xref: /openbmc/linux/fs/btrfs/compression.c (revision afba8b0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
33 
34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
35 {
36 	switch (type) {
37 	case BTRFS_COMPRESS_ZLIB:
38 	case BTRFS_COMPRESS_LZO:
39 	case BTRFS_COMPRESS_ZSTD:
40 	case BTRFS_COMPRESS_NONE:
41 		return btrfs_compress_types[type];
42 	default:
43 		break;
44 	}
45 
46 	return NULL;
47 }
48 
49 bool btrfs_compress_is_valid_type(const char *str, size_t len)
50 {
51 	int i;
52 
53 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54 		size_t comp_len = strlen(btrfs_compress_types[i]);
55 
56 		if (len < comp_len)
57 			continue;
58 
59 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
60 			return true;
61 	}
62 	return false;
63 }
64 
65 static int compression_compress_pages(int type, struct list_head *ws,
66                struct address_space *mapping, u64 start, struct page **pages,
67                unsigned long *out_pages, unsigned long *total_in,
68                unsigned long *total_out)
69 {
70 	switch (type) {
71 	case BTRFS_COMPRESS_ZLIB:
72 		return zlib_compress_pages(ws, mapping, start, pages,
73 				out_pages, total_in, total_out);
74 	case BTRFS_COMPRESS_LZO:
75 		return lzo_compress_pages(ws, mapping, start, pages,
76 				out_pages, total_in, total_out);
77 	case BTRFS_COMPRESS_ZSTD:
78 		return zstd_compress_pages(ws, mapping, start, pages,
79 				out_pages, total_in, total_out);
80 	case BTRFS_COMPRESS_NONE:
81 	default:
82 		/*
83 		 * This can't happen, the type is validated several times
84 		 * before we get here. As a sane fallback, return what the
85 		 * callers will understand as 'no compression happened'.
86 		 */
87 		return -E2BIG;
88 	}
89 }
90 
91 static int compression_decompress_bio(int type, struct list_head *ws,
92 		struct compressed_bio *cb)
93 {
94 	switch (type) {
95 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
96 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
97 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
98 	case BTRFS_COMPRESS_NONE:
99 	default:
100 		/*
101 		 * This can't happen, the type is validated several times
102 		 * before we get here.
103 		 */
104 		BUG();
105 	}
106 }
107 
108 static int compression_decompress(int type, struct list_head *ws,
109                unsigned char *data_in, struct page *dest_page,
110                unsigned long start_byte, size_t srclen, size_t destlen)
111 {
112 	switch (type) {
113 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
114 						start_byte, srclen, destlen);
115 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
116 						start_byte, srclen, destlen);
117 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
118 						start_byte, srclen, destlen);
119 	case BTRFS_COMPRESS_NONE:
120 	default:
121 		/*
122 		 * This can't happen, the type is validated several times
123 		 * before we get here.
124 		 */
125 		BUG();
126 	}
127 }
128 
129 static int btrfs_decompress_bio(struct compressed_bio *cb);
130 
131 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
132 				      unsigned long disk_size)
133 {
134 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
135 
136 	return sizeof(struct compressed_bio) +
137 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
138 }
139 
140 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
141 				 u64 disk_start)
142 {
143 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
144 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
145 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
146 	struct page *page;
147 	unsigned long i;
148 	char *kaddr;
149 	u8 csum[BTRFS_CSUM_SIZE];
150 	struct compressed_bio *cb = bio->bi_private;
151 	u8 *cb_sum = cb->sums;
152 
153 	if (inode->flags & BTRFS_INODE_NODATASUM)
154 		return 0;
155 
156 	shash->tfm = fs_info->csum_shash;
157 
158 	for (i = 0; i < cb->nr_pages; i++) {
159 		page = cb->compressed_pages[i];
160 
161 		kaddr = kmap_atomic(page);
162 		crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
163 		kunmap_atomic(kaddr);
164 
165 		if (memcmp(&csum, cb_sum, csum_size)) {
166 			btrfs_print_data_csum_error(inode, disk_start,
167 					csum, cb_sum, cb->mirror_num);
168 			if (btrfs_io_bio(bio)->device)
169 				btrfs_dev_stat_inc_and_print(
170 					btrfs_io_bio(bio)->device,
171 					BTRFS_DEV_STAT_CORRUPTION_ERRS);
172 			return -EIO;
173 		}
174 		cb_sum += csum_size;
175 	}
176 	return 0;
177 }
178 
179 /* when we finish reading compressed pages from the disk, we
180  * decompress them and then run the bio end_io routines on the
181  * decompressed pages (in the inode address space).
182  *
183  * This allows the checksumming and other IO error handling routines
184  * to work normally
185  *
186  * The compressed pages are freed here, and it must be run
187  * in process context
188  */
189 static void end_compressed_bio_read(struct bio *bio)
190 {
191 	struct compressed_bio *cb = bio->bi_private;
192 	struct inode *inode;
193 	struct page *page;
194 	unsigned long index;
195 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
196 	int ret = 0;
197 
198 	if (bio->bi_status)
199 		cb->errors = 1;
200 
201 	/* if there are more bios still pending for this compressed
202 	 * extent, just exit
203 	 */
204 	if (!refcount_dec_and_test(&cb->pending_bios))
205 		goto out;
206 
207 	/*
208 	 * Record the correct mirror_num in cb->orig_bio so that
209 	 * read-repair can work properly.
210 	 */
211 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
212 	cb->mirror_num = mirror;
213 
214 	/*
215 	 * Some IO in this cb have failed, just skip checksum as there
216 	 * is no way it could be correct.
217 	 */
218 	if (cb->errors == 1)
219 		goto csum_failed;
220 
221 	inode = cb->inode;
222 	ret = check_compressed_csum(BTRFS_I(inode), bio,
223 				    (u64)bio->bi_iter.bi_sector << 9);
224 	if (ret)
225 		goto csum_failed;
226 
227 	/* ok, we're the last bio for this extent, lets start
228 	 * the decompression.
