xref: /openbmc/linux/fs/btrfs/compression.c (revision b52455a7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/kthread.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sched/mm.h>
20 #include <linux/log2.h>
21 #include <crypto/hash.h>
22 #include "misc.h"
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "ordered-data.h"
29 #include "compression.h"
30 #include "extent_io.h"
31 #include "extent_map.h"
32 #include "subpage.h"
33 #include "zoned.h"
34 
35 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
36 
37 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
38 {
39 	switch (type) {
40 	case BTRFS_COMPRESS_ZLIB:
41 	case BTRFS_COMPRESS_LZO:
42 	case BTRFS_COMPRESS_ZSTD:
43 	case BTRFS_COMPRESS_NONE:
44 		return btrfs_compress_types[type];
45 	default:
46 		break;
47 	}
48 
49 	return NULL;
50 }
51 
52 bool btrfs_compress_is_valid_type(const char *str, size_t len)
53 {
54 	int i;
55 
56 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
57 		size_t comp_len = strlen(btrfs_compress_types[i]);
58 
59 		if (len < comp_len)
60 			continue;
61 
62 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
63 			return true;
64 	}
65 	return false;
66 }
67 
68 static int compression_compress_pages(int type, struct list_head *ws,
69                struct address_space *mapping, u64 start, struct page **pages,
70                unsigned long *out_pages, unsigned long *total_in,
71                unsigned long *total_out)
72 {
73 	switch (type) {
74 	case BTRFS_COMPRESS_ZLIB:
75 		return zlib_compress_pages(ws, mapping, start, pages,
76 				out_pages, total_in, total_out);
77 	case BTRFS_COMPRESS_LZO:
78 		return lzo_compress_pages(ws, mapping, start, pages,
79 				out_pages, total_in, total_out);
80 	case BTRFS_COMPRESS_ZSTD:
81 		return zstd_compress_pages(ws, mapping, start, pages,
82 				out_pages, total_in, total_out);
83 	case BTRFS_COMPRESS_NONE:
84 	default:
85 		/*
86 		 * This can happen when compression races with remount setting
87 		 * it to 'no compress', while caller doesn't call
88 		 * inode_need_compress() to check if we really need to
89 		 * compress.
90 		 *
91 		 * Not a big deal, just need to inform caller that we
92 		 * haven't allocated any pages yet.
93 		 */
94 		*out_pages = 0;
95 		return -E2BIG;
96 	}
97 }
98 
99 static int compression_decompress_bio(struct list_head *ws,
100 				      struct compressed_bio *cb)
101 {
102 	switch (cb->compress_type) {
103 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
104 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
105 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
106 	case BTRFS_COMPRESS_NONE:
107 	default:
108 		/*
109 		 * This can't happen, the type is validated several times
110 		 * before we get here.
111 		 */
112 		BUG();
113 	}
114 }
115 
116 static int compression_decompress(int type, struct list_head *ws,
117                unsigned char *data_in, struct page *dest_page,
118                unsigned long start_byte, size_t srclen, size_t destlen)
119 {
120 	switch (type) {
121 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
122 						start_byte, srclen, destlen);
123 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
124 						start_byte, srclen, destlen);
125 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
126 						start_byte, srclen, destlen);
127 	case BTRFS_COMPRESS_NONE:
128 	default:
129 		/*
130 		 * This can't happen, the type is validated several times
131 		 * before we get here.
132 		 */
133 		BUG();
134 	}
135 }
136 
137 static int btrfs_decompress_bio(struct compressed_bio *cb);
138 
139 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 				      unsigned long disk_size)
141 {
142 	return sizeof(struct compressed_bio) +
143 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
144 }
145 
146 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
147 				 u64 disk_start)
148 {
149 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
150 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
151 	const u32 csum_size = fs_info->csum_size;
152 	const u32 sectorsize = fs_info->sectorsize;
153 	struct page *page;
154 	unsigned int i;
155 	char *kaddr;
156 	u8 csum[BTRFS_CSUM_SIZE];
157 	struct compressed_bio *cb = bio->bi_private;
158 	u8 *cb_sum = cb->sums;
159 
160 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
161 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
162 		return 0;
163 
164 	shash->tfm = fs_info->csum_shash;
165 
166 	for (i = 0; i < cb->nr_pages; i++) {
167 		u32 pg_offset;
168 		u32 bytes_left = PAGE_SIZE;
169 		page = cb->compressed_pages[i];
170 
171 		/* Determine the remaining bytes inside the page first */
172 		if (i == cb->nr_pages - 1)
173 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
174 
175 		/* Hash through the page sector by sector */
176 		for (pg_offset = 0; pg_offset < bytes_left;
177 		     pg_offset += sectorsize) {
178 			kaddr = kmap_atomic(page);
179 			crypto_shash_digest(shash, kaddr + pg_offset,
180 					    sectorsize, csum);
181 			kunmap_atomic(kaddr);
182 
183 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
184 				btrfs_print_data_csum_error(inode, disk_start,
185 						csum, cb_sum, cb->mirror_num);
186 				if (btrfs_bio(bio)->device)
187 					btrfs_dev_stat_inc_and_print(
188 						btrfs_bio(bio)->device,
189 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
190 				return -EIO;
191 			}
192 			cb_sum += csum_size;
193 			disk_start += sectorsize;
194 		}
195 	}
196 	return 0;
197 }
198 
199 /*
200  * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
201  *
202  * Return true if there is no pending bio nor io.
203  * Return false otherwise.
204  */
205 static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
206 {
207 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
208 	unsigned int bi_size = 0;
209 	bool last_io = false;
210 	struct bio_vec *bvec;
211 	struct bvec_iter_all iter_all;
212 
213 	/*
214 	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
215 	 * Thus here we have to iterate through all segments to grab correct
216 	 * bio size.
217 	 */
218 	bio_for_each_segment_all(bvec, bio, iter_all)
219 		bi_size += bvec->bv_len;
220 
221 	if (bio->bi_status)
222 		cb->status = bio->bi_status;
223 
224 	ASSERT(bi_size && bi_size <= cb->compressed_len);
225 	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
226 					&cb->pending_sectors);
227 	/*
228 	 * Here we must wake up the possible error handler after all other
229 	 * operations on @cb finished, or we can race with
230 	 * finish_compressed_bio_*() which may free @cb.
231 	 */
232 	wake_up_var(cb);
233 
234 	return last_io;
235 }
236 
237 static void finish_compressed_bio_read(struct compressed_bio *cb)
238 {
239 	unsigned int index;
240 	struct page *page;
241 
242 	/* Release the compressed pages */
243 	for (index = 0; index < cb->nr_pages; index++) {
244 		page = cb->compressed_pages[index];
245 		page->mapping = NULL;
246 		put_page(page);
247 	}
248 
249 	/* Do io completion on the original bio */
250 	if (cb->status != BLK_STS_OK) {
251 		cb->orig_bio->bi_status = cb->status;
252 		bio_endio(cb->orig_bio);
253 	} else {
254 		struct bio_vec *bvec;
255 		struct bvec_iter_all iter_all;
256 
257 		/*
258 		 * We have verified the checksum already, set page checked so
259 		 * the end_io handlers know about it
260 		 */
261 		ASSERT(!bio_flagged(cb->orig_bio, BIO_CLONED));
262 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
263 			u64 bvec_start = page_offset(bvec->bv_page) +
264 					 bvec->bv_offset;
265 
266 			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
267 					bvec->bv_page, bvec_start,
268 					bvec->bv_len);
269 		}
270 
271 		bio_endio(cb->orig_bio);
272 	}
273 
274 	/* Finally free the cb struct */
275 	kfree(cb->compressed_pages);
276 	kfree(cb);
277 }
278 
279 /* when we finish reading compressed pages from the disk, we
280  * decompress them and then run the bio end_io routines on the
281  * decompressed pages (in the inode address space).
