1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "ordered-data.h" 41 #include "compression.h" 42 #include "extent_io.h" 43 #include "extent_map.h" 44 45 struct compressed_bio { 46 /* number of bios pending for this compressed extent */ 47 atomic_t pending_bios; 48 49 /* the pages with the compressed data on them */ 50 struct page **compressed_pages; 51 52 /* inode that owns this data */ 53 struct inode *inode; 54 55 /* starting offset in the inode for our pages */ 56 u64 start; 57 58 /* number of bytes in the inode we're working on */ 59 unsigned long len; 60 61 /* number of bytes on disk */ 62 unsigned long compressed_len; 63 64 /* the compression algorithm for this bio */ 65 int compress_type; 66 67 /* number of compressed pages in the array */ 68 unsigned long nr_pages; 69 70 /* IO errors */ 71 int errors; 72 int mirror_num; 73 74 /* for reads, this is the bio we are copying the data into */ 75 struct bio *orig_bio; 76 77 /* 78 * the start of a variable length array of checksums only 79 * used by reads 80 */ 81 u32 sums; 82 }; 83 84 static int btrfs_decompress_biovec(int type, struct page **pages_in, 85 u64 disk_start, struct bio_vec *bvec, 86 int vcnt, size_t srclen); 87 88 static inline int compressed_bio_size(struct btrfs_root *root, 89 unsigned long disk_size) 90 { 91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 92 93 return sizeof(struct compressed_bio) + 94 ((disk_size + root->sectorsize - 1) / root->sectorsize) * 95 csum_size; 96 } 97 98 static struct bio *compressed_bio_alloc(struct block_device *bdev, 99 u64 first_byte, gfp_t gfp_flags) 100 { 101 int nr_vecs; 102 103 nr_vecs = bio_get_nr_vecs(bdev); 104 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags); 105 } 106 107 static int check_compressed_csum(struct inode *inode, 108 struct compressed_bio *cb, 109 u64 disk_start) 110 { 111 int ret; 112 struct page *page; 113 unsigned long i; 114 char *kaddr; 115 u32 csum; 116 u32 *cb_sum = &cb->sums; 117 118 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 119 return 0; 120 121 for (i = 0; i < cb->nr_pages; i++) { 122 page = cb->compressed_pages[i]; 123 csum = ~(u32)0; 124 125 kaddr = kmap_atomic(page); 126 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE); 127 btrfs_csum_final(csum, (char *)&csum); 128 kunmap_atomic(kaddr); 129 130 if (csum != *cb_sum) { 131 printk(KERN_INFO "btrfs csum failed ino %llu " 132 "extent %llu csum %u " 133 "wanted %u mirror %d\n", 134 btrfs_ino(inode), disk_start, csum, *cb_sum, 135 cb->mirror_num); 136 ret = -EIO; 137 goto fail; 138 } 139 cb_sum++; 140 141 } 142 ret = 0; 143 fail: 144 return ret; 145 } 146 147 /* when we finish reading compressed pages from the disk, we 148 * decompress them and then run the bio end_io routines on the 149 * decompressed pages (in the inode address space). 150 * 151 * This allows the checksumming and other IO error handling routines 152 * to work normally 153 * 154 * The compressed pages are freed here, and it must be run 155 * in process context 156 */ 157 static void end_compressed_bio_read(struct bio *bio, int err) 158 { 159 struct compressed_bio *cb = bio->bi_private; 160 struct inode *inode; 161 struct page *page; 162 unsigned long index; 163 int ret; 164 165 if (err) 166 cb->errors = 1; 167 168 /* if there are more bios still pending for this compressed 169 * extent, just exit 170 */ 171 if (!atomic_dec_and_test(&cb->pending_bios)) 172 goto out; 173 174 inode = cb->inode; 175 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9); 176 if (ret) 177 goto csum_failed; 178 179 /* ok, we're the last bio for this extent, lets start 180 * the decompression. 