xref: /openbmc/linux/fs/btrfs/compression.c (revision b7d463a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <crypto/hash.h>
24 #include "misc.h"
25 #include "ctree.h"
26 #include "fs.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "btrfs_inode.h"
30 #include "bio.h"
31 #include "ordered-data.h"
32 #include "compression.h"
33 #include "extent_io.h"
34 #include "extent_map.h"
35 #include "subpage.h"
36 #include "zoned.h"
37 #include "file-item.h"
38 #include "super.h"
39 
40 struct bio_set btrfs_compressed_bioset;
41 
42 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
43 
44 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
45 {
46 	switch (type) {
47 	case BTRFS_COMPRESS_ZLIB:
48 	case BTRFS_COMPRESS_LZO:
49 	case BTRFS_COMPRESS_ZSTD:
50 	case BTRFS_COMPRESS_NONE:
51 		return btrfs_compress_types[type];
52 	default:
53 		break;
54 	}
55 
56 	return NULL;
57 }
58 
59 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
60 {
61 	return container_of(bbio, struct compressed_bio, bbio);
62 }
63 
64 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
65 						   u64 start, blk_opf_t op,
66 						   btrfs_bio_end_io_t end_io)
67 {
68 	struct btrfs_bio *bbio;
69 
70 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
71 					  GFP_NOFS, &btrfs_compressed_bioset));
72 	btrfs_bio_init(bbio, inode, end_io, NULL);
73 	bbio->file_offset = start;
74 	return to_compressed_bio(bbio);
75 }
76 
77 bool btrfs_compress_is_valid_type(const char *str, size_t len)
78 {
79 	int i;
80 
81 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
82 		size_t comp_len = strlen(btrfs_compress_types[i]);
83 
84 		if (len < comp_len)
85 			continue;
86 
87 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
88 			return true;
89 	}
90 	return false;
91 }
92 
93 static int compression_compress_pages(int type, struct list_head *ws,
94                struct address_space *mapping, u64 start, struct page **pages,
95                unsigned long *out_pages, unsigned long *total_in,
96                unsigned long *total_out)
97 {
98 	switch (type) {
99 	case BTRFS_COMPRESS_ZLIB:
100 		return zlib_compress_pages(ws, mapping, start, pages,
101 				out_pages, total_in, total_out);
102 	case BTRFS_COMPRESS_LZO:
103 		return lzo_compress_pages(ws, mapping, start, pages,
104 				out_pages, total_in, total_out);
105 	case BTRFS_COMPRESS_ZSTD:
106 		return zstd_compress_pages(ws, mapping, start, pages,
107 				out_pages, total_in, total_out);
108 	case BTRFS_COMPRESS_NONE:
109 	default:
110 		/*
111 		 * This can happen when compression races with remount setting
112 		 * it to 'no compress', while caller doesn't call
113 		 * inode_need_compress() to check if we really need to
114 		 * compress.
115 		 *
116 		 * Not a big deal, just need to inform caller that we
117 		 * haven't allocated any pages yet.
118 		 */
119 		*out_pages = 0;
120 		return -E2BIG;
121 	}
122 }
123 
124 static int compression_decompress_bio(struct list_head *ws,
125 				      struct compressed_bio *cb)
126 {
127 	switch (cb->compress_type) {
128 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
129 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
130 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
131 	case BTRFS_COMPRESS_NONE:
132 	default:
133 		/*
134 		 * This can't happen, the type is validated several times
135 		 * before we get here.
136 		 */
137 		BUG();
138 	}
139 }
140 
141 static int compression_decompress(int type, struct list_head *ws,
142                const u8 *data_in, struct page *dest_page,
143                unsigned long start_byte, size_t srclen, size_t destlen)
144 {
145 	switch (type) {
146 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
147 						start_byte, srclen, destlen);
148 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
149 						start_byte, srclen, destlen);
150 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
151 						start_byte, srclen, destlen);
152 	case BTRFS_COMPRESS_NONE:
153 	default:
154 		/*
155 		 * This can't happen, the type is validated several times
156 		 * before we get here.
157 		 */
158 		BUG();
159 	}
160 }
161 
162 static void btrfs_free_compressed_pages(struct compressed_bio *cb)
163 {
164 	for (unsigned int i = 0; i < cb->nr_pages; i++)
165 		put_page(cb->compressed_pages[i]);
166 	kfree(cb->compressed_pages);
167 }
168 
169 static int btrfs_decompress_bio(struct compressed_bio *cb);
170 
171 static void end_compressed_bio_read(struct btrfs_bio *bbio)
172 {
173 	struct compressed_bio *cb = to_compressed_bio(bbio);
174 	blk_status_t status = bbio->bio.bi_status;
175 
176 	if (!status)
177 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
178 
179 	btrfs_free_compressed_pages(cb);
180 	btrfs_bio_end_io(cb->orig_bbio, status);
181 	bio_put(&bbio->bio);
182 }
183 
184 /*
185  * Clear the writeback bits on all of the file
186  * pages for a compressed write
187  */
188 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
189 {
190 	struct inode *inode = &cb->bbio.inode->vfs_inode;
191 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
192 	unsigned long index = cb->start >> PAGE_SHIFT;
193 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
194 	struct folio_batch fbatch;
195 	const int errno = blk_status_to_errno(cb->bbio.bio.bi_status);
196 	int i;
197 	int ret;
198 
199 	if (errno)
200 		mapping_set_error(inode->i_mapping, errno);
201 
202 	folio_batch_init(&fbatch);
203 	while (index <= end_index) {
204 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
205 				&fbatch);
206 
207 		if (ret == 0)
208 			return;
209 
210 		for (i = 0; i < ret; i++) {
211 			struct folio *folio = fbatch.folios[i];
212 
213 			if (errno)
214 				folio_set_error(folio);
215 			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
216 							 cb->start, cb->len);
217 		}
218 		folio_batch_release(&fbatch);
219 	}
220 	/* the inode may be gone now */
221 }
222 
223 static void btrfs_finish_compressed_write_work(struct work_struct *work)
224 {
225 	struct compressed_bio *cb =
226 		container_of(work, struct compressed_bio, write_end_work);
227 
228 	/*
229 	 * Ok, we're the last bio for this extent, step one is to call back
230 	 * into the FS and do all the end_io operations.