282  *
283  * This allows the checksumming and other IO error handling routines
284  * to work normally
285  *
286  * The compressed pages are freed here, and it must be run
287  * in process context
288  */
289 static void end_compressed_bio_read(struct bio *bio)
290 {
291 	struct compressed_bio *cb = bio->bi_private;
292 	struct inode *inode;
293 	unsigned int mirror = btrfs_bio(bio)->mirror_num;
294 	int ret = 0;
295 
296 	if (!dec_and_test_compressed_bio(cb, bio))
297 		goto out;
298 
299 	/*
300 	 * Record the correct mirror_num in cb->orig_bio so that
301 	 * read-repair can work properly.
302 	 */
303 	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
304 	cb->mirror_num = mirror;
305 
306 	/*
307 	 * Some IO in this cb have failed, just skip checksum as there
308 	 * is no way it could be correct.
309 	 */
310 	if (cb->status != BLK_STS_OK)
311 		goto csum_failed;
312 
313 	inode = cb->inode;
314 	ret = check_compressed_csum(BTRFS_I(inode), bio,
315 				    bio->bi_iter.bi_sector << 9);
316 	if (ret)
317 		goto csum_failed;
318 
319 	/* ok, we're the last bio for this extent, lets start
320 	 * the decompression.
321 	 */
322 	ret = btrfs_decompress_bio(cb);
323 
324 csum_failed:
325 	if (ret)
326 		cb->status = errno_to_blk_status(ret);
327 	finish_compressed_bio_read(cb);
328 out:
329 	bio_put(bio);
330 }
331 
332 /*
333  * Clear the writeback bits on all of the file
334  * pages for a compressed write
335  */
336 static noinline void end_compressed_writeback(struct inode *inode,
337 					      const struct compressed_bio *cb)
338 {
339 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
340 	unsigned long index = cb->start >> PAGE_SHIFT;
341 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
342 	struct page *pages[16];
343 	unsigned long nr_pages = end_index - index + 1;
344 	const int errno = blk_status_to_errno(cb->status);
345 	int i;
346 	int ret;
347 
348 	if (errno)
349 		mapping_set_error(inode->i_mapping, errno);
350 
351 	while (nr_pages > 0) {
352 		ret = find_get_pages_contig(inode->i_mapping, index,
353 				     min_t(unsigned long,
354 				     nr_pages, ARRAY_SIZE(pages)), pages);
355 		if (ret == 0) {
356 			nr_pages -= 1;
357 			index += 1;
358 			continue;
359 		}
360 		for (i = 0; i < ret; i++) {
361 			if (errno)
362 				SetPageError(pages[i]);
363 			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
364 							 cb->start, cb->len);
365 			put_page(pages[i]);
366 		}
367 		nr_pages -= ret;
368 		index += ret;
369 	}
370 	/* the inode may be gone now */
371 }
372 
373 static void finish_compressed_bio_write(struct compressed_bio *cb)
374 {
375 	struct inode *inode = cb->inode;
376 	unsigned int index;
377 
378 	/*
379 	 * Ok, we're the last bio for this extent, step one is to call back
380 	 * into the FS and do all the end_io operations.
381 	 */
382 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
383 			cb->start, cb->start + cb->len - 1,
384 			cb->status == BLK_STS_OK);
385 
386 	if (cb->writeback)
387 		end_compressed_writeback(inode, cb);
388 	/* Note, our inode could be gone now */
389 
390 	/*
391 	 * Release the compressed pages, these came from alloc_page and
392 	 * are not attached to the inode at all
393 	 */
394 	for (index = 0; index < cb->nr_pages; index++) {
395 		struct page *page = cb->compressed_pages[index];
396 
397 		page->mapping = NULL;
398 		put_page(page);
399 	}
400 
401 	/* Finally free the cb struct */
402 	kfree(cb->compressed_pages);
403 	kfree(cb);
404 }
405 
406 /*
407  * Do the cleanup once all the compressed pages hit the disk.  This will clear
408  * writeback on the file pages and free the compressed pages.
409  *
410  * This also calls the writeback end hooks for the file pages so that metadata
411  * and checksums can be updated in the file.
412  */
413 static void end_compressed_bio_write(struct bio *bio)
414 {
415 	struct compressed_bio *cb = bio->bi_private;
416 
417 	if (!dec_and_test_compressed_bio(cb, bio))
418 		goto out;
419 
420 	btrfs_record_physical_zoned(cb->inode, cb->start, bio);
421 
422 	finish_compressed_bio_write(cb);
423 out:
424 	bio_put(bio);
425 }
426 
427 static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
428 					  struct compressed_bio *cb,
429 					  struct bio *bio, int mirror_num)
430 {
431 	blk_status_t ret;
432 
433 	ASSERT(bio->bi_iter.bi_size);
434 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
435 	if (ret)
436 		return ret;
437 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
438 	return ret;
439 }
440 
441 /*
442  * Allocate a compressed_bio, which will be used to read/write on-disk
443  * (aka, compressed) * data.
444  *
445  * @cb:                 The compressed_bio structure, which records all the needed
446  *                      information to bind the compressed data to the uncompressed
447  *                      page cache.
448  * @disk_byten:         The logical bytenr where the compressed data will be read
449  *                      from or written to.
450  * @endio_func:         The endio function to call after the IO for compressed data
451  *                      is finished.
452  * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
453  *                      Let the caller know to only fill the bio up to the stripe
454  *                      boundary.
455  */
456 
457 
458 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
459 					unsigned int opf, bio_end_io_t endio_func,
460 					u64 *next_stripe_start)
461 {
462 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
463 	struct btrfs_io_geometry geom;
464 	struct extent_map *em;
465 	struct bio *bio;
466 	int ret;
467 
468 	bio = btrfs_bio_alloc(BIO_MAX_VECS);
469 
470 	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
471 	bio->bi_opf = opf;
472 	bio->bi_private = cb;
473 	bio->bi_end_io = endio_func;
474 
475 	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
476 	if (IS_ERR(em)) {
477 		bio_put(bio);
478 		return ERR_CAST(em);
479 	}
480 
481 	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
482 		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
483 
484 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
485 	free_extent_map(em);
486 	if (ret < 0) {
487 		bio_put(bio);
488 		return ERR_PTR(ret);
489 	}
490 	*next_stripe_start = disk_bytenr + geom.len;
491 
492 	return bio;
493 }
494 
495 /*
496  * worker function to build and submit bios for previously compressed pages.
497  * The corresponding pages in the inode should be marked for writeback
498  * and the compressed pages should have a reference on them for dropping
499  * when the IO is complete.
500  *
501  * This also checksums the file bytes and gets things ready for
502  * the end io hooks.
