xref: /openbmc/linux/fs/btrfs/compression.c (revision ae0be8de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
29 
30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31 
32 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33 {
34 	switch (type) {
35 	case BTRFS_COMPRESS_ZLIB:
36 	case BTRFS_COMPRESS_LZO:
37 	case BTRFS_COMPRESS_ZSTD:
38 	case BTRFS_COMPRESS_NONE:
39 		return btrfs_compress_types[type];
40 	}
41 
42 	return NULL;
43 }
44 
45 static int btrfs_decompress_bio(struct compressed_bio *cb);
46 
47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 				      unsigned long disk_size)
49 {
50 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51 
52 	return sizeof(struct compressed_bio) +
53 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 }
55 
56 static int check_compressed_csum(struct btrfs_inode *inode,
57 				 struct compressed_bio *cb,
58 				 u64 disk_start)
59 {
60 	int ret;
61 	struct page *page;
62 	unsigned long i;
63 	char *kaddr;
64 	u32 csum;
65 	u32 *cb_sum = &cb->sums;
66 
67 	if (inode->flags & BTRFS_INODE_NODATASUM)
68 		return 0;
69 
70 	for (i = 0; i < cb->nr_pages; i++) {
71 		page = cb->compressed_pages[i];
72 		csum = ~(u32)0;
73 
74 		kaddr = kmap_atomic(page);
75 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76 		btrfs_csum_final(csum, (u8 *)&csum);
77 		kunmap_atomic(kaddr);
78 
79 		if (csum != *cb_sum) {
80 			btrfs_print_data_csum_error(inode, disk_start, csum,
81 					*cb_sum, cb->mirror_num);
82 			ret = -EIO;
83 			goto fail;
84 		}
85 		cb_sum++;
86 
87 	}
88 	ret = 0;
89 fail:
90 	return ret;
91 }
92 
93 /* when we finish reading compressed pages from the disk, we
94  * decompress them and then run the bio end_io routines on the
95  * decompressed pages (in the inode address space).
96  *
97  * This allows the checksumming and other IO error handling routines
98  * to work normally
99  *
100  * The compressed pages are freed here, and it must be run
101  * in process context
102  */
103 static void end_compressed_bio_read(struct bio *bio)
104 {
105 	struct compressed_bio *cb = bio->bi_private;
106 	struct inode *inode;
107 	struct page *page;
108 	unsigned long index;
109 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110 	int ret = 0;
111 
112 	if (bio->bi_status)
113 		cb->errors = 1;
114 
115 	/* if there are more bios still pending for this compressed
116 	 * extent, just exit
117 	 */
118 	if (!refcount_dec_and_test(&cb->pending_bios))
119 		goto out;
120 
121 	/*
122 	 * Record the correct mirror_num in cb->orig_bio so that
123 	 * read-repair can work properly.
124 	 */
125 	ASSERT(btrfs_io_bio(cb->orig_bio));
126 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 	cb->mirror_num = mirror;
128 
129 	/*
130 	 * Some IO in this cb have failed, just skip checksum as there
131 	 * is no way it could be correct.
132 	 */
133 	if (cb->errors == 1)
134 		goto csum_failed;
135 
136 	inode = cb->inode;
137 	ret = check_compressed_csum(BTRFS_I(inode), cb,
138 				    (u64)bio->bi_iter.bi_sector << 9);
139 	if (ret)
140 		goto csum_failed;
141 
142 	/* ok, we're the last bio for this extent, lets start
143 	 * the decompression.
144 	 */
145 	ret = btrfs_decompress_bio(cb);
146 
147 csum_failed:
148 	if (ret)
149 		cb->errors = 1;
150 
151 	/* release the compressed pages */
152 	index = 0;
153 	for (index = 0; index < cb->nr_pages; index++) {
154 		page = cb->compressed_pages[index];
155 		page->mapping = NULL;
156 		put_page(page);
157 	}
158 
159 	/* do io completion on the original bio */
160 	if (cb->errors) {
161 		bio_io_error(cb->orig_bio);
162 	} else {
163 		int i;
164 		struct bio_vec *bvec;
165 		struct bvec_iter_all iter_all;
166 
167 		/*
168 		 * we have verified the checksum already, set page
169 		 * checked so the end_io handlers know about it
170 		 */
171 		ASSERT(!bio_flagged(bio, BIO_CLONED));
172 		bio_for_each_segment_all(bvec, cb->orig_bio, i, iter_all)
173 			SetPageChecked(bvec->bv_page);
174 
175 		bio_endio(cb->orig_bio);
176 	}
177 
178 	/* finally free the cb struct */
179 	kfree(cb->compressed_pages);
180 	kfree(cb);
181 out:
182 	bio_put(bio);
183 }
184 
185 /*
186  * Clear the writeback bits on all of the file
187  * pages for a compressed write
188  */
189 static noinline void end_compressed_writeback(struct inode *inode,
190 					      const struct compressed_bio *cb)
191 {
192 	unsigned long index = cb->start >> PAGE_SHIFT;
193 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
194 	struct page *pages[16];
195 	unsigned long nr_pages = end_index - index + 1;
196 	int i;
197 	int ret;
198 
199 	if (cb->errors)
200 		mapping_set_error(inode->i_mapping, -EIO);
201 
202 	while (nr_pages > 0) {
203 		ret = find_get_pages_contig(inode->i_mapping, index,
204 				     min_t(unsigned long,
205 				     nr_pages, ARRAY_SIZE(pages)), pages);
206 		if (ret == 0) {
207 			nr_pages -= 1;
208 			index += 1;
209 			continue;
210 		}
211 		for (i = 0; i < ret; i++) {
212 			if (cb->errors)
213 				SetPageError(pages[i]);
214 			end_page_writeback(pages[i]);
215 			put_page(pages[i]);
216 		}
217 		nr_pages -= ret;
218 		index += ret;
219 	}
220 	/* the inode may be gone now */
221 }
222 
223 /*
224  * do the cleanup once all the compressed pages hit the disk.
225  * This will clear writeback on the file pages and free the compressed
226  * pages.
227  *
228  * This also calls the writeback end hooks for the file pages so that
229  * metadata and checksums can be updated in the file.