231 	 */
232 	btrfs_writepage_endio_finish_ordered(cb->bbio.inode, NULL,
233 			cb->start, cb->start + cb->len - 1,
234 			cb->bbio.bio.bi_status == BLK_STS_OK);
235 
236 	if (cb->writeback)
237 		end_compressed_writeback(cb);
238 	/* Note, our inode could be gone now */
239 
240 	btrfs_free_compressed_pages(cb);
241 	bio_put(&cb->bbio.bio);
242 }
243 
244 /*
245  * Do the cleanup once all the compressed pages hit the disk.  This will clear
246  * writeback on the file pages and free the compressed pages.
247  *
248  * This also calls the writeback end hooks for the file pages so that metadata
249  * and checksums can be updated in the file.
250  */
251 static void end_compressed_bio_write(struct btrfs_bio *bbio)
252 {
253 	struct compressed_bio *cb = to_compressed_bio(bbio);
254 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
255 
256 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
257 }
258 
259 static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb,
260 					   u64 disk_bytenr)
261 {
262 	struct btrfs_fs_info *fs_info = cb->bbio.inode->root->fs_info;
263 	struct bio *bio = &cb->bbio.bio;
264 	u64 cur_disk_byte = disk_bytenr;
265 
266 	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
267 	while (cur_disk_byte < disk_bytenr + cb->compressed_len) {
268 		u64 offset = cur_disk_byte - disk_bytenr;
269 		unsigned int index = offset >> PAGE_SHIFT;
270 		unsigned int real_size;
271 		unsigned int added;
272 		struct page *page = cb->compressed_pages[index];
273 
274 		/*
275 		 * We have various limit on the real read size:
276 		 * - page boundary
277 		 * - compressed length boundary
278 		 */
279 		real_size = min_t(u64, U32_MAX, PAGE_SIZE - offset_in_page(offset));
280 		real_size = min_t(u64, real_size, cb->compressed_len - offset);
281 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
282 
283 		added = bio_add_page(bio, page, real_size, offset_in_page(offset));
284 		/*
285 		 * Maximum compressed extent is smaller than bio size limit,
286 		 * thus bio_add_page() should always success.
287 		 */
288 		ASSERT(added == real_size);
289 		cur_disk_byte += added;
290 	}
291 
292 	ASSERT(bio->bi_iter.bi_size);
293 }
294 
295 /*
296  * worker function to build and submit bios for previously compressed pages.
297  * The corresponding pages in the inode should be marked for writeback
298  * and the compressed pages should have a reference on them for dropping
299  * when the IO is complete.
300  *
301  * This also checksums the file bytes and gets things ready for
302  * the end io hooks.
303  */
304 void btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
305 				 unsigned int len, u64 disk_start,
306 				 unsigned int compressed_len,
307 				 struct page **compressed_pages,
308 				 unsigned int nr_pages,
309 				 blk_opf_t write_flags,
310 				 struct cgroup_subsys_state *blkcg_css,
311 				 bool writeback)
312 {
313 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
314 	struct compressed_bio *cb;
315 
316 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
317 	       IS_ALIGNED(len, fs_info->sectorsize));
318 
319 	if (blkcg_css) {
320 		kthread_associate_blkcg(blkcg_css);
321 		write_flags |= REQ_CGROUP_PUNT;
322 	}
323 	write_flags |= REQ_BTRFS_ONE_ORDERED;
324 
325 	cb = alloc_compressed_bio(inode, start, REQ_OP_WRITE | write_flags,
326 				  end_compressed_bio_write);
327 	cb->start = start;
328 	cb->len = len;
329 	cb->compressed_pages = compressed_pages;
330 	cb->compressed_len = compressed_len;
331 	cb->writeback = writeback;
332 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
333 	cb->nr_pages = nr_pages;
334 
335 	btrfs_add_compressed_bio_pages(cb, disk_start);
336 	btrfs_submit_bio(&cb->bbio, 0);
337 
338 	if (blkcg_css)
339 		kthread_associate_blkcg(NULL);
340 }
341 
342 /*
343  * Add extra pages in the same compressed file extent so that we don't need to
344  * re-read the same extent again and again.
345  *
346  * NOTE: this won't work well for subpage, as for subpage read, we lock the
347  * full page then submit bio for each compressed/regular extents.
348  *
349  * This means, if we have several sectors in the same page points to the same
350  * on-disk compressed data, we will re-read the same extent many times and
351  * this function can only help for the next page.
352  */
353 static noinline int add_ra_bio_pages(struct inode *inode,
354 				     u64 compressed_end,
355 				     struct compressed_bio *cb,
356 				     int *memstall, unsigned long *pflags)
357 {
358 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
359 	unsigned long end_index;
360 	struct bio *orig_bio = &cb->orig_bbio->bio;
361 	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
362 	u64 isize = i_size_read(inode);
363 	int ret;
364 	struct page *page;
365 	struct extent_map *em;
366 	struct address_space *mapping = inode->i_mapping;
367 	struct extent_map_tree *em_tree;
368 	struct extent_io_tree *tree;
369 	int sectors_missed = 0;
370 
371 	em_tree = &BTRFS_I(inode)->extent_tree;
372 	tree = &BTRFS_I(inode)->io_tree;
373 
374 	if (isize == 0)
375 		return 0;
376 
377 	/*
378 	 * For current subpage support, we only support 64K page size,
379 	 * which means maximum compressed extent size (128K) is just 2x page
380 	 * size.
