1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "ordered-data.h" 41 #include "compression.h" 42 #include "extent_io.h" 43 #include "extent_map.h" 44 45 struct compressed_bio { 46 /* number of bios pending for this compressed extent */ 47 atomic_t pending_bios; 48 49 /* the pages with the compressed data on them */ 50 struct page **compressed_pages; 51 52 /* inode that owns this data */ 53 struct inode *inode; 54 55 /* starting offset in the inode for our pages */ 56 u64 start; 57 58 /* number of bytes in the inode we're working on */ 59 unsigned long len; 60 61 /* number of bytes on disk */ 62 unsigned long compressed_len; 63 64 /* the compression algorithm for this bio */ 65 int compress_type; 66 67 /* number of compressed pages in the array */ 68 unsigned long nr_pages; 69 70 /* IO errors */ 71 int errors; 72 int mirror_num; 73 74 /* for reads, this is the bio we are copying the data into */ 75 struct bio *orig_bio; 76 77 /* 78 * the start of a variable length array of checksums only 79 * used by reads 80 */ 81 u32 sums; 82 }; 83 84 static int btrfs_decompress_biovec(int type, struct page **pages_in, 85 u64 disk_start, struct bio_vec *bvec, 86 int vcnt, size_t srclen); 87 88 static inline int compressed_bio_size(struct btrfs_root *root, 89 unsigned long disk_size) 90 { 91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 92 93 return sizeof(struct compressed_bio) + 94 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size; 95 } 96 97 static struct bio *compressed_bio_alloc(struct block_device *bdev, 98 u64 first_byte, gfp_t gfp_flags) 99 { 100 return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags); 101 } 102 103 static int check_compressed_csum(struct inode *inode, 104 struct compressed_bio *cb, 105 u64 disk_start) 106 { 107 int ret; 108 struct page *page; 109 unsigned long i; 110 char *kaddr; 111 u32 csum; 112 u32 *cb_sum = &cb->sums; 113 114 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 115 return 0; 116 117 for (i = 0; i < cb->nr_pages; i++) { 118 page = cb->compressed_pages[i]; 119 csum = ~(u32)0; 120 121 kaddr = kmap_atomic(page); 122 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE); 123 btrfs_csum_final(csum, (char *)&csum); 124 kunmap_atomic(kaddr); 125 126 if (csum != *cb_sum) { 127 btrfs_info(BTRFS_I(inode)->root->fs_info, 128 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d", 129 btrfs_ino(inode), disk_start, csum, *cb_sum, 130 cb->mirror_num); 131 ret = -EIO; 132 goto fail; 133 } 134 cb_sum++; 135 136 } 137 ret = 0; 138 fail: 139 return ret; 140 } 141 142 /* when we finish reading compressed pages from the disk, we 143 * decompress them and then run the bio end_io routines on the 144 * decompressed pages (in the inode address space). 145 * 146 * This allows the checksumming and other IO error handling routines 147 * to work normally 148 * 149 * The compressed pages are freed here, and it must be run 150 * in process context 151 */ 152 static void end_compressed_bio_read(struct bio *bio) 153 { 154 struct compressed_bio *cb = bio->bi_private; 155 struct inode *inode; 156 struct page *page; 157 unsigned long index; 158 int ret; 159 160 if (bio->bi_error) 161 cb->errors = 1; 162 163 /* if there are more bios still pending for this compressed 164 * extent, just exit 165 */ 166 if (!atomic_dec_and_test(&cb->pending_bios)) 167 goto out; 168 169 inode = cb->inode; 170 ret = check_compressed_csum(inode, cb, 171 (u64)bio->bi_iter.bi_sector << 9); 172 if (ret) 173 goto csum_failed; 174 175 /* ok, we're the last bio for this extent, lets start 176 * the decompression. 177 */ 178 ret = btrfs_decompress_biovec(cb->compress_type, 179 cb->compressed_pages, 180 cb->start, 181 cb->orig_bio->bi_io_vec, 182 cb->orig_bio->bi_vcnt, 183 cb->compressed_len); 184 csum_failed: 185 if (ret) 186 cb->errors = 1; 187 188 /* release the compressed pages */ 189 index = 0; 190 for (index = 0; index < cb->nr_pages; index++) { 191 page = cb->compressed_pages[index]; 192 page->mapping = NULL; 193 page_cache_release(page); 194 } 195 196 /* do io completion on the original bio */ 197 if (cb->errors) { 198 bio_io_error(cb->orig_bio); 199 } else { 200 int i; 201 struct bio_vec *bvec; 202 203 /* 204 * we have verified the checksum already, set page 