1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "volumes.h" 25 #include "ordered-data.h" 26 #include "compression.h" 27 #include "extent_io.h" 28 #include "extent_map.h" 29 30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 31 32 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 33 { 34 switch (type) { 35 case BTRFS_COMPRESS_ZLIB: 36 case BTRFS_COMPRESS_LZO: 37 case BTRFS_COMPRESS_ZSTD: 38 case BTRFS_COMPRESS_NONE: 39 return btrfs_compress_types[type]; 40 } 41 42 return NULL; 43 } 44 45 static int btrfs_decompress_bio(struct compressed_bio *cb); 46 47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 48 unsigned long disk_size) 49 { 50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 51 52 return sizeof(struct compressed_bio) + 53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 54 } 55 56 static int check_compressed_csum(struct btrfs_inode *inode, 57 struct compressed_bio *cb, 58 u64 disk_start) 59 { 60 int ret; 61 struct page *page; 62 unsigned long i; 63 char *kaddr; 64 u32 csum; 65 u32 *cb_sum = &cb->sums; 66 67 if (inode->flags & BTRFS_INODE_NODATASUM) 68 return 0; 69 70 for (i = 0; i < cb->nr_pages; i++) { 71 page = cb->compressed_pages[i]; 72 csum = ~(u32)0; 73 74 kaddr = kmap_atomic(page); 75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 76 btrfs_csum_final(csum, (u8 *)&csum); 77 kunmap_atomic(kaddr); 78 79 if (csum != *cb_sum) { 80 btrfs_print_data_csum_error(inode, disk_start, csum, 81 *cb_sum, cb->mirror_num); 82 ret = -EIO; 83 goto fail; 84 } 85 cb_sum++; 86 87 } 88 ret = 0; 89 fail: 90 return ret; 91 } 92 93 /* when we finish reading compressed pages from the disk, we 94 * decompress them and then run the bio end_io routines on the 95 * decompressed pages (in the inode address space). 96 * 97 * This allows the checksumming and other IO error handling routines 98 * to work normally 99 * 100 * The compressed pages are freed here, and it must be run 101 * in process context 102 */ 103 static void end_compressed_bio_read(struct bio *bio) 104 { 105 struct compressed_bio *cb = bio->bi_private; 106 struct inode *inode; 107 struct page *page; 108 unsigned long index; 109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 110 int ret = 0; 111 112 if (bio->bi_status) 113 cb->errors = 1; 114 115 /* if there are more bios still pending for this compressed 116 * extent, just exit 117 */ 118 if (!refcount_dec_and_test(&cb->pending_bios)) 119 goto out; 120 121 /* 122 * Record the correct mirror_num in cb->orig_bio so that 123 * read-repair can work properly. 124 */ 125 ASSERT(btrfs_io_bio(cb->orig_bio)); 126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 127 cb->mirror_num = mirror; 128 129 /* 130 * Some IO in this cb have failed, just skip checksum as there 131 * is no way it could be correct. 132 */ 133 if (cb->errors == 1) 134 goto csum_failed; 135 136 inode = cb->inode; 137 ret = check_compressed_csum(BTRFS_I(inode), cb, 138 (u64)bio->bi_iter.bi_sector << 9); 139 if (ret) 140 goto csum_failed; 141 142 /* ok, we're the last bio for this extent, lets start 143 * the decompression. 144 */ 145 ret = btrfs_decompress_bio(cb); 146 147 csum_failed: 148 if (ret) 149 cb->errors = 1; 150 151 /* release the compressed pages */ 152 index = 0; 153 for (index = 0; index < cb->nr_pages; index++) { 154 page = cb->compressed_pages[index]; 155 page->mapping = NULL; 156 put_page(page); 157 } 158 159 /* do io completion on the original bio */ 160 if (cb->errors) { 161 bio_io_error(cb->orig_bio); 162 } else { 163 struct bio_vec *bvec; 164 struct bvec_iter_all iter_all; 165 166 /* 167 * we have verified the checksum already, set page 168 * checked so the end_io handlers know about it 169 */ 170 ASSERT(!bio_flagged(bio, BIO_CLONED)); 171 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 172 SetPageChecked(bvec->bv_page); 173 174 bio_endio(cb->orig_bio); 175 } 176 177 /* finally free the cb struct */ 178 kfree(cb->compressed_pages); 179 kfree(cb); 180 out: 181 bio_put(bio); 182 } 183 184 /* 185 * Clear the writeback bits on all of the file 186 * pages for a compressed write 187 */ 188 static noinline void end_compressed_writeback(struct inode *inode, 189 const struct compressed_bio *cb) 190 { 191 unsigned long index = cb->start >> PAGE_SHIFT; 192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 193 struct page *pages[16]; 194 unsigned long nr_pages = end_index - index + 1; 195 int i; 196 int ret; 197 198 if (cb->errors) 199 mapping_set_error(inode->i_mapping, -EIO); 200 201 while (nr_pages > 0) { 202 ret = find_get_pages_contig(inode->i_mapping, index, 203 min_t(unsigned long, 204 nr_pages, ARRAY_SIZE(pages)), pages); 205 if (ret == 0) { 206 nr_pages -= 1; 207 index += 1; 208 continue; 209 } 210 for (i = 0; i < ret; i++) { 211 if (cb->errors) 212 SetPageError(pages[i]); 213 end_page_writeback(pages[i]); 214 put_page(pages[i]); 215 } 216 nr_pages -= ret; 217 index += ret; 218 } 219 /* the inode may be gone now */ 220 } 221 222 /* 223 * do the cleanup once all the compressed pages hit the disk. 224 * This will clear writeback on the file pages and free the compressed 225 * pages. 