230  */
231 static void end_compressed_bio_write(struct bio *bio)
232 {
233 	struct compressed_bio *cb = bio->bi_private;
234 	struct inode *inode;
235 	struct page *page;
236 	unsigned long index;
237 
238 	if (bio->bi_status)
239 		cb->errors = 1;
240 
241 	/* if there are more bios still pending for this compressed
242 	 * extent, just exit
243 	 */
244 	if (!refcount_dec_and_test(&cb->pending_bios))
245 		goto out;
246 
247 	/* ok, we're the last bio for this extent, step one is to
248 	 * call back into the FS and do all the end_io operations
249 	 */
250 	inode = cb->inode;
251 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
252 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
253 			cb->start, cb->start + cb->len - 1,
254 			bio->bi_status ? BLK_STS_OK : BLK_STS_NOTSUPP);
255 	cb->compressed_pages[0]->mapping = NULL;
256 
257 	end_compressed_writeback(inode, cb);
258 	/* note, our inode could be gone now */
259 
260 	/*
261 	 * release the compressed pages, these came from alloc_page and
262 	 * are not attached to the inode at all
263 	 */
264 	index = 0;
265 	for (index = 0; index < cb->nr_pages; index++) {
266 		page = cb->compressed_pages[index];
267 		page->mapping = NULL;
268 		put_page(page);
269 	}
270 
271 	/* finally free the cb struct */
272 	kfree(cb->compressed_pages);
273 	kfree(cb);
274 out:
275 	bio_put(bio);
276 }
277 
278 /*
279  * worker function to build and submit bios for previously compressed pages.
280  * The corresponding pages in the inode should be marked for writeback
281  * and the compressed pages should have a reference on them for dropping
282  * when the IO is complete.
283  *
284  * This also checksums the file bytes and gets things ready for
285  * the end io hooks.
286  */
287 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
288 				 unsigned long len, u64 disk_start,
289 				 unsigned long compressed_len,
290 				 struct page **compressed_pages,
291 				 unsigned long nr_pages,
292 				 unsigned int write_flags)
293 {
294 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
295 	struct bio *bio = NULL;
296 	struct compressed_bio *cb;
297 	unsigned long bytes_left;
298 	int pg_index = 0;
299 	struct page *page;
300 	u64 first_byte = disk_start;
301 	struct block_device *bdev;
302 	blk_status_t ret;
303 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
304 
305 	WARN_ON(!PAGE_ALIGNED(start));
306 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
307 	if (!cb)
308 		return BLK_STS_RESOURCE;
309 	refcount_set(&cb->pending_bios, 0);
310 	cb->errors = 0;
311 	cb->inode = inode;
312 	cb->start = start;
313 	cb->len = len;
314 	cb->mirror_num = 0;
315 	cb->compressed_pages = compressed_pages;
316 	cb->compressed_len = compressed_len;
317 	cb->orig_bio = NULL;
318 	cb->nr_pages = nr_pages;
319 
320 	bdev = fs_info->fs_devices->latest_bdev;
321 
322 	bio = btrfs_bio_alloc(bdev, first_byte);
323 	bio->bi_opf = REQ_OP_WRITE | write_flags;
324 	bio->bi_private = cb;
325 	bio->bi_end_io = end_compressed_bio_write;
326 	refcount_set(&cb->pending_bios, 1);
327 
328 	/* create and submit bios for the compressed pages */
329 	bytes_left = compressed_len;
330 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
331 		int submit = 0;
332 
333 		page = compressed_pages[pg_index];
334 		page->mapping = inode->i_mapping;
335 		if (bio->bi_iter.bi_size)
336 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
337 							  0);
338 
339 		page->mapping = NULL;
340 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
341 		    PAGE_SIZE) {
342 			/*
343 			 * inc the count before we submit the bio so
344 			 * we know the end IO handler won't happen before
345 			 * we inc the count.  Otherwise, the cb might get
346 			 * freed before we're done setting it up
347 			 */
348 			refcount_inc(&cb->pending_bios);
349 			ret = btrfs_bio_wq_end_io(fs_info, bio,
350 						  BTRFS_WQ_ENDIO_DATA);
351 			BUG_ON(ret); /* -ENOMEM */
352 
353 			if (!skip_sum) {
354 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
355 				BUG_ON(ret); /* -ENOMEM */
356 			}
357 
358 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
359 			if (ret) {
360 				bio->bi_status = ret;
361 				bio_endio(bio);
362 			}
363 
364 			bio = btrfs_bio_alloc(bdev, first_byte);
365 			bio->bi_opf = REQ_OP_WRITE | write_flags;
366 			bio->bi_private = cb;
367 			bio->bi_end_io = end_compressed_bio_write;
368 			bio_add_page(bio, page, PAGE_SIZE, 0);
369 		}
370 		if (bytes_left < PAGE_SIZE) {
371 			btrfs_info(fs_info,
372 					"bytes left %lu compress len %lu nr %lu",
373 			       bytes_left, cb->compressed_len, cb->nr_pages);
374 		}
375 		bytes_left -= PAGE_SIZE;
376 		first_byte += PAGE_SIZE;
377 		cond_resched();
378 	}
379 
380 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
381 	BUG_ON(ret); /* -ENOMEM */
382 
383 	if (!skip_sum) {
384 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
385 		BUG_ON(ret); /* -ENOMEM */
386 	}
387 
388 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
389 	if (ret) {
390 		bio->bi_status = ret;
391 		bio_endio(bio);
392 	}
393 
394 	return 0;
395 }
396 
397 static u64 bio_end_offset(struct bio *bio)
398 {
399 	struct bio_vec *last = bio_last_bvec_all(bio);
400 
401 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
402 }
403 
404 static noinline int add_ra_bio_pages(struct inode *inode,
405 				     u64 compressed_end,
406 				     struct compressed_bio *cb)
407 {
408 	unsigned long end_index;
409 	unsigned long pg_index;
410 	u64 last_offset;
411 	u64 isize = i_size_read(inode);
412 	int ret;
413 	struct page *page;
414 	unsigned long nr_pages = 0;
415 	struct extent_map *em;
416 	struct address_space *mapping = inode->i_mapping;
417 	struct extent_map_tree *em_tree;
418 	struct extent_io_tree *tree;
419 	u64 end;
420 	int misses = 0;
421 
422 	last_offset = bio_end_offset(cb->orig_bio);
423 	em_tree = &BTRFS_I(inode)->extent_tree;
424 	tree = &BTRFS_I(inode)->io_tree;
425 
426 	if (isize == 0)
427 		return 0;
428 
429 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
430 
431 	while (last_offset < compressed_end) {
432 		pg_index = last_offset >> PAGE_SHIFT;
433 
434 		if (pg_index > end_index)
435 			break;
436 
437 		page = xa_load(&mapping->i_pages, pg_index);
438 		if (page && !xa_is_value(page)) {
439 			misses++;
440 			if (misses > 4)
441 				break;
442 			goto next;
443 		}
444 
445 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
446 								 ~__GFP_FS));
447 		if (!page)
448 			break;
449 
450 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
451 			put_page(page);
452 			goto next;
453 		}
454 
455 		end = last_offset + PAGE_SIZE - 1;
456 		/*
457 		 * at this point, we have a locked page in the page cache
458 		 * for these bytes in the file.  But, we have to make
459 		 * sure they map to this compressed extent on disk.
