&cb->pending_bios, 0); 611 cb->errors = 0; 612 cb->inode = inode; 613 cb->mirror_num = mirror_num; 614 sums = &cb->sums; 615 616 cb->start = em->orig_start; 617 em_len = em->len; 618 em_start = em->start; 619 620 free_extent_map(em); 621 em = NULL; 622 623 cb->len = uncompressed_len; 624 cb->compressed_len = compressed_len; 625 cb->compress_type = extent_compress_type(bio_flags); 626 cb->orig_bio = bio; 627 628 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 629 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 630 GFP_NOFS); 631 if (!cb->compressed_pages) 632 goto fail1; 633 634 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 635 636 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 637 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 638 __GFP_HIGHMEM); 639 if (!cb->compressed_pages[pg_index]) { 640 faili = pg_index - 1; 641 ret = -ENOMEM; 642 goto fail2; 643 } 644 } 645 faili = nr_pages - 1; 646 cb->nr_pages = nr_pages; 647 648 add_ra_bio_pages(inode, em_start + em_len, cb); 649 650 /* include any pages we added in add_ra-bio_pages */ 651 uncompressed_len = bio->bi_vcnt * PAGE_SIZE; 652 cb->len = uncompressed_len; 653 654 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); 655 if (!comp_bio) 656 goto fail2; 657 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0); 658 comp_bio->bi_private = cb; 659 comp_bio->bi_end_io = end_compressed_bio_read; 660 atomic_inc(&cb->pending_bios); 661 662 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 663 page = cb->compressed_pages[pg_index]; 664 page->mapping = inode->i_mapping; 665 page->index = em_start >> PAGE_SHIFT; 666 667 if (comp_bio->bi_iter.bi_size) 668 ret = tree->ops->merge_bio_hook(page, 0, 669 PAGE_SIZE, 670 comp_bio, 0); 671 else 672 ret = 0; 673 674 page->mapping = NULL; 675 if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 676 PAGE_SIZE) { 677 bio_get(comp_bio); 678 679 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 680 BTRFS_WQ_ENDIO_DATA); 681 BUG_ON(ret); /* -ENOMEM */ 682 683 /* 684 * inc the count before we submit the bio so 685 * we know the end IO handler won't happen before 686 * we inc the count. Otherwise, the cb might get 687 * freed before we're done setting it up 688 */ 689 atomic_inc(&cb->pending_bios); 690 691 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 692 ret = btrfs_lookup_bio_sums(root, inode, 693 comp_bio, sums); 694 BUG_ON(ret); /* -ENOMEM */ 695 } 696 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 697 root->sectorsize); 698 699 ret = btrfs_map_bio(root, comp_bio, mirror_num, 0); 700 if (ret) { 701 bio->bi_error = ret; 702 bio_endio(comp_bio); 703 } 704 705 bio_put(comp_bio); 706 707 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, 708 GFP_NOFS); 709 BUG_ON(!comp_bio); 710 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0); 711 comp_bio->bi_private = cb; 712 comp_bio->bi_end_io = end_compressed_bio_read; 713 714 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 715 } 716 cur_disk_byte += PAGE_SIZE; 717 } 718 bio_get(comp_bio); 719 720 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 721 BTRFS_WQ_ENDIO_DATA); 722 BUG_ON(ret); /* -ENOMEM */ 723 724 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 725 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums); 726 BUG_ON(ret); /* -ENOMEM */ 727 } 728 729 ret = btrfs_map_bio(root, comp_bio, mirror_num, 0); 730 if (ret) { 731 bio->bi_error = ret; 732 bio_endio(comp_bio); 733 } 734 735 bio_put(comp_bio); 736 return 0; 737 738 fail2: 739 while (faili >= 0) { 740 __free_page(cb->compressed_pages[faili]); 741 faili--; 742 } 743 744 kfree(cb->compressed_pages); 745 fail1: 746 kfree(cb); 747 out: 748 free_extent_map(em); 749 return ret; 750 } 751 752 static struct { 753 struct list_head idle_ws; 754 spinlock_t ws_lock; 755 /* Number of free workspaces */ 756 int free_ws; 757 /* Total number of allocated workspaces */ 758 atomic_t total_ws; 759 /* Waiters for a free workspace */ 760 wait_queue_head_t ws_wait; 761 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 762 763 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 764 &btrfs_zlib_compress, 765 &btrfs_lzo_compress, 766 }; 767 768 void __init btrfs_init_compress(void) 769 { 770 int i; 771 772 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 773 struct list_head *workspace; 774 775 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 776 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 777 atomic_set(&btrfs_comp_ws[i].total_ws, 0); 778 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 779 780 /* 781 * Preallocate one workspace for each compression type so 782 * we can guarantee forward progress in the worst case 783 */ 784 workspace = btrfs_compress_op[i]->alloc_workspace(); 785 if (IS_ERR(workspace)) { 786 printk(KERN_WARNING 787 "BTRFS: cannot preallocate compression workspace, will try later"); 788 } else { 789 atomic_set(&btrfs_comp_ws[i].total_ws, 1); 790 btrfs_comp_ws[i].free_ws = 1; 791 list_add(workspace, &btrfs_comp_ws[i].idle_ws); 792 } 793 } 794 } 795 796 /* 797 * This finds an available workspace or allocates a new one. 798 * If it's not possible to allocate a new one, waits until there's one. 799 * Preallocation makes a forward progress guarantees and we do not return 800 * errors. 801 */ 802 static struct list_head *find_workspace(int type) 803 { 804 struct list_head *workspace; 805 int cpus = num_online_cpus(); 806 int idx = type - 1; 807 808 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; 809 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; 810 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws; 811 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; 812 int *free_ws = &btrfs_comp_ws[idx].free_ws; 813 again: 814 spin_lock(ws_lock); 815 if (!list_empty(idle_ws)) { 816 workspace = idle_ws->next; 817 list_del(workspace); 818 (*free_ws)--; 819 spin_unlock(ws_lock); 820 return workspace; 821 822 } 823 if (atomic_read(total_ws) > cpus) { 824 DEFINE_WAIT(wait); 825 826 spin_unlock(ws_lock); 827 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 828 if (atomic_read(total_ws) > cpus && !*free_ws) 829 schedule(); 830 finish_wait(ws_wait, &wait); 831 goto again; 832 } 833 atomic_inc(total_ws); 834 spin_unlock(ws_lock); 835 836 workspace = btrfs_compress_op[idx]->alloc_workspace(); 837 if (IS_ERR(workspace)) { 838 atomic_dec(total_ws); 839 wake_up(ws_wait); 840 841 /* 842 * Do not return the error but go back to waiting. There's a 843 * workspace preallocated for each type and the compression 844 * time is bounded so we get to a workspace eventually. This 845 * makes our caller's life easier. 846 * 847 * To prevent silent and low-probability deadlocks (when the 848 * initial preallocation fails), check if there are any 849 * workspaces at all. 850 */ 851 if (atomic_read(total_ws) == 0) { 852 static DEFINE_RATELIMIT_STATE(_rs, 853 /* once per minute */ 60 * HZ, 854 /* no burst */ 1); 855 856 if (__ratelimit(&_rs)) { 857 printk(KERN_WARNING 858 "no compression workspaces, low memory, retrying"); 859 } 860 } 861 goto again; 862 } 863 return workspace; 864 } 865 866 /* 867 * put a workspace struct back on the list or free it if we have enough 868 * idle ones sitting around 869 */ 870 static void free_workspace(int type, struct list_head *workspace) 871 { 872 int idx = type - 1; 873 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; 874 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; 875 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws; 876 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; 877 int *free_ws = &btrfs_comp_ws[idx].free_ws; 878 879 spin_lock(ws_lock); 880 if (*free_ws < num_online_cpus()) { 881 list_add(workspace, idle_ws); 882 (*free_ws)++; 883 spin_unlock(ws_lock); 884 goto wake; 885 } 886 spin_unlock(ws_lock); 887 888 btrfs_compress_op[idx]->free_workspace(workspace); 889 atomic_dec(total_ws); 890 wake: 891 /* 892 * Make sure counter is updated before we wake up waiters. 