503  */
504 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
505 				 unsigned int len, u64 disk_start,
506 				 unsigned int compressed_len,
507 				 struct page **compressed_pages,
508 				 unsigned int nr_pages,
509 				 unsigned int write_flags,
510 				 struct cgroup_subsys_state *blkcg_css,
511 				 bool writeback)
512 {
513 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
514 	struct bio *bio = NULL;
515 	struct compressed_bio *cb;
516 	u64 cur_disk_bytenr = disk_start;
517 	u64 next_stripe_start;
518 	blk_status_t ret;
519 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
520 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
521 	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
522 
523 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
524 	       IS_ALIGNED(len, fs_info->sectorsize));
525 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
526 	if (!cb)
527 		return BLK_STS_RESOURCE;
528 	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
529 	cb->status = BLK_STS_OK;
530 	cb->inode = &inode->vfs_inode;
531 	cb->start = start;
532 	cb->len = len;
533 	cb->mirror_num = 0;
534 	cb->compressed_pages = compressed_pages;
535 	cb->compressed_len = compressed_len;
536 	cb->writeback = writeback;
537 	cb->orig_bio = NULL;
538 	cb->nr_pages = nr_pages;
539 
540 	while (cur_disk_bytenr < disk_start + compressed_len) {
541 		u64 offset = cur_disk_bytenr - disk_start;
542 		unsigned int index = offset >> PAGE_SHIFT;
543 		unsigned int real_size;
544 		unsigned int added;
545 		struct page *page = compressed_pages[index];
546 		bool submit = false;
547 
548 		/* Allocate new bio if submitted or not yet allocated */
549 		if (!bio) {
550 			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
551 				bio_op | write_flags, end_compressed_bio_write,
552 				&next_stripe_start);
553 			if (IS_ERR(bio)) {
554 				ret = errno_to_blk_status(PTR_ERR(bio));
555 				bio = NULL;
556 				goto finish_cb;
557 			}
558 		}
559 		/*
560 		 * We should never reach next_stripe_start start as we will
561 		 * submit comp_bio when reach the boundary immediately.
562 		 */
563 		ASSERT(cur_disk_bytenr != next_stripe_start);
564 
565 		/*
566 		 * We have various limits on the real read size:
567 		 * - stripe boundary
568 		 * - page boundary
569 		 * - compressed length boundary
570 		 */
571 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
572 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
573 		real_size = min_t(u64, real_size, compressed_len - offset);
574 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
575 
576 		if (use_append)
577 			added = bio_add_zone_append_page(bio, page, real_size,
578 					offset_in_page(offset));
579 		else
580 			added = bio_add_page(bio, page, real_size,
581 					offset_in_page(offset));
582 		/* Reached zoned boundary */
583 		if (added == 0)
584 			submit = true;
585 
586 		cur_disk_bytenr += added;
587 		/* Reached stripe boundary */
588 		if (cur_disk_bytenr == next_stripe_start)
589 			submit = true;
590 
591 		/* Finished the range */
592 		if (cur_disk_bytenr == disk_start + compressed_len)
593 			submit = true;
594 
595 		if (submit) {
596 			if (!skip_sum) {
597 				ret = btrfs_csum_one_bio(inode, bio, start, true);
598 				if (ret)
599 					goto finish_cb;
600 			}
601 
602 			ret = submit_compressed_bio(fs_info, cb, bio, 0);
603 			if (ret)
604 				goto finish_cb;
605 			bio = NULL;
606 		}
607 		cond_resched();
608 	}
609 	if (blkcg_css)
610 		kthread_associate_blkcg(NULL);
611 
612 	return 0;
613 
614 finish_cb:
615 	if (bio) {
616 		bio->bi_status = ret;
617 		bio_endio(bio);
618 	}
619 	/* Last byte of @cb is submitted, endio will free @cb */
620 	if (cur_disk_bytenr == disk_start + compressed_len)
621 		return ret;
622 
623 	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
624 			   (disk_start + compressed_len - cur_disk_bytenr) >>
625 			   fs_info->sectorsize_bits);
626 	/*
627 	 * Even with previous bio ended, we should still have io not yet
628 	 * submitted, thus need to finish manually.
629 	 */
630 	ASSERT(refcount_read(&cb->pending_sectors));
631 	/* Now we are the only one referring @cb, can finish it safely. */
632 	finish_compressed_bio_write(cb);
633 	return ret;
634 }
635 
636 static u64 bio_end_offset(struct bio *bio)
637 {
638 	struct bio_vec *last = bio_last_bvec_all(bio);
639 
640 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
641 }
642 
643 /*
644  * Add extra pages in the same compressed file extent so that we don't need to
645  * re-read the same extent again and again.
646  *
647  * NOTE: this won't work well for subpage, as for subpage read, we lock the
648  * full page then submit bio for each compressed/regular extents.
649  *
650  * This means, if we have several sectors in the same page points to the same
651  * on-disk compressed data, we will re-read the same extent many times and
652  * this function can only help for the next page.
653  */
654 static noinline int add_ra_bio_pages(struct inode *inode,
655 				     u64 compressed_end,
656 				     struct compressed_bio *cb)
657 {
658 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
659 	unsigned long end_index;
660 	u64 cur = bio_end_offset(cb->orig_bio);
661 	u64 isize = i_size_read(inode);
662 	int ret;
663 	struct page *page;
664 	struct extent_map *em;
665 	struct address_space *mapping = inode->i_mapping;
666 	struct extent_map_tree *em_tree;
667 	struct extent_io_tree *tree;
668 	int sectors_missed = 0;
669 
670 	em_tree = &BTRFS_I(inode)->extent_tree;
671 	tree = &BTRFS_I(inode)->io_tree;
672 
673 	if (isize == 0)
674 		return 0;
675 
676 	/*
677 	 * For current subpage support, we only support 64K page size,
678 	 * which means maximum compressed extent size (128K) is just 2x page
679 	 * size.
680 	 * This makes readahead less effective, so here disable readahead for
681 	 * subpage for now, until full compressed write is supported.
682 	 */
683 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
684 		return 0;
685 
686 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
687 
688 	while (cur < compressed_end) {
689 		u64 page_end;
690 		u64 pg_index = cur >> PAGE_SHIFT;
691 		u32 add_size;
692 
693 		if (pg_index > end_index)
694 			break;
695 
696 		page = xa_load(&mapping->i_pages, pg_index);
697 		if (page && !xa_is_value(page)) {
698 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
699 					  fs_info->sectorsize_bits;
700 
701 			/* Beyond threshold, no need to continue */
702 			if (sectors_missed > 4)
703 				break;
704 
705 			/*
706 			 * Jump to next page start as we already have page for
707 			 * current offset.
708 			 */
709 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
710 			continue;
711 		}
712 
713 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
714 								 ~__GFP_FS));
715 		if (!page)
716 			break;
717 
718 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
719 			put_page(page);
720 			/* There is already a page, skip to page end */
721 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
722 			continue;
723 		}
724 
725 		ret = set_page_extent_mapped(page);
726 		if (ret < 0) {
727 			unlock_page(page);
728 			put_page(page);
729 			break;
730 		}
731 
732 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
733 		lock_extent(tree, cur, page_end);
734 		read_lock(&em_tree->lock);
735 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
736 		read_unlock(&em_tree->lock);
737 
738 		/*
739 		 * At this point, we have a locked page in the page cache for
740 		 * these bytes in the file.  But, we have to make sure they map
741 		 * to this compressed extent on disk.