381 	 * This makes readahead less effective, so here disable readahead for
382 	 * subpage for now, until full compressed write is supported.
383 	 */
384 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
385 		return 0;
386 
387 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
388 
389 	while (cur < compressed_end) {
390 		u64 page_end;
391 		u64 pg_index = cur >> PAGE_SHIFT;
392 		u32 add_size;
393 
394 		if (pg_index > end_index)
395 			break;
396 
397 		page = xa_load(&mapping->i_pages, pg_index);
398 		if (page && !xa_is_value(page)) {
399 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
400 					  fs_info->sectorsize_bits;
401 
402 			/* Beyond threshold, no need to continue */
403 			if (sectors_missed > 4)
404 				break;
405 
406 			/*
407 			 * Jump to next page start as we already have page for
408 			 * current offset.
409 			 */
410 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
411 			continue;
412 		}
413 
414 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
415 								 ~__GFP_FS));
416 		if (!page)
417 			break;
418 
419 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
420 			put_page(page);
421 			/* There is already a page, skip to page end */
422 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
423 			continue;
424 		}
425 
426 		if (!*memstall && PageWorkingset(page)) {
427 			psi_memstall_enter(pflags);
428 			*memstall = 1;
429 		}
430 
431 		ret = set_page_extent_mapped(page);
432 		if (ret < 0) {
433 			unlock_page(page);
434 			put_page(page);
435 			break;
436 		}
437 
438 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
439 		lock_extent(tree, cur, page_end, NULL);
440 		read_lock(&em_tree->lock);
441 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
442 		read_unlock(&em_tree->lock);
443 
444 		/*
445 		 * At this point, we have a locked page in the page cache for
446 		 * these bytes in the file.  But, we have to make sure they map
447 		 * to this compressed extent on disk.
448 		 */
449 		if (!em || cur < em->start ||
450 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
451 		    (em->block_start >> 9) != orig_bio->bi_iter.bi_sector) {
452 			free_extent_map(em);
453 			unlock_extent(tree, cur, page_end, NULL);
454 			unlock_page(page);
455 			put_page(page);
456 			break;
457 		}
458 		free_extent_map(em);
459 
460 		if (page->index == end_index) {
461 			size_t zero_offset = offset_in_page(isize);
462 
463 			if (zero_offset) {
464 				int zeros;
465 				zeros = PAGE_SIZE - zero_offset;
466 				memzero_page(page, zero_offset, zeros);
467 			}
468 		}
469 
470 		add_size = min(em->start + em->len, page_end + 1) - cur;
471 		ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur));
472 		if (ret != add_size) {
473 			unlock_extent(tree, cur, page_end, NULL);
474 			unlock_page(page);
475 			put_page(page);
476 			break;
477 		}
478 		/*
479 		 * If it's subpage, we also need to increase its
480 		 * subpage::readers number, as at endio we will decrease
481 		 * subpage::readers and to unlock the page.
482 		 */
483 		if (fs_info->sectorsize < PAGE_SIZE)
484 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
485 		put_page(page);
486 		cur += add_size;
487 	}
488 	return 0;
489 }
490 
491 /*
492  * for a compressed read, the bio we get passed has all the inode pages
493  * in it.  We don't actually do IO on those pages but allocate new ones
494  * to hold the compressed pages on disk.
495  *
496  * bio->bi_iter.bi_sector points to the compressed extent on disk
497  * bio->bi_io_vec points to all of the inode pages
498  *
499  * After the compressed pages are read, we copy the bytes into the
500  * bio we were passed and then call the bio end_io calls
501  */
502 void btrfs_submit_compressed_read(struct btrfs_bio *bbio, int mirror_num)
503 {
504 	struct btrfs_inode *inode = bbio->inode;
505 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
506 	struct extent_map_tree *em_tree = &inode->extent_tree;
507 	struct compressed_bio *cb;
508 	unsigned int compressed_len;
509 	const u64 disk_bytenr = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
510 	u64 file_offset = bbio->file_offset;
511 	u64 em_len;
512 	u64 em_start;
513 	struct extent_map *em;
514 	unsigned long pflags;
515 	int memstall = 0;
516 	blk_status_t ret;
517 	int ret2;
518 
519 	/* we need the actual starting offset of this extent in the file */
520 	read_lock(&em_tree->lock);
521 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
522 	read_unlock(&em_tree->lock);
523 	if (!em) {
524 		ret = BLK_STS_IOERR;
525 		goto out;
526 	}
527 
528 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
529 	compressed_len = em->block_len;
530 
531 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
532 				  end_compressed_bio_read);
533 
534 	cb->start = em->orig_start;
535 	em_len = em->len;
536 	em_start = em->start;
537 
538 	cb->len = bbio->bio.bi_iter.bi_size;
539 	cb->compressed_len = compressed_len;
540 	cb->compress_type = em->compress_type;
541 	cb->orig_bbio = bbio;
542 
543 	free_extent_map(em);
544 
545 	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
546 	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
547 	if (!cb->compressed_pages) {
548 		ret = BLK_STS_RESOURCE;
549 		goto out_free_bio;
550 	}
551 
552 	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
553 	if (ret2) {
554 		ret = BLK_STS_RESOURCE;
555 		goto out_free_compressed_pages;
556 	}
557 
558 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
559 			 &pflags);
560 
561 	/* include any pages we added in add_ra-bio_pages */
562 	cb->len = bbio->bio.bi_iter.bi_size;
563 
564 	btrfs_add_compressed_bio_pages(cb, disk_bytenr);
565 
566 	if (memstall)
567 		psi_memstall_leave(&pflags);
568 
569 	btrfs_submit_bio(&cb->bbio, mirror_num);
570 	return;
571 
572 out_free_compressed_pages:
573 	kfree(cb->compressed_pages);
574 out_free_bio:
575 	bio_put(&cb->bbio.bio);
576 out:
577 	btrfs_bio_end_io(bbio, ret);
578 }
579 
580 /*
581  * Heuristic uses systematic sampling to collect data from the input data
582  * range, the logic can be tuned by the following constants:
583  *
584  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
585  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
586  */
587 #define SAMPLING_READ_SIZE	(16)
588 #define SAMPLING_INTERVAL	(256)
589 
590 /*
591  * For statistical analysis of the input data we consider bytes that form a
592  * Galois Field of 256 objects. Each object has an attribute count, ie. how
593  * many times the object appeared in the sample.