893 */ 894 smp_mb(); 895 if (waitqueue_active(ws_wait)) 896 wake_up(ws_wait); 897 } 898 899 /* 900 * cleanup function for module exit 901 */ 902 static void free_workspaces(void) 903 { 904 struct list_head *workspace; 905 int i; 906 907 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 908 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 909 workspace = btrfs_comp_ws[i].idle_ws.next; 910 list_del(workspace); 911 btrfs_compress_op[i]->free_workspace(workspace); 912 atomic_dec(&btrfs_comp_ws[i].total_ws); 913 } 914 } 915 } 916 917 /* 918 * given an address space and start/len, compress the bytes. 919 * 920 * pages are allocated to hold the compressed result and stored 921 * in 'pages' 922 * 923 * out_pages is used to return the number of pages allocated. There 924 * may be pages allocated even if we return an error 925 * 926 * total_in is used to return the number of bytes actually read. It 927 * may be smaller then len if we had to exit early because we 928 * ran out of room in the pages array or because we cross the 929 * max_out threshold. 930 * 931 * total_out is used to return the total number of compressed bytes 932 * 933 * max_out tells us the max number of bytes that we're allowed to 934 * stuff into pages 935 */ 936 int btrfs_compress_pages(int type, struct address_space *mapping, 937 u64 start, unsigned long len, 938 struct page **pages, 939 unsigned long nr_dest_pages, 940 unsigned long *out_pages, 941 unsigned long *total_in, 942 unsigned long *total_out, 943 unsigned long max_out) 944 { 945 struct list_head *workspace; 946 int ret; 947 948 workspace = find_workspace(type); 949 950 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 951 start, len, pages, 952 nr_dest_pages, out_pages, 953 total_in, total_out, 954 max_out); 955 free_workspace(type, workspace); 956 return ret; 957 } 958 959 /* 960 * pages_in is an array of pages with compressed data. 961 * 962 * disk_start is the starting logical offset of this array in the file 963 * 964 * bvec is a bio_vec of pages from the file that we want to decompress into 965 * 966 * vcnt is the count of pages in the biovec 967 * 968 * srclen is the number of bytes in pages_in 969 * 970 * The basic idea is that we have a bio that was created by readpages. 971 * The pages in the bio are for the uncompressed data, and they may not 972 * be contiguous. They all correspond to the range of bytes covered by 973 * the compressed extent. 974 */ 975 static int btrfs_decompress_biovec(int type, struct page **pages_in, 976 u64 disk_start, struct bio_vec *bvec, 977 int vcnt, size_t srclen) 978 { 979 struct list_head *workspace; 980 int ret; 981 982 workspace = find_workspace(type); 983 984 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, 985 disk_start, 986 bvec, vcnt, srclen); 987 free_workspace(type, workspace); 988 return ret; 989 } 990 991 /* 992 * a less complex decompression routine. Our compressed data fits in a 993 * single page, and we want to read a single page out of it. 994 * start_byte tells us the offset into the compressed data we're interested in 995 */ 996 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 997 unsigned long start_byte, size_t srclen, size_t destlen) 998 { 999 struct list_head *workspace; 1000 int ret; 1001 1002 workspace = find_workspace(type); 1003 1004 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 1005 dest_page, start_byte, 1006 srclen, destlen); 1007 1008 free_workspace(type, workspace); 1009 return ret; 1010 } 1011 1012 void btrfs_exit_compress(void) 1013 { 1014 free_workspaces(); 1015 } 1016 1017 /* 1018 * Copy uncompressed data from working buffer to pages. 