742 		 */
743 		if (!em || cur < em->start ||
744 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
745 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
746 			free_extent_map(em);
747 			unlock_extent(tree, cur, page_end);
748 			unlock_page(page);
749 			put_page(page);
750 			break;
751 		}
752 		free_extent_map(em);
753 
754 		if (page->index == end_index) {
755 			size_t zero_offset = offset_in_page(isize);
756 
757 			if (zero_offset) {
758 				int zeros;
759 				zeros = PAGE_SIZE - zero_offset;
760 				memzero_page(page, zero_offset, zeros);
761 				flush_dcache_page(page);
762 			}
763 		}
764 
765 		add_size = min(em->start + em->len, page_end + 1) - cur;
766 		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
767 		if (ret != add_size) {
768 			unlock_extent(tree, cur, page_end);
769 			unlock_page(page);
770 			put_page(page);
771 			break;
772 		}
773 		/*
774 		 * If it's subpage, we also need to increase its
775 		 * subpage::readers number, as at endio we will decrease
776 		 * subpage::readers and to unlock the page.
777 		 */
778 		if (fs_info->sectorsize < PAGE_SIZE)
779 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
780 		put_page(page);
781 		cur += add_size;
782 	}
783 	return 0;
784 }
785 
786 /*
787  * for a compressed read, the bio we get passed has all the inode pages
788  * in it.  We don't actually do IO on those pages but allocate new ones
789  * to hold the compressed pages on disk.
790  *
791  * bio->bi_iter.bi_sector points to the compressed extent on disk
792  * bio->bi_io_vec points to all of the inode pages
793  *
794  * After the compressed pages are read, we copy the bytes into the
795  * bio we were passed and then call the bio end_io calls
796  */
797 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
798 				 int mirror_num, unsigned long bio_flags)
799 {
800 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
801 	struct extent_map_tree *em_tree;
802 	struct compressed_bio *cb;
803 	unsigned int compressed_len;
804 	unsigned int nr_pages;
805 	unsigned int pg_index;
806 	struct bio *comp_bio = NULL;
807 	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
808 	u64 cur_disk_byte = disk_bytenr;
809 	u64 next_stripe_start;
810 	u64 file_offset;
811 	u64 em_len;
812 	u64 em_start;
813 	struct extent_map *em;
814 	blk_status_t ret;
815 	int faili = 0;
816 	u8 *sums;
817 
818 	em_tree = &BTRFS_I(inode)->extent_tree;
819 
820 	file_offset = bio_first_bvec_all(bio)->bv_offset +
821 		      page_offset(bio_first_page_all(bio));
822 
823 	/* we need the actual starting offset of this extent in the file */
824 	read_lock(&em_tree->lock);
825 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
826 	read_unlock(&em_tree->lock);
827 	if (!em) {
828 		ret = BLK_STS_IOERR;
829 		goto out;
830 	}
831 
832 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
833 	compressed_len = em->block_len;
834 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
835 	if (!cb) {
836 		ret = BLK_STS_RESOURCE;
837 		goto out;
838 	}
839 
840 	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
841 	cb->status = BLK_STS_OK;
842 	cb->inode = inode;
843 	cb->mirror_num = mirror_num;
844 	sums = cb->sums;
845 
846 	cb->start = em->orig_start;
847 	em_len = em->len;
848 	em_start = em->start;
849 
850 	free_extent_map(em);
851 	em = NULL;
852 
853 	cb->len = bio->bi_iter.bi_size;
854 	cb->compressed_len = compressed_len;
855 	cb->compress_type = extent_compress_type(bio_flags);
856 	cb->orig_bio = bio;
857 
858 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
859 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
860 				       GFP_NOFS);
861 	if (!cb->compressed_pages) {
862 		ret = BLK_STS_RESOURCE;
863 		goto fail1;
864 	}
865 
866 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
867 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
868 		if (!cb->compressed_pages[pg_index]) {
869 			faili = pg_index - 1;
870 			ret = BLK_STS_RESOURCE;
871 			goto fail2;
872 		}
873 	}
874 	faili = nr_pages - 1;
875 	cb->nr_pages = nr_pages;
876 
877 	add_ra_bio_pages(inode, em_start + em_len, cb);
878 
879 	/* include any pages we added in add_ra-bio_pages */
880 	cb->len = bio->bi_iter.bi_size;
881 
882 	while (cur_disk_byte < disk_bytenr + compressed_len) {
883 		u64 offset = cur_disk_byte - disk_bytenr;
884 		unsigned int index = offset >> PAGE_SHIFT;
885 		unsigned int real_size;
886 		unsigned int added;
887 		struct page *page = cb->compressed_pages[index];
888 		bool submit = false;
889 
890 		/* Allocate new bio if submitted or not yet allocated */
891 		if (!comp_bio) {
892 			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
893 					REQ_OP_READ, end_compressed_bio_read,
894 					&next_stripe_start);
895 			if (IS_ERR(comp_bio)) {
896 				ret = errno_to_blk_status(PTR_ERR(comp_bio));
897 				comp_bio = NULL;
898 				goto finish_cb;
899 			}
900 		}
901 		/*
902 		 * We should never reach next_stripe_start start as we will
903 		 * submit comp_bio when reach the boundary immediately.
904 		 */
905 		ASSERT(cur_disk_byte != next_stripe_start);
906 		/*
907 		 * We have various limit on the real read size:
908 		 * - stripe boundary
909 		 * - page boundary
910 		 * - compressed length boundary
911 		 */
912 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
913 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
914 		real_size = min_t(u64, real_size, compressed_len - offset);
915 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
916 
917 		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
918 		/*
919 		 * Maximum compressed extent is smaller than bio size limit,
920 		 * thus bio_add_page() should always success.
921 		 */
922 		ASSERT(added == real_size);
923 		cur_disk_byte += added;
924 
925 		/* Reached stripe boundary, need to submit */
926 		if (cur_disk_byte == next_stripe_start)
927 			submit = true;
928 
929 		/* Has finished the range, need to submit */
930 		if (cur_disk_byte == disk_bytenr + compressed_len)
931 			submit = true;
932 
933 		if (submit) {
934 			unsigned int nr_sectors;
935 
936 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
937 			if (ret)
938 				goto finish_cb;
939 
940 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
941 						  fs_info->sectorsize);
942 			sums += fs_info->csum_size * nr_sectors;
943 
944 			ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
945 			if (ret)
946 				goto finish_cb;
947 			comp_bio = NULL;
948 		}
949 	}
950 	return BLK_STS_OK;
951 
952 fail2:
953 	while (faili >= 0) {
954 		__free_page(cb->compressed_pages[faili]);
955 		faili--;
956 	}
957 
958 	kfree(cb->compressed_pages);
959 fail1:
960 	kfree(cb);
961 out:
962 	free_extent_map(em);
963 	bio->bi_status = ret;
964 	bio_endio(bio);
965 	return ret;
966 finish_cb:
967 	if (comp_bio) {
968 		comp_bio->bi_status = ret;
969 		bio_endio(comp_bio);
970 	}
971 	/* All bytes of @cb is submitted, endio will free @cb */
972 	if (cur_disk_byte == disk_bytenr + compressed_len)
973 		return ret;
974 
975 	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
976 			   (disk_bytenr + compressed_len - cur_disk_byte) >>
977 			   fs_info->sectorsize_bits);
978 	/*
979 	 * Even with previous bio ended, we should still have io not yet
980 	 * submitted, thus need to finish @cb manually.