594  */
595 #define BUCKET_SIZE		(256)
596 
597 /*
598  * The size of the sample is based on a statistical sampling rule of thumb.
599  * The common way is to perform sampling tests as long as the number of
600  * elements in each cell is at least 5.
601  *
602  * Instead of 5, we choose 32 to obtain more accurate results.
603  * If the data contain the maximum number of symbols, which is 256, we obtain a
604  * sample size bound by 8192.
605  *
606  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
607  * from up to 512 locations.
608  */
609 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
610 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
611 
612 struct bucket_item {
613 	u32 count;
614 };
615 
616 struct heuristic_ws {
617 	/* Partial copy of input data */
618 	u8 *sample;
619 	u32 sample_size;
620 	/* Buckets store counters for each byte value */
621 	struct bucket_item *bucket;
622 	/* Sorting buffer */
623 	struct bucket_item *bucket_b;
624 	struct list_head list;
625 };
626 
627 static struct workspace_manager heuristic_wsm;
628 
629 static void free_heuristic_ws(struct list_head *ws)
630 {
631 	struct heuristic_ws *workspace;
632 
633 	workspace = list_entry(ws, struct heuristic_ws, list);
634 
635 	kvfree(workspace->sample);
636 	kfree(workspace->bucket);
637 	kfree(workspace->bucket_b);
638 	kfree(workspace);
639 }
640 
641 static struct list_head *alloc_heuristic_ws(unsigned int level)
642 {
643 	struct heuristic_ws *ws;
644 
645 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
646 	if (!ws)
647 		return ERR_PTR(-ENOMEM);
648 
649 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
650 	if (!ws->sample)
651 		goto fail;
652 
653 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
654 	if (!ws->bucket)
655 		goto fail;
656 
657 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
658 	if (!ws->bucket_b)
659 		goto fail;
660 
661 	INIT_LIST_HEAD(&ws->list);
662 	return &ws->list;
663 fail:
664 	free_heuristic_ws(&ws->list);
665 	return ERR_PTR(-ENOMEM);
666 }
667 
668 const struct btrfs_compress_op btrfs_heuristic_compress = {
669 	.workspace_manager = &heuristic_wsm,
670 };
671 
672 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
673 	/* The heuristic is represented as compression type 0 */
674 	&btrfs_heuristic_compress,
675 	&btrfs_zlib_compress,
676 	&btrfs_lzo_compress,
677 	&btrfs_zstd_compress,
678 };
679 
680 static struct list_head *alloc_workspace(int type, unsigned int level)
681 {
682 	switch (type) {
683 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
684 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
685 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
686 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
687 	default:
688 		/*
689 		 * This can't happen, the type is validated several times
690 		 * before we get here.
691 		 */
692 		BUG();
693 	}
694 }
695 
696 static void free_workspace(int type, struct list_head *ws)
697 {
698 	switch (type) {
699 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
700 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
701 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
702 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
703 	default:
704 		/*
705 		 * This can't happen, the type is validated several times
706 		 * before we get here.
707 		 */
708 		BUG();
709 	}
710 }
711 
712 static void btrfs_init_workspace_manager(int type)
713 {
714 	struct workspace_manager *wsm;
715 	struct list_head *workspace;
716 
717 	wsm = btrfs_compress_op[type]->workspace_manager;
718 	INIT_LIST_HEAD(&wsm->idle_ws);
719 	spin_lock_init(&wsm->ws_lock);
720 	atomic_set(&wsm->total_ws, 0);
721 	init_waitqueue_head(&wsm->ws_wait);
722 
723 	/*
724 	 * Preallocate one workspace for each compression type so we can
725 	 * guarantee forward progress in the worst case
726 	 */
727 	workspace = alloc_workspace(type, 0);
728 	if (IS_ERR(workspace)) {
729 		pr_warn(
730 	"BTRFS: cannot preallocate compression workspace, will try later\n");
731 	} else {
732 		atomic_set(&wsm->total_ws, 1);
733 		wsm->free_ws = 1;
734 		list_add(workspace, &wsm->idle_ws);
735 	}
736 }
737 
738 static void btrfs_cleanup_workspace_manager(int type)
739 {
740 	struct workspace_manager *wsman;
741 	struct list_head *ws;
742 
743 	wsman = btrfs_compress_op[type]->workspace_manager;
744 	while (!list_empty(&wsman->idle_ws)) {
745 		ws = wsman->idle_ws.next;
746 		list_del(ws);
747 		free_workspace(type, ws);
748 		atomic_dec(&wsman->total_ws);
749 	}
750 }
751 
752 /*
753  * This finds an available workspace or allocates a new one.
754  * If it's not possible to allocate a new one, waits until there's one.
755  * Preallocation makes a forward progress guarantees and we do not return
756  * errors.