460 		 */
461 		set_page_extent_mapped(page);
462 		lock_extent(tree, last_offset, end);
463 		read_lock(&em_tree->lock);
464 		em = lookup_extent_mapping(em_tree, last_offset,
465 					   PAGE_SIZE);
466 		read_unlock(&em_tree->lock);
467 
468 		if (!em || last_offset < em->start ||
469 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
470 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
471 			free_extent_map(em);
472 			unlock_extent(tree, last_offset, end);
473 			unlock_page(page);
474 			put_page(page);
475 			break;
476 		}
477 		free_extent_map(em);
478 
479 		if (page->index == end_index) {
480 			char *userpage;
481 			size_t zero_offset = offset_in_page(isize);
482 
483 			if (zero_offset) {
484 				int zeros;
485 				zeros = PAGE_SIZE - zero_offset;
486 				userpage = kmap_atomic(page);
487 				memset(userpage + zero_offset, 0, zeros);
488 				flush_dcache_page(page);
489 				kunmap_atomic(userpage);
490 			}
491 		}
492 
493 		ret = bio_add_page(cb->orig_bio, page,
494 				   PAGE_SIZE, 0);
495 
496 		if (ret == PAGE_SIZE) {
497 			nr_pages++;
498 			put_page(page);
499 		} else {
500 			unlock_extent(tree, last_offset, end);
501 			unlock_page(page);
502 			put_page(page);
503 			break;
504 		}
505 next:
506 		last_offset += PAGE_SIZE;
507 	}
508 	return 0;
509 }
510 
511 /*
512  * for a compressed read, the bio we get passed has all the inode pages
513  * in it.  We don't actually do IO on those pages but allocate new ones
514  * to hold the compressed pages on disk.
515  *
516  * bio->bi_iter.bi_sector points to the compressed extent on disk
517  * bio->bi_io_vec points to all of the inode pages
518  *
519  * After the compressed pages are read, we copy the bytes into the
520  * bio we were passed and then call the bio end_io calls
521  */
522 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
523 				 int mirror_num, unsigned long bio_flags)
524 {
525 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
526 	struct extent_map_tree *em_tree;
527 	struct compressed_bio *cb;
528 	unsigned long compressed_len;
529 	unsigned long nr_pages;
530 	unsigned long pg_index;
531 	struct page *page;
532 	struct block_device *bdev;
533 	struct bio *comp_bio;
534 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
535 	u64 em_len;
536 	u64 em_start;
537 	struct extent_map *em;
538 	blk_status_t ret = BLK_STS_RESOURCE;
539 	int faili = 0;
540 	u32 *sums;
541 
542 	em_tree = &BTRFS_I(inode)->extent_tree;
543 
544 	/* we need the actual starting offset of this extent in the file */
545 	read_lock(&em_tree->lock);
546 	em = lookup_extent_mapping(em_tree,
547 				   page_offset(bio_first_page_all(bio)),
548 				   PAGE_SIZE);
549 	read_unlock(&em_tree->lock);
550 	if (!em)
551 		return BLK_STS_IOERR;
552 
553 	compressed_len = em->block_len;
554 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
555 	if (!cb)
556 		goto out;
557 
558 	refcount_set(&cb->pending_bios, 0);
559 	cb->errors = 0;
560 	cb->inode = inode;
561 	cb->mirror_num = mirror_num;
562 	sums = &cb->sums;
563 
564 	cb->start = em->orig_start;
565 	em_len = em->len;
566 	em_start = em->start;
567 
568 	free_extent_map(em);
569 	em = NULL;
570 
571 	cb->len = bio->bi_iter.bi_size;
572 	cb->compressed_len = compressed_len;
573 	cb->compress_type = extent_compress_type(bio_flags);
574 	cb->orig_bio = bio;
575 
576 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
577 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
578 				       GFP_NOFS);
579 	if (!cb->compressed_pages)
580 		goto fail1;
581 
582 	bdev = fs_info->fs_devices->latest_bdev;
583 
584 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
585 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
586 							      __GFP_HIGHMEM);
587 		if (!cb->compressed_pages[pg_index]) {
588 			faili = pg_index - 1;
589 			ret = BLK_STS_RESOURCE;
590 			goto fail2;
591 		}
592 	}
593 	faili = nr_pages - 1;
594 	cb->nr_pages = nr_pages;
595 
596 	add_ra_bio_pages(inode, em_start + em_len, cb);
597 
598 	/* include any pages we added in add_ra-bio_pages */
599 	cb->len = bio->bi_iter.bi_size;
600 
601 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
602 	comp_bio->bi_opf = REQ_OP_READ;
603 	comp_bio->bi_private = cb;
604 	comp_bio->bi_end_io = end_compressed_bio_read;
605 	refcount_set(&cb->pending_bios, 1);
606 
607 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
608 		int submit = 0;
609 
610 		page = cb->compressed_pages[pg_index];
611 		page->mapping = inode->i_mapping;
612 		page->index = em_start >> PAGE_SHIFT;
613 
614 		if (comp_bio->bi_iter.bi_size)
615 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
616 							  comp_bio, 0);
617 
618 		page->mapping = NULL;
619 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
620 		    PAGE_SIZE) {
621 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
622 						  BTRFS_WQ_ENDIO_DATA);
623 			BUG_ON(ret); /* -ENOMEM */
624 
625 			/*
626 			 * inc the count before we submit the bio so
627 			 * we know the end IO handler won't happen before
628 			 * we inc the count.  Otherwise, the cb might get
629 			 * freed before we're done setting it up
630 			 */
631 			refcount_inc(&cb->pending_bios);
632 
633 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
634 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
635 							    sums);
636 				BUG_ON(ret); /* -ENOMEM */
637 			}
638 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
639 					     fs_info->sectorsize);
640 
641 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
642 			if (ret) {
643 				comp_bio->bi_status = ret;
644 				bio_endio(comp_bio);
645 			}
646 
647 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
648 			comp_bio->bi_opf = REQ_OP_READ;
649 			comp_bio->bi_private = cb;