981 	 */
982 	ASSERT(refcount_read(&cb->pending_sectors));
983 	/* Now we are the only one referring @cb, can finish it safely. */
984 	finish_compressed_bio_read(cb);
985 	return ret;
986 }
987 
988 /*
989  * Heuristic uses systematic sampling to collect data from the input data
990  * range, the logic can be tuned by the following constants:
991  *
992  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
993  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
994  */
995 #define SAMPLING_READ_SIZE	(16)
996 #define SAMPLING_INTERVAL	(256)
997 
998 /*
999  * For statistical analysis of the input data we consider bytes that form a
1000  * Galois Field of 256 objects. Each object has an attribute count, ie. how
1001  * many times the object appeared in the sample.
1002  */
1003 #define BUCKET_SIZE		(256)
1004 
1005 /*
1006  * The size of the sample is based on a statistical sampling rule of thumb.
1007  * The common way is to perform sampling tests as long as the number of
1008  * elements in each cell is at least 5.
1009  *
1010  * Instead of 5, we choose 32 to obtain more accurate results.
1011  * If the data contain the maximum number of symbols, which is 256, we obtain a
1012  * sample size bound by 8192.
1013  *
1014  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
1015  * from up to 512 locations.
1016  */
1017 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
1018 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
1019 
1020 struct bucket_item {
1021 	u32 count;
1022 };
1023 
1024 struct heuristic_ws {
1025 	/* Partial copy of input data */
1026 	u8 *sample;
1027 	u32 sample_size;
1028 	/* Buckets store counters for each byte value */
1029 	struct bucket_item *bucket;
1030 	/* Sorting buffer */
1031 	struct bucket_item *bucket_b;
1032 	struct list_head list;
1033 };
1034 
1035 static struct workspace_manager heuristic_wsm;
1036 
1037 static void free_heuristic_ws(struct list_head *ws)
1038 {
1039 	struct heuristic_ws *workspace;
1040 
1041 	workspace = list_entry(ws, struct heuristic_ws, list);
1042 
1043 	kvfree(workspace->sample);
1044 	kfree(workspace->bucket);
1045 	kfree(workspace->bucket_b);
1046 	kfree(workspace);
1047 }
1048 
1049 static struct list_head *alloc_heuristic_ws(unsigned int level)
1050 {
1051 	struct heuristic_ws *ws;
1052 
1053 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
1054 	if (!ws)
1055 		return ERR_PTR(-ENOMEM);
1056 
1057 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
1058 	if (!ws->sample)
1059 		goto fail;
1060 
1061 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
1062 	if (!ws->bucket)
1063 		goto fail;
1064 
1065 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
1066 	if (!ws->bucket_b)
1067 		goto fail;
1068 
1069 	INIT_LIST_HEAD(&ws->list);
1070 	return &ws->list;
1071 fail:
1072 	free_heuristic_ws(&ws->list);
1073 	return ERR_PTR(-ENOMEM);
1074 }
1075 
1076 const struct btrfs_compress_op btrfs_heuristic_compress = {
1077 	.workspace_manager = &heuristic_wsm,
1078 };
1079 
1080 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1081 	/* The heuristic is represented as compression type 0 */
1082 	&btrfs_heuristic_compress,
1083 	&btrfs_zlib_compress,
1084 	&btrfs_lzo_compress,
1085 	&btrfs_zstd_compress,
1086 };
1087 
1088 static struct list_head *alloc_workspace(int type, unsigned int level)
1089 {
1090 	switch (type) {
1091 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
1092 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
1093 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
1094 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
1095 	default:
1096 		/*
1097 		 * This can't happen, the type is validated several times
1098 		 * before we get here.
1099 		 */
1100 		BUG();
1101 	}
1102 }
1103 
1104 static void free_workspace(int type, struct list_head *ws)
1105 {
1106 	switch (type) {
1107 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
1108 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
1109 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
1110 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
1111 	default:
1112 		/*
1113 		 * This can't happen, the type is validated several times
1114 		 * before we get here.
1115 		 */
1116 		BUG();
1117 	}
1118 }
1119 
1120 static void btrfs_init_workspace_manager(int type)
1121 {
1122 	struct workspace_manager *wsm;
1123 	struct list_head *workspace;
1124 
1125 	wsm = btrfs_compress_op[type]->workspace_manager;
1126 	INIT_LIST_HEAD(&wsm->idle_ws);
1127 	spin_lock_init(&wsm->ws_lock);
1128 	atomic_set(&wsm->total_ws, 0);
1129 	init_waitqueue_head(&wsm->ws_wait);
1130 
1131 	/*
1132 	 * Preallocate one workspace for each compression type so we can
1133 	 * guarantee forward progress in the worst case
1134 	 */
1135 	workspace = alloc_workspace(type, 0);
1136 	if (IS_ERR(workspace)) {
1137 		pr_warn(
1138 	"BTRFS: cannot preallocate compression workspace, will try later\n");
1139 	} else {
1140 		atomic_set(&wsm->total_ws, 1);
1141 		wsm->free_ws = 1;
1142 		list_add(workspace, &wsm->idle_ws);
1143 	}
1144 }
1145 
1146 static void btrfs_cleanup_workspace_manager(int type)
1147 {
1148 	struct workspace_manager *wsman;
1149 	struct list_head *ws;
1150 
1151 	wsman = btrfs_compress_op[type]->workspace_manager;
1152 	while (!list_empty(&wsman->idle_ws)) {
1153 		ws = wsman->idle_ws.next;
1154 		list_del(ws);
1155 		free_workspace(type, ws);
1156 		atomic_dec(&wsman->total_ws);
1157 	}
1158 }
1159 
1160 /*
1161  * This finds an available workspace or allocates a new one.
1162  * If it's not possible to allocate a new one, waits until there's one.
1163  * Preallocation makes a forward progress guarantees and we do not return
1164  * errors.
1165  */
1166 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1167 {
1168 	struct workspace_manager *wsm;
1169 	struct list_head *workspace;
1170 	int cpus = num_online_cpus();
1171 	unsigned nofs_flag;
1172 	struct list_head *idle_ws;
1173 	spinlock_t *ws_lock;
1174 	atomic_t *total_ws;
1175 	wait_queue_head_t *ws_wait;
1176 	int *free_ws;
1177 
1178 	wsm = btrfs_compress_op[type]->workspace_manager;
1179 	idle_ws	 = &wsm->idle_ws;
1180 	ws_lock	 = &wsm->ws_lock;
1181 	total_ws = &wsm->total_ws;
1182 	ws_wait	 = &wsm->ws_wait;
1183 	free_ws	 = &wsm->free_ws;
1184 
1185 again:
1186 	spin_lock(ws_lock);
1187 	if (!list_empty(idle_ws)) {
1188 		workspace = idle_ws->next;
1189 		list_del(workspace);
1190 		(*free_ws)--;
1191 		spin_unlock(ws_lock);
1192 		return workspace;
1193 
1194 	}
1195 	if (atomic_read(total_ws) > cpus) {
1196 		DEFINE_WAIT(wait);
1197 
1198 		spin_unlock(ws_lock);
1199 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1200 		if (atomic_read(total_ws) > cpus && !*free_ws)
1201 			schedule();
1202 		finish_wait(ws_wait, &wait);
1203 		goto again;
1204 	}
1205 	atomic_inc(total_ws);
1206 	spin_unlock(ws_lock);
1207 
1208 	/*
1209 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1210 	 * to turn it off here because we might get called from the restricted
1211 	 * context of btrfs_compress_bio/btrfs_compress_pages
1212 	 */
1213 	nofs_flag = memalloc_nofs_save();
1214 	workspace = alloc_workspace(type, level);
1215 	memalloc_nofs_restore(nofs_flag);
1216 
1217 	if (IS_ERR(workspace)) {
1218 		atomic_dec(total_ws);
1219 		wake_up(ws_wait);
1220 
1221 		/*
1222 		 * Do not return the error but go back to waiting. There's a
1223 		 * workspace preallocated for each type and the compression
1224 		 * time is bounded so we get to a workspace eventually. This
1225 		 * makes our caller's life easier.