229 	 */
230 	ret = btrfs_decompress_bio(cb);
231 
232 csum_failed:
233 	if (ret)
234 		cb->errors = 1;
235 
236 	/* release the compressed pages */
237 	index = 0;
238 	for (index = 0; index < cb->nr_pages; index++) {
239 		page = cb->compressed_pages[index];
240 		page->mapping = NULL;
241 		put_page(page);
242 	}
243 
244 	/* do io completion on the original bio */
245 	if (cb->errors) {
246 		bio_io_error(cb->orig_bio);
247 	} else {
248 		struct bio_vec *bvec;
249 		struct bvec_iter_all iter_all;
250 
251 		/*
252 		 * we have verified the checksum already, set page
253 		 * checked so the end_io handlers know about it
254 		 */
255 		ASSERT(!bio_flagged(bio, BIO_CLONED));
256 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
257 			SetPageChecked(bvec->bv_page);
258 
259 		bio_endio(cb->orig_bio);
260 	}
261 
262 	/* finally free the cb struct */
263 	kfree(cb->compressed_pages);
264 	kfree(cb);
265 out:
266 	bio_put(bio);
267 }
268 
269 /*
270  * Clear the writeback bits on all of the file
271  * pages for a compressed write
272  */
273 static noinline void end_compressed_writeback(struct inode *inode,
274 					      const struct compressed_bio *cb)
275 {
276 	unsigned long index = cb->start >> PAGE_SHIFT;
277 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
278 	struct page *pages[16];
279 	unsigned long nr_pages = end_index - index + 1;
280 	int i;
281 	int ret;
282 
283 	if (cb->errors)
284 		mapping_set_error(inode->i_mapping, -EIO);
285 
286 	while (nr_pages > 0) {
287 		ret = find_get_pages_contig(inode->i_mapping, index,
288 				     min_t(unsigned long,
289 				     nr_pages, ARRAY_SIZE(pages)), pages);
290 		if (ret == 0) {
291 			nr_pages -= 1;
292 			index += 1;
293 			continue;
294 		}
295 		for (i = 0; i < ret; i++) {
296 			if (cb->errors)
297 				SetPageError(pages[i]);
298 			end_page_writeback(pages[i]);
299 			put_page(pages[i]);
300 		}
301 		nr_pages -= ret;
302 		index += ret;
303 	}
304 	/* the inode may be gone now */
305 }
306 
307 /*
308  * do the cleanup once all the compressed pages hit the disk.
309  * This will clear writeback on the file pages and free the compressed
310  * pages.
311  *
312  * This also calls the writeback end hooks for the file pages so that
313  * metadata and checksums can be updated in the file.
314  */
315 static void end_compressed_bio_write(struct bio *bio)
316 {
317 	struct compressed_bio *cb = bio->bi_private;
318 	struct inode *inode;
319 	struct page *page;
320 	unsigned long index;
321 
322 	if (bio->bi_status)
323 		cb->errors = 1;
324 
325 	/* if there are more bios still pending for this compressed
326 	 * extent, just exit
327 	 */
328 	if (!refcount_dec_and_test(&cb->pending_bios))
329 		goto out;
330 
331 	/* ok, we're the last bio for this extent, step one is to
332 	 * call back into the FS and do all the end_io operations
333 	 */
334 	inode = cb->inode;
335 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
336 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
337 			cb->start, cb->start + cb->len - 1,
338 			bio->bi_status == BLK_STS_OK);
339 	cb->compressed_pages[0]->mapping = NULL;
340 
341 	end_compressed_writeback(inode, cb);
342 	/* note, our inode could be gone now */
343 
344 	/*
345 	 * release the compressed pages, these came from alloc_page and
346 	 * are not attached to the inode at all
347 	 */
348 	index = 0;
349 	for (index = 0; index < cb->nr_pages; index++) {
350 		page = cb->compressed_pages[index];
351 		page->mapping = NULL;
352 		put_page(page);
353 	}
354 
355 	/* finally free the cb struct */
356 	kfree(cb->compressed_pages);
357 	kfree(cb);
358 out:
359 	bio_put(bio);
360 }
361 
362 /*
363  * worker function to build and submit bios for previously compressed pages.
364  * The corresponding pages in the inode should be marked for writeback
365  * and the compressed pages should have a reference on them for dropping
366  * when the IO is complete.
367  *
368  * This also checksums the file bytes and gets things ready for
369  * the end io hooks.
370  */
371 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
372 				 unsigned long len, u64 disk_start,
373 				 unsigned long compressed_len,
374 				 struct page **compressed_pages,
375 				 unsigned long nr_pages,
376 				 unsigned int write_flags,
377 				 struct cgroup_subsys_state *blkcg_css)
378 {
379 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
380 	struct bio *bio = NULL;
381 	struct compressed_bio *cb;
382 	unsigned long bytes_left;
383 	int pg_index = 0;
384 	struct page *page;
385 	u64 first_byte = disk_start;
386 	blk_status_t ret;
387 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
388 
389 	WARN_ON(!PAGE_ALIGNED(start));
390 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
391 	if (!cb)
392 		return BLK_STS_RESOURCE;
393 	refcount_set(&cb->pending_bios, 0);
394 	cb->errors = 0;
395 	cb->inode = &inode->vfs_inode;
396 	cb->start = start;
397 	cb->len = len;
398 	cb->mirror_num = 0;
399 	cb->compressed_pages = compressed_pages;
400 	cb->compressed_len = compressed_len;
401 	cb->orig_bio = NULL;
402 	cb->nr_pages = nr_pages;
403 
404 	bio = btrfs_bio_alloc(first_byte);
405 	bio->bi_opf = REQ_OP_WRITE | write_flags;
406 	bio->bi_private = cb;
407 	bio->bi_end_io = end_compressed_bio_write;
408 
409 	if (blkcg_css) {
410 		bio->bi_opf |= REQ_CGROUP_PUNT;
411 		kthread_associate_blkcg(blkcg_css);
412 	}