650 			comp_bio->bi_end_io = end_compressed_bio_read;
651 
652 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
653 		}
654 		cur_disk_byte += PAGE_SIZE;
655 	}
656 
657 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
658 	BUG_ON(ret); /* -ENOMEM */
659 
660 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
661 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
662 		BUG_ON(ret); /* -ENOMEM */
663 	}
664 
665 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
666 	if (ret) {
667 		comp_bio->bi_status = ret;
668 		bio_endio(comp_bio);
669 	}
670 
671 	return 0;
672 
673 fail2:
674 	while (faili >= 0) {
675 		__free_page(cb->compressed_pages[faili]);
676 		faili--;
677 	}
678 
679 	kfree(cb->compressed_pages);
680 fail1:
681 	kfree(cb);
682 out:
683 	free_extent_map(em);
684 	return ret;
685 }
686 
687 /*
688  * Heuristic uses systematic sampling to collect data from the input data
689  * range, the logic can be tuned by the following constants:
690  *
691  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
692  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
693  */
694 #define SAMPLING_READ_SIZE	(16)
695 #define SAMPLING_INTERVAL	(256)
696 
697 /*
698  * For statistical analysis of the input data we consider bytes that form a
699  * Galois Field of 256 objects. Each object has an attribute count, ie. how
700  * many times the object appeared in the sample.
701  */
702 #define BUCKET_SIZE		(256)
703 
704 /*
705  * The size of the sample is based on a statistical sampling rule of thumb.
706  * The common way is to perform sampling tests as long as the number of
707  * elements in each cell is at least 5.
708  *
709  * Instead of 5, we choose 32 to obtain more accurate results.
710  * If the data contain the maximum number of symbols, which is 256, we obtain a
711  * sample size bound by 8192.
712  *
713  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
714  * from up to 512 locations.
715  */
716 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
717 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
718 
719 struct bucket_item {
720 	u32 count;
721 };
722 
723 struct heuristic_ws {
724 	/* Partial copy of input data */
725 	u8 *sample;
726 	u32 sample_size;
727 	/* Buckets store counters for each byte value */
728 	struct bucket_item *bucket;
729 	/* Sorting buffer */
730 	struct bucket_item *bucket_b;
731 	struct list_head list;
732 };
733 
734 static struct workspace_manager heuristic_wsm;
735 
736 static void heuristic_init_workspace_manager(void)
737 {
738 	btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
739 }
740 
741 static void heuristic_cleanup_workspace_manager(void)
742 {
743 	btrfs_cleanup_workspace_manager(&heuristic_wsm);
744 }
745 
746 static struct list_head *heuristic_get_workspace(unsigned int level)
747 {
748 	return btrfs_get_workspace(&heuristic_wsm, level);
749 }
750 
751 static void heuristic_put_workspace(struct list_head *ws)
752 {
753 	btrfs_put_workspace(&heuristic_wsm, ws);
754 }
755 
756 static void free_heuristic_ws(struct list_head *ws)
757 {
758 	struct heuristic_ws *workspace;
759 
760 	workspace = list_entry(ws, struct heuristic_ws, list);
761 
762 	kvfree(workspace->sample);
763 	kfree(workspace->bucket);
764 	kfree(workspace->bucket_b);
765 	kfree(workspace);
766 }
767 
768 static struct list_head *alloc_heuristic_ws(unsigned int level)
769 {
770 	struct heuristic_ws *ws;
771 
772 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
773 	if (!ws)
774 		return ERR_PTR(-ENOMEM);
775 
776 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
777 	if (!ws->sample)
778 		goto fail;
779 
780 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
781 	if (!ws->bucket)
782 		goto fail;
783 
784 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
785 	if (!ws->bucket_b)
786 		goto fail;
787 
788 	INIT_LIST_HEAD(&ws->list);
789 	return &ws->list;
790 fail:
791 	free_heuristic_ws(&ws->list);
792 	return ERR_PTR(-ENOMEM);
793 }
794 
795 const struct btrfs_compress_op btrfs_heuristic_compress = {
796 	.init_workspace_manager = heuristic_init_workspace_manager,
797 	.cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
798 	.get_workspace = heuristic_get_workspace,
799 	.put_workspace = heuristic_put_workspace,
800 	.alloc_workspace = alloc_heuristic_ws,
801 	.free_workspace = free_heuristic_ws,
802 };
803 
804 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
805 	/* The heuristic is represented as compression type 0 */
806 	&btrfs_heuristic_compress,
807 	&btrfs_zlib_compress,
808 	&btrfs_lzo_compress,
809 	&btrfs_zstd_compress,
810 };
811 
812 void btrfs_init_workspace_manager(struct workspace_manager *wsm,
813 				  const struct btrfs_compress_op *ops)
814 {
815 	struct list_head *workspace;
816 
817 	wsm->ops = ops;
818 
819 	INIT_LIST_HEAD(&wsm->idle_ws);
820 	spin_lock_init(&wsm->ws_lock);
821 	atomic_set(&wsm->total_ws, 0);
822 	init_waitqueue_head(&wsm->ws_wait);
823 
824 	/*
825 	 * Preallocate one workspace for each compression type so we can
826 	 * guarantee forward progress in the worst case
827 	 */
828 	workspace = wsm->ops->alloc_workspace(0);
829 	if (IS_ERR(workspace)) {
830 		pr_warn(
831 	"BTRFS: cannot preallocate compression workspace, will try later\n");
832 	} else {
833 		atomic_set(&wsm->total_ws, 1);
834 		wsm->free_ws = 1;
835 		list_add(workspace, &wsm->idle_ws);
836 	}
837 }
838 
839 void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
840 {
841 	struct list_head *ws;
842 
843 	while (!list_empty(&wsman->idle_ws)) {
844 		ws = wsman->idle_ws.next;
845 		list_del(ws);
846 		wsman->ops->free_workspace(ws);
847 		atomic_dec(&wsman->total_ws);
848 	}
849 }
850 
851 /*
852  * This finds an available workspace or allocates a new one.