1226 		 *
1227 		 * To prevent silent and low-probability deadlocks (when the
1228 		 * initial preallocation fails), check if there are any
1229 		 * workspaces at all.
1230 		 */
1231 		if (atomic_read(total_ws) == 0) {
1232 			static DEFINE_RATELIMIT_STATE(_rs,
1233 					/* once per minute */ 60 * HZ,
1234 					/* no burst */ 1);
1235 
1236 			if (__ratelimit(&_rs)) {
1237 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1238 			}
1239 		}
1240 		goto again;
1241 	}
1242 	return workspace;
1243 }
1244 
1245 static struct list_head *get_workspace(int type, int level)
1246 {
1247 	switch (type) {
1248 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1249 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1250 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1251 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1252 	default:
1253 		/*
1254 		 * This can't happen, the type is validated several times
1255 		 * before we get here.
1256 		 */
1257 		BUG();
1258 	}
1259 }
1260 
1261 /*
1262  * put a workspace struct back on the list or free it if we have enough
1263  * idle ones sitting around
1264  */
1265 void btrfs_put_workspace(int type, struct list_head *ws)
1266 {
1267 	struct workspace_manager *wsm;
1268 	struct list_head *idle_ws;
1269 	spinlock_t *ws_lock;
1270 	atomic_t *total_ws;
1271 	wait_queue_head_t *ws_wait;
1272 	int *free_ws;
1273 
1274 	wsm = btrfs_compress_op[type]->workspace_manager;
1275 	idle_ws	 = &wsm->idle_ws;
1276 	ws_lock	 = &wsm->ws_lock;
1277 	total_ws = &wsm->total_ws;
1278 	ws_wait	 = &wsm->ws_wait;
1279 	free_ws	 = &wsm->free_ws;
1280 
1281 	spin_lock(ws_lock);
1282 	if (*free_ws <= num_online_cpus()) {
1283 		list_add(ws, idle_ws);
1284 		(*free_ws)++;
1285 		spin_unlock(ws_lock);
1286 		goto wake;
1287 	}
1288 	spin_unlock(ws_lock);
1289 
1290 	free_workspace(type, ws);
1291 	atomic_dec(total_ws);
1292 wake:
1293 	cond_wake_up(ws_wait);
1294 }
1295 
1296 static void put_workspace(int type, struct list_head *ws)
1297 {
1298 	switch (type) {
1299 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1300 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1301 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1302 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1303 	default:
1304 		/*
1305 		 * This can't happen, the type is validated several times
1306 		 * before we get here.
1307 		 */
1308 		BUG();
1309 	}
1310 }
1311 
1312 /*
1313  * Adjust @level according to the limits of the compression algorithm or
1314  * fallback to default
1315  */
1316 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1317 {
1318 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1319 
1320 	if (level == 0)
1321 		level = ops->default_level;
1322 	else
1323 		level = min(level, ops->max_level);
1324 
1325 	return level;
1326 }
1327 
1328 /*
1329  * Given an address space and start and length, compress the bytes into @pages
1330  * that are allocated on demand.
1331  *
1332  * @type_level is encoded algorithm and level, where level 0 means whatever
1333  * default the algorithm chooses and is opaque here;
1334  * - compression algo are 0-3
1335  * - the level are bits 4-7
1336  *
1337  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1338  * and returns number of actually allocated pages
1339  *
1340  * @total_in is used to return the number of bytes actually read.  It
1341  * may be smaller than the input length if we had to exit early because we
1342  * ran out of room in the pages array or because we cross the
1343  * max_out threshold.
1344  *
1345  * @total_out is an in/out parameter, must be set to the input length and will
1346  * be also used to return the total number of compressed bytes
1347  */
1348 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1349 			 u64 start, struct page **pages,
1350 			 unsigned long *out_pages,
1351 			 unsigned long *total_in,
1352 			 unsigned long *total_out)
1353 {
1354 	int type = btrfs_compress_type(type_level);
1355 	int level = btrfs_compress_level(type_level);
1356 	struct list_head *workspace;
1357 	int ret;
1358 
1359 	level = btrfs_compress_set_level(type, level);
1360 	workspace = get_workspace(type, level);
1361 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1362 					 out_pages, total_in, total_out);
1363 	put_workspace(type, workspace);
1364 	return ret;
1365 }
1366 
1367 static int btrfs_decompress_bio(struct compressed_bio *cb)
1368 {
1369 	struct list_head *workspace;
1370 	int ret;
1371 	int type = cb->compress_type;
1372 
1373 	workspace = get_workspace(type, 0);
1374 	ret = compression_decompress_bio(workspace, cb);
1375 	put_workspace(type, workspace);
1376 
1377 	return ret;
1378 }
1379 
1380 /*
1381  * a less complex decompression routine.  Our compressed data fits in a
1382  * single page, and we want to read a single page out of it.
1383  * start_byte tells us the offset into the compressed data we're interested in
1384  */
1385 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1386 		     unsigned long start_byte, size_t srclen, size_t destlen)
1387 {
1388 	struct list_head *workspace;
1389 	int ret;
1390 
1391 	workspace = get_workspace(type, 0);
1392 	ret = compression_decompress(type, workspace, data_in, dest_page,
1393 				     start_byte, srclen, destlen);
1394 	put_workspace(type, workspace);
1395 
1396 	return ret;
1397 }
1398 
1399 void __init btrfs_init_compress(void)
1400 {
1401 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1402 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1403 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1404 	zstd_init_workspace_manager();
1405 }
1406 
1407 void __cold btrfs_exit_compress(void)
1408 {
1409 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1410 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1411 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1412 	zstd_cleanup_workspace_manager();
1413 }
1414 
1415 /*
1416  * Copy decompressed data from working buffer to pages.
1417  *
1418  * @buf:		The decompressed data buffer
1419  * @buf_len:		The decompressed data length
1420  * @decompressed:	Number of bytes that are already decompressed inside the
1421  * 			compressed extent
1422  * @cb:			The compressed extent descriptor
1423  * @orig_bio:		The original bio that the caller wants to read for
1424  *
1425  * An easier to understand graph is like below:
1426  *
1427  * 		|<- orig_bio ->|     |<- orig_bio->|
1428  * 	|<-------      full decompressed extent      ----->|
1429  * 	|<-----------    @cb range   ---->|
1430  * 	|			|<-- @buf_len -->|
1431  * 	|<--- @decompressed --->|
1432  *
1433  * Note that, @cb can be a subpage of the full decompressed extent, but
1434  * @cb->start always has the same as the orig_file_offset value of the full
1435  * decompressed extent.