757  */
758 struct list_head *btrfs_get_workspace(int type, unsigned int level)
759 {
760 	struct workspace_manager *wsm;
761 	struct list_head *workspace;
762 	int cpus = num_online_cpus();
763 	unsigned nofs_flag;
764 	struct list_head *idle_ws;
765 	spinlock_t *ws_lock;
766 	atomic_t *total_ws;
767 	wait_queue_head_t *ws_wait;
768 	int *free_ws;
769 
770 	wsm = btrfs_compress_op[type]->workspace_manager;
771 	idle_ws	 = &wsm->idle_ws;
772 	ws_lock	 = &wsm->ws_lock;
773 	total_ws = &wsm->total_ws;
774 	ws_wait	 = &wsm->ws_wait;
775 	free_ws	 = &wsm->free_ws;
776 
777 again:
778 	spin_lock(ws_lock);
779 	if (!list_empty(idle_ws)) {
780 		workspace = idle_ws->next;
781 		list_del(workspace);
782 		(*free_ws)--;
783 		spin_unlock(ws_lock);
784 		return workspace;
785 
786 	}
787 	if (atomic_read(total_ws) > cpus) {
788 		DEFINE_WAIT(wait);
789 
790 		spin_unlock(ws_lock);
791 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
792 		if (atomic_read(total_ws) > cpus && !*free_ws)
793 			schedule();
794 		finish_wait(ws_wait, &wait);
795 		goto again;
796 	}
797 	atomic_inc(total_ws);
798 	spin_unlock(ws_lock);
799 
800 	/*
801 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
802 	 * to turn it off here because we might get called from the restricted
803 	 * context of btrfs_compress_bio/btrfs_compress_pages
804 	 */
805 	nofs_flag = memalloc_nofs_save();
806 	workspace = alloc_workspace(type, level);
807 	memalloc_nofs_restore(nofs_flag);
808 
809 	if (IS_ERR(workspace)) {
810 		atomic_dec(total_ws);
811 		wake_up(ws_wait);
812 
813 		/*
814 		 * Do not return the error but go back to waiting. There's a
815 		 * workspace preallocated for each type and the compression
816 		 * time is bounded so we get to a workspace eventually. This
817 		 * makes our caller's life easier.
818 		 *
819 		 * To prevent silent and low-probability deadlocks (when the
820 		 * initial preallocation fails), check if there are any
821 		 * workspaces at all.
822 		 */
823 		if (atomic_read(total_ws) == 0) {
824 			static DEFINE_RATELIMIT_STATE(_rs,
825 					/* once per minute */ 60 * HZ,
826 					/* no burst */ 1);
827 
828 			if (__ratelimit(&_rs)) {
829 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
830 			}
831 		}
832 		goto again;
833 	}
834 	return workspace;
835 }
836 
837 static struct list_head *get_workspace(int type, int level)
838 {
839 	switch (type) {
840 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
841 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
842 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
843 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
844 	default:
845 		/*
846 		 * This can't happen, the type is validated several times
847 		 * before we get here.
848 		 */
849 		BUG();
850 	}
851 }
852 
853 /*
854  * put a workspace struct back on the list or free it if we have enough
855  * idle ones sitting around
856  */
857 void btrfs_put_workspace(int type, struct list_head *ws)
858 {
859 	struct workspace_manager *wsm;
860 	struct list_head *idle_ws;
861 	spinlock_t *ws_lock;
862 	atomic_t *total_ws;
863 	wait_queue_head_t *ws_wait;
864 	int *free_ws;
865 
866 	wsm = btrfs_compress_op[type]->workspace_manager;
867 	idle_ws	 = &wsm->idle_ws;
868 	ws_lock	 = &wsm->ws_lock;
869 	total_ws = &wsm->total_ws;
870 	ws_wait	 = &wsm->ws_wait;
871 	free_ws	 = &wsm->free_ws;
872 
873 	spin_lock(ws_lock);
874 	if (*free_ws <= num_online_cpus()) {
875 		list_add(ws, idle_ws);
876 		(*free_ws)++;
877 		spin_unlock(ws_lock);
878 		goto wake;
879 	}
880 	spin_unlock(ws_lock);
881 
882 	free_workspace(type, ws);
883 	atomic_dec(total_ws);
884 wake:
885 	cond_wake_up(ws_wait);
886 }
887 
888 static void put_workspace(int type, struct list_head *ws)
889 {
890 	switch (type) {
891 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
892 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
893 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
894 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
895 	default:
896 		/*
897 		 * This can't happen, the type is validated several times
898 		 * before we get here.
899 		 */
900 		BUG();
901 	}
902 }
903 
904 /*
905  * Adjust @level according to the limits of the compression algorithm or
906  * fallback to default
907  */
908 static unsigned int btrfs_compress_set_level(int type, unsigned level)
909 {
910 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
911 
912 	if (level == 0)
913 		level = ops->default_level;
914 	else
915 		level = min(level, ops->max_level);
916 
917 	return level;
918 }
919 
920 /*
921  * Given an address space and start and length, compress the bytes into @pages
922  * that are allocated on demand.
923  *
924  * @type_level is encoded algorithm and level, where level 0 means whatever
925  * default the algorithm chooses and is opaque here;
926  * - compression algo are 0-3
927  * - the level are bits 4-7
928  *
929  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
930  * and returns number of actually allocated pages
931  *
932  * @total_in is used to return the number of bytes actually read.  It
933  * may be smaller than the input length if we had to exit early because we
934  * ran out of room in the pages array or because we cross the
935  * max_out threshold.