205 * checked so the end_io handlers know about it 206 */ 207 bio_for_each_segment_all(bvec, cb->orig_bio, i) 208 SetPageChecked(bvec->bv_page); 209 210 bio_endio(cb->orig_bio); 211 } 212 213 /* finally free the cb struct */ 214 kfree(cb->compressed_pages); 215 kfree(cb); 216 out: 217 bio_put(bio); 218 } 219 220 /* 221 * Clear the writeback bits on all of the file 222 * pages for a compressed write 223 */ 224 static noinline void end_compressed_writeback(struct inode *inode, 225 const struct compressed_bio *cb) 226 { 227 unsigned long index = cb->start >> PAGE_CACHE_SHIFT; 228 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT; 229 struct page *pages[16]; 230 unsigned long nr_pages = end_index - index + 1; 231 int i; 232 int ret; 233 234 if (cb->errors) 235 mapping_set_error(inode->i_mapping, -EIO); 236 237 while (nr_pages > 0) { 238 ret = find_get_pages_contig(inode->i_mapping, index, 239 min_t(unsigned long, 240 nr_pages, ARRAY_SIZE(pages)), pages); 241 if (ret == 0) { 242 nr_pages -= 1; 243 index += 1; 244 continue; 245 } 246 for (i = 0; i < ret; i++) { 247 if (cb->errors) 248 SetPageError(pages[i]); 249 end_page_writeback(pages[i]); 250 page_cache_release(pages[i]); 251 } 252 nr_pages -= ret; 253 index += ret; 254 } 255 /* the inode may be gone now */ 256 } 257 258 /* 259 * do the cleanup once all the compressed pages hit the disk. 260 * This will clear writeback on the file pages and free the compressed 261 * pages. 262 * 263 * This also calls the writeback end hooks for the file pages so that 264 * metadata and checksums can be updated in the file. 265 */ 266 static void end_compressed_bio_write(struct bio *bio) 267 { 268 struct extent_io_tree *tree; 269 struct compressed_bio *cb = bio->bi_private; 270 struct inode *inode; 271 struct page *page; 272 unsigned long index; 273 274 if (bio->bi_error) 275 cb->errors = 1; 276 277 /* if there are more bios still pending for this compressed 278 * extent, just exit 279 */ 280 if (!atomic_dec_and_test(&cb->pending_bios)) 281 goto out; 282 283 /* ok, we're the last bio for this extent, step one is to 284 * call back into the FS and do all the end_io operations 285 */ 286 inode = cb->inode; 287 tree = &BTRFS_I(inode)->io_tree; 288 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 289 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 290 cb->start, 291 cb->start + cb->len - 1, 292 NULL, 293 bio->bi_error ? 0 : 1); 294 cb->compressed_pages[0]->mapping = NULL; 295 296 end_compressed_writeback(inode, cb); 297 /* note, our inode could be gone now */ 298 299 /* 300 * release the compressed pages, these came from alloc_page and 301 * are not attached to the inode at all 302 */ 303 index = 0; 304 for (index = 0; index < cb->nr_pages; index++) { 305 page = cb->compressed_pages[index]; 306 page->mapping = NULL; 307 page_cache_release(page); 308 } 309 310 /* finally free the cb struct */ 311 kfree(cb->compressed_pages); 312 kfree(cb); 313 out: 314 bio_put(bio); 315 } 316 317 /* 318 * worker function to build and submit bios for previously compressed pages. 319 * The corresponding pages in the inode should be marked for writeback 320 * and the compressed pages should have a reference on them for dropping 321 * when the IO is complete. 322 * 323 * This also checksums the file bytes and gets things ready for 324 * the end io hooks. 325 */ 326 int btrfs_submit_compressed_write(struct inode *inode, u64 start, 327 unsigned long len, u64 disk_start, 328 unsigned long compressed_len, 329 struct page **compressed_pages, 330 unsigned long nr_pages) 331 { 332 struct bio *bio = NULL; 333 struct btrfs_root *root = BTRFS_I(inode)->root; 334 struct compressed_bio *cb; 335 unsigned long bytes_left; 336 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 337 int pg_index = 0; 338 struct page *page; 339 u64 first_byte = disk_start; 340 struct block_device *bdev; 341 int ret; 342 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 343 344 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1)); 345 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 346 if (!cb) 347 return -ENOMEM; 348 atomic_set(&cb->pending_bios, 0); 349 cb->errors = 0; 350 cb->inode = inode; 351 cb->start = start; 352 cb->len = len; 353 cb->mirror_num = 0; 