226 * 227 * This also calls the writeback end hooks for the file pages so that 228 * metadata and checksums can be updated in the file. 229 */ 230 static void end_compressed_bio_write(struct bio *bio) 231 { 232 struct compressed_bio *cb = bio->bi_private; 233 struct inode *inode; 234 struct page *page; 235 unsigned long index; 236 237 if (bio->bi_status) 238 cb->errors = 1; 239 240 /* if there are more bios still pending for this compressed 241 * extent, just exit 242 */ 243 if (!refcount_dec_and_test(&cb->pending_bios)) 244 goto out; 245 246 /* ok, we're the last bio for this extent, step one is to 247 * call back into the FS and do all the end_io operations 248 */ 249 inode = cb->inode; 250 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 251 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 252 cb->start, cb->start + cb->len - 1, 253 bio->bi_status == BLK_STS_OK); 254 cb->compressed_pages[0]->mapping = NULL; 255 256 end_compressed_writeback(inode, cb); 257 /* note, our inode could be gone now */ 258 259 /* 260 * release the compressed pages, these came from alloc_page and 261 * are not attached to the inode at all 262 */ 263 index = 0; 264 for (index = 0; index < cb->nr_pages; index++) { 265 page = cb->compressed_pages[index]; 266 page->mapping = NULL; 267 put_page(page); 268 } 269 270 /* finally free the cb struct */ 271 kfree(cb->compressed_pages); 272 kfree(cb); 273 out: 274 bio_put(bio); 275 } 276 277 /* 278 * worker function to build and submit bios for previously compressed pages. 279 * The corresponding pages in the inode should be marked for writeback 280 * and the compressed pages should have a reference on them for dropping 281 * when the IO is complete. 282 * 283 * This also checksums the file bytes and gets things ready for 284 * the end io hooks. 285 */ 286 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 287 unsigned long len, u64 disk_start, 288 unsigned long compressed_len, 289 struct page **compressed_pages, 290 unsigned long nr_pages, 291 unsigned int write_flags) 292 { 293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 294 struct bio *bio = NULL; 295 struct compressed_bio *cb; 296 unsigned long bytes_left; 297 int pg_index = 0; 298 struct page *page; 299 u64 first_byte = disk_start; 300 struct block_device *bdev; 301 blk_status_t ret; 302 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 303 304 WARN_ON(!PAGE_ALIGNED(start)); 305 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 306 if (!cb) 307 return BLK_STS_RESOURCE; 308 refcount_set(&cb->pending_bios, 0); 309 cb->errors = 0; 310 cb->inode = inode; 311 cb->start = start; 312 cb->len = len; 313 cb->mirror_num = 0; 314 cb->compressed_pages = compressed_pages; 315 cb->compressed_len = compressed_len; 316 cb->orig_bio = NULL; 317 cb->nr_pages = nr_pages; 318 319 bdev = fs_info->fs_devices->latest_bdev; 320 321 bio = btrfs_bio_alloc(bdev, first_byte); 322 bio->bi_opf = REQ_OP_WRITE | write_flags; 323 bio->bi_private = cb; 324 bio->bi_end_io = end_compressed_bio_write; 325 refcount_set(&cb->pending_bios, 1); 326 327 /* create and submit bios for the compressed pages */ 328 bytes_left = compressed_len; 329 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 330 int submit = 0; 331 332 page = compressed_pages[pg_index]; 333 page->mapping = inode->i_mapping; 334 if (bio->bi_iter.bi_size) 335 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 336 0); 337 338 page->mapping = NULL; 339 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 340 PAGE_SIZE) { 341 /* 342 * inc the count before we submit the bio so 343 * we know the end IO handler won't happen before 344 * we inc the count. Otherwise, the cb might get 345 * freed before we're done setting it up 346 */ 347 refcount_inc(&cb->pending_bios); 348 ret = btrfs_bio_wq_end_io(fs_info, bio, 349 BTRFS_WQ_ENDIO_DATA); 350 BUG_ON(ret); /* -ENOMEM */ 351 352 if (!skip_sum) { 353 ret = btrfs_csum_one_bio(inode, bio, start, 1); 354 BUG_ON(ret); /* -ENOMEM */ 355 } 356 357 ret = btrfs_map_bio(fs_info, bio, 0, 1); 358 if (ret) { 359 bio->bi_status = ret; 360 bio_endio(bio); 361 } 362 363 bio = btrfs_bio_alloc(bdev, first_byte); 364 bio->bi_opf = REQ_OP_WRITE | write_flags; 365 bio->bi_private = cb; 366 bio->bi_end_io = end_compressed_bio_write; 367 bio_add_page(bio, page, PAGE_SIZE, 0); 368 } 369 if (bytes_left < PAGE_SIZE) { 370 btrfs_info(fs_info, 371 "bytes left %lu compress len %lu nr %lu", 372 bytes_left, cb->compressed_len, cb->nr_pages); 373 } 374 bytes_left -= PAGE_SIZE; 375 first_byte += PAGE_SIZE; 376 cond_resched(); 377 } 378 379 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 380 BUG_ON(ret); /* -ENOMEM */ 381 382 if (!skip_sum) { 383 ret = btrfs_csum_one_bio(inode, bio, start, 1); 384 BUG_ON(ret); /* -ENOMEM */ 385 } 386 387 ret = btrfs_map_bio(fs_info, bio, 0, 1); 388 if (ret) { 389 bio->bi_status = ret; 390 bio_endio(bio); 391 } 392 393 return 0; 394 } 395 396 static u64 bio_end_offset(struct bio *bio) 397 { 398 struct bio_vec *last = bio_last_bvec_all(bio); 399 400 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 401 } 402 403 static noinline int add_ra_bio_pages(struct inode *inode, 404 u64 compressed_end, 405 struct compressed_bio *cb) 406 { 407 unsigned long end_index; 408 unsigned long pg_index; 409 u64 last_offset; 410 u64 isize = i_size_read(inode); 411 int ret; 412 struct page *page; 413 unsigned long nr_pages = 0; 414 struct extent_map *em; 415 struct address_space *mapping = inode->i_mapping; 416 struct extent_map_tree *em_tree; 417 struct extent_io_tree *tree; 418 u64 end; 419 int misses = 0; 420 421 last_offset = bio_end_offset(cb->orig_bio); 422 em_tree = &BTRFS_I(inode)->extent_tree; 423 tree = &BTRFS_I(inode)->io_tree; 424 425 if (isize == 0) 426 return 0; 427 428 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 429 430 