181 */ 182 ret = btrfs_decompress_biovec(cb->compress_type, 183 cb->compressed_pages, 184 cb->start, 185 cb->orig_bio->bi_io_vec, 186 cb->orig_bio->bi_vcnt, 187 cb->compressed_len); 188 csum_failed: 189 if (ret) 190 cb->errors = 1; 191 192 /* release the compressed pages */ 193 index = 0; 194 for (index = 0; index < cb->nr_pages; index++) { 195 page = cb->compressed_pages[index]; 196 page->mapping = NULL; 197 page_cache_release(page); 198 } 199 200 /* do io completion on the original bio */ 201 if (cb->errors) { 202 bio_io_error(cb->orig_bio); 203 } else { 204 int bio_index = 0; 205 struct bio_vec *bvec = cb->orig_bio->bi_io_vec; 206 207 /* 208 * we have verified the checksum already, set page 209 * checked so the end_io handlers know about it 210 */ 211 while (bio_index < cb->orig_bio->bi_vcnt) { 212 SetPageChecked(bvec->bv_page); 213 bvec++; 214 bio_index++; 215 } 216 bio_endio(cb->orig_bio, 0); 217 } 218 219 /* finally free the cb struct */ 220 kfree(cb->compressed_pages); 221 kfree(cb); 222 out: 223 bio_put(bio); 224 } 225 226 /* 227 * Clear the writeback bits on all of the file 228 * pages for a compressed write 229 */ 230 static noinline void end_compressed_writeback(struct inode *inode, u64 start, 231 unsigned long ram_size) 232 { 233 unsigned long index = start >> PAGE_CACHE_SHIFT; 234 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT; 235 struct page *pages[16]; 236 unsigned long nr_pages = end_index - index + 1; 237 int i; 238 int ret; 239 240 while (nr_pages > 0) { 241 ret = find_get_pages_contig(inode->i_mapping, index, 242 min_t(unsigned long, 243 nr_pages, ARRAY_SIZE(pages)), pages); 244 if (ret == 0) { 245 nr_pages -= 1; 246 index += 1; 247 continue; 248 } 249 for (i = 0; i < ret; i++) { 250 end_page_writeback(pages[i]); 251 page_cache_release(pages[i]); 252 } 253 nr_pages -= ret; 254 index += ret; 255 } 256 /* the inode may be gone now */ 257 } 258 259 /* 260 * do the cleanup once all the compressed pages hit the disk. 261 * This will clear writeback on the file pages and free the compressed 262 * pages. 263 * 264 * This also calls the writeback end hooks for the file pages so that 265 * metadata and checksums can be updated in the file. 266 */ 267 static void end_compressed_bio_write(struct bio *bio, int err) 268 { 269 struct extent_io_tree *tree; 270 struct compressed_bio *cb = bio->bi_private; 271 struct inode *inode; 272 struct page *page; 273 unsigned long index; 274 275 if (err) 276 cb->errors = 1; 277 278 /* if there are more bios still pending for this compressed 279 * extent, just exit 280 */ 281 if (!atomic_dec_and_test(&cb->pending_bios)) 282 goto out; 283 284 /* ok, we're the last bio for this extent, step one is to 285 * call back into the FS and do all the end_io operations 286 */ 287 inode = cb->inode; 288 tree = &BTRFS_I(inode)->io_tree; 289 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 290 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 291 cb->start, 292 cb->start + cb->len - 1, 293 NULL, 1); 294 cb->compressed_pages[0]->mapping = NULL; 295 296 end_compressed_writeback(inode, cb->start, cb->len); 297 /* note, our inode could be gone now */ 298 299 /* 300 * release the compressed pages, these came from alloc_page and 301 * are not attached to the inode at all 302 */ 303 index = 0; 304 for (index = 0; index < cb->nr_pages; index++) { 305 page = cb->compressed_pages[index]; 306 page->mapping = NULL; 307 page_cache_release(page); 308 } 309 310 /* finally free the cb struct */ 311 kfree(cb->compressed_pages); 312 kfree(cb); 313 out: 314 bio_put(bio); 315 } 316 317 /* 318 * worker function to build and submit bios for previously compressed pages. 319 * The corresponding pages in the inode should be marked for writeback 320 * and the compressed pages should have a reference on them for dropping 321 * when the IO is complete. 322 * 323 * This also checksums the file bytes and gets things ready for 324 * the end io hooks. 