413 	refcount_set(&cb->pending_bios, 1);
414 
415 	/* create and submit bios for the compressed pages */
416 	bytes_left = compressed_len;
417 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
418 		int submit = 0;
419 
420 		page = compressed_pages[pg_index];
421 		page->mapping = inode->vfs_inode.i_mapping;
422 		if (bio->bi_iter.bi_size)
423 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
424 							  0);
425 
426 		page->mapping = NULL;
427 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
428 		    PAGE_SIZE) {
429 			/*
430 			 * inc the count before we submit the bio so
431 			 * we know the end IO handler won't happen before
432 			 * we inc the count.  Otherwise, the cb might get
433 			 * freed before we're done setting it up
434 			 */
435 			refcount_inc(&cb->pending_bios);
436 			ret = btrfs_bio_wq_end_io(fs_info, bio,
437 						  BTRFS_WQ_ENDIO_DATA);
438 			BUG_ON(ret); /* -ENOMEM */
439 
440 			if (!skip_sum) {
441 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
442 				BUG_ON(ret); /* -ENOMEM */
443 			}
444 
445 			ret = btrfs_map_bio(fs_info, bio, 0);
446 			if (ret) {
447 				bio->bi_status = ret;
448 				bio_endio(bio);
449 			}
450 
451 			bio = btrfs_bio_alloc(first_byte);
452 			bio->bi_opf = REQ_OP_WRITE | write_flags;
453 			bio->bi_private = cb;
454 			bio->bi_end_io = end_compressed_bio_write;
455 			if (blkcg_css)
456 				bio->bi_opf |= REQ_CGROUP_PUNT;
457 			bio_add_page(bio, page, PAGE_SIZE, 0);
458 		}
459 		if (bytes_left < PAGE_SIZE) {
460 			btrfs_info(fs_info,
461 					"bytes left %lu compress len %lu nr %lu",
462 			       bytes_left, cb->compressed_len, cb->nr_pages);
463 		}
464 		bytes_left -= PAGE_SIZE;
465 		first_byte += PAGE_SIZE;
466 		cond_resched();
467 	}
468 
469 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
470 	BUG_ON(ret); /* -ENOMEM */
471 
472 	if (!skip_sum) {
473 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
474 		BUG_ON(ret); /* -ENOMEM */
475 	}
476 
477 	ret = btrfs_map_bio(fs_info, bio, 0);
478 	if (ret) {
479 		bio->bi_status = ret;
480 		bio_endio(bio);
481 	}
482 
483 	if (blkcg_css)
484 		kthread_associate_blkcg(NULL);
485 
486 	return 0;
487 }
488 
489 static u64 bio_end_offset(struct bio *bio)
490 {
491 	struct bio_vec *last = bio_last_bvec_all(bio);
492 
493 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
494 }
495 
496 static noinline int add_ra_bio_pages(struct inode *inode,
497 				     u64 compressed_end,
498 				     struct compressed_bio *cb)
499 {
500 	unsigned long end_index;
501 	unsigned long pg_index;
502 	u64 last_offset;
503 	u64 isize = i_size_read(inode);
504 	int ret;
505 	struct page *page;
506 	unsigned long nr_pages = 0;
507 	struct extent_map *em;
508 	struct address_space *mapping = inode->i_mapping;
509 	struct extent_map_tree *em_tree;
510 	struct extent_io_tree *tree;
511 	u64 end;
512 	int misses = 0;
513 
514 	last_offset = bio_end_offset(cb->orig_bio);
515 	em_tree = &BTRFS_I(inode)->extent_tree;
516 	tree = &BTRFS_I(inode)->io_tree;
517 
518 	if (isize == 0)
519 		return 0;
520 
521 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
522 
523 	while (last_offset < compressed_end) {
524 		pg_index = last_offset >> PAGE_SHIFT;
525 
526 		if (pg_index > end_index)
527 			break;
528 
529 		page = xa_load(&mapping->i_pages, pg_index);
530 		if (page && !xa_is_value(page)) {
531 			misses++;
532 			if (misses > 4)
533 				break;
534 			goto next;
535 		}
536 
537 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
538 								 ~__GFP_FS));
539 		if (!page)
540 			break;
541 
542 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
543 			put_page(page);
544 			goto next;
545 		}
546 
547 		end = last_offset + PAGE_SIZE - 1;
548 		/*
549 		 * at this point, we have a locked page in the page cache
550 		 * for these bytes in the file.  But, we have to make
551 		 * sure they map to this compressed extent on disk.
552 		 */
553 		set_page_extent_mapped(page);
554 		lock_extent(tree, last_offset, end);
555 		read_lock(&em_tree->lock);
556 		em = lookup_extent_mapping(em_tree, last_offset,
557 					   PAGE_SIZE);
558 		read_unlock(&em_tree->lock);
559 
560 		if (!em || last_offset < em->start ||
561 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
562 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
563 			free_extent_map(em);
564 			unlock_extent(tree, last_offset, end);
565 			unlock_page(page);
566 			put_page(page);
567 			break;
568 		}
569 		free_extent_map(em);
570 
571 		if (page->index == end_index) {
572 			char *userpage;
573 			size_t zero_offset = offset_in_page(isize);
574 
575 			if (zero_offset) {
576 				int zeros;
577 				zeros = PAGE_SIZE - zero_offset;
578 				userpage = kmap_atomic(page);
579 				memset(userpage + zero_offset, 0, zeros);
580 				flush_dcache_page(page);
581 				kunmap_atomic(userpage);
582 			}
583 		}
584 
585 		ret = bio_add_page(cb->orig_bio, page,
586 				   PAGE_SIZE, 0);
587 
588 		if (ret == PAGE_SIZE) {
589 			nr_pages++;
590 			put_page(page);
591 		} else {
592 			unlock_extent(tree, last_offset, end);
593 			unlock_page(page);
594 			put_page(page);
595 			break;
596 		}
597 next:
598 		last_offset += PAGE_SIZE;
599 	}
600 	return 0;
601 }
602 
603 /*
604  * for a compressed read, the bio we get passed has all the inode pages
605  * in it.  We don't actually do IO on those pages but allocate new ones
606  * to hold the compressed pages on disk.