while (last_offset < compressed_end) { 431 pg_index = last_offset >> PAGE_SHIFT; 432 433 if (pg_index > end_index) 434 break; 435 436 page = xa_load(&mapping->i_pages, pg_index); 437 if (page && !xa_is_value(page)) { 438 misses++; 439 if (misses > 4) 440 break; 441 goto next; 442 } 443 444 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 445 ~__GFP_FS)); 446 if (!page) 447 break; 448 449 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 450 put_page(page); 451 goto next; 452 } 453 454 end = last_offset + PAGE_SIZE - 1; 455 /* 456 * at this point, we have a locked page in the page cache 457 * for these bytes in the file. But, we have to make 458 * sure they map to this compressed extent on disk. 459 */ 460 set_page_extent_mapped(page); 461 lock_extent(tree, last_offset, end); 462 read_lock(&em_tree->lock); 463 em = lookup_extent_mapping(em_tree, last_offset, 464 PAGE_SIZE); 465 read_unlock(&em_tree->lock); 466 467 if (!em || last_offset < em->start || 468 (last_offset + PAGE_SIZE > extent_map_end(em)) || 469 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 470 free_extent_map(em); 471 unlock_extent(tree, last_offset, end); 472 unlock_page(page); 473 put_page(page); 474 break; 475 } 476 free_extent_map(em); 477 478 if (page->index == end_index) { 479 char *userpage; 480 size_t zero_offset = offset_in_page(isize); 481 482 if (zero_offset) { 483 int zeros; 484 zeros = PAGE_SIZE - zero_offset; 485 userpage = kmap_atomic(page); 486 memset(userpage + zero_offset, 0, zeros); 487 flush_dcache_page(page); 488 kunmap_atomic(userpage); 489 } 490 } 491 492 ret = bio_add_page(cb->orig_bio, page, 493 PAGE_SIZE, 0); 494 495 if (ret == PAGE_SIZE) { 496 nr_pages++; 497 put_page(page); 498 } else { 499 unlock_extent(tree, last_offset, end); 500 unlock_page(page); 501 put_page(page); 502 break; 503 } 504 next: 505 last_offset += PAGE_SIZE; 506 } 507 return 0; 508 } 509 510 /* 511 * for a compressed read, the bio we get passed has all the inode pages 512 * in it. We don't actually do IO on those pages but allocate new ones 513 * to hold the compressed pages on disk. 514 * 515 * bio->bi_iter.bi_sector points to the compressed extent on disk 516 * bio->bi_io_vec points to all of the inode pages 517 * 518 * After the compressed pages are read, we copy the bytes into the 519 * bio we were passed and then call the bio end_io calls 520 */ 521 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 522 int mirror_num, unsigned long bio_flags) 523 { 524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 525 struct extent_map_tree *em_tree; 526 struct compressed_bio *cb; 527 unsigned long compressed_len; 528 unsigned long nr_pages; 529 unsigned long pg_index; 530 struct page *page; 531 struct block_device *bdev; 532 struct bio *comp_bio; 533 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 534 u64 em_len; 535 u64 em_start; 536 struct extent_map *em; 537 blk_status_t ret = BLK_STS_RESOURCE; 538 int faili = 0; 539 u32 *sums; 540 541 em_tree = &BTRFS_I(inode)->extent_tree; 542 543 /* we need the actual starting offset of this extent in the file */ 544 read_lock(&em_tree->lock); 545 em = lookup_extent_mapping(em_tree, 546 page_offset(bio_first_page_all(bio)), 547 PAGE_SIZE); 548 read_unlock(&em_tree->lock); 549 if (!em) 550 return BLK_STS_IOERR; 551 552 compressed_len = em->block_len; 553 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 554 if (!cb) 555 goto out; 556 557 refcount_set(&cb->pending_bios, 0); 558 cb->errors = 0; 559 cb->inode = inode; 560 cb->mirror_num = mirror_num; 561 sums = &cb->sums; 562 563 cb->start = em->orig_start; 564 em_len = em->len; 565 em_start = em->start; 566 567 free_extent_map(em); 568 em = NULL; 569 570 cb->len = bio->bi_iter.bi_size; 571 cb->compressed_len = compressed_len; 572 cb->compress_type = extent_compress_type(bio_flags); 573 cb->orig_bio = bio; 574 575 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 576 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 577 GFP_NOFS); 578 if (!cb->compressed_pages) 579 goto fail1; 580 581 bdev = fs_info->fs_devices->latest_bdev; 582 583 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 584 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 585 __GFP_HIGHMEM); 586 if (!cb->compressed_pages[pg_index]) { 587 faili = pg_index - 1; 588 ret = BLK_STS_RESOURCE; 589 goto fail2; 590 } 591 } 592 faili = nr_pages - 1; 593 cb->nr_pages = nr_pages; 594 595 add_ra_bio_pages(inode, em_start + em_len, cb); 596 597 /* include any pages we added in add_ra-bio_pages */ 598 cb->len = bio->bi_iter.bi_size; 599 600 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 601 comp_bio->bi_opf = REQ_OP_READ; 602 comp_bio->bi_private = cb; 603 comp_bio->bi_end_io = end_compressed_bio_read; 604 refcount_set(&cb->pending_bios, 1); 605 606 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 607 int submit = 0; 608 609 page = cb->compressed_pages[pg_index]; 610 page->mapping = inode->i_mapping; 611 page->index = em_start >> PAGE_SHIFT; 612 613 if (comp_bio->bi_iter.bi_size) 614 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, 615 comp_bio, 0); 616 617 page->mapping = NULL; 618 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 619 PAGE_SIZE) { 620 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 621 BTRFS_WQ_ENDIO_DATA); 622 BUG_ON(ret); /* -ENOMEM */ 623 624 /* 625 * inc the count before we submit the bio so 626 * we know the end IO handler won't happen before 627 * we inc the count. Otherwise, the