354 cb->compressed_pages = compressed_pages; 355 cb->compressed_len = compressed_len; 356 cb->orig_bio = NULL; 357 cb->nr_pages = nr_pages; 358 359 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 360 361 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 362 if (!bio) { 363 kfree(cb); 364 return -ENOMEM; 365 } 366 bio->bi_private = cb; 367 bio->bi_end_io = end_compressed_bio_write; 368 atomic_inc(&cb->pending_bios); 369 370 /* create and submit bios for the compressed pages */ 371 bytes_left = compressed_len; 372 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 373 page = compressed_pages[pg_index]; 374 page->mapping = inode->i_mapping; 375 if (bio->bi_iter.bi_size) 376 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0, 377 PAGE_CACHE_SIZE, 378 bio, 0); 379 else 380 ret = 0; 381 382 page->mapping = NULL; 383 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < 384 PAGE_CACHE_SIZE) { 385 bio_get(bio); 386 387 /* 388 * inc the count before we submit the bio so 389 * we know the end IO handler won't happen before 390 * we inc the count. Otherwise, the cb might get 391 * freed before we're done setting it up 392 */ 393 atomic_inc(&cb->pending_bios); 394 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 395 BTRFS_WQ_ENDIO_DATA); 396 BUG_ON(ret); /* -ENOMEM */ 397 398 if (!skip_sum) { 399 ret = btrfs_csum_one_bio(root, inode, bio, 400 start, 1); 401 BUG_ON(ret); /* -ENOMEM */ 402 } 403 404 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 405 BUG_ON(ret); /* -ENOMEM */ 406 407 bio_put(bio); 408 409 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 410 BUG_ON(!bio); 411 bio->bi_private = cb; 412 bio->bi_end_io = end_compressed_bio_write; 413 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 414 } 415 if (bytes_left < PAGE_CACHE_SIZE) { 416 btrfs_info(BTRFS_I(inode)->root->fs_info, 417 "bytes left %lu compress len %lu nr %lu", 418 bytes_left, cb->compressed_len, cb->nr_pages); 419 } 420 bytes_left -= PAGE_CACHE_SIZE; 421 first_byte += PAGE_CACHE_SIZE; 422 cond_resched(); 423 } 424 bio_get(bio); 425 426 ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA); 427 BUG_ON(ret); /* -ENOMEM */ 428 429 if (!skip_sum) { 430 ret = btrfs_csum_one_bio(root, inode, bio, start, 1); 431 BUG_ON(ret); /* -ENOMEM */ 432 } 433 434 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 435 BUG_ON(ret); /* -ENOMEM */ 436 437 bio_put(bio); 438 return 0; 439 } 440 441 static noinline int add_ra_bio_pages(struct inode *inode, 442 u64 compressed_end, 443 struct compressed_bio *cb) 444 { 445 unsigned long end_index; 446 unsigned long pg_index; 447 u64 last_offset; 448 u64 isize = i_size_read(inode); 449 int ret; 450 struct page *page; 451 unsigned long nr_pages = 0; 452 struct extent_map *em; 453 struct address_space *mapping = inode->i_mapping; 454 struct extent_map_tree *em_tree; 455 struct extent_io_tree *tree; 456 u64 end; 457 int misses = 0; 458 459 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; 460 last_offset = (page_offset(page) + PAGE_CACHE_SIZE); 461 em_tree = &BTRFS_I(inode)->extent_tree; 462 tree = &BTRFS_I(inode)->io_tree; 463 464 if (isize == 0) 465 return 0; 466 467 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 468 469 while (last_offset < compressed_end) { 470 pg_index = last_offset >> PAGE_CACHE_SHIFT; 471 472 if (pg_index > end_index) 473 break; 474 475 rcu_read_lock(); 476 page = radix_tree_lookup(&mapping->page_tree, pg_index); 477 rcu_read_unlock(); 478 if (page && !radix_tree_exceptional_entry(page)) { 479 misses++; 480 if (misses > 4) 481 break; 482 goto next; 483 } 484 485 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 486 ~__GFP_FS)); 487 if (!page) 488 break; 489 490 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 491 page_cache_release(page); 492 goto next; 493 } 494 495 end = last_offset + PAGE_CACHE_SIZE - 1; 496 /* 497 * at this point, we have a locked page in the page cache 498 * for these bytes in the file. But, we have to make 499 * sure they map to this compressed extent on disk. 500 */ 501 set_page_extent_mapped(page); 502 lock_extent(tree, last_offset, end); 503 read_lock(&em_tree->lock); 504 em = lookup_extent_mapping(em_tree, last_offset, 505 PAGE_CACHE_SIZE); 506 read_unlock(&em_tree->lock); 