607  *
608  * bio->bi_iter.bi_sector points to the compressed extent on disk
609  * bio->bi_io_vec points to all of the inode pages
610  *
611  * After the compressed pages are read, we copy the bytes into the
612  * bio we were passed and then call the bio end_io calls
613  */
614 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
615 				 int mirror_num, unsigned long bio_flags)
616 {
617 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
618 	struct extent_map_tree *em_tree;
619 	struct compressed_bio *cb;
620 	unsigned long compressed_len;
621 	unsigned long nr_pages;
622 	unsigned long pg_index;
623 	struct page *page;
624 	struct bio *comp_bio;
625 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
626 	u64 em_len;
627 	u64 em_start;
628 	struct extent_map *em;
629 	blk_status_t ret = BLK_STS_RESOURCE;
630 	int faili = 0;
631 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
632 	u8 *sums;
633 
634 	em_tree = &BTRFS_I(inode)->extent_tree;
635 
636 	/* we need the actual starting offset of this extent in the file */
637 	read_lock(&em_tree->lock);
638 	em = lookup_extent_mapping(em_tree,
639 				   page_offset(bio_first_page_all(bio)),
640 				   PAGE_SIZE);
641 	read_unlock(&em_tree->lock);
642 	if (!em)
643 		return BLK_STS_IOERR;
644 
645 	compressed_len = em->block_len;
646 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
647 	if (!cb)
648 		goto out;
649 
650 	refcount_set(&cb->pending_bios, 0);
651 	cb->errors = 0;
652 	cb->inode = inode;
653 	cb->mirror_num = mirror_num;
654 	sums = cb->sums;
655 
656 	cb->start = em->orig_start;
657 	em_len = em->len;
658 	em_start = em->start;
659 
660 	free_extent_map(em);
661 	em = NULL;
662 
663 	cb->len = bio->bi_iter.bi_size;
664 	cb->compressed_len = compressed_len;
665 	cb->compress_type = extent_compress_type(bio_flags);
666 	cb->orig_bio = bio;
667 
668 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
669 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
670 				       GFP_NOFS);
671 	if (!cb->compressed_pages)
672 		goto fail1;
673 
674 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
675 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
676 							      __GFP_HIGHMEM);
677 		if (!cb->compressed_pages[pg_index]) {
678 			faili = pg_index - 1;
679 			ret = BLK_STS_RESOURCE;
680 			goto fail2;
681 		}
682 	}
683 	faili = nr_pages - 1;
684 	cb->nr_pages = nr_pages;
685 
686 	add_ra_bio_pages(inode, em_start + em_len, cb);
687 
688 	/* include any pages we added in add_ra-bio_pages */
689 	cb->len = bio->bi_iter.bi_size;
690 
691 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
692 	comp_bio->bi_opf = REQ_OP_READ;
693 	comp_bio->bi_private = cb;
694 	comp_bio->bi_end_io = end_compressed_bio_read;
695 	refcount_set(&cb->pending_bios, 1);
696 
697 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
698 		int submit = 0;
699 
700 		page = cb->compressed_pages[pg_index];
701 		page->mapping = inode->i_mapping;
702 		page->index = em_start >> PAGE_SHIFT;
703 
704 		if (comp_bio->bi_iter.bi_size)
705 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
706 							  comp_bio, 0);
707 
708 		page->mapping = NULL;
709 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
710 		    PAGE_SIZE) {
711 			unsigned int nr_sectors;
712 
713 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
714 						  BTRFS_WQ_ENDIO_DATA);
715 			BUG_ON(ret); /* -ENOMEM */
716 
717 			/*
718 			 * inc the count before we submit the bio so
719 			 * we know the end IO handler won't happen before
720 			 * we inc the count.  Otherwise, the cb might get
721 			 * freed before we're done setting it up
722 			 */
723 			refcount_inc(&cb->pending_bios);
724 
725 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
726 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
727 							    (u64)-1, sums);
728 				BUG_ON(ret); /* -ENOMEM */
729 			}
730 
731 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
732 						  fs_info->sectorsize);
733 			sums += csum_size * nr_sectors;
734 
735 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
736 			if (ret) {
737 				comp_bio->bi_status = ret;
738 				bio_endio(comp_bio);
739 			}
740 
741 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
742 			comp_bio->bi_opf = REQ_OP_READ;
743 			comp_bio->bi_private = cb;
744 			comp_bio->bi_end_io = end_compressed_bio_read;
745 
746 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
747 		}
748 		cur_disk_byte += PAGE_SIZE;
749 	}
750 
751 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
752 	BUG_ON(ret); /* -ENOMEM */
753 
754 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
755 		ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
756 		BUG_ON(ret); /* -ENOMEM */
757 	}
758 
759 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
760 	if (ret) {
761 		comp_bio->bi_status = ret;
762 		bio_endio(comp_bio);
763 	}
764 
765 	return 0;
766 
767 fail2:
768 	while (faili >= 0) {
769 		__free_page(cb->compressed_pages[faili]);
770 		faili--;
771 	}
772 
773 	kfree(cb->compressed_pages);
774 fail1:
775 	kfree(cb);
776 out:
777 	free_extent_map(em);
778 	return ret;
779 }
780 
781 /*
782  * Heuristic uses systematic sampling to collect data from the input data
783  * range, the logic can be tuned by the following constants:
784  *
785  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
786  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
787  */
788 #define SAMPLING_READ_SIZE	(16)
789 #define SAMPLING_INTERVAL	(256)
790 
791 /*
792  * For statistical analysis of the input data we consider bytes that form a
793  * Galois Field of 256 objects. Each object has an attribute count, ie. how
794  * many times the object appeared in the sample.
795  */
796 #define BUCKET_SIZE		(256)
797 
798 /*
799  * The size of the sample is based on a statistical sampling rule of thumb.
800  * The common way is to perform sampling tests as long as the number of
801  * elements in each cell is at least 5.
802  *
803  * Instead of 5, we choose 32 to obtain more accurate results.
804  * If the data contain the maximum number of symbols, which is 256, we obtain a
805  * sample size bound by 8192.
806  *
807  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
808  * from up to 512 locations.
809  */
810 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
811 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
812 
813 struct bucket_item {
814 	u32 count;
815 };
816 
817 struct heuristic_ws {
818 	/* Partial copy of input data */
819 	u8 *sample;
820 	u32 sample_size;
821 	/* Buckets store counters for each byte value */
822 	struct bucket_item *bucket;
823 	/* Sorting buffer */
824 	struct bucket_item *bucket_b;
825 	struct list_head list;
826 };
827 
828 static struct workspace_manager heuristic_wsm;
829 
830 static void free_heuristic_ws(struct list_head *ws)
831 {
832 	struct heuristic_ws *workspace;
833 
834 	workspace = list_entry(ws, struct heuristic_ws, list);
835 
836 	kvfree(workspace->sample);
837 	kfree(workspace->bucket);
838 	kfree(workspace->bucket_b);
839 	kfree(workspace);
840 }
841 
842 static struct list_head *alloc_heuristic_ws(unsigned int level)
843 {
844 	struct heuristic_ws *ws;
845 
846 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
847 	if (!ws)
848 		return ERR_PTR(-ENOMEM);
849 
850 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
851 	if (!ws->sample)
852 		goto fail;
853 
854 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
855 	if (!ws->bucket)
856 		goto fail;
857 
858 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
859 	if (!ws->bucket_b)
860 		goto fail;
861 
862 	INIT_LIST_HEAD(&ws->list);
863 	return &ws->list;
864 fail:
865 	free_heuristic_ws(&ws->list);
866 	return ERR_PTR(-ENOMEM);
867 }
868 
869 const struct btrfs_compress_op btrfs_heuristic_compress = {
870 	.workspace_manager = &heuristic_wsm,
871 };
872 
873 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
874 	/* The heuristic is represented as compression type 0 */
875 	&btrfs_heuristic_compress,
876 	&btrfs_zlib_compress,
877 	&btrfs_lzo_compress,
878 	&btrfs_zstd_compress,
879 };
880 
881 static struct list_head *alloc_workspace(int type, unsigned int level)
882 {
883 	switch (type) {
884 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
885 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
886 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
887 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
888 	default:
889 		/*
890 		 * This can't happen, the type is validated several times
891 		 * before we get here.