cb might get 628 * freed before we're done setting it up 629 */ 630 refcount_inc(&cb->pending_bios); 631 632 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 633 ret = btrfs_lookup_bio_sums(inode, comp_bio, 634 sums); 635 BUG_ON(ret); /* -ENOMEM */ 636 } 637 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 638 fs_info->sectorsize); 639 640 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 641 if (ret) { 642 comp_bio->bi_status = ret; 643 bio_endio(comp_bio); 644 } 645 646 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 647 comp_bio->bi_opf = REQ_OP_READ; 648 comp_bio->bi_private = cb; 649 comp_bio->bi_end_io = end_compressed_bio_read; 650 651 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 652 } 653 cur_disk_byte += PAGE_SIZE; 654 } 655 656 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 657 BUG_ON(ret); /* -ENOMEM */ 658 659 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 660 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 661 BUG_ON(ret); /* -ENOMEM */ 662 } 663 664 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 665 if (ret) { 666 comp_bio->bi_status = ret; 667 bio_endio(comp_bio); 668 } 669 670 return 0; 671 672 fail2: 673 while (faili >= 0) { 674 __free_page(cb->compressed_pages[faili]); 675 faili--; 676 } 677 678 kfree(cb->compressed_pages); 679 fail1: 680 kfree(cb); 681 out: 682 free_extent_map(em); 683 return ret; 684 } 685 686 /* 687 * Heuristic uses systematic sampling to collect data from the input data 688 * range, the logic can be tuned by the following constants: 689 * 690 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 691 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 692 */ 693 #define SAMPLING_READ_SIZE (16) 694 #define SAMPLING_INTERVAL (256) 695 696 /* 697 * For statistical analysis of the input data we consider bytes that form a 698 * Galois Field of 256 objects. Each object has an attribute count, ie. how 699 * many times the object appeared in the sample. 700 */ 701 #define BUCKET_SIZE (256) 702 703 /* 704 * The size of the sample is based on a statistical sampling rule of thumb. 705 * The common way is to perform sampling tests as long as the number of 706 * elements in each cell is at least 5. 707 * 708 * Instead of 5, we choose 32 to obtain more accurate results. 709 * If the data contain the maximum number of symbols, which is 256, we obtain a 710 * sample size bound by 8192. 711 * 712 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 713 * from up to 512 locations. 714 */ 715 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 716 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 717 718 struct bucket_item { 719 u32 count; 720 }; 721 722 struct heuristic_ws { 723 /* Partial copy of input data */ 724 u8 *sample; 725 u32 sample_size; 726 /* Buckets store counters for each byte value */ 727 struct bucket_item *bucket; 728 /* Sorting buffer */ 729 struct bucket_item *bucket_b; 730 struct list_head list; 731 }; 732 733 static struct workspace_manager heuristic_wsm; 734 735 static void heuristic_init_workspace_manager(void) 736 { 737 btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress); 738 } 739 740 static void heuristic_cleanup_workspace_manager(void) 741 { 742 btrfs_cleanup_workspace_manager(&heuristic_wsm); 743 } 744 745 static struct list_head *heuristic_get_workspace(unsigned int level) 746 { 747 return btrfs_get_workspace(&heuristic_wsm, level); 748 } 749 750 static void heuristic_put_workspace(struct list_head *ws) 751 { 752 btrfs_put_workspace(&heuristic_wsm, ws); 753 } 754 755 static void free_heuristic_ws(struct list_head *ws) 756 { 757 struct heuristic_ws *workspace; 758 759 workspace = list_entry(ws, struct heuristic_ws, list); 760 761 kvfree(workspace->sample); 762 kfree(workspace->bucket); 763 kfree(workspace->bucket_b); 764 kfree(workspace); 765 } 766 767 static struct list_head *alloc_heuristic_ws(unsigned int level) 768 { 769 struct heuristic_ws *ws; 770 771 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 772 if (!ws) 773 return ERR_PTR(-ENOMEM); 774 775 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 776 if (!ws->sample) 777 goto fail; 778 779 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 780 if (!ws->bucket) 781 goto fail; 782 783 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 784 if (!ws->bucket_b) 785 goto fail; 786 787 INIT_LIST_HEAD(&ws->list); 788 return &ws->list; 789 fail: 790 free_heuristic_ws(&ws->list); 791 return ERR_PTR(-ENOMEM); 792 } 793 794 const struct btrfs_compress_op btrfs_heuristic_compress = { 795 .init_workspace_manager = heuristic_init_workspace_manager, 796 .cleanup_workspace_manager = heuristic_cleanup_workspace_manager, 797 .get_workspace = heuristic_get_workspace, 798 .put_workspace = heuristic_put_workspace, 799 .alloc_workspace = alloc_heuristic_ws, 800 .free_workspace = free_heuristic_ws, 801 }; 802 803 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 804 /* The heuristic is represented as compression type 0 */ 805 &btrfs_heuristic_compress, 806 &btrfs_zlib_compress, 807 &btrfs_lzo_compress, 808 &btrfs_zstd_compress, 809 }; 810 811 void btrfs_init_workspace_manager(struct workspace_manager *wsm, 812 const struct btrfs_compress_op *ops) 813 { 814 struct list_head *workspace; 815 816 wsm->ops = ops; 817 818 INIT_LIST_HEAD(&wsm->idle_ws); 819 spin_lock_init(&wsm->ws_lock); 820 atomic_set(&wsm->total_ws, 0); 821 init_waitqueue_head(&wsm->ws_wait); 822 823 /* 824 * Preallocate