325 */ 326 int btrfs_submit_compressed_write(struct inode *inode, u64 start, 327 unsigned long len, u64 disk_start, 328 unsigned long compressed_len, 329 struct page **compressed_pages, 330 unsigned long nr_pages) 331 { 332 struct bio *bio = NULL; 333 struct btrfs_root *root = BTRFS_I(inode)->root; 334 struct compressed_bio *cb; 335 unsigned long bytes_left; 336 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 337 int pg_index = 0; 338 struct page *page; 339 u64 first_byte = disk_start; 340 struct block_device *bdev; 341 int ret; 342 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 343 344 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1)); 345 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 346 if (!cb) 347 return -ENOMEM; 348 atomic_set(&cb->pending_bios, 0); 349 cb->errors = 0; 350 cb->inode = inode; 351 cb->start = start; 352 cb->len = len; 353 cb->mirror_num = 0; 354 cb->compressed_pages = compressed_pages; 355 cb->compressed_len = compressed_len; 356 cb->orig_bio = NULL; 357 cb->nr_pages = nr_pages; 358 359 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 360 361 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 362 if (!bio) { 363 kfree(cb); 364 return -ENOMEM; 365 } 366 bio->bi_private = cb; 367 bio->bi_end_io = end_compressed_bio_write; 368 atomic_inc(&cb->pending_bios); 369 370 /* create and submit bios for the compressed pages */ 371 bytes_left = compressed_len; 372 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 373 page = compressed_pages[pg_index]; 374 page->mapping = inode->i_mapping; 375 if (bio->bi_size) 376 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0, 377 PAGE_CACHE_SIZE, 378 bio, 0); 379 else 380 ret = 0; 381 382 page->mapping = NULL; 383 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < 384 PAGE_CACHE_SIZE) { 385 bio_get(bio); 386 387 /* 388 * inc the count before we submit the bio so 389 * we know the end IO handler won't happen before 390 * we inc the count. Otherwise, the cb might get 391 * freed before we're done setting it up 392 */ 393 atomic_inc(&cb->pending_bios); 394 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 395 BUG_ON(ret); /* -ENOMEM */ 396 397 if (!skip_sum) { 398 ret = btrfs_csum_one_bio(root, inode, bio, 399 start, 1); 400 BUG_ON(ret); /* -ENOMEM */ 401 } 402 403 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 404 BUG_ON(ret); /* -ENOMEM */ 405 406 bio_put(bio); 407 408 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 409 BUG_ON(!bio); 410 bio->bi_private = cb; 411 bio->bi_end_io = end_compressed_bio_write; 412 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 413 } 414 if (bytes_left < PAGE_CACHE_SIZE) { 415 printk("bytes left %lu compress len %lu nr %lu\n", 416 bytes_left, cb->compressed_len, cb->nr_pages); 417 } 418 bytes_left -= PAGE_CACHE_SIZE; 419 first_byte += PAGE_CACHE_SIZE; 420 cond_resched(); 421 } 422 bio_get(bio); 423 424 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 425 BUG_ON(ret); /* -ENOMEM */ 426 427 if (!skip_sum) { 428 ret = btrfs_csum_one_bio(root, inode, bio, start, 1); 429 BUG_ON(ret); /* -ENOMEM */ 430 } 431 432 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 433 BUG_ON(ret); /* -ENOMEM */ 434 435 bio_put(bio); 436 return 0; 437 } 438 439 static noinline int add_ra_bio_pages(struct inode *inode, 440 u64 compressed_end, 441 struct compressed_bio *cb) 442 { 443 unsigned long end_index; 444 unsigned long pg_index; 445 u64 last_offset; 446 u64 isize = i_size_read(inode); 447 int ret; 448 struct page *page; 449 unsigned long nr_pages = 0; 450 struct extent_map *em; 451 struct address_space *mapping = inode->i_mapping; 452 struct extent_map_tree *em_tree; 453 struct extent_io_tree *tree; 454 u64 end; 455 int misses = 0; 456 457 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; 458 last_offset = (page_offset(page) + PAGE_CACHE_SIZE); 459 em_tree = &BTRFS_I(inode)->extent_tree; 460 tree = &BTRFS_I(inode)->io_tree; 461 462 if (isize == 0) 463 return 0; 464 465 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 466 467 while (last_offset < compressed_end) { 468 pg_index = last_offset >> PAGE_CACHE_SHIFT; 469 470 if (pg_index > end_index) 471 break; 472 473 rcu_read_lock(); 474 page = radix_tree_lookup(&mapping->page_tree, pg_index); 475 rcu_read_unlock(); 476 if (page) { 477 misses++; 478 if (misses > 4) 479 break; 480 goto next; 481 } 482 483 page = __page_cache_alloc(mapping_gfp_mask(mapping) & 484 ~__GFP_FS); 485 if (!page) 486 break; 487 488 if (add_to_page_cache_lru(page, mapping, pg_index, 489 GFP_NOFS)) { 490 page_cache_release(page); 491 goto next; 492 } 493 494 end = last_offset + PAGE_CACHE_SIZE - 1; 495 /* 496 * at this point, we have a locked page in the page cache 497 * for these bytes in the file. But, we have to make 498 * sure they map to this compressed extent on disk. 499 */ 500 set_page_extent_mapped(page); 501 lock_extent(tree, last_offset, end); 502 read_lock(&em_tree->lock); 503 em = lookup_extent_mapping(em_tree, last_offset, 504 PAGE_CACHE_SIZE); 505 read_unlock(&em_tree->lock); 506 507 if (!em || last_offset < em->start || 508 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) || 509 (em->block_start >> 9) != cb->orig_bio->bi_sector) { 510 free_extent_map(em); 511 unlock_extent(tree, last_offset, end); 512 unlock_page(page); 513 page_cache_release(page); 514 break; 515 } 516 free_extent_map(em); 517 518 if (page->index == end_index) { 519 char *userpage; 520 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1); 521 522 if (zero_offset) { 523 int zeros; 524 zeros = PAGE_CACHE_SIZE - zero_offset; 525 userpage = kmap_atomic(page); 526 memset(userpage + zero_offset, 0, zeros); 527 flush_dcache_page(page); 528 kunmap_atomic(userpage); 529 } 530 } 531 532 ret = bio_add_page(cb->orig_bio, page, 533 PAGE_CACHE_SIZE, 0); 534 535 if (ret == PAGE_CACHE_SIZE) { 536 nr_pages++; 537 page_cache_release(page); 538 } else { 539 unlock_extent(tree, last_offset, end); 540 unlock_page(page); 541 page_cache_release(page); 542 break; 543 } 544 next: 545 last_offset += PAGE_CACHE_SIZE; 546 } 547 return 0; 548 } 549 550 /* 551 * for a compressed read, the bio we get passed has all the inode pages 552 * in it. We don't actually do IO on those pages but allocate new ones 553 * to hold the compressed pages on disk. 554 * 555 * bio->bi_sector points to the compressed extent on disk 556 * bio->bi_io_vec points to all of the inode pages 557 * bio->bi_vcnt is a count of pages 558 * 559 * After the compressed pages are read, we copy the bytes into the 560 * bio we were passed and then call the bio end_io calls 561 */ 562 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 563 int mirror_num, unsigned long bio_flags) 564 { 565 struct extent_io_tree *tree; 566 struct extent_map_tree *em_tree; 567 struct compressed_bio *cb; 568 struct btrfs_root *root = BTRFS_I(inode)->root; 569 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 570 unsigned long compressed_len; 571 unsigned long nr_pages; 572 unsigned long pg_index; 573 struct page *page; 574 struct block_device *bdev; 575 struct bio *comp_bio; 576 u64 cur_disk_byte = (u64)bio->bi_sector << 9; 577 u64 em_len; 578 u64 em_start; 579 struct extent_map *em; 580 int ret = -ENOMEM; 581 int faili = 0; 582 u32 *sums; 583 584 tree = &BTRFS_I(inode)->io_tree; 585 em_tree = &BTRFS_I(inode)->extent_tree; 586 587 /* we need the actual starting offset of this extent in the file */ 588 read_lock(&em_tree->lock); 589 em = lookup_extent_mapping(em_tree, 590 page_offset(bio->bi_io_vec->bv_page), 591 PAGE_CACHE_SIZE); 592 read_unlock(&em_tree->lock); 593 if (!em) 594 return -EIO; 595 596 compressed_len = em->block_len; 597 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 598 if (!cb) 599 goto out; 600 601 atomic_set(&cb->pending_bios, 0); 602 cb->errors = 0; 603 cb->inode = inode; 604 cb->mirror_num = mirror_num; 605 sums = &cb->sums; 606 607 cb->start = em->orig_start; 608 em_len = em->len; 609 em_start = em->start; 610 611 free_extent_map(em); 612 em = NULL; 613 614 cb->len = uncompressed_len; 615 cb->compressed_len = compressed_len; 616 cb->compress_type = extent_compress_type(bio_flags); 617 cb->orig_bio = bio; 618 619 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) / 620 PAGE_CACHE_SIZE; 621 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages, 622 GFP_NOFS); 623 if (!cb->compressed_pages) 624 goto fail1; 625 626 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 627 628 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 629 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 630 __GFP_HIGHMEM); 631 if (!cb->compressed_pages[pg_index]) { 632 faili = pg_index - 1; 633 ret = -ENOMEM; 634 goto fail2; 635 } 636 } 637 faili = nr_pages - 1; 638 cb->nr_pages = nr_pages; 639 640 /* In the parent-locked case, we only locked the range we are 641 * interested in. In all other cases, we can opportunistically 642 * cache decompressed data that goes beyond the requested range. */ 643 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED)) 644 add_ra_bio_pages(inode, em_start + em_len, cb); 645 646 /* include any pages we added in add_ra-bio_pages */ 647 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 648 cb->len = uncompressed_len; 649 650 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); 651 if (!comp_bio) 652 goto fail2; 653 comp_bio->bi_private = cb; 654 comp_bio->bi_end_io = end_compressed_bio_read; 655 atomic_inc(&cb->pending_bios); 656 657 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 658 page = cb->compressed_pages[pg_index]; 659 page->mapping = inode->i_mapping; 660 page->index = em_start >> PAGE_CACHE_SHIFT; 661 662 if (comp_bio->bi_size) 663 ret = tree->ops->merge_bio_hook(READ, page, 0, 664 PAGE_CACHE_SIZE, 665 comp_bio, 0); 666 else 667 ret = 0; 668 669 page->mapping = NULL; 670 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) < 671 PAGE_CACHE_SIZE) { 672 bio_get(comp_bio); 673 674 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); 675 BUG_ON(ret); /* -ENOMEM */ 676 677 /* 678 * inc the count before we submit the bio so 679 * we know the end IO handler won't happen before 680 * we inc the count. Otherwise, the cb might get 681 * freed before we're done setting it up 682 */ 683 atomic_inc(&cb->pending_bios); 684 685 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 686 ret = btrfs_lookup_bio_sums(root, inode, 687 comp_bio, sums); 688 BUG_ON(ret); /* -ENOMEM */ 689 } 690 sums += (comp_bio->bi_size + root->sectorsize - 1) / 691 root->sectorsize; 692 693 ret = btrfs_map_bio(root, READ, comp_bio, 694 mirror_num, 0); 695 if (ret) 696 bio_endio(comp_bio, ret); 697 698 bio_put(comp_bio); 699 700 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, 701 GFP_NOFS); 702 BUG_ON(!comp_bio); 703 comp_bio->bi_private = cb; 704 comp_bio->bi_end_io = end_compressed_bio_read; 705 706 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0); 707 } 708 cur_disk_byte += PAGE_CACHE_SIZE; 709 } 710 bio_get(comp_bio); 711 712 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); 713 BUG_ON(ret); /* -ENOMEM */ 714 715 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 716 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums); 717 BUG_ON(ret); /* -ENOMEM */ 718 } 719 720 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0); 721 if (ret) 722 bio_endio(comp_bio, ret); 723 724 bio_put(comp_bio); 725 return 0; 726 727 fail2: 728 while (faili >= 0) { 729 __free_page(cb->compressed_pages[faili]); 730 faili--; 731 } 732 733 kfree(cb->compressed_pages); 734 fail1: 735 kfree(cb); 736 out: 737 free_extent_map(em); 738 return ret; 739 } 740 741 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES]; 742 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES]; 743 static int comp_num_workspace[BTRFS_COMPRESS_TYPES]; 744 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES]; 745 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES]; 746 747 static struct btrfs_compress_op *btrfs_compress_op[] = { 748 &btrfs_zlib_compress, 749 &btrfs_lzo_compress, 750 }; 751 752 void __init btrfs_init_compress(void) 753 { 754 int i; 755 756 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 757 INIT_LIST_HEAD(&comp_idle_workspace[i]); 758 spin_lock_init(&comp_workspace_lock[i]); 759 atomic_set(&comp_alloc_workspace[i], 0); 760 init_waitqueue_head(&comp_workspace_wait[i]); 761 } 762 } 763 764 /* 765 * this finds an available workspace or allocates a new one 766 * ERR_PTR is returned if things go bad. 767 */ 768 static struct list_head *find_workspace(int type) 769 { 770 struct list_head *workspace; 771 int cpus = num_online_cpus(); 772 int idx = type - 1; 773 774 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 775 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 776 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 777 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 778 int *num_workspace = &comp_num_workspace[idx]; 779 again: 780 spin_lock(workspace_lock); 781 if (!list_empty(idle_workspace)) { 782 workspace = idle_workspace->next; 783 list_del(workspace); 784 (*num_workspace)--; 785 spin_unlock(workspace_lock); 786 return workspace; 787 788 } 789 if (atomic_read(alloc_workspace) > cpus) { 790 DEFINE_WAIT(wait); 791 792 spin_unlock(workspace_lock); 793 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE); 794 if (atomic_read(alloc_workspace) > cpus && !