892 		 */
893 		BUG();
894 	}
895 }
896 
897 static void free_workspace(int type, struct list_head *ws)
898 {
899 	switch (type) {
900 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
901 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
902 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
903 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
904 	default:
905 		/*
906 		 * This can't happen, the type is validated several times
907 		 * before we get here.
908 		 */
909 		BUG();
910 	}
911 }
912 
913 static void btrfs_init_workspace_manager(int type)
914 {
915 	struct workspace_manager *wsm;
916 	struct list_head *workspace;
917 
918 	wsm = btrfs_compress_op[type]->workspace_manager;
919 	INIT_LIST_HEAD(&wsm->idle_ws);
920 	spin_lock_init(&wsm->ws_lock);
921 	atomic_set(&wsm->total_ws, 0);
922 	init_waitqueue_head(&wsm->ws_wait);
923 
924 	/*
925 	 * Preallocate one workspace for each compression type so we can
926 	 * guarantee forward progress in the worst case
927 	 */
928 	workspace = alloc_workspace(type, 0);
929 	if (IS_ERR(workspace)) {
930 		pr_warn(
931 	"BTRFS: cannot preallocate compression workspace, will try later\n");
932 	} else {
933 		atomic_set(&wsm->total_ws, 1);
934 		wsm->free_ws = 1;
935 		list_add(workspace, &wsm->idle_ws);
936 	}
937 }
938 
939 static void btrfs_cleanup_workspace_manager(int type)
940 {
941 	struct workspace_manager *wsman;
942 	struct list_head *ws;
943 
944 	wsman = btrfs_compress_op[type]->workspace_manager;
945 	while (!list_empty(&wsman->idle_ws)) {
946 		ws = wsman->idle_ws.next;
947 		list_del(ws);
948 		free_workspace(type, ws);
949 		atomic_dec(&wsman->total_ws);
950 	}
951 }
952 
953 /*
954  * This finds an available workspace or allocates a new one.
955  * If it's not possible to allocate a new one, waits until there's one.
956  * Preallocation makes a forward progress guarantees and we do not return
957  * errors.
958  */
959 struct list_head *btrfs_get_workspace(int type, unsigned int level)
960 {
961 	struct workspace_manager *wsm;
962 	struct list_head *workspace;
963 	int cpus = num_online_cpus();
964 	unsigned nofs_flag;
965 	struct list_head *idle_ws;
966 	spinlock_t *ws_lock;
967 	atomic_t *total_ws;
968 	wait_queue_head_t *ws_wait;
969 	int *free_ws;
970 
971 	wsm = btrfs_compress_op[type]->workspace_manager;
972 	idle_ws	 = &wsm->idle_ws;
973 	ws_lock	 = &wsm->ws_lock;
974 	total_ws = &wsm->total_ws;
975 	ws_wait	 = &wsm->ws_wait;
976 	free_ws	 = &wsm->free_ws;
977 
978 again:
979 	spin_lock(ws_lock);
980 	if (!list_empty(idle_ws)) {
981 		workspace = idle_ws->next;
982 		list_del(workspace);
983 		(*free_ws)--;
984 		spin_unlock(ws_lock);
985 		return workspace;
986 
987 	}
988 	if (atomic_read(total_ws) > cpus) {
989 		DEFINE_WAIT(wait);
990 
991 		spin_unlock(ws_lock);
992 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
993 		if (atomic_read(total_ws) > cpus && !*free_ws)
994 			schedule();
995 		finish_wait(ws_wait, &wait);
996 		goto again;
997 	}
998 	atomic_inc(total_ws);
999 	spin_unlock(ws_lock);
1000 
1001 	/*
1002 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1003 	 * to turn it off here because we might get called from the restricted
1004 	 * context of btrfs_compress_bio/btrfs_compress_pages
1005 	 */
1006 	nofs_flag = memalloc_nofs_save();
1007 	workspace = alloc_workspace(type, level);
1008 	memalloc_nofs_restore(nofs_flag);
1009 
1010 	if (IS_ERR(workspace)) {
1011 		atomic_dec(total_ws);
1012 		wake_up(ws_wait);
1013 
1014 		/*
1015 		 * Do not return the error but go back to waiting. There's a
1016 		 * workspace preallocated for each type and the compression
1017 		 * time is bounded so we get to a workspace eventually. This
1018 		 * makes our caller's life easier.
1019 		 *
1020 		 * To prevent silent and low-probability deadlocks (when the
1021 		 * initial preallocation fails), check if there are any
1022 		 * workspaces at all.
1023 		 */
1024 		if (atomic_read(total_ws) == 0) {
1025 			static DEFINE_RATELIMIT_STATE(_rs,
1026 					/* once per minute */ 60 * HZ,
1027 					/* no burst */ 1);
1028 
1029 			if (__ratelimit(&_rs)) {
1030 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1031 			}
1032 		}
1033 		goto again;
1034 	}
1035 	return workspace;
1036 }
1037 
1038 static struct list_head *get_workspace(int type, int level)
1039 {
1040 	switch (type) {
1041 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1042 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1043 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1044 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1045 	default:
1046 		/*
1047 		 * This can't happen, the type is validated several times
1048 		 * before we get here.
1049 		 */
1050 		BUG();
1051 	}
1052 }
1053 
1054 /*
1055  * put a workspace struct back on the list or free it if we have enough
1056  * idle ones sitting around
1057  */
1058 void btrfs_put_workspace(int type, struct list_head *ws)
1059 {
1060 	struct workspace_manager *wsm;
1061 	struct list_head *idle_ws;
1062 	spinlock_t *ws_lock;
1063 	atomic_t *total_ws;
1064 	wait_queue_head_t *ws_wait;
1065 	int *free_ws;
1066 
1067 	wsm = btrfs_compress_op[type]->workspace_manager;
1068 	idle_ws	 = &wsm->idle_ws;
1069 	ws_lock	 = &wsm->ws_lock;
1070 	total_ws = &wsm->total_ws;
1071 	ws_wait	 = &wsm->ws_wait;
1072 	free_ws	 = &wsm->free_ws;
1073 
1074 	spin_lock(ws_lock);
1075 	if (*free_ws <= num_online_cpus()) {
1076 		list_add(ws, idle_ws);
1077 		(*free_ws)++;
1078 		spin_unlock(ws_lock);
1079 		goto wake;
1080 	}
1081 	spin_unlock(ws_lock);
1082 
1083 	free_workspace(type, ws);
1084 	atomic_dec(total_ws);
1085 wake:
1086 	cond_wake_up(ws_wait);
1087 }
1088 
1089 static void put_workspace(int type, struct list_head *ws)
1090 {
1091 	switch (type) {
1092 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1093 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1094 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1095 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1096 	default:
1097 		/*
1098 		 * This can't happen, the type is validated several times
1099 		 * before we get here.