one workspace for each compression type so we can 825 * guarantee forward progress in the worst case 826 */ 827 workspace = wsm->ops->alloc_workspace(0); 828 if (IS_ERR(workspace)) { 829 pr_warn( 830 "BTRFS: cannot preallocate compression workspace, will try later\n"); 831 } else { 832 atomic_set(&wsm->total_ws, 1); 833 wsm->free_ws = 1; 834 list_add(workspace, &wsm->idle_ws); 835 } 836 } 837 838 void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman) 839 { 840 struct list_head *ws; 841 842 while (!list_empty(&wsman->idle_ws)) { 843 ws = wsman->idle_ws.next; 844 list_del(ws); 845 wsman->ops->free_workspace(ws); 846 atomic_dec(&wsman->total_ws); 847 } 848 } 849 850 /* 851 * This finds an available workspace or allocates a new one. 852 * If it's not possible to allocate a new one, waits until there's one. 853 * Preallocation makes a forward progress guarantees and we do not return 854 * errors. 855 */ 856 struct list_head *btrfs_get_workspace(struct workspace_manager *wsm, 857 unsigned int level) 858 { 859 struct list_head *workspace; 860 int cpus = num_online_cpus(); 861 unsigned nofs_flag; 862 struct list_head *idle_ws; 863 spinlock_t *ws_lock; 864 atomic_t *total_ws; 865 wait_queue_head_t *ws_wait; 866 int *free_ws; 867 868 idle_ws = &wsm->idle_ws; 869 ws_lock = &wsm->ws_lock; 870 total_ws = &wsm->total_ws; 871 ws_wait = &wsm->ws_wait; 872 free_ws = &wsm->free_ws; 873 874 again: 875 spin_lock(ws_lock); 876 if (!list_empty(idle_ws)) { 877 workspace = idle_ws->next; 878 list_del(workspace); 879 (*free_ws)--; 880 spin_unlock(ws_lock); 881 return workspace; 882 883 } 884 if (atomic_read(total_ws) > cpus) { 885 DEFINE_WAIT(wait); 886 887 spin_unlock(ws_lock); 888 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 889 if (atomic_read(total_ws) > cpus && !*free_ws) 890 schedule(); 891 finish_wait(ws_wait, &wait); 892 goto again; 893 } 894 atomic_inc(total_ws); 895 spin_unlock(ws_lock); 896 897 /* 898 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 899 * to turn it off here because we might get called from the restricted 900 * context of btrfs_compress_bio/btrfs_compress_pages 901 */ 902 nofs_flag = memalloc_nofs_save(); 903 workspace = wsm->ops->alloc_workspace(level); 904 memalloc_nofs_restore(nofs_flag); 905 906 if (IS_ERR(workspace)) { 907 atomic_dec(total_ws); 908 wake_up(ws_wait); 909 910 /* 911 * Do not return the error but go back to waiting. There's a 912 * workspace preallocated for each type and the compression 913 * time is bounded so we get to a workspace eventually. This 914 * makes our caller's life easier. 915 * 916 * To prevent silent and low-probability deadlocks (when the 917 * initial preallocation fails), check if there are any 918 * workspaces at all. 919 */ 920 if (atomic_read(total_ws) == 0) { 921 static DEFINE_RATELIMIT_STATE(_rs, 922 /* once per minute */ 60 * HZ, 923 /* no burst */ 1); 924 925 if (__ratelimit(&_rs)) { 926 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 927 } 928 } 929 goto again; 930 } 931 return workspace; 932 } 933 934 static struct list_head *get_workspace(int type, int level) 935 { 936 return btrfs_compress_op[type]->get_workspace(level); 937 } 938 939 /* 940 * put a workspace struct back on the list or free it if we have enough 941 * idle ones sitting around 942 */ 943 void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws) 944 { 945 struct list_head *idle_ws; 946 spinlock_t *ws_lock; 947 atomic_t *total_ws; 948 wait_queue_head_t *ws_wait; 949 int *free_ws; 950 951 idle_ws = &wsm->idle_ws; 952 ws_lock = &wsm->ws_lock; 953 total_ws = &wsm->total_ws; 954 ws_wait = &wsm->ws_wait; 955 free_ws = &wsm->free_ws; 956 957 spin_lock(ws_lock); 958 if (*free_ws <= num_online_cpus()) { 959 list_add(ws, idle_ws); 960 (*free_ws)++; 961 spin_unlock(ws_lock); 962 goto wake; 963 } 964 spin_unlock(ws_lock); 965 966 wsm->ops->free_workspace(ws); 967 atomic_dec(total_ws); 968 wake: 969 cond_wake_up(ws_wait); 970 } 971 972 static void put_workspace(int type, struct list_head *ws) 973 { 974 return btrfs_compress_op[type]->put_workspace(ws); 975 } 976 977 /* 978 * Given an address space and start and length, compress the bytes into @pages 979 * that are allocated on demand. 980 * 981 * @type_level is encoded algorithm and level, where level 0 means whatever 982 * default the algorithm chooses and is opaque here; 983 * - compression algo are 0-3 984 * - the level are bits 4-7 985 * 986 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 987 * and returns number of actually allocated pages 988 * 989 * @total_in is used to return the number of bytes actually read. It 990 * may be smaller than the input length if we had to exit early because we 991 * ran out of room in the pages array or because we cross the 992 * max_out threshold. 993 * 994 * @total_out is an in/out parameter, must be set to the input length and will 995 * be also used to return the total number of compressed bytes 996 * 997 * @max_out tells us the max number of bytes that we're allowed to 998 * stuff into pages 999 */ 1000 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1001 u64 start, struct page **pages, 1002 unsigned long *out_pages, 1003 unsigned long *total_in, 1004 unsigned long *total_out) 1005 { 1006 int type = btrfs_compress_type(type_level); 1007 int level = btrfs_compress_level(type_level); 1008 struct list_head *workspace; 1009 int ret; 1010 1011 level = btrfs_compress_op[type]->set_level(level); 1012 workspace = get_workspace(type, level); 1013 ret = btrfs_compress_op[type]->compress_pages(workspace, mapping, 1014 start, pages, 1015 out_pages, 1016 total_in, total_out); 1017 put_workspace(type, workspace); 1018 return ret; 1019 } 1020 1021 /* 1022 * pages_in is an array of pages with compressed data. 1023 * 1024 * disk_start is the starting logical offset of this array in the file 1025 * 1026 * orig_bio contains the pages from the file that we want to decompress into 1027 * 1028 * srclen is the number of bytes in pages_in 1029 * 1030 * The basic idea is that we have a bio that was created by readpages. 