936  *
937  * @total_out is an in/out parameter, must be set to the input length and will
938  * be also used to return the total number of compressed bytes
939  */
940 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
941 			 u64 start, struct page **pages,
942 			 unsigned long *out_pages,
943 			 unsigned long *total_in,
944 			 unsigned long *total_out)
945 {
946 	int type = btrfs_compress_type(type_level);
947 	int level = btrfs_compress_level(type_level);
948 	struct list_head *workspace;
949 	int ret;
950 
951 	level = btrfs_compress_set_level(type, level);
952 	workspace = get_workspace(type, level);
953 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
954 					 out_pages, total_in, total_out);
955 	put_workspace(type, workspace);
956 	return ret;
957 }
958 
959 static int btrfs_decompress_bio(struct compressed_bio *cb)
960 {
961 	struct list_head *workspace;
962 	int ret;
963 	int type = cb->compress_type;
964 
965 	workspace = get_workspace(type, 0);
966 	ret = compression_decompress_bio(workspace, cb);
967 	put_workspace(type, workspace);
968 
969 	if (!ret)
970 		zero_fill_bio(&cb->orig_bbio->bio);
971 	return ret;
972 }
973 
974 /*
975  * a less complex decompression routine.  Our compressed data fits in a
976  * single page, and we want to read a single page out of it.
977  * start_byte tells us the offset into the compressed data we're interested in
978  */
979 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
980 		     unsigned long start_byte, size_t srclen, size_t destlen)
981 {
982 	struct list_head *workspace;
983 	int ret;
984 
985 	workspace = get_workspace(type, 0);
986 	ret = compression_decompress(type, workspace, data_in, dest_page,
987 				     start_byte, srclen, destlen);
988 	put_workspace(type, workspace);
989 
990 	return ret;
991 }
992 
993 int __init btrfs_init_compress(void)
994 {
995 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
996 			offsetof(struct compressed_bio, bbio.bio),
997 			BIOSET_NEED_BVECS))
998 		return -ENOMEM;
999 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1000 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1001 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1002 	zstd_init_workspace_manager();
1003 	return 0;
1004 }
1005 
1006 void __cold btrfs_exit_compress(void)
1007 {
1008 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1009 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1010 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1011 	zstd_cleanup_workspace_manager();
1012 	bioset_exit(&btrfs_compressed_bioset);
1013 }
1014 
1015 /*
1016  * Copy decompressed data from working buffer to pages.
1017  *
1018  * @buf:		The decompressed data buffer
1019  * @buf_len:		The decompressed data length
1020  * @decompressed:	Number of bytes that are already decompressed inside the
1021  * 			compressed extent
1022  * @cb:			The compressed extent descriptor
1023  * @orig_bio:		The original bio that the caller wants to read for
1024  *
1025  * An easier to understand graph is like below:
1026  *
1027  * 		|<- orig_bio ->|     |<- orig_bio->|
1028  * 	|<-------      full decompressed extent      ----->|
1029  * 	|<-----------    @cb range   ---->|
1030  * 	|			|<-- @buf_len -->|
1031  * 	|<--- @decompressed --->|
1032  *
1033  * Note that, @cb can be a subpage of the full decompressed extent, but
1034  * @cb->start always has the same as the orig_file_offset value of the full
1035  * decompressed extent.
1036  *
1037  * When reading compressed extent, we have to read the full compressed extent,
1038  * while @orig_bio may only want part of the range.
1039  * Thus this function will ensure only data covered by @orig_bio will be copied
1040  * to.
1041  *
1042  * Return 0 if we have copied all needed contents for @orig_bio.
1043  * Return >0 if we need continue decompress.
1044  */
1045 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1046 			      struct compressed_bio *cb, u32 decompressed)
1047 {
1048 	struct bio *orig_bio = &cb->orig_bbio->bio;
1049 	/* Offset inside the full decompressed extent */
1050 	u32 cur_offset;
1051 
1052 	cur_offset = decompressed;
1053 	/* The main loop to do the copy */
1054 	while (cur_offset < decompressed + buf_len) {
1055 		struct bio_vec bvec;
1056 		size_t copy_len;
1057 		u32 copy_start;
1058 		/* Offset inside the full decompressed extent */
1059 		u32 bvec_offset;
1060 
1061 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1062 		/*
1063 		 * cb->start may underflow, but subtracting that value can still
1064 		 * give us correct offset inside the full decompressed extent.
1065 		 */
1066 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1067 
1068 		/* Haven't reached the bvec range, exit */
1069 		if (decompressed + buf_len <= bvec_offset)
1070 			return 1;
1071 
1072 		copy_start = max(cur_offset, bvec_offset);
1073 		copy_len = min(bvec_offset + bvec.bv_len,
1074 			       decompressed + buf_len) - copy_start;
1075 		ASSERT(copy_len);
1076 
1077 		/*
1078 		 * Extra range check to ensure we didn't go beyond
1079 		 * @buf + @buf_len.
1080 		 */
1081 		ASSERT(copy_start - decompressed < buf_len);
1082 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1083 			       buf + copy_start - decompressed, copy_len);
1084 		cur_offset += copy_len;
1085 
1086 		bio_advance(orig_bio, copy_len);
1087 		/* Finished the bio */
1088 		if (!orig_bio->bi_iter.bi_size)
1089 			return 0;
1090 	}
1091 	return 1;
1092 }
1093 
1094 /*
1095  * Shannon Entropy calculation
1096  *
1097  * Pure byte distribution analysis fails to determine compressibility of data.
1098  * Try calculating entropy to estimate the average minimum number of bits
1099  * needed to encode the sampled data.
1100  *
1101  * For convenience, return the percentage of needed bits, instead of amount of
1102  * bits directly.
1103  *
1104  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1105  *			    and can be compressible with high probability
1106  *
1107  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1108  *
1109  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1110  */
1111 #define ENTROPY_LVL_ACEPTABLE		(65)
1112 #define ENTROPY_LVL_HIGH		(80)
1113 
1114 /*
1115  * For increasead precision in shannon_entropy calculation,
1116  * let's do pow(n, M) to save more digits after comma:
1117  *
1118  * - maximum int bit length is 64
1119  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1120  * - 13 * 4 = 52 < 64		-> M = 4
1121  *
1122  * So use pow(n, 4).