853  * If it's not possible to allocate a new one, waits until there's one.
854  * Preallocation makes a forward progress guarantees and we do not return
855  * errors.
856  */
857 struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
858 				      unsigned int level)
859 {
860 	struct list_head *workspace;
861 	int cpus = num_online_cpus();
862 	unsigned nofs_flag;
863 	struct list_head *idle_ws;
864 	spinlock_t *ws_lock;
865 	atomic_t *total_ws;
866 	wait_queue_head_t *ws_wait;
867 	int *free_ws;
868 
869 	idle_ws	 = &wsm->idle_ws;
870 	ws_lock	 = &wsm->ws_lock;
871 	total_ws = &wsm->total_ws;
872 	ws_wait	 = &wsm->ws_wait;
873 	free_ws	 = &wsm->free_ws;
874 
875 again:
876 	spin_lock(ws_lock);
877 	if (!list_empty(idle_ws)) {
878 		workspace = idle_ws->next;
879 		list_del(workspace);
880 		(*free_ws)--;
881 		spin_unlock(ws_lock);
882 		return workspace;
883 
884 	}
885 	if (atomic_read(total_ws) > cpus) {
886 		DEFINE_WAIT(wait);
887 
888 		spin_unlock(ws_lock);
889 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
890 		if (atomic_read(total_ws) > cpus && !*free_ws)
891 			schedule();
892 		finish_wait(ws_wait, &wait);
893 		goto again;
894 	}
895 	atomic_inc(total_ws);
896 	spin_unlock(ws_lock);
897 
898 	/*
899 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
900 	 * to turn it off here because we might get called from the restricted
901 	 * context of btrfs_compress_bio/btrfs_compress_pages
902 	 */
903 	nofs_flag = memalloc_nofs_save();
904 	workspace = wsm->ops->alloc_workspace(level);
905 	memalloc_nofs_restore(nofs_flag);
906 
907 	if (IS_ERR(workspace)) {
908 		atomic_dec(total_ws);
909 		wake_up(ws_wait);
910 
911 		/*
912 		 * Do not return the error but go back to waiting. There's a
913 		 * workspace preallocated for each type and the compression
914 		 * time is bounded so we get to a workspace eventually. This
915 		 * makes our caller's life easier.
916 		 *
917 		 * To prevent silent and low-probability deadlocks (when the
918 		 * initial preallocation fails), check if there are any
919 		 * workspaces at all.
920 		 */
921 		if (atomic_read(total_ws) == 0) {
922 			static DEFINE_RATELIMIT_STATE(_rs,
923 					/* once per minute */ 60 * HZ,
924 					/* no burst */ 1);
925 
926 			if (__ratelimit(&_rs)) {
927 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
928 			}
929 		}
930 		goto again;
931 	}
932 	return workspace;
933 }
934 
935 static struct list_head *get_workspace(int type, int level)
936 {
937 	return btrfs_compress_op[type]->get_workspace(level);
938 }
939 
940 /*
941  * put a workspace struct back on the list or free it if we have enough
942  * idle ones sitting around
943  */
944 void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
945 {
946 	struct list_head *idle_ws;
947 	spinlock_t *ws_lock;
948 	atomic_t *total_ws;
949 	wait_queue_head_t *ws_wait;
950 	int *free_ws;
951 
952 	idle_ws	 = &wsm->idle_ws;
953 	ws_lock	 = &wsm->ws_lock;
954 	total_ws = &wsm->total_ws;
955 	ws_wait	 = &wsm->ws_wait;
956 	free_ws	 = &wsm->free_ws;
957 
958 	spin_lock(ws_lock);
959 	if (*free_ws <= num_online_cpus()) {
960 		list_add(ws, idle_ws);
961 		(*free_ws)++;
962 		spin_unlock(ws_lock);
963 		goto wake;
964 	}
965 	spin_unlock(ws_lock);
966 
967 	wsm->ops->free_workspace(ws);
968 	atomic_dec(total_ws);
969 wake:
970 	cond_wake_up(ws_wait);
971 }
972 
973 static void put_workspace(int type, struct list_head *ws)
974 {
975 	return btrfs_compress_op[type]->put_workspace(ws);
976 }
977 
978 /*
979  * Given an address space and start and length, compress the bytes into @pages
980  * that are allocated on demand.
981  *
982  * @type_level is encoded algorithm and level, where level 0 means whatever
983  * default the algorithm chooses and is opaque here;
984  * - compression algo are 0-3
985  * - the level are bits 4-7
986  *
987  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
988  * and returns number of actually allocated pages
989  *
990  * @total_in is used to return the number of bytes actually read.  It
991  * may be smaller than the input length if we had to exit early because we
992  * ran out of room in the pages array or because we cross the
993  * max_out threshold.