1031 * The pages in the bio are for the uncompressed data, and they may not 1032 * be contiguous. They all correspond to the range of bytes covered by 1033 * the compressed extent. 1034 */ 1035 static int btrfs_decompress_bio(struct compressed_bio *cb) 1036 { 1037 struct list_head *workspace; 1038 int ret; 1039 int type = cb->compress_type; 1040 1041 workspace = get_workspace(type, 0); 1042 ret = btrfs_compress_op[type]->decompress_bio(workspace, cb); 1043 put_workspace(type, workspace); 1044 1045 return ret; 1046 } 1047 1048 /* 1049 * a less complex decompression routine. Our compressed data fits in a 1050 * single page, and we want to read a single page out of it. 1051 * start_byte tells us the offset into the compressed data we're interested in 1052 */ 1053 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1054 unsigned long start_byte, size_t srclen, size_t destlen) 1055 { 1056 struct list_head *workspace; 1057 int ret; 1058 1059 workspace = get_workspace(type, 0); 1060 ret = btrfs_compress_op[type]->decompress(workspace, data_in, 1061 dest_page, start_byte, 1062 srclen, destlen); 1063 put_workspace(type, workspace); 1064 1065 return ret; 1066 } 1067 1068 void __init btrfs_init_compress(void) 1069 { 1070 int i; 1071 1072 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++) 1073 btrfs_compress_op[i]->init_workspace_manager(); 1074 } 1075 1076 void __cold btrfs_exit_compress(void) 1077 { 1078 int i; 1079 1080 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++) 1081 btrfs_compress_op[i]->cleanup_workspace_manager(); 1082 } 1083 1084 /* 1085 * Copy uncompressed data from working buffer to pages. 1086 * 1087 * buf_start is the byte offset we're of the start of our workspace buffer. 1088 * 1089 * total_out is the last byte of the buffer 1090 */ 1091 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1092 unsigned long total_out, u64 disk_start, 1093 struct bio *bio) 1094 { 1095 unsigned long buf_offset; 1096 unsigned long current_buf_start; 1097 unsigned long start_byte; 1098 unsigned long prev_start_byte; 1099 unsigned long working_bytes = total_out - buf_start; 1100 unsigned long bytes; 1101 char *kaddr; 1102 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1103 1104 /* 1105 * start byte is the first byte of the page we're currently 1106 * copying into relative to the start of the compressed data. 1107 */ 1108 start_byte = page_offset(bvec.bv_page) - disk_start; 1109 1110 /* we haven't yet hit data corresponding to this page */ 1111 if (total_out <= start_byte) 1112 return 1; 1113 1114 /* 1115 * the start of the data we care about is offset into 1116 * the middle of our working buffer 1117 */ 1118 if (total_out > start_byte && buf_start < start_byte) { 1119 buf_offset = start_byte - buf_start; 1120 working_bytes -= buf_offset; 1121 } else { 1122 buf_offset = 0; 1123 } 1124 current_buf_start = buf_start; 1125 1126 /* copy bytes from the working buffer into the pages */ 1127 while (working_bytes > 0) { 1128 bytes = min_t(unsigned long, bvec.bv_len, 1129 PAGE_SIZE - buf_offset); 1130 bytes = min(bytes, working_bytes); 1131 1132 kaddr = kmap_atomic(bvec.bv_page); 1133 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1134 kunmap_atomic(kaddr); 1135 flush_dcache_page(bvec.bv_page); 1136 1137 buf_offset += bytes; 1138 working_bytes -= bytes; 1139 current_buf_start += bytes; 1140 1141 /* check if we need to pick another page */ 1142 bio_advance(bio, bytes); 1143 if (!bio->bi_iter.bi_size) 1144 return 0; 1145 bvec = bio_iter_iovec(bio, bio->bi_iter); 1146 prev_start_byte = start_byte; 1147 start_byte = page_offset(bvec.bv_page) - disk_start; 1148 1149 /* 1150 * We need to make sure we're only adjusting 1151 * our offset into compression working buffer when 1152 * we're switching pages. Otherwise we can incorrectly 1153 * keep copying when we were actually done. 1154 */ 1155 if (start_byte != prev_start_byte) { 1156 /* 1157 * make sure our new page is covered by this 1158 * working buffer 1159 */ 1160 if (total_out <= start_byte) 1161 return 1; 1162 1163 /* 1164 * the next page in the biovec might not be adjacent 1165 * to the last page, but it might still be found 1166 * inside this working buffer. bump our offset pointer 1167 */ 1168 if (total_out > start_byte && 1169 current_buf_start < start_byte) { 1170 buf_offset = start_byte - buf_start; 1171 working_bytes = total_out - start_byte; 1172 current_buf_start = buf_start + buf_offset; 1173 } 1174 } 1175 } 1176 1177 return 1; 1178 } 1179 1180 /* 1181 * Shannon Entropy calculation 1182 * 1183 * Pure byte distribution analysis fails to determine compressibility of data. 1184 * Try calculating entropy to estimate the average minimum number of bits 1185 * needed to encode the sampled data. 1186 * 1187 * For convenience, return the percentage of needed bits, instead of amount of 1188 * bits directly. 