1123  */
1124 static inline u32 ilog2_w(u64 n)
1125 {
1126 	return ilog2(n * n * n * n);
1127 }
1128 
1129 static u32 shannon_entropy(struct heuristic_ws *ws)
1130 {
1131 	const u32 entropy_max = 8 * ilog2_w(2);
1132 	u32 entropy_sum = 0;
1133 	u32 p, p_base, sz_base;
1134 	u32 i;
1135 
1136 	sz_base = ilog2_w(ws->sample_size);
1137 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1138 		p = ws->bucket[i].count;
1139 		p_base = ilog2_w(p);
1140 		entropy_sum += p * (sz_base - p_base);
1141 	}
1142 
1143 	entropy_sum /= ws->sample_size;
1144 	return entropy_sum * 100 / entropy_max;
1145 }
1146 
1147 #define RADIX_BASE		4U
1148 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1149 
1150 static u8 get4bits(u64 num, int shift) {
1151 	u8 low4bits;
1152 
1153 	num >>= shift;
1154 	/* Reverse order */
1155 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1156 	return low4bits;
1157 }
1158 
1159 /*
1160  * Use 4 bits as radix base
1161  * Use 16 u32 counters for calculating new position in buf array
1162  *
1163  * @array     - array that will be sorted
1164  * @array_buf - buffer array to store sorting results
1165  *              must be equal in size to @array
1166  * @num       - array size
1167  */
1168 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1169 		       int num)
1170 {
1171 	u64 max_num;
1172 	u64 buf_num;
1173 	u32 counters[COUNTERS_SIZE];
1174 	u32 new_addr;
1175 	u32 addr;
1176 	int bitlen;
1177 	int shift;
1178 	int i;
1179 
1180 	/*
1181 	 * Try avoid useless loop iterations for small numbers stored in big
1182 	 * counters.  Example: 48 33 4 ... in 64bit array
1183 	 */
1184 	max_num = array[0].count;
1185 	for (i = 1; i < num; i++) {
1186 		buf_num = array[i].count;
1187 		if (buf_num > max_num)
1188 			max_num = buf_num;
1189 	}
1190 
1191 	buf_num = ilog2(max_num);
1192 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1193 
1194 	shift = 0;
1195 	while (shift < bitlen) {
1196 		memset(counters, 0, sizeof(counters));
1197 
1198 		for (i = 0; i < num; i++) {
1199 			buf_num = array[i].count;
1200 			addr = get4bits(buf_num, shift);
1201 			counters[addr]++;
1202 		}
1203 
1204 		for (i = 1; i < COUNTERS_SIZE; i++)
1205 			counters[i] += counters[i - 1];
1206 
1207 		for (i = num - 1; i >= 0; i--) {
1208 			buf_num = array[i].count;
1209 			addr = get4bits(buf_num, shift);
1210 			counters[addr]--;
1211 			new_addr = counters[addr];
1212 			array_buf[new_addr] = array[i];
1213 		}
1214 
1215 		shift += RADIX_BASE;
1216 
1217 		/*
1218 		 * Normal radix expects to move data from a temporary array, to
1219 		 * the main one.  But that requires some CPU time. Avoid that
1220 		 * by doing another sort iteration to original array instead of
1221 		 * memcpy()
1222 		 */
1223 		memset(counters, 0, sizeof(counters));
1224 
1225 		for (i = 0; i < num; i ++) {
1226 			buf_num = array_buf[i].count;
1227 			addr = get4bits(buf_num, shift);
1228 			counters[addr]++;
1229 		}
1230 
1231 		for (i = 1; i < COUNTERS_SIZE; i++)
1232 			counters[i] += counters[i - 1];
1233 
1234 		for (i = num - 1; i >= 0; i--) {
1235 			buf_num = array_buf[i].count;
1236 			addr = get4bits(buf_num, shift);
1237 			counters[addr]--;
1238 			new_addr = counters[addr];
1239 			array[new_addr] = array_buf[i];
1240 		}
1241 
1242 		shift += RADIX_BASE;
1243 	}
1244 }
1245 
1246 /*
1247  * Size of the core byte set - how many bytes cover 90% of the sample
1248  *
1249  * There are several types of structured binary data that use nearly all byte
1250  * values. The distribution can be uniform and counts in all buckets will be
1251  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1252  *
1253  * Other possibility is normal (Gaussian) distribution, where the data could
1254  * be potentially compressible, but we have to take a few more steps to decide
1255  * how much.
1256  *
1257  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1258  *                       compression algo can easy fix that
1259  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1260  *                       probability is not compressible
1261  */
1262 #define BYTE_CORE_SET_LOW		(64)
1263 #define BYTE_CORE_SET_HIGH		(200)
1264 
1265 static int byte_core_set_size(struct heuristic_ws *ws)
1266 {
1267 	u32 i;
1268 	u32 coreset_sum = 0;
1269 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1270 	struct bucket_item *bucket = ws->bucket;
1271 
1272 	/* Sort in reverse order */
1273 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1274 
1275 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1276 		coreset_sum += bucket[i].count;
1277 
1278 	if (coreset_sum > core_set_threshold)
1279 		return i;
1280 
1281 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1282 		coreset_sum += bucket[i].count;
1283 		if (coreset_sum > core_set_threshold)
1284 			break;
1285 	}
1286 
1287 	return i;
1288 }
1289 
1290 /*
1291  * Count byte values in buckets.
1292  * This heuristic can detect textual data (configs, xml, json, html, etc).
1293  * Because in most text-like data byte set is restricted to limited number of
1294  * possible characters, and that restriction in most cases makes data easy to
1295  * compress.
1296  *
1297  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1298  *	less - compressible
1299  *	more - need additional analysis
1300  */
1301 #define BYTE_SET_THRESHOLD		(64)
1302 
1303 static u32 byte_set_size(const struct heuristic_ws *ws)
1304 {
1305 	u32 i;
1306 	u32 byte_set_size = 0;
1307 
1308 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1309 		if (ws->bucket[i].count > 0)
1310 			byte_set_size++;
1311 	}
1312 
1313 	/*
1314 	 * Continue collecting count of byte values in buckets.  If the byte
1315 	 * set size is bigger then the threshold, it's pointless to continue,
1316 	 * the detection technique would fail for this type of data.