994  *
995  * @total_out is an in/out parameter, must be set to the input length and will
996  * be also used to return the total number of compressed bytes
997  *
998  * @max_out tells us the max number of bytes that we're allowed to
999  * stuff into pages
1000  */
1001 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1002 			 u64 start, struct page **pages,
1003 			 unsigned long *out_pages,
1004 			 unsigned long *total_in,
1005 			 unsigned long *total_out)
1006 {
1007 	int type = btrfs_compress_type(type_level);
1008 	int level = btrfs_compress_level(type_level);
1009 	struct list_head *workspace;
1010 	int ret;
1011 
1012 	workspace = get_workspace(type, level);
1013 	ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1014 						      start, pages,
1015 						      out_pages,
1016 						      total_in, total_out);
1017 	put_workspace(type, workspace);
1018 	return ret;
1019 }
1020 
1021 /*
1022  * pages_in is an array of pages with compressed data.
1023  *
1024  * disk_start is the starting logical offset of this array in the file
1025  *
1026  * orig_bio contains the pages from the file that we want to decompress into
1027  *
1028  * srclen is the number of bytes in pages_in
1029  *
1030  * The basic idea is that we have a bio that was created by readpages.
1031  * The pages in the bio are for the uncompressed data, and they may not
1032  * be contiguous.  They all correspond to the range of bytes covered by
1033  * the compressed extent.
1034  */
1035 static int btrfs_decompress_bio(struct compressed_bio *cb)
1036 {
1037 	struct list_head *workspace;
1038 	int ret;
1039 	int type = cb->compress_type;
1040 
1041 	workspace = get_workspace(type, 0);
1042 	ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1043 	put_workspace(type, workspace);
1044 
1045 	return ret;
1046 }
1047 
1048 /*
1049  * a less complex decompression routine.  Our compressed data fits in a
1050  * single page, and we want to read a single page out of it.
1051  * start_byte tells us the offset into the compressed data we're interested in
1052  */
1053 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1054 		     unsigned long start_byte, size_t srclen, size_t destlen)
1055 {
1056 	struct list_head *workspace;
1057 	int ret;
1058 
1059 	workspace = get_workspace(type, 0);
1060 	ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1061 						  dest_page, start_byte,
1062 						  srclen, destlen);
1063 	put_workspace(type, workspace);
1064 
1065 	return ret;
1066 }
1067 
1068 void __init btrfs_init_compress(void)
1069 {
1070 	int i;
1071 
1072 	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1073 		btrfs_compress_op[i]->init_workspace_manager();
1074 }
1075 
1076 void __cold btrfs_exit_compress(void)
1077 {
1078 	int i;
1079 
1080 	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1081 		btrfs_compress_op[i]->cleanup_workspace_manager();
1082 }
1083 
1084 /*
1085  * Copy uncompressed data from working buffer to pages.
1086  *
1087  * buf_start is the byte offset we're of the start of our workspace buffer.
1088  *
1089  * total_out is the last byte of the buffer
1090  */
1091 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1092 			      unsigned long total_out, u64 disk_start,
1093 			      struct bio *bio)
1094 {
1095 	unsigned long buf_offset;
1096 	unsigned long current_buf_start;
1097 	unsigned long start_byte;
1098 	unsigned long prev_start_byte;
1099 	unsigned long working_bytes = total_out - buf_start;
1100 	unsigned long bytes;
1101 	char *kaddr;
1102 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1103 
1104 	/*
1105 	 * start byte is the first byte of the page we're currently
1106 	 * copying into relative to the start of the compressed data.
1107 	 */
1108 	start_byte = page_offset(bvec.bv_page) - disk_start;
1109 
1110 	/* we haven't yet hit data corresponding to this page */
1111 	if (total_out <= start_byte)
1112 		return 1;
1113 
1114 	/*
1115 	 * the start of the data we care about is offset into
1116 	 * the middle of our working buffer
1117 	 */
1118 	if (total_out > start_byte && buf_start < start_byte) {
1119 		buf_offset = start_byte - buf_start;
1120 		working_bytes -= buf_offset;
1121 	} else {
1122 		buf_offset = 0;
1123 	}
1124 	current_buf_start = buf_start;
1125 
1126 	/* copy bytes from the working buffer into the pages */
1127 	while (working_bytes > 0) {
1128 		bytes = min_t(unsigned long, bvec.bv_len,
1129 				PAGE_SIZE - buf_offset);
1130 		bytes = min(bytes, working_bytes);
1131 
1132 		kaddr = kmap_atomic(bvec.bv_page);
1133 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1134 		kunmap_atomic(kaddr);
1135 		flush_dcache_page(bvec.bv_page);
1136 
1137 		buf_offset += bytes;
1138 		working_bytes -= bytes;
1139 		current_buf_start += bytes;
1140 
1141 		/* check if we need to pick another page */
1142 		bio_advance(bio, bytes);
1143 		if (!bio->bi_iter.bi_size)
1144 			return 0;
1145 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1146 		prev_start_byte = start_byte;
1147 		start_byte = page_offset(bvec.bv_page) - disk_start;
1148 
1149 		/*
1150 		 * We need to make sure we're only adjusting
1151 		 * our offset into compression working buffer when
1152 		 * we're switching pages.  Otherwise we can incorrectly
1153 		 * keep copying when we were actually done.
1154 		 */
1155 		if (start_byte != prev_start_byte) {
1156 			/*
1157 			 * make sure our new page is covered by this
1158 			 * working buffer
1159 			 */
1160 			if (total_out <= start_byte)
1161 				return 1;
1162 
1163 			/*
1164 			 * the next page in the biovec might not be adjacent
1165 			 * to the last page, but it might still be found
1166 			 * inside this working buffer. bump our offset pointer
1167 			 */
1168 			if (total_out > start_byte &&
1169 			    current_buf_start < start_byte) {
1170 				buf_offset = start_byte - buf_start;
1171 				working_bytes = total_out - start_byte;
1172 				current_buf_start = buf_start + buf_offset;
1173 			}
1174 		}
1175 	}
1176 
1177 	return 1;
1178 }
1179 
1180 /*
1181  * Shannon Entropy calculation
1182  *
1183  * Pure byte distribution analysis fails to determine compressibility of data.
1184  * Try calculating entropy to estimate the average minimum number of bits
1185  * needed to encode the sampled data.
1186  *
1187  * For convenience, return the percentage of needed bits, instead of amount of
1188  * bits directly.