1100 		 */
1101 		BUG();
1102 	}
1103 }
1104 
1105 /*
1106  * Adjust @level according to the limits of the compression algorithm or
1107  * fallback to default
1108  */
1109 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1110 {
1111 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1112 
1113 	if (level == 0)
1114 		level = ops->default_level;
1115 	else
1116 		level = min(level, ops->max_level);
1117 
1118 	return level;
1119 }
1120 
1121 /*
1122  * Given an address space and start and length, compress the bytes into @pages
1123  * that are allocated on demand.
1124  *
1125  * @type_level is encoded algorithm and level, where level 0 means whatever
1126  * default the algorithm chooses and is opaque here;
1127  * - compression algo are 0-3
1128  * - the level are bits 4-7
1129  *
1130  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1131  * and returns number of actually allocated pages
1132  *
1133  * @total_in is used to return the number of bytes actually read.  It
1134  * may be smaller than the input length if we had to exit early because we
1135  * ran out of room in the pages array or because we cross the
1136  * max_out threshold.
1137  *
1138  * @total_out is an in/out parameter, must be set to the input length and will
1139  * be also used to return the total number of compressed bytes
1140  *
1141  * @max_out tells us the max number of bytes that we're allowed to
1142  * stuff into pages
1143  */
1144 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1145 			 u64 start, struct page **pages,
1146 			 unsigned long *out_pages,
1147 			 unsigned long *total_in,
1148 			 unsigned long *total_out)
1149 {
1150 	int type = btrfs_compress_type(type_level);
1151 	int level = btrfs_compress_level(type_level);
1152 	struct list_head *workspace;
1153 	int ret;
1154 
1155 	level = btrfs_compress_set_level(type, level);
1156 	workspace = get_workspace(type, level);
1157 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1158 					 out_pages, total_in, total_out);
1159 	put_workspace(type, workspace);
1160 	return ret;
1161 }
1162 
1163 /*
1164  * pages_in is an array of pages with compressed data.
1165  *
1166  * disk_start is the starting logical offset of this array in the file
1167  *
1168  * orig_bio contains the pages from the file that we want to decompress into
1169  *
1170  * srclen is the number of bytes in pages_in
1171  *
1172  * The basic idea is that we have a bio that was created by readpages.
1173  * The pages in the bio are for the uncompressed data, and they may not
1174  * be contiguous.  They all correspond to the range of bytes covered by
1175  * the compressed extent.
1176  */
1177 static int btrfs_decompress_bio(struct compressed_bio *cb)
1178 {
1179 	struct list_head *workspace;
1180 	int ret;
1181 	int type = cb->compress_type;
1182 
1183 	workspace = get_workspace(type, 0);
1184 	ret = compression_decompress_bio(type, workspace, cb);
1185 	put_workspace(type, workspace);
1186 
1187 	return ret;
1188 }
1189 
1190 /*
1191  * a less complex decompression routine.  Our compressed data fits in a
1192  * single page, and we want to read a single page out of it.
1193  * start_byte tells us the offset into the compressed data we're interested in
1194  */
1195 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1196 		     unsigned long start_byte, size_t srclen, size_t destlen)
1197 {
1198 	struct list_head *workspace;
1199 	int ret;
1200 
1201 	workspace = get_workspace(type, 0);
1202 	ret = compression_decompress(type, workspace, data_in, dest_page,
1203 				     start_byte, srclen, destlen);
1204 	put_workspace(type, workspace);
1205 
1206 	return ret;
1207 }
1208 
1209 void __init btrfs_init_compress(void)
1210 {
1211 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1212 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1213 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1214 	zstd_init_workspace_manager();
1215 }
1216 
1217 void __cold btrfs_exit_compress(void)
1218 {
1219 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1220 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1221 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1222 	zstd_cleanup_workspace_manager();
1223 }
1224 
1225 /*
1226  * Copy uncompressed data from working buffer to pages.
1227  *
1228  * buf_start is the byte offset we're of the start of our workspace buffer.
1229  *
1230  * total_out is the last byte of the buffer
1231  */
1232 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1233 			      unsigned long total_out, u64 disk_start,
1234 			      struct bio *bio)
1235 {
1236 	unsigned long buf_offset;
1237 	unsigned long current_buf_start;
1238 	unsigned long start_byte;
1239 	unsigned long prev_start_byte;
1240 	unsigned long working_bytes = total_out - buf_start;
1241 	unsigned long bytes;
1242 	char *kaddr;
1243 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1244 
1245 	/*
1246 	 * start byte is the first byte of the page we're currently
1247 	 * copying into relative to the start of the compressed data.
1248 	 */
1249 	start_byte = page_offset(bvec.bv_page) - disk_start;
1250 
1251 	/* we haven't yet hit data corresponding to this page */
1252 	if (total_out <= start_byte)
1253 		return 1;
1254 
1255 	/*
1256 	 * the start of the data we care about is offset into
1257 	 * the middle of our working buffer
1258 	 */
1259 	if (total_out > start_byte && buf_start < start_byte) {
1260 		buf_offset = start_byte - buf_start;
1261 		working_bytes -= buf_offset;
1262 	} else {
1263 		buf_offset = 0;
1264 	}
1265 	current_buf_start = buf_start;
1266 
1267 	/* copy bytes from the working buffer into the pages */
1268 	while (working_bytes > 0) {
1269 		bytes = min_t(unsigned long, bvec.bv_len,
1270 				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1271 		bytes = min(bytes, working_bytes);
1272 
1273 		kaddr = kmap_atomic(bvec.bv_page);
1274 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1275 		kunmap_atomic(kaddr);
1276 		flush_dcache_page(bvec.bv_page);
1277 
1278 		buf_offset += bytes;
1279 		working_bytes -= bytes;
1280 		current_buf_start += bytes;
1281 
1282 		/* check if we need to pick another page */
1283 		bio_advance(bio, bytes);
1284 		if (!bio->bi_iter.bi_size)
1285 			return 0;
1286 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1287 		prev_start_byte = start_byte;
1288 		start_byte = page_offset(bvec.bv_page) - disk_start;
1289 
1290 		/*
1291 		 * We need to make sure we're only adjusting
1292 		 * our offset into compression working buffer when
1293 		 * we're switching pages.  Otherwise we can incorrectly
1294 		 * keep copying when we were actually done.