1189 * 1190 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1191 * and can be compressible with high probability 1192 * 1193 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1194 * 1195 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1196 */ 1197 #define ENTROPY_LVL_ACEPTABLE (65) 1198 #define ENTROPY_LVL_HIGH (80) 1199 1200 /* 1201 * For increasead precision in shannon_entropy calculation, 1202 * let's do pow(n, M) to save more digits after comma: 1203 * 1204 * - maximum int bit length is 64 1205 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1206 * - 13 * 4 = 52 < 64 -> M = 4 1207 * 1208 * So use pow(n, 4). 1209 */ 1210 static inline u32 ilog2_w(u64 n) 1211 { 1212 return ilog2(n * n * n * n); 1213 } 1214 1215 static u32 shannon_entropy(struct heuristic_ws *ws) 1216 { 1217 const u32 entropy_max = 8 * ilog2_w(2); 1218 u32 entropy_sum = 0; 1219 u32 p, p_base, sz_base; 1220 u32 i; 1221 1222 sz_base = ilog2_w(ws->sample_size); 1223 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1224 p = ws->bucket[i].count; 1225 p_base = ilog2_w(p); 1226 entropy_sum += p * (sz_base - p_base); 1227 } 1228 1229 entropy_sum /= ws->sample_size; 1230 return entropy_sum * 100 / entropy_max; 1231 } 1232 1233 #define RADIX_BASE 4U 1234 #define COUNTERS_SIZE (1U << RADIX_BASE) 1235 1236 static u8 get4bits(u64 num, int shift) { 1237 u8 low4bits; 1238 1239 num >>= shift; 1240 /* Reverse order */ 1241 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1242 return low4bits; 1243 } 1244 1245 /* 1246 * Use 4 bits as radix base 1247 * Use 16 u32 counters for calculating new position in buf array 1248 * 1249 * @array - array that will be sorted 1250 * @array_buf - buffer array to store sorting results 1251 * must be equal in size to @array 1252 * @num - array size 1253 */ 1254 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1255 int num) 1256 { 1257 u64 max_num; 1258 u64 buf_num; 1259 u32 counters[COUNTERS_SIZE]; 1260 u32 new_addr; 1261 u32 addr; 1262 int bitlen; 1263 int shift; 1264 int i; 1265 1266 /* 1267 * Try avoid useless loop iterations for small numbers stored in big 1268 * counters. Example: 48 33 4 ... in 64bit array 1269 */ 1270 max_num = array[0].count; 1271 for (i = 1; i < num; i++) { 1272 buf_num = array[i].count; 1273 if (buf_num > max_num) 1274 max_num = buf_num; 1275 } 1276 1277 buf_num = ilog2(max_num); 1278 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1279 1280 shift = 0; 1281 while (shift < bitlen) { 1282 memset(counters, 0, sizeof(counters)); 1283 1284 for (i = 0; i < num; i++) { 1285 buf_num = array[i].count; 1286 addr = get4bits(buf_num, shift); 1287 counters[addr]++; 1288 } 1289 1290 for (i = 1; i < COUNTERS_SIZE; i++) 1291 counters[i] += counters[i - 1]; 1292 1293 for (i = num - 1; i >= 0; i--) { 1294 buf_num = array[i].count; 1295 addr = get4bits(buf_num, shift); 1296 counters[addr]--; 1297 new_addr = counters[addr]; 1298 array_buf[new_addr] = array[i]; 1299 } 1300 1301 shift += RADIX_BASE; 1302 1303 /* 1304 * Normal radix expects to move data from a temporary array, to 1305 * the main one. But that requires some CPU time. Avoid that 1306 * by doing another sort iteration to original array instead of 1307 * memcpy() 1308 */ 1309 memset(counters, 0, sizeof(counters)); 1310 1311 for (i = 0; i < num; i ++) { 1312 buf_num = array_buf[i].count; 1313 addr = get4bits(buf_num, shift); 1314 counters[addr]++; 1315 } 1316 1317 for (i = 1; i < COUNTERS_SIZE; i++) 1318 counters[i] += counters[i - 1]; 1319 1320 for (i = num - 1; i >= 0; i--) { 1321 buf_num = array_buf[i].count; 1322 addr = get4bits(buf_num, shift); 1323 counters[addr]--; 1324 new_addr = counters[addr]; 1325 array[new_addr] = array_buf[i]; 1326 } 1327 1328 shift += RADIX_BASE; 1329 } 1330 } 1331 1332 /* 1333 * Size of the core byte set - how many bytes cover 90% of the sample 1334 * 1335 * There are several types of structured binary data that use nearly all byte 1336 * values. The distribution can be uniform and counts in all buckets will be 1337 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1338 * 1339 * Other possibility is normal (Gaussian) distribution, where the data could 1340 * be potentially compressible, but we have to take a few more steps to decide 1341 * how much. 1342 * 1343 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1344 * compression algo can easy fix that 1345 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1346 * probability is not compressible 1347 */ 1348 #define BYTE_CORE_SET_LOW (64) 1349 #define BYTE_CORE_SET_HIGH (200) 1350 1351 static int byte_core_set_size(struct heuristic_ws *ws) 1352 { 1353 u32 i; 1354 u32 coreset_sum = 0; 1355 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1356 struct bucket_item *bucket = ws->bucket; 1357 1358 /* Sort in reverse order */ 1359 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1360 1361 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1362 coreset_sum += bucket[i].count; 1363 1364 if (coreset_sum > core_set_threshold) 1365 return i; 1366 1367 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1368 coreset_sum += bucket[i].count; 1369 if (coreset_sum > core_set_threshold) 1370 break; 1371 } 1372 1373 return i; 1374 } 1375 1376 /* 1377 * Count byte values in buckets. 1378 * This heuristic can detect textual data (configs, xml, json, html, etc). 1379 * Because in most text-like data byte set is restricted to limited number of 1380 * possible characters, and that restriction in most cases makes data easy to 1381 * compress. 