1189  *
1190  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1191  *			    and can be compressible with high probability
1192  *
1193  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1194  *
1195  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1196  */
1197 #define ENTROPY_LVL_ACEPTABLE		(65)
1198 #define ENTROPY_LVL_HIGH		(80)
1199 
1200 /*
1201  * For increasead precision in shannon_entropy calculation,
1202  * let's do pow(n, M) to save more digits after comma:
1203  *
1204  * - maximum int bit length is 64
1205  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1206  * - 13 * 4 = 52 < 64		-> M = 4
1207  *
1208  * So use pow(n, 4).
1209  */
1210 static inline u32 ilog2_w(u64 n)
1211 {
1212 	return ilog2(n * n * n * n);
1213 }
1214 
1215 static u32 shannon_entropy(struct heuristic_ws *ws)
1216 {
1217 	const u32 entropy_max = 8 * ilog2_w(2);
1218 	u32 entropy_sum = 0;
1219 	u32 p, p_base, sz_base;
1220 	u32 i;
1221 
1222 	sz_base = ilog2_w(ws->sample_size);
1223 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1224 		p = ws->bucket[i].count;
1225 		p_base = ilog2_w(p);
1226 		entropy_sum += p * (sz_base - p_base);
1227 	}
1228 
1229 	entropy_sum /= ws->sample_size;
1230 	return entropy_sum * 100 / entropy_max;
1231 }
1232 
1233 #define RADIX_BASE		4U
1234 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1235 
1236 static u8 get4bits(u64 num, int shift) {
1237 	u8 low4bits;
1238 
1239 	num >>= shift;
1240 	/* Reverse order */
1241 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1242 	return low4bits;
1243 }
1244 
1245 /*
1246  * Use 4 bits as radix base
1247  * Use 16 u32 counters for calculating new position in buf array
1248  *
1249  * @array     - array that will be sorted
1250  * @array_buf - buffer array to store sorting results
1251  *              must be equal in size to @array
1252  * @num       - array size
1253  */
1254 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1255 		       int num)
1256 {
1257 	u64 max_num;
1258 	u64 buf_num;
1259 	u32 counters[COUNTERS_SIZE];
1260 	u32 new_addr;
1261 	u32 addr;
1262 	int bitlen;
1263 	int shift;
1264 	int i;
1265 
1266 	/*
1267 	 * Try avoid useless loop iterations for small numbers stored in big
1268 	 * counters.  Example: 48 33 4 ... in 64bit array
1269 	 */
1270 	max_num = array[0].count;
1271 	for (i = 1; i < num; i++) {
1272 		buf_num = array[i].count;
1273 		if (buf_num > max_num)
1274 			max_num = buf_num;
1275 	}
1276 
1277 	buf_num = ilog2(max_num);
1278 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1279 
1280 	shift = 0;
1281 	while (shift < bitlen) {
1282 		memset(counters, 0, sizeof(counters));
1283 
1284 		for (i = 0; i < num; i++) {
1285 			buf_num = array[i].count;
1286 			addr = get4bits(buf_num, shift);
1287 			counters[addr]++;
1288 		}
1289 
1290 		for (i = 1; i < COUNTERS_SIZE; i++)
1291 			counters[i] += counters[i - 1];
1292 
1293 		for (i = num - 1; i >= 0; i--) {
1294 			buf_num = array[i].count;
1295 			addr = get4bits(buf_num, shift);
1296 			counters[addr]--;
1297 			new_addr = counters[addr];
1298 			array_buf[new_addr] = array[i];
1299 		}
1300 
1301 		shift += RADIX_BASE;
1302 
1303 		/*
1304 		 * Normal radix expects to move data from a temporary array, to
1305 		 * the main one.  But that requires some CPU time. Avoid that
1306 		 * by doing another sort iteration to original array instead of
1307 		 * memcpy()
1308 		 */
1309 		memset(counters, 0, sizeof(counters));
1310 
1311 		for (i = 0; i < num; i ++) {
1312 			buf_num = array_buf[i].count;
1313 			addr = get4bits(buf_num, shift);
1314 			counters[addr]++;
1315 		}
1316 
1317 		for (i = 1; i < COUNTERS_SIZE; i++)
1318 			counters[i] += counters[i - 1];
1319 
1320 		for (i = num - 1; i >= 0; i--) {
1321 			buf_num = array_buf[i].count;
1322 			addr = get4bits(buf_num, shift);
1323 			counters[addr]--;
1324 			new_addr = counters[addr];
1325 			array[new_addr] = array_buf[i];
1326 		}
1327 
1328 		shift += RADIX_BASE;
1329 	}
1330 }
1331 
1332 /*
1333  * Size of the core byte set - how many bytes cover 90% of the sample
1334  *
1335  * There are several types of structured binary data that use nearly all byte
1336  * values. The distribution can be uniform and counts in all buckets will be
1337  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1338  *
1339  * Other possibility is normal (Gaussian) distribution, where the data could
1340  * be potentially compressible, but we have to take a few more steps to decide
1341  * how much.
1342  *
1343  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1344  *                       compression algo can easy fix that
1345  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1346  *                       probability is not compressible
1347  */
1348 #define BYTE_CORE_SET_LOW		(64)
1349 #define BYTE_CORE_SET_HIGH		(200)
1350 
1351 static int byte_core_set_size(struct heuristic_ws *ws)
1352 {
1353 	u32 i;
1354 	u32 coreset_sum = 0;
1355 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1356 	struct bucket_item *bucket = ws->bucket;
1357 
1358 	/* Sort in reverse order */
1359 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1360 
1361 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1362 		coreset_sum += bucket[i].count;
1363 
1364 	if (coreset_sum > core_set_threshold)
1365 		return i;
1366 
1367 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1368 		coreset_sum += bucket[i].count;
1369 		if (coreset_sum > core_set_threshold)
1370 			break;
1371 	}
1372 
1373 	return i;
1374 }
1375 
1376 /*
1377  * Count byte values in buckets.
1378  * This heuristic can detect textual data (configs, xml, json, html, etc).
1379  * Because in most text-like data byte set is restricted to limited number of
1380  * possible characters, and that restriction in most cases makes data easy to
1381  * compress.