507 508 if (!em || last_offset < em->start || 509 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) || 510 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 511 free_extent_map(em); 512 unlock_extent(tree, last_offset, end); 513 unlock_page(page); 514 page_cache_release(page); 515 break; 516 } 517 free_extent_map(em); 518 519 if (page->index == end_index) { 520 char *userpage; 521 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1); 522 523 if (zero_offset) { 524 int zeros; 525 zeros = PAGE_CACHE_SIZE - zero_offset; 526 userpage = kmap_atomic(page); 527 memset(userpage + zero_offset, 0, zeros); 528 flush_dcache_page(page); 529 kunmap_atomic(userpage); 530 } 531 } 532 533 ret = bio_add_page(cb->orig_bio, page, 534 PAGE_CACHE_SIZE, 0); 535 536 if (ret == PAGE_CACHE_SIZE) { 537 nr_pages++; 538 page_cache_release(page); 539 } else { 540 unlock_extent(tree, last_offset, end); 541 unlock_page(page); 542 page_cache_release(page); 543 break; 544 } 545 next: 546 last_offset += PAGE_CACHE_SIZE; 547 } 548 return 0; 549 } 550 551 /* 552 * for a compressed read, the bio we get passed has all the inode pages 553 * in it. We don't actually do IO on those pages but allocate new ones 554 * to hold the compressed pages on disk. 555 * 556 * bio->bi_iter.bi_sector points to the compressed extent on disk 557 * bio->bi_io_vec points to all of the inode pages 558 * bio->bi_vcnt is a count of pages 559 * 560 * After the compressed pages are read, we copy the bytes into the 561 * bio we were passed and then call the bio end_io calls 562 */ 563 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 564 int mirror_num, unsigned long bio_flags) 565 { 566 struct extent_io_tree *tree; 567 struct extent_map_tree *em_tree; 568 struct compressed_bio *cb; 569 struct btrfs_root *root = BTRFS_I(inode)->root; 570 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 571 unsigned long compressed_len; 572 unsigned long nr_pages; 573 unsigned long pg_index; 574 struct page *page; 575 struct block_device *bdev; 576 struct bio *comp_bio; 577 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 578 u64 em_len; 579 u64 em_start; 580 struct extent_map *em; 581 int ret = -ENOMEM; 582 int faili = 0; 583 u32 *sums; 584 585 tree = &BTRFS_I(inode)->io_tree; 586 em_tree = &BTRFS_I(inode)->extent_tree; 587 588 /* we need the actual starting offset of this extent in the file */ 589 read_lock(&em_tree->lock); 590 em = lookup_extent_mapping(em_tree, 591 page_offset(bio->bi_io_vec->bv_page), 592 PAGE_CACHE_SIZE); 593 read_unlock(&em_tree->lock); 594 if (!em) 595 return -EIO; 596 597 compressed_len = em->block_len; 598 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 599 if (!cb) 600 goto out; 601 602 atomic_set(&cb->pending_bios, 0); 603 cb->errors = 0; 604 cb->inode = inode; 605 cb->mirror_num = mirror_num; 606 sums = &cb->sums; 607 608 cb->start = em->orig_start; 609 em_len = em->len; 610 em_start = em->start; 611 612 free_extent_map(em); 613 em = NULL; 614 615 cb->len = uncompressed_len; 616 cb->compressed_len = compressed_len; 617 cb->compress_type = extent_compress_type(bio_flags); 618 cb->orig_bio = bio; 619 620 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE); 621 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 622 GFP_NOFS); 623 if (!cb->compressed_pages) 624 goto fail1; 625 626 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 627 628 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 629 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 630 __GFP_HIGHMEM); 631 if (!cb->compressed_pages[pg_index]) { 632 faili = pg_index - 1; 633 ret = -ENOMEM; 634 goto fail2; 635 } 636 } 637 faili = nr_pages - 1; 638 cb->nr_pages = nr_pages; 639 640 /* In the parent-locked case, we only locked the range we are 641 * interested in. In all other cases, we can opportunistically 642 * cache decompressed data that goes beyond the requested range. */ 643 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED)) 644 add_ra_bio_pages(inode, em_start + em_len, cb); 645 646 /* include any pages we added in add_ra-bio_pages */ 647 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 648 cb->len = uncompressed_len; 649 650 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); 651 if (!comp_bio) 