1436  *
1437  * When reading compressed extent, we have to read the full compressed extent,
1438  * while @orig_bio may only want part of the range.
1439  * Thus this function will ensure only data covered by @orig_bio will be copied
1440  * to.
1441  *
1442  * Return 0 if we have copied all needed contents for @orig_bio.
1443  * Return >0 if we need continue decompress.
1444  */
1445 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1446 			      struct compressed_bio *cb, u32 decompressed)
1447 {
1448 	struct bio *orig_bio = cb->orig_bio;
1449 	/* Offset inside the full decompressed extent */
1450 	u32 cur_offset;
1451 
1452 	cur_offset = decompressed;
1453 	/* The main loop to do the copy */
1454 	while (cur_offset < decompressed + buf_len) {
1455 		struct bio_vec bvec;
1456 		size_t copy_len;
1457 		u32 copy_start;
1458 		/* Offset inside the full decompressed extent */
1459 		u32 bvec_offset;
1460 
1461 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1462 		/*
1463 		 * cb->start may underflow, but subtracting that value can still
1464 		 * give us correct offset inside the full decompressed extent.
1465 		 */
1466 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1467 
1468 		/* Haven't reached the bvec range, exit */
1469 		if (decompressed + buf_len <= bvec_offset)
1470 			return 1;
1471 
1472 		copy_start = max(cur_offset, bvec_offset);
1473 		copy_len = min(bvec_offset + bvec.bv_len,
1474 			       decompressed + buf_len) - copy_start;
1475 		ASSERT(copy_len);
1476 
1477 		/*
1478 		 * Extra range check to ensure we didn't go beyond
1479 		 * @buf + @buf_len.
1480 		 */
1481 		ASSERT(copy_start - decompressed < buf_len);
1482 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1483 			       buf + copy_start - decompressed, copy_len);
1484 		flush_dcache_page(bvec.bv_page);
1485 		cur_offset += copy_len;
1486 
1487 		bio_advance(orig_bio, copy_len);
1488 		/* Finished the bio */
1489 		if (!orig_bio->bi_iter.bi_size)
1490 			return 0;
1491 	}
1492 	return 1;
1493 }
1494 
1495 /*
1496  * Shannon Entropy calculation
1497  *
1498  * Pure byte distribution analysis fails to determine compressibility of data.
1499  * Try calculating entropy to estimate the average minimum number of bits
1500  * needed to encode the sampled data.
1501  *
1502  * For convenience, return the percentage of needed bits, instead of amount of
1503  * bits directly.
1504  *
1505  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1506  *			    and can be compressible with high probability
1507  *
1508  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1509  *
1510  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1511  */
1512 #define ENTROPY_LVL_ACEPTABLE		(65)
1513 #define ENTROPY_LVL_HIGH		(80)
1514 
1515 /*
1516  * For increasead precision in shannon_entropy calculation,
1517  * let's do pow(n, M) to save more digits after comma:
1518  *
1519  * - maximum int bit length is 64
1520  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1521  * - 13 * 4 = 52 < 64		-> M = 4
1522  *
1523  * So use pow(n, 4).
1524  */
1525 static inline u32 ilog2_w(u64 n)
1526 {
1527 	return ilog2(n * n * n * n);
1528 }
1529 
1530 static u32 shannon_entropy(struct heuristic_ws *ws)
1531 {
1532 	const u32 entropy_max = 8 * ilog2_w(2);
1533 	u32 entropy_sum = 0;
1534 	u32 p, p_base, sz_base;
1535 	u32 i;
1536 
1537 	sz_base = ilog2_w(ws->sample_size);
1538 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1539 		p = ws->bucket[i].count;
1540 		p_base = ilog2_w(p);
1541 		entropy_sum += p * (sz_base - p_base);
1542 	}
1543 
1544 	entropy_sum /= ws->sample_size;
1545 	return entropy_sum * 100 / entropy_max;
1546 }
1547 
1548 #define RADIX_BASE		4U
1549 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1550 
1551 static u8 get4bits(u64 num, int shift) {
1552 	u8 low4bits;
1553 
1554 	num >>= shift;
1555 	/* Reverse order */
1556 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1557 	return low4bits;
1558 }
1559 
1560 /*
1561  * Use 4 bits as radix base
1562  * Use 16 u32 counters for calculating new position in buf array
1563  *
1564  * @array     - array that will be sorted
1565  * @array_buf - buffer array to store sorting results
1566  *              must be equal in size to @array
1567  * @num       - array size
1568  */
1569 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1570 		       int num)
1571 {
1572 	u64 max_num;
1573 	u64 buf_num;
1574 	u32 counters[COUNTERS_SIZE];
1575 	u32 new_addr;
1576 	u32 addr;
1577 	int bitlen;
1578 	int shift;
1579 	int i;
1580 
1581 	/*
1582 	 * Try avoid useless loop iterations for small numbers stored in big
1583 	 * counters.  Example: 48 33 4 ... in 64bit array
1584 	 */
1585 	max_num = array[0].count;
1586 	for (i = 1; i < num; i++) {
1587 		buf_num = array[i].count;
1588 		if (buf_num > max_num)
1589 			max_num = buf_num;
1590 	}
1591 
1592 	buf_num = ilog2(max_num);
1593 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1594 
1595 	shift = 0;
1596 	while (shift < bitlen) {
1597 		memset(counters, 0, sizeof(counters));
1598 
1599 		for (i = 0; i < num; i++) {
1600 			buf_num = array[i].count;
1601 			addr = get4bits(buf_num, shift);
1602 			counters[addr]++;
1603 		}
1604 
1605 		for (i = 1; i < COUNTERS_SIZE; i++)
1606 			counters[i] += counters[i - 1];
1607 
1608 		for (i = num - 1; i >= 0; i--) {
1609 			buf_num = array[i].count;
1610 			addr = get4bits(buf_num, shift);
1611 			counters[addr]--;
1612 			new_addr = counters[addr];
1613 			array_buf[new_addr] = array[i];
1614 		}
1615 
1616 		shift += RADIX_BASE;
1617 
1618 		/*
1619 		 * Normal radix expects to move data from a temporary array, to
1620 		 * the main one.  But that requires some CPU time. Avoid that
1621 		 * by doing another sort iteration to original array instead of
1622 		 * memcpy()
1623 		 */
1624 		memset(counters, 0, sizeof(counters));
1625 
1626 		for (i = 0; i < num; i ++) {
1627 			buf_num = array_buf[i].count;
1628 			addr = get4bits(buf_num, shift);
1629 			counters[addr]++;
1630 		}
1631 
1632 		for (i = 1; i < COUNTERS_SIZE; i++)
1633 			counters[i] += counters[i - 1];
1634 
1635 		for (i = num - 1; i >= 0; i--) {
1636 			buf_num = array_buf[i].count;
1637 			addr = get4bits(buf_num, shift);
1638 			counters[addr]--;
1639 			new_addr = counters[addr];
1640 			array[new_addr] = array_buf[i];
1641 		}
1642 
1643 		shift += RADIX_BASE;
1644 	}
1645 }
1646 
1647 /*
1648  * Size of the core byte set - how many bytes cover 90% of the sample
1649  *
1650  * There are several types of structured binary data that use nearly all byte
1651  * values. The distribution can be uniform and counts in all buckets will be
1652  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1653  *
1654  * Other possibility is normal (Gaussian) distribution, where the data could
1655  * be potentially compressible, but we have to take a few more steps to decide
1656  * how much.