1382  *
1383  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1384  *	less - compressible
1385  *	more - need additional analysis
1386  */
1387 #define BYTE_SET_THRESHOLD		(64)
1388 
1389 static u32 byte_set_size(const struct heuristic_ws *ws)
1390 {
1391 	u32 i;
1392 	u32 byte_set_size = 0;
1393 
1394 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1395 		if (ws->bucket[i].count > 0)
1396 			byte_set_size++;
1397 	}
1398 
1399 	/*
1400 	 * Continue collecting count of byte values in buckets.  If the byte
1401 	 * set size is bigger then the threshold, it's pointless to continue,
1402 	 * the detection technique would fail for this type of data.
1403 	 */
1404 	for (; i < BUCKET_SIZE; i++) {
1405 		if (ws->bucket[i].count > 0) {
1406 			byte_set_size++;
1407 			if (byte_set_size > BYTE_SET_THRESHOLD)
1408 				return byte_set_size;
1409 		}
1410 	}
1411 
1412 	return byte_set_size;
1413 }
1414 
1415 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1416 {
1417 	const u32 half_of_sample = ws->sample_size / 2;
1418 	const u8 *data = ws->sample;
1419 
1420 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1421 }
1422 
1423 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1424 				     struct heuristic_ws *ws)
1425 {
1426 	struct page *page;
1427 	u64 index, index_end;
1428 	u32 i, curr_sample_pos;
1429 	u8 *in_data;
1430 
1431 	/*
1432 	 * Compression handles the input data by chunks of 128KiB
1433 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1434 	 *
1435 	 * We do the same for the heuristic and loop over the whole range.
1436 	 *
1437 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1438 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1439 	 */
1440 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1441 		end = start + BTRFS_MAX_UNCOMPRESSED;
1442 
1443 	index = start >> PAGE_SHIFT;
1444 	index_end = end >> PAGE_SHIFT;
1445 
1446 	/* Don't miss unaligned end */
1447 	if (!IS_ALIGNED(end, PAGE_SIZE))
1448 		index_end++;
1449 
1450 	curr_sample_pos = 0;
1451 	while (index < index_end) {
1452 		page = find_get_page(inode->i_mapping, index);
1453 		in_data = kmap(page);
1454 		/* Handle case where the start is not aligned to PAGE_SIZE */
1455 		i = start % PAGE_SIZE;
1456 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1457 			/* Don't sample any garbage from the last page */
1458 			if (start > end - SAMPLING_READ_SIZE)
1459 				break;
1460 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1461 					SAMPLING_READ_SIZE);
1462 			i += SAMPLING_INTERVAL;
1463 			start += SAMPLING_INTERVAL;
1464 			curr_sample_pos += SAMPLING_READ_SIZE;
1465 		}
1466 		kunmap(page);
1467 		put_page(page);
1468 
1469 		index++;
1470 	}
1471 
1472 	ws->sample_size = curr_sample_pos;
1473 }
1474 
1475 /*
1476  * Compression heuristic.
1477  *
1478  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1479  * quickly (compared to direct compression) detect data characteristics
1480  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1481  * data.
1482  *
1483  * The following types of analysis can be performed:
1484  * - detect mostly zero data
1485  * - detect data with low "byte set" size (text, etc)
1486  * - detect data with low/high "core byte" set
1487  *
1488  * Return non-zero if the compression should be done, 0 otherwise.
1489  */
1490 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1491 {
1492 	struct list_head *ws_list = get_workspace(0, 0);
1493 	struct heuristic_ws *ws;
1494 	u32 i;
1495 	u8 byte;
1496 	int ret = 0;
1497 
1498 	ws = list_entry(ws_list, struct heuristic_ws, list);
1499 
1500 	heuristic_collect_sample(inode, start, end, ws);
1501 
1502 	if (sample_repeated_patterns(ws)) {
1503 		ret = 1;
1504 		goto out;
1505 	}
1506 
1507 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1508 
1509 	for (i = 0; i < ws->sample_size; i++) {
1510 		byte = ws->sample[i];
1511 		ws->bucket[byte].count++;
1512 	}
1513 
1514 	i = byte_set_size(ws);
1515 	if (i < BYTE_SET_THRESHOLD) {
1516 		ret = 2;
1517 		goto out;
1518 	}
1519 
1520 	i = byte_core_set_size(ws);
1521 	if (i <= BYTE_CORE_SET_LOW) {
1522 		ret = 3;
1523 		goto out;
1524 	}
1525 
1526 	if (i >= BYTE_CORE_SET_HIGH) {
1527 		ret = 0;
1528 		goto out;
1529 	}
1530 
1531 	i = shannon_entropy(ws);
1532 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1533 		ret = 4;
1534 		goto out;
1535 	}
1536 
1537 	/*
1538 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1539 	 * needed to give green light to compression.
1540 	 *
1541 	 * For now just assume that compression at that level is not worth the
1542 	 * resources because:
1543 	 *
1544 	 * 1. it is possible to defrag the data later
1545 	 *
1546 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1547 	 * values, every bucket has counter at level ~54. The heuristic would
1548 	 * be confused. This can happen when data have some internal repeated
1549 	 * patterns like "abbacbbc...". This can be detected by analyzing
1550 	 * pairs of bytes, which is too costly.
1551 	 */
1552 	if (i < ENTROPY_LVL_HIGH) {
1553 		ret = 5;
1554 		goto out;
1555 	} else {
1556 		ret = 0;
1557 		goto out;
1558 	}
1559 
1560 out:
1561 	put_workspace(0, ws_list);
1562 	return ret;
1563 }
1564 
1565 /*
1566  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1567  * level, unrecognized string will set the default level
1568  */
1569 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1570 {
1571 	unsigned int level = 0;
1572 	int ret;
1573 
1574 	if (!type)
1575 		return 0;
1576 
1577 	if (str[0] == ':') {
1578 		ret = kstrtouint(str + 1, 10, &level);
1579 		if (ret)
1580 			level = 0;
1581 	}
1582 
1583 	level = btrfs_compress_op[type]->set_level(level);
1584 
1585 	return level;
1586 }
1587