652 goto fail2; 653 comp_bio->bi_private = cb; 654 comp_bio->bi_end_io = end_compressed_bio_read; 655 atomic_inc(&cb->pending_bios); 656 657 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 658 page = cb->compressed_pages[pg_index]; 659 page->mapping = inode->i_mapping; 660 page->index = em_start >> PAGE_CACHE_SHIFT; 661 662 if (comp_bio->bi_iter.bi_size) 663 ret = tree->ops->merge_bio_hook(READ, page, 0, 664 PAGE_CACHE_SIZE, 665 comp_bio, 0); 666 else 667 ret = 0; 668 669 page->mapping = NULL; 670 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) < 671 PAGE_CACHE_SIZE) { 672 bio_get(comp_bio); 673 674 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 675 BTRFS_WQ_ENDIO_DATA); 676 BUG_ON(ret); /* -ENOMEM */ 677 678 /* 679 * inc the count before we submit the bio so 680 * we know the end IO handler won't happen before 681 * we inc the count. Otherwise, the cb might get 682 * freed before we're done setting it up 683 */ 684 atomic_inc(&cb->pending_bios); 685 686 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 687 ret = btrfs_lookup_bio_sums(root, inode, 688 comp_bio, sums); 689 BUG_ON(ret); /* -ENOMEM */ 690 } 691 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 692 root->sectorsize); 693 694 ret = btrfs_map_bio(root, READ, comp_bio, 695 mirror_num, 0); 696 if (ret) { 697 bio->bi_error = ret; 698 bio_endio(comp_bio); 699 } 700 701 bio_put(comp_bio); 702 703 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, 704 GFP_NOFS); 705 BUG_ON(!comp_bio); 706 comp_bio->bi_private = cb; 707 comp_bio->bi_end_io = end_compressed_bio_read; 708 709 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0); 710 } 711 cur_disk_byte += PAGE_CACHE_SIZE; 712 } 713 bio_get(comp_bio); 714 715 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 716 BTRFS_WQ_ENDIO_DATA); 717 BUG_ON(ret); /* -ENOMEM */ 718 719 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 720 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums); 721 BUG_ON(ret); /* -ENOMEM */ 722 } 723 724 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0); 725 if (ret) { 726 bio->bi_error = ret; 727 bio_endio(comp_bio); 728 } 729 730 bio_put(comp_bio); 731 return 0; 732 733 fail2: 734 while (faili >= 0) { 735 __free_page(cb->compressed_pages[faili]); 736 faili--; 737 } 738 739 kfree(cb->compressed_pages); 740 fail1: 741 kfree(cb); 742 out: 743 free_extent_map(em); 744 return ret; 745 } 746 747 static struct { 748 struct list_head idle_ws; 749 spinlock_t ws_lock; 750 int num_ws; 751 atomic_t alloc_ws; 752 wait_queue_head_t ws_wait; 753 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 754 755 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 756 &btrfs_zlib_compress, 757 &btrfs_lzo_compress, 758 }; 759 760 void __init btrfs_init_compress(void) 761 { 762 int i; 763 764 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 765 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 766 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 767 atomic_set(&btrfs_comp_ws[i].alloc_ws, 0); 768 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 769 } 770 } 771 772 /* 773 * this finds an available workspace or allocates a new one 774 * ERR_PTR is returned if things go bad. 775 */ 776 static struct list_head *find_workspace(int type) 777 { 778 struct list_head *workspace; 779 int cpus = num_online_cpus(); 780 int idx = type - 1; 781 782 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; 783 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; 784 atomic_t *alloc_ws = &btrfs_comp_ws[idx].alloc_ws; 785 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; 786 int *num_ws = &btrfs_comp_ws[idx].num_ws; 787 again: 788 spin_lock(ws_lock); 789 if (!list_empty(idle_ws)) { 790 workspace = idle_ws->next; 791 list_del(workspace); 792 (*num_ws)--; 793 spin_unlock(ws_lock); 794 return workspace; 795 796 } 797 if (atomic_read(alloc_ws) > cpus) { 798 DEFINE_WAIT(wait); 799 800 spin_unlock(ws_lock); 801 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 802 if (atomic_read(alloc_ws) > cpus && !