1019 * 1020 * buf_start is the byte offset we're of the start of our workspace buffer. 1021 * 1022 * total_out is the last byte of the buffer 1023 */ 1024 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, 1025 unsigned long total_out, u64 disk_start, 1026 struct bio_vec *bvec, int vcnt, 1027 unsigned long *pg_index, 1028 unsigned long *pg_offset) 1029 { 1030 unsigned long buf_offset; 1031 unsigned long current_buf_start; 1032 unsigned long start_byte; 1033 unsigned long working_bytes = total_out - buf_start; 1034 unsigned long bytes; 1035 char *kaddr; 1036 struct page *page_out = bvec[*pg_index].bv_page; 1037 1038 /* 1039 * start byte is the first byte of the page we're currently 1040 * copying into relative to the start of the compressed data. 1041 */ 1042 start_byte = page_offset(page_out) - disk_start; 1043 1044 /* we haven't yet hit data corresponding to this page */ 1045 if (total_out <= start_byte) 1046 return 1; 1047 1048 /* 1049 * the start of the data we care about is offset into 1050 * the middle of our working buffer 1051 */ 1052 if (total_out > start_byte && buf_start < start_byte) { 1053 buf_offset = start_byte - buf_start; 1054 working_bytes -= buf_offset; 1055 } else { 1056 buf_offset = 0; 1057 } 1058 current_buf_start = buf_start; 1059 1060 /* copy bytes from the working buffer into the pages */ 1061 while (working_bytes > 0) { 1062 bytes = min(PAGE_SIZE - *pg_offset, 1063 PAGE_SIZE - buf_offset); 1064 bytes = min(bytes, working_bytes); 1065 kaddr = kmap_atomic(page_out); 1066 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); 1067 kunmap_atomic(kaddr); 1068 flush_dcache_page(page_out); 1069 1070 *pg_offset += bytes; 1071 buf_offset += bytes; 1072 working_bytes -= bytes; 1073 current_buf_start += bytes; 1074 1075 /* check if we need to pick another page */ 1076 if (*pg_offset == PAGE_SIZE) { 1077 (*pg_index)++; 1078 if (*pg_index >= vcnt) 1079 return 0; 1080 1081 page_out = bvec[*pg_index].bv_page; 1082 *pg_offset = 0; 1083 start_byte = page_offset(page_out) - disk_start; 1084 1085 /* 1086 * make sure our new page is covered by this 1087 * working buffer 1088 */ 1089 if (total_out <= start_byte) 1090 return 1; 1091 1092 /* 1093 * the next page in the biovec might not be adjacent 1094 * to the last page, but it might still be found 1095 * inside this working buffer. bump our offset pointer 1096 */ 1097 if (total_out > start_byte && 1098 current_buf_start < start_byte) { 1099 buf_offset = start_byte - buf_start; 1100 working_bytes = total_out - start_byte; 1101 current_buf_start = buf_start + buf_offset; 1102 } 1103 } 1104 } 1105 1106 return 1; 1107 } 1108 1109 /* 1110 * When uncompressing data, we need to make sure and zero any parts of 1111 * the biovec that were not filled in by the decompression code. pg_index 1112 * and pg_offset indicate the last page and the last offset of that page 1113 * that have been filled in. This will zero everything remaining in the 1114 * biovec. 1115 */ 1116 void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt, 1117 unsigned long pg_index, 1118 unsigned long pg_offset) 1119 { 1120 while (pg_index < vcnt) { 1121 struct page *page = bvec[pg_index].bv_page; 1122 unsigned long off = bvec[pg_index].bv_offset; 1123 unsigned long len = bvec[pg_index].bv_len; 1124 1125 if (pg_offset < off) 1126 pg_offset = off; 1127 if (pg_offset < off + len) { 1128 unsigned long bytes = off + len - pg_offset; 1129 char *kaddr; 1130 1131 kaddr = kmap_atomic(page); 1132 memset(kaddr + pg_offset, 0, bytes); 1133 kunmap_atomic(kaddr); 1134 } 1135 pg_index++; 1136 pg_offset = 0; 1137 } 1138 } 1139