*num_workspace) 795 schedule(); 796 finish_wait(workspace_wait, &wait); 797 goto again; 798 } 799 atomic_inc(alloc_workspace); 800 spin_unlock(workspace_lock); 801 802 workspace = btrfs_compress_op[idx]->alloc_workspace(); 803 if (IS_ERR(workspace)) { 804 atomic_dec(alloc_workspace); 805 wake_up(workspace_wait); 806 } 807 return workspace; 808 } 809 810 /* 811 * put a workspace struct back on the list or free it if we have enough 812 * idle ones sitting around 813 */ 814 static void free_workspace(int type, struct list_head *workspace) 815 { 816 int idx = type - 1; 817 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 818 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 819 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 820 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 821 int *num_workspace = &comp_num_workspace[idx]; 822 823 spin_lock(workspace_lock); 824 if (*num_workspace < num_online_cpus()) { 825 list_add_tail(workspace, idle_workspace); 826 (*num_workspace)++; 827 spin_unlock(workspace_lock); 828 goto wake; 829 } 830 spin_unlock(workspace_lock); 831 832 btrfs_compress_op[idx]->free_workspace(workspace); 833 atomic_dec(alloc_workspace); 834 wake: 835 smp_mb(); 836 if (waitqueue_active(workspace_wait)) 837 wake_up(workspace_wait); 838 } 839 840 /* 841 * cleanup function for module exit 842 */ 843 static void free_workspaces(void) 844 { 845 struct list_head *workspace; 846 int i; 847 848 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 849 while (!list_empty(&comp_idle_workspace[i])) { 850 workspace = comp_idle_workspace[i].next; 851 list_del(workspace); 852 btrfs_compress_op[i]->free_workspace(workspace); 853 atomic_dec(&comp_alloc_workspace[i]); 854 } 855 } 856 } 857 858 /* 859 * given an address space and start/len, compress the bytes. 860 * 861 * pages are allocated to hold the compressed result and stored 862 * in 'pages' 863 * 864 * out_pages is used to return the number of pages allocated. There 865 * may be pages allocated even if we return an error 866 * 867 * total_in is used to return the number of bytes actually read. It 868 * may be smaller then len if we had to exit early because we 869 * ran out of room in the pages array or because we cross the 870 * max_out threshold. 871 * 872 * total_out is used to return the total number of compressed bytes 873 * 874 * max_out tells us the max number of bytes that we're allowed to 875 * stuff into pages 876 */ 877 int btrfs_compress_pages(int type, struct address_space *mapping, 878 u64 start, unsigned long len, 879 struct page **pages, 880 unsigned long nr_dest_pages, 881 unsigned long *out_pages, 882 unsigned long *total_in, 883 unsigned long *total_out, 884 unsigned long max_out) 885 { 886 struct list_head *workspace; 887 int ret; 888 889 workspace = find_workspace(type); 890 if (IS_ERR(workspace)) 891 return -1; 892 893 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 894 start, len, pages, 895 nr_dest_pages, out_pages, 896 total_in, total_out, 897 max_out); 898 free_workspace(type, workspace); 899 return ret; 900 } 901 902 /* 903 * pages_in is an array of pages with compressed data. 904 * 905 * disk_start is the starting logical offset of this array in the file 906 * 907 * bvec is a bio_vec of pages from the file that we want to decompress into 908 * 909 * vcnt is the count of pages in the biovec 910 * 911 * srclen is the number of bytes in pages_in 912 * 913 * The basic idea is that we have a bio that was created by readpages. 