1382 * 1383 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1384 * less - compressible 1385 * more - need additional analysis 1386 */ 1387 #define BYTE_SET_THRESHOLD (64) 1388 1389 static u32 byte_set_size(const struct heuristic_ws *ws) 1390 { 1391 u32 i; 1392 u32 byte_set_size = 0; 1393 1394 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1395 if (ws->bucket[i].count > 0) 1396 byte_set_size++; 1397 } 1398 1399 /* 1400 * Continue collecting count of byte values in buckets. If the byte 1401 * set size is bigger then the threshold, it's pointless to continue, 1402 * the detection technique would fail for this type of data. 1403 */ 1404 for (; i < BUCKET_SIZE; i++) { 1405 if (ws->bucket[i].count > 0) { 1406 byte_set_size++; 1407 if (byte_set_size > BYTE_SET_THRESHOLD) 1408 return byte_set_size; 1409 } 1410 } 1411 1412 return byte_set_size; 1413 } 1414 1415 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1416 { 1417 const u32 half_of_sample = ws->sample_size / 2; 1418 const u8 *data = ws->sample; 1419 1420 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1421 } 1422 1423 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1424 struct heuristic_ws *ws) 1425 { 1426 struct page *page; 1427 u64 index, index_end; 1428 u32 i, curr_sample_pos; 1429 u8 *in_data; 1430 1431 /* 1432 * Compression handles the input data by chunks of 128KiB 1433 * (defined by BTRFS_MAX_UNCOMPRESSED) 1434 * 1435 * We do the same for the heuristic and loop over the whole range. 1436 * 1437 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1438 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1439 */ 1440 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1441 end = start + BTRFS_MAX_UNCOMPRESSED; 1442 1443 index = start >> PAGE_SHIFT; 1444 index_end = end >> PAGE_SHIFT; 1445 1446 /* Don't miss unaligned end */ 1447 if (!IS_ALIGNED(end, PAGE_SIZE)) 1448 index_end++; 1449 1450 curr_sample_pos = 0; 1451 while (index < index_end) { 1452 page = find_get_page(inode->i_mapping, index); 1453 in_data = kmap(page); 1454 /* Handle case where the start is not aligned to PAGE_SIZE */ 1455 i = start % PAGE_SIZE; 1456 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1457 /* Don't sample any garbage from the last page */ 1458 if (start > end - SAMPLING_READ_SIZE) 1459 break; 1460 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1461 SAMPLING_READ_SIZE); 1462 i += SAMPLING_INTERVAL; 1463 start += SAMPLING_INTERVAL; 1464 curr_sample_pos += SAMPLING_READ_SIZE; 1465 } 1466 kunmap(page); 1467 put_page(page); 1468 1469 index++; 1470 } 1471 1472 ws->sample_size = curr_sample_pos; 1473 } 1474 1475 /* 1476 * Compression heuristic. 1477 * 1478 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1479 * quickly (compared to direct compression) detect data characteristics 1480 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1481 * data. 1482 * 1483 * The following types of analysis can be performed: 1484 * - detect mostly zero data 1485 * - detect data with low "byte set" size (text, etc) 1486 * - detect data with low/high "core byte" set 1487 * 1488 * Return non-zero if the compression should be done, 0 otherwise. 1489 */ 1490 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1491 { 1492 struct list_head *ws_list = get_workspace(0, 0); 1493 struct heuristic_ws *ws; 1494 u32 i; 1495 u8 byte; 1496 int ret = 0; 1497 1498 ws = list_entry(ws_list, struct heuristic_ws, list); 1499 1500 heuristic_collect_sample(inode, start, end, ws); 1501 1502 if (sample_repeated_patterns(ws)) { 1503 ret = 1; 1504 goto out; 1505 } 1506 1507 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1508 1509 for (i = 0; i < ws->sample_size; i++) { 1510 byte = ws->sample[i]; 1511 ws->bucket[byte].count++; 1512 } 1513 1514 i = byte_set_size(ws); 1515 if (i < BYTE_SET_THRESHOLD) { 1516 ret = 2; 1517 goto out; 1518 } 1519 1520 i = byte_core_set_size(ws); 1521 if (i <= BYTE_CORE_SET_LOW) { 1522 ret = 3; 1523 goto out; 1524 } 1525 1526 if (i >= BYTE_CORE_SET_HIGH) { 1527 ret = 0; 1528 goto out; 1529 } 1530 1531 i = shannon_entropy(ws); 1532 if (i <= ENTROPY_LVL_ACEPTABLE) { 1533 ret = 4; 1534 goto out; 1535 } 1536 1537 /* 1538 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1539 * needed to give green light to compression. 1540 * 1541 * For now just assume that compression at that level is not worth the 1542 * resources because: 1543 * 1544 * 1. it is possible to defrag the data later 1545 * 1546 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1547 * values, every bucket has counter at level ~54. The heuristic would 1548 * be confused. This can happen when data have some internal repeated 1549 * patterns like "abbacbbc...". This can be detected by analyzing 1550 * pairs of bytes, which is too costly. 1551 */ 1552 if (i < ENTROPY_LVL_HIGH) { 1553 ret = 5; 1554 goto out; 1555 } else { 1556 ret = 0; 1557 goto out; 1558 } 1559 1560 out: 1561 put_workspace(0, ws_list); 1562 return ret; 1563 } 1564 1565 /* 1566 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1567 * level, unrecognized string will set the default level 1568 */ 1569 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1570 { 1571 unsigned int level = 0; 1572 int ret; 1573 1574 if (!type) 1575 return 0; 1576 1577 if (str[0] == ':') { 1578 ret = kstrtouint(str + 1, 10, &level); 1579 if (ret) 1580 level = 0; 1581 } 1582 1583 level = btrfs_compress_op[type]->set_level(level); 1584 1585 return level; 1586 } 1587