1295 		 */
1296 		if (start_byte != prev_start_byte) {
1297 			/*
1298 			 * make sure our new page is covered by this
1299 			 * working buffer
1300 			 */
1301 			if (total_out <= start_byte)
1302 				return 1;
1303 
1304 			/*
1305 			 * the next page in the biovec might not be adjacent
1306 			 * to the last page, but it might still be found
1307 			 * inside this working buffer. bump our offset pointer
1308 			 */
1309 			if (total_out > start_byte &&
1310 			    current_buf_start < start_byte) {
1311 				buf_offset = start_byte - buf_start;
1312 				working_bytes = total_out - start_byte;
1313 				current_buf_start = buf_start + buf_offset;
1314 			}
1315 		}
1316 	}
1317 
1318 	return 1;
1319 }
1320 
1321 /*
1322  * Shannon Entropy calculation
1323  *
1324  * Pure byte distribution analysis fails to determine compressibility of data.
1325  * Try calculating entropy to estimate the average minimum number of bits
1326  * needed to encode the sampled data.
1327  *
1328  * For convenience, return the percentage of needed bits, instead of amount of
1329  * bits directly.
1330  *
1331  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1332  *			    and can be compressible with high probability
1333  *
1334  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1335  *
1336  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1337  */
1338 #define ENTROPY_LVL_ACEPTABLE		(65)
1339 #define ENTROPY_LVL_HIGH		(80)
1340 
1341 /*
1342  * For increasead precision in shannon_entropy calculation,
1343  * let's do pow(n, M) to save more digits after comma:
1344  *
1345  * - maximum int bit length is 64
1346  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1347  * - 13 * 4 = 52 < 64		-> M = 4
1348  *
1349  * So use pow(n, 4).
1350  */
1351 static inline u32 ilog2_w(u64 n)
1352 {
1353 	return ilog2(n * n * n * n);
1354 }
1355 
1356 static u32 shannon_entropy(struct heuristic_ws *ws)
1357 {
1358 	const u32 entropy_max = 8 * ilog2_w(2);
1359 	u32 entropy_sum = 0;
1360 	u32 p, p_base, sz_base;
1361 	u32 i;
1362 
1363 	sz_base = ilog2_w(ws->sample_size);
1364 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1365 		p = ws->bucket[i].count;
1366 		p_base = ilog2_w(p);
1367 		entropy_sum += p * (sz_base - p_base);
1368 	}
1369 
1370 	entropy_sum /= ws->sample_size;
1371 	return entropy_sum * 100 / entropy_max;
1372 }
1373 
1374 #define RADIX_BASE		4U
1375 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1376 
1377 static u8 get4bits(u64 num, int shift) {
1378 	u8 low4bits;
1379 
1380 	num >>= shift;
1381 	/* Reverse order */
1382 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1383 	return low4bits;
1384 }
1385 
1386 /*
1387  * Use 4 bits as radix base
1388  * Use 16 u32 counters for calculating new position in buf array
1389  *
1390  * @array     - array that will be sorted
1391  * @array_buf - buffer array to store sorting results
1392  *              must be equal in size to @array
1393  * @num       - array size
1394  */
1395 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1396 		       int num)
1397 {
1398 	u64 max_num;
1399 	u64 buf_num;
1400 	u32 counters[COUNTERS_SIZE];
1401 	u32 new_addr;
1402 	u32 addr;
1403 	int bitlen;
1404 	int shift;
1405 	int i;
1406 
1407 	/*
1408 	 * Try avoid useless loop iterations for small numbers stored in big
1409 	 * counters.  Example: 48 33 4 ... in 64bit array
1410 	 */
1411 	max_num = array[0].count;
1412 	for (i = 1; i < num; i++) {
1413 		buf_num = array[i].count;
1414 		if (buf_num > max_num)
1415 			max_num = buf_num;
1416 	}
1417 
1418 	buf_num = ilog2(max_num);
1419 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1420 
1421 	shift = 0;
1422 	while (shift < bitlen) {
1423 		memset(counters, 0, sizeof(counters));
1424 
1425 		for (i = 0; i < num; i++) {
1426 			buf_num = array[i].count;
1427 			addr = get4bits(buf_num, shift);
1428 			counters[addr]++;
1429 		}
1430 
1431 		for (i = 1; i < COUNTERS_SIZE; i++)
1432 			counters[i] += counters[i - 1];
1433 
1434 		for (i = num - 1; i >= 0; i--) {
1435 			buf_num = array[i].count;
1436 			addr = get4bits(buf_num, shift);
1437 			counters[addr]--;
1438 			new_addr = counters[addr];
1439 			array_buf[new_addr] = array[i];
1440 		}
1441 
1442 		shift += RADIX_BASE;
1443 
1444 		/*
1445 		 * Normal radix expects to move data from a temporary array, to
1446 		 * the main one.  But that requires some CPU time. Avoid that
1447 		 * by doing another sort iteration to original array instead of
1448 		 * memcpy()
1449 		 */
1450 		memset(counters, 0, sizeof(counters));
1451 
1452 		for (i = 0; i < num; i ++) {
1453 			buf_num = array_buf[i].count;
1454 			addr = get4bits(buf_num, shift);
1455 			counters[addr]++;
1456 		}
1457 
1458 		for (i = 1; i < COUNTERS_SIZE; i++)
1459 			counters[i] += counters[i - 1];
1460 
1461 		for (i = num - 1; i >= 0; i--) {
1462 			buf_num = array_buf[i].count;
1463 			addr = get4bits(buf_num, shift);
1464 			counters[addr]--;
1465 			new_addr = counters[addr];
1466 			array[new_addr] = array_buf[i];
1467 		}
1468 
1469 		shift += RADIX_BASE;
1470 	}
1471 }
1472 
1473 /*
1474  * Size of the core byte set - how many bytes cover 90% of the sample
1475  *
1476  * There are several types of structured binary data that use nearly all byte
1477  * values. The distribution can be uniform and counts in all buckets will be
1478  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1479  *
1480  * Other possibility is normal (Gaussian) distribution, where the data could
1481  * be potentially compressible, but we have to take a few more steps to decide
1482  * how much.
1483  *
1484  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1485  *                       compression algo can easy fix that
1486  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1487  *                       probability is not compressible
1488  */
1489 #define BYTE_CORE_SET_LOW		(64)
1490 #define BYTE_CORE_SET_HIGH		(200)
1491 
1492 static int byte_core_set_size(struct heuristic_ws *ws)
1493 {
1494 	u32 i;
1495 	u32 coreset_sum = 0;
1496 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1497 	struct bucket_item *bucket = ws->bucket;
1498 
1499 	/* Sort in reverse order */
1500 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1501 
1502 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1503 		coreset_sum += bucket[i].count;
1504 
1505 	if (coreset_sum > core_set_threshold)
1506 		return i;
1507 
1508 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1509 		coreset_sum += bucket[i].count;
1510 		if (coreset_sum > core_set_threshold)
1511 			break;
1512 	}
1513 
1514 	return i;
1515 }
1516 
1517 /*
1518  * Count byte values in buckets.