1657  *
1658  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1659  *                       compression algo can easy fix that
1660  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1661  *                       probability is not compressible
1662  */
1663 #define BYTE_CORE_SET_LOW		(64)
1664 #define BYTE_CORE_SET_HIGH		(200)
1665 
1666 static int byte_core_set_size(struct heuristic_ws *ws)
1667 {
1668 	u32 i;
1669 	u32 coreset_sum = 0;
1670 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1671 	struct bucket_item *bucket = ws->bucket;
1672 
1673 	/* Sort in reverse order */
1674 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1675 
1676 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1677 		coreset_sum += bucket[i].count;
1678 
1679 	if (coreset_sum > core_set_threshold)
1680 		return i;
1681 
1682 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1683 		coreset_sum += bucket[i].count;
1684 		if (coreset_sum > core_set_threshold)
1685 			break;
1686 	}
1687 
1688 	return i;
1689 }
1690 
1691 /*
1692  * Count byte values in buckets.
1693  * This heuristic can detect textual data (configs, xml, json, html, etc).
1694  * Because in most text-like data byte set is restricted to limited number of
1695  * possible characters, and that restriction in most cases makes data easy to
1696  * compress.
1697  *
1698  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1699  *	less - compressible
1700  *	more - need additional analysis
1701  */
1702 #define BYTE_SET_THRESHOLD		(64)
1703 
1704 static u32 byte_set_size(const struct heuristic_ws *ws)
1705 {
1706 	u32 i;
1707 	u32 byte_set_size = 0;
1708 
1709 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1710 		if (ws->bucket[i].count > 0)
1711 			byte_set_size++;
1712 	}
1713 
1714 	/*
1715 	 * Continue collecting count of byte values in buckets.  If the byte
1716 	 * set size is bigger then the threshold, it's pointless to continue,
1717 	 * the detection technique would fail for this type of data.
1718 	 */
1719 	for (; i < BUCKET_SIZE; i++) {
1720 		if (ws->bucket[i].count > 0) {
1721 			byte_set_size++;
1722 			if (byte_set_size > BYTE_SET_THRESHOLD)
1723 				return byte_set_size;
1724 		}
1725 	}
1726 
1727 	return byte_set_size;
1728 }
1729 
1730 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1731 {
1732 	const u32 half_of_sample = ws->sample_size / 2;
1733 	const u8 *data = ws->sample;
1734 
1735 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1736 }
1737 
1738 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1739 				     struct heuristic_ws *ws)
1740 {
1741 	struct page *page;
1742 	u64 index, index_end;
1743 	u32 i, curr_sample_pos;
1744 	u8 *in_data;
1745 
1746 	/*
1747 	 * Compression handles the input data by chunks of 128KiB
1748 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1749 	 *
1750 	 * We do the same for the heuristic and loop over the whole range.
1751 	 *
1752 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1753 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1754 	 */
1755 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1756 		end = start + BTRFS_MAX_UNCOMPRESSED;
1757 
1758 	index = start >> PAGE_SHIFT;
1759 	index_end = end >> PAGE_SHIFT;
1760 
1761 	/* Don't miss unaligned end */
1762 	if (!IS_ALIGNED(end, PAGE_SIZE))
1763 		index_end++;
1764 
1765 	curr_sample_pos = 0;
1766 	while (index < index_end) {
1767 		page = find_get_page(inode->i_mapping, index);
1768 		in_data = kmap_local_page(page);
1769 		/* Handle case where the start is not aligned to PAGE_SIZE */
1770 		i = start % PAGE_SIZE;
1771 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1772 			/* Don't sample any garbage from the last page */
1773 			if (start > end - SAMPLING_READ_SIZE)
1774 				break;
1775 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1776 					SAMPLING_READ_SIZE);
1777 			i += SAMPLING_INTERVAL;
1778 			start += SAMPLING_INTERVAL;
1779 			curr_sample_pos += SAMPLING_READ_SIZE;
1780 		}
1781 		kunmap_local(in_data);
1782 		put_page(page);
1783 
1784 		index++;
1785 	}
1786 
1787 	ws->sample_size = curr_sample_pos;
1788 }
1789 
1790 /*
1791  * Compression heuristic.
1792  *
1793  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1794  * quickly (compared to direct compression) detect data characteristics
1795  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1796  * data.
1797  *
1798  * The following types of analysis can be performed:
1799  * - detect mostly zero data
1800  * - detect data with low "byte set" size (text, etc)
1801  * - detect data with low/high "core byte" set
1802  *
1803  * Return non-zero if the compression should be done, 0 otherwise.
1804  */
1805 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1806 {
1807 	struct list_head *ws_list = get_workspace(0, 0);
1808 	struct heuristic_ws *ws;
1809 	u32 i;
1810 	u8 byte;
1811 	int ret = 0;
1812 
1813 	ws = list_entry(ws_list, struct heuristic_ws, list);
1814 
1815 	heuristic_collect_sample(inode, start, end, ws);
1816 
1817 	if (sample_repeated_patterns(ws)) {
1818 		ret = 1;
1819 		goto out;
1820 	}
1821 
1822 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1823 
1824 	for (i = 0; i < ws->sample_size; i++) {
1825 		byte = ws->sample[i];
1826 		ws->bucket[byte].count++;
1827 	}
1828 
1829 	i = byte_set_size(ws);
1830 	if (i < BYTE_SET_THRESHOLD) {
1831 		ret = 2;
1832 		goto out;
1833 	}
1834 
1835 	i = byte_core_set_size(ws);
1836 	if (i <= BYTE_CORE_SET_LOW) {
1837 		ret = 3;
1838 		goto out;
1839 	}
1840 
1841 	if (i >= BYTE_CORE_SET_HIGH) {
1842 		ret = 0;
1843 		goto out;
1844 	}
1845 
1846 	i = shannon_entropy(ws);
1847 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1848 		ret = 4;
1849 		goto out;
1850 	}
1851 
1852 	/*
1853 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1854 	 * needed to give green light to compression.
1855 	 *
1856 	 * For now just assume that compression at that level is not worth the
1857 	 * resources because:
1858 	 *
1859 	 * 1. it is possible to defrag the data later
1860 	 *
1861 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1862 	 * values, every bucket has counter at level ~54. The heuristic would
1863 	 * be confused. This can happen when data have some internal repeated
1864 	 * patterns like "abbacbbc...". This can be detected by analyzing
1865 	 * pairs of bytes, which is too costly.
1866 	 */
1867 	if (i < ENTROPY_LVL_HIGH) {
1868 		ret = 5;
1869 		goto out;
1870 	} else {
1871 		ret = 0;
1872 		goto out;
1873 	}
1874 
1875 out:
1876 	put_workspace(0, ws_list);
1877 	return ret;
1878 }
1879 
1880 /*
1881  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1882  * level, unrecognized string will set the default level
1883  */
1884 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1885 {
1886 	unsigned int level = 0;
1887 	int ret;
1888 
1889 	if (!type)
1890 		return 0;
1891 
1892 	if (str[0] == ':') {
1893 		ret = kstrtouint(str + 1, 10, &level);
1894 		if (ret)
1895 			level = 0;
1896 	}
1897 
1898 	level = btrfs_compress_set_level(type, level);
1899 
1900 	return level;
1901 }
1902