1317 	 */
1318 	for (; i < BUCKET_SIZE; i++) {
1319 		if (ws->bucket[i].count > 0) {
1320 			byte_set_size++;
1321 			if (byte_set_size > BYTE_SET_THRESHOLD)
1322 				return byte_set_size;
1323 		}
1324 	}
1325 
1326 	return byte_set_size;
1327 }
1328 
1329 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1330 {
1331 	const u32 half_of_sample = ws->sample_size / 2;
1332 	const u8 *data = ws->sample;
1333 
1334 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1335 }
1336 
1337 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1338 				     struct heuristic_ws *ws)
1339 {
1340 	struct page *page;
1341 	u64 index, index_end;
1342 	u32 i, curr_sample_pos;
1343 	u8 *in_data;
1344 
1345 	/*
1346 	 * Compression handles the input data by chunks of 128KiB
1347 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1348 	 *
1349 	 * We do the same for the heuristic and loop over the whole range.
1350 	 *
1351 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1352 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1353 	 */
1354 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1355 		end = start + BTRFS_MAX_UNCOMPRESSED;
1356 
1357 	index = start >> PAGE_SHIFT;
1358 	index_end = end >> PAGE_SHIFT;
1359 
1360 	/* Don't miss unaligned end */
1361 	if (!PAGE_ALIGNED(end))
1362 		index_end++;
1363 
1364 	curr_sample_pos = 0;
1365 	while (index < index_end) {
1366 		page = find_get_page(inode->i_mapping, index);
1367 		in_data = kmap_local_page(page);
1368 		/* Handle case where the start is not aligned to PAGE_SIZE */
1369 		i = start % PAGE_SIZE;
1370 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1371 			/* Don't sample any garbage from the last page */
1372 			if (start > end - SAMPLING_READ_SIZE)
1373 				break;
1374 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1375 					SAMPLING_READ_SIZE);
1376 			i += SAMPLING_INTERVAL;
1377 			start += SAMPLING_INTERVAL;
1378 			curr_sample_pos += SAMPLING_READ_SIZE;
1379 		}
1380 		kunmap_local(in_data);
1381 		put_page(page);
1382 
1383 		index++;
1384 	}
1385 
1386 	ws->sample_size = curr_sample_pos;
1387 }
1388 
1389 /*
1390  * Compression heuristic.
1391  *
1392  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1393  * quickly (compared to direct compression) detect data characteristics
1394  * (compressible/incompressible) to avoid wasting CPU time on incompressible
1395  * data.
1396  *
1397  * The following types of analysis can be performed:
1398  * - detect mostly zero data
1399  * - detect data with low "byte set" size (text, etc)
1400  * - detect data with low/high "core byte" set
1401  *
1402  * Return non-zero if the compression should be done, 0 otherwise.
1403  */
1404 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1405 {
1406 	struct list_head *ws_list = get_workspace(0, 0);
1407 	struct heuristic_ws *ws;
1408 	u32 i;
1409 	u8 byte;
1410 	int ret = 0;
1411 
1412 	ws = list_entry(ws_list, struct heuristic_ws, list);
1413 
1414 	heuristic_collect_sample(inode, start, end, ws);
1415 
1416 	if (sample_repeated_patterns(ws)) {
1417 		ret = 1;
1418 		goto out;
1419 	}
1420 
1421 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1422 
1423 	for (i = 0; i < ws->sample_size; i++) {
1424 		byte = ws->sample[i];
1425 		ws->bucket[byte].count++;
1426 	}
1427 
1428 	i = byte_set_size(ws);
1429 	if (i < BYTE_SET_THRESHOLD) {
1430 		ret = 2;
1431 		goto out;
1432 	}
1433 
1434 	i = byte_core_set_size(ws);
1435 	if (i <= BYTE_CORE_SET_LOW) {
1436 		ret = 3;
1437 		goto out;
1438 	}
1439 
1440 	if (i >= BYTE_CORE_SET_HIGH) {
1441 		ret = 0;
1442 		goto out;
1443 	}
1444 
1445 	i = shannon_entropy(ws);
1446 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1447 		ret = 4;
1448 		goto out;
1449 	}
1450 
1451 	/*
1452 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1453 	 * needed to give green light to compression.
1454 	 *
1455 	 * For now just assume that compression at that level is not worth the
1456 	 * resources because:
1457 	 *
1458 	 * 1. it is possible to defrag the data later
1459 	 *
1460 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1461 	 * values, every bucket has counter at level ~54. The heuristic would
1462 	 * be confused. This can happen when data have some internal repeated
1463 	 * patterns like "abbacbbc...". This can be detected by analyzing
1464 	 * pairs of bytes, which is too costly.
1465 	 */
1466 	if (i < ENTROPY_LVL_HIGH) {
1467 		ret = 5;
1468 		goto out;
1469 	} else {
1470 		ret = 0;
1471 		goto out;
1472 	}
1473 
1474 out:
1475 	put_workspace(0, ws_list);
1476 	return ret;
1477 }
1478 
1479 /*
1480  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1481  * level, unrecognized string will set the default level
1482  */
1483 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1484 {
1485 	unsigned int level = 0;
1486 	int ret;
1487 
1488 	if (!type)
1489 		return 0;
1490 
1491 	if (str[0] == ':') {
1492 		ret = kstrtouint(str + 1, 10, &level);
1493 		if (ret)
1494 			level = 0;
1495 	}
1496 
1497 	level = btrfs_compress_set_level(type, level);
1498 
1499 	return level;
1500 }
1501