1519  * This heuristic can detect textual data (configs, xml, json, html, etc).
1520  * Because in most text-like data byte set is restricted to limited number of
1521  * possible characters, and that restriction in most cases makes data easy to
1522  * compress.
1523  *
1524  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1525  *	less - compressible
1526  *	more - need additional analysis
1527  */
1528 #define BYTE_SET_THRESHOLD		(64)
1529 
1530 static u32 byte_set_size(const struct heuristic_ws *ws)
1531 {
1532 	u32 i;
1533 	u32 byte_set_size = 0;
1534 
1535 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1536 		if (ws->bucket[i].count > 0)
1537 			byte_set_size++;
1538 	}
1539 
1540 	/*
1541 	 * Continue collecting count of byte values in buckets.  If the byte
1542 	 * set size is bigger then the threshold, it's pointless to continue,
1543 	 * the detection technique would fail for this type of data.
1544 	 */
1545 	for (; i < BUCKET_SIZE; i++) {
1546 		if (ws->bucket[i].count > 0) {
1547 			byte_set_size++;
1548 			if (byte_set_size > BYTE_SET_THRESHOLD)
1549 				return byte_set_size;
1550 		}
1551 	}
1552 
1553 	return byte_set_size;
1554 }
1555 
1556 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1557 {
1558 	const u32 half_of_sample = ws->sample_size / 2;
1559 	const u8 *data = ws->sample;
1560 
1561 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1562 }
1563 
1564 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1565 				     struct heuristic_ws *ws)
1566 {
1567 	struct page *page;
1568 	u64 index, index_end;
1569 	u32 i, curr_sample_pos;
1570 	u8 *in_data;
1571 
1572 	/*
1573 	 * Compression handles the input data by chunks of 128KiB
1574 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1575 	 *
1576 	 * We do the same for the heuristic and loop over the whole range.
1577 	 *
1578 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1579 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1580 	 */
1581 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1582 		end = start + BTRFS_MAX_UNCOMPRESSED;
1583 
1584 	index = start >> PAGE_SHIFT;
1585 	index_end = end >> PAGE_SHIFT;
1586 
1587 	/* Don't miss unaligned end */
1588 	if (!IS_ALIGNED(end, PAGE_SIZE))
1589 		index_end++;
1590 
1591 	curr_sample_pos = 0;
1592 	while (index < index_end) {
1593 		page = find_get_page(inode->i_mapping, index);
1594 		in_data = kmap(page);
1595 		/* Handle case where the start is not aligned to PAGE_SIZE */
1596 		i = start % PAGE_SIZE;
1597 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1598 			/* Don't sample any garbage from the last page */
1599 			if (start > end - SAMPLING_READ_SIZE)
1600 				break;
1601 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1602 					SAMPLING_READ_SIZE);
1603 			i += SAMPLING_INTERVAL;
1604 			start += SAMPLING_INTERVAL;
1605 			curr_sample_pos += SAMPLING_READ_SIZE;
1606 		}
1607 		kunmap(page);
1608 		put_page(page);
1609 
1610 		index++;
1611 	}
1612 
1613 	ws->sample_size = curr_sample_pos;
1614 }
1615 
1616 /*
1617  * Compression heuristic.
1618  *
1619  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1620  * quickly (compared to direct compression) detect data characteristics
1621  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1622  * data.
1623  *
1624  * The following types of analysis can be performed:
1625  * - detect mostly zero data
1626  * - detect data with low "byte set" size (text, etc)
1627  * - detect data with low/high "core byte" set
1628  *
1629  * Return non-zero if the compression should be done, 0 otherwise.
1630  */
1631 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1632 {
1633 	struct list_head *ws_list = get_workspace(0, 0);
1634 	struct heuristic_ws *ws;
1635 	u32 i;
1636 	u8 byte;
1637 	int ret = 0;
1638 
1639 	ws = list_entry(ws_list, struct heuristic_ws, list);
1640 
1641 	heuristic_collect_sample(inode, start, end, ws);
1642 
1643 	if (sample_repeated_patterns(ws)) {
1644 		ret = 1;
1645 		goto out;
1646 	}
1647 
1648 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1649 
1650 	for (i = 0; i < ws->sample_size; i++) {
1651 		byte = ws->sample[i];
1652 		ws->bucket[byte].count++;
1653 	}
1654 
1655 	i = byte_set_size(ws);
1656 	if (i < BYTE_SET_THRESHOLD) {
1657 		ret = 2;
1658 		goto out;
1659 	}
1660 
1661 	i = byte_core_set_size(ws);
1662 	if (i <= BYTE_CORE_SET_LOW) {
1663 		ret = 3;
1664 		goto out;
1665 	}
1666 
1667 	if (i >= BYTE_CORE_SET_HIGH) {
1668 		ret = 0;
1669 		goto out;
1670 	}
1671 
1672 	i = shannon_entropy(ws);
1673 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1674 		ret = 4;
1675 		goto out;
1676 	}
1677 
1678 	/*
1679 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1680 	 * needed to give green light to compression.
1681 	 *
1682 	 * For now just assume that compression at that level is not worth the
1683 	 * resources because:
1684 	 *
1685 	 * 1. it is possible to defrag the data later
1686 	 *
1687 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1688 	 * values, every bucket has counter at level ~54. The heuristic would
1689 	 * be confused. This can happen when data have some internal repeated
1690 	 * patterns like "abbacbbc...". This can be detected by analyzing
1691 	 * pairs of bytes, which is too costly.
1692 	 */
1693 	if (i < ENTROPY_LVL_HIGH) {
1694 		ret = 5;
1695 		goto out;
1696 	} else {
1697 		ret = 0;
1698 		goto out;
1699 	}
1700 
1701 out:
1702 	put_workspace(0, ws_list);
1703 	return ret;
1704 }
1705 
1706 /*
1707  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1708  * level, unrecognized string will set the default level
1709  */
1710 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1711 {
1712 	unsigned int level = 0;
1713 	int ret;
1714 
1715 	if (!type)
1716 		return 0;
1717 
1718 	if (str[0] == ':') {
1719 		ret = kstrtouint(str + 1, 10, &level);
1720 		if (ret)
1721 			level = 0;
1722 	}
1723 
1724 	level = btrfs_compress_set_level(type, level);
1725 
1726 	return level;
1727 }
1728