914 * The pages in the bio are for the uncompressed data, and they may not 915 * be contiguous. They all correspond to the range of bytes covered by 916 * the compressed extent. 917 */ 918 static int btrfs_decompress_biovec(int type, struct page **pages_in, 919 u64 disk_start, struct bio_vec *bvec, 920 int vcnt, size_t srclen) 921 { 922 struct list_head *workspace; 923 int ret; 924 925 workspace = find_workspace(type); 926 if (IS_ERR(workspace)) 927 return -ENOMEM; 928 929 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, 930 disk_start, 931 bvec, vcnt, srclen); 932 free_workspace(type, workspace); 933 return ret; 934 } 935 936 /* 937 * a less complex decompression routine. Our compressed data fits in a 938 * single page, and we want to read a single page out of it. 939 * start_byte tells us the offset into the compressed data we're interested in 940 */ 941 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 942 unsigned long start_byte, size_t srclen, size_t destlen) 943 { 944 struct list_head *workspace; 945 int ret; 946 947 workspace = find_workspace(type); 948 if (IS_ERR(workspace)) 949 return -ENOMEM; 950 951 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 952 dest_page, start_byte, 953 srclen, destlen); 954 955 free_workspace(type, workspace); 956 return ret; 957 } 958 959 void btrfs_exit_compress(void) 960 { 961 free_workspaces(); 962 } 963 964 /* 965 * Copy uncompressed data from working buffer to pages. 966 * 967 * buf_start is the byte offset we're of the start of our workspace buffer. 968 * 969 * total_out is the last byte of the buffer 970 */ 971 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, 972 unsigned long total_out, u64 disk_start, 973 struct bio_vec *bvec, int vcnt, 974 unsigned long *pg_index, 975 unsigned long *pg_offset) 976 { 977 unsigned long buf_offset; 978 unsigned long current_buf_start; 979 unsigned long start_byte; 980 unsigned long working_bytes = total_out - buf_start; 981 unsigned long bytes; 982 char *kaddr; 983 struct page *page_out = bvec[*pg_index].bv_page; 984 985 /* 986 * start byte is the first byte of the page we're currently 987 * copying into relative to the start of the compressed data. 988 */ 989 start_byte = page_offset(page_out) - disk_start; 990 991 /* we haven't yet hit data corresponding to this page */ 992 if (total_out <= start_byte) 993 return 1; 994 995 /* 996 * the start of the data we care about is offset into 997 * the middle of our working buffer 998 */ 999 if (total_out > start_byte && buf_start < start_byte) { 1000 buf_offset = start_byte - buf_start; 1001 working_bytes -= buf_offset; 1002 } else { 1003 buf_offset = 0; 1004 } 1005 current_buf_start = buf_start; 1006 1007 /* copy bytes from the working buffer into the pages */ 1008 while (working_bytes > 0) { 1009 bytes = min(PAGE_CACHE_SIZE - *pg_offset, 1010 PAGE_CACHE_SIZE - buf_offset); 1011 bytes = min(bytes, working_bytes); 1012 kaddr = kmap_atomic(page_out); 1013 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); 1014 kunmap_atomic(kaddr); 1015 flush_dcache_page(page_out); 1016 1017 *pg_offset += bytes; 1018 buf_offset += bytes; 1019 working_bytes -= bytes; 1020 current_buf_start += bytes; 1021 1022 /* check if we need to pick another page */ 1023 if (*pg_offset == PAGE_CACHE_SIZE) { 1024 (*pg_index)++; 1025 if (*pg_index >= vcnt) 1026 return 0; 1027 1028 page_out = bvec[*pg_index].bv_page; 1029 *pg_offset = 0; 1030 start_byte = page_offset(page_out) - disk_start; 1031 1032 /* 1033 * make sure our new page is covered by this 1034 * working buffer 1035 */ 1036 if (total_out <= start_byte) 1037 return 1; 1038 1039 /* 1040 * the next page in the biovec might not be adjacent 1041 * to the last page, but it might still be found 1042 * inside this working buffer. bump our offset pointer 1043 */ 1044 if (total_out > start_byte && 1045 current_buf_start < start_byte) { 1046 buf_offset = start_byte - buf_start; 1047 working_bytes = total_out - start_byte; 1048 current_buf_start = buf_start + buf_offset; 1049 } 1050 } 1051 } 1052 1053 return 1; 1054 } 1055