*num_ws) 803 schedule(); 804 finish_wait(ws_wait, &wait); 805 goto again; 806 } 807 atomic_inc(alloc_ws); 808 spin_unlock(ws_lock); 809 810 workspace = btrfs_compress_op[idx]->alloc_workspace(); 811 if (IS_ERR(workspace)) { 812 atomic_dec(alloc_ws); 813 wake_up(ws_wait); 814 } 815 return workspace; 816 } 817 818 /* 819 * put a workspace struct back on the list or free it if we have enough 820 * idle ones sitting around 821 */ 822 static void free_workspace(int type, struct list_head *workspace) 823 { 824 int idx = type - 1; 825 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; 826 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; 827 atomic_t *alloc_ws = &btrfs_comp_ws[idx].alloc_ws; 828 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; 829 int *num_ws = &btrfs_comp_ws[idx].num_ws; 830 831 spin_lock(ws_lock); 832 if (*num_ws < num_online_cpus()) { 833 list_add(workspace, idle_ws); 834 (*num_ws)++; 835 spin_unlock(ws_lock); 836 goto wake; 837 } 838 spin_unlock(ws_lock); 839 840 btrfs_compress_op[idx]->free_workspace(workspace); 841 atomic_dec(alloc_ws); 842 wake: 843 /* 844 * Make sure counter is updated before we wake up waiters. 845 */ 846 smp_mb(); 847 if (waitqueue_active(ws_wait)) 848 wake_up(ws_wait); 849 } 850 851 /* 852 * cleanup function for module exit 853 */ 854 static void free_workspaces(void) 855 { 856 struct list_head *workspace; 857 int i; 858 859 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 860 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 861 workspace = btrfs_comp_ws[i].idle_ws.next; 862 list_del(workspace); 863 btrfs_compress_op[i]->free_workspace(workspace); 864 atomic_dec(&btrfs_comp_ws[i].alloc_ws); 865 } 866 } 867 } 868 869 /* 870 * given an address space and start/len, compress the bytes. 871 * 872 * pages are allocated to hold the compressed result and stored 873 * in 'pages' 874 * 875 * out_pages is used to return the number of pages allocated. There 876 * may be pages allocated even if we return an error 877 * 878 * total_in is used to return the number of bytes actually read. It 879 * may be smaller then len if we had to exit early because we 880 * ran out of room in the pages array or because we cross the 881 * max_out threshold. 882 * 883 * total_out is used to return the total number of compressed bytes 884 * 885 * max_out tells us the max number of bytes that we're allowed to 886 * stuff into pages 887 */ 888 int btrfs_compress_pages(int type, struct address_space *mapping, 889 u64 start, unsigned long len, 890 struct page **pages, 891 unsigned long nr_dest_pages, 892 unsigned long *out_pages, 893 unsigned long *total_in, 894 unsigned long *total_out, 895 unsigned long max_out) 896 { 897 struct list_head *workspace; 898 int ret; 899 900 workspace = find_workspace(type); 901 if (IS_ERR(workspace)) 902 return PTR_ERR(workspace); 903 904 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 905 start, len, pages, 906 nr_dest_pages, out_pages, 907 total_in, total_out, 908 max_out); 909 free_workspace(type, workspace); 910 return ret; 911 } 912 913 /* 914 * pages_in is an array of pages with compressed data. 915 * 916 * disk_start is the starting logical offset of this array in the file 917 * 918 * bvec is a bio_vec of pages from the file that we want to decompress into 919 * 920 * vcnt is the count of pages in the biovec 921 * 922 * srclen is the number of bytes in pages_in 923 * 924 * The basic idea is that we have a bio that was created by readpages. 925 * The pages in the bio are for the uncompressed data, and they may not 926 * be contiguous. They all correspond to the range of bytes covered by 927 * the compressed extent. 928 */ 929 static int btrfs_decompress_biovec(int type, struct page **pages_in, 930 u64 disk_start, struct bio_vec *bvec, 931 int vcnt, size_t srclen) 932 { 933 struct list_head *workspace; 934 int ret; 935 936 workspace = find_workspace(type); 937 if (IS_ERR(workspace)) 938 return PTR_ERR(workspace); 939 940 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, 941 disk_start, 942 bvec, vcnt, srclen); 943 free_workspace(type, workspace); 944 return ret; 945 } 946 947 /* 948 * a less complex decompression routine. Our compressed data fits in a 949 * single page, and we want to read a single page out of it. 950 * start_byte tells us the offset into the compressed data we're interested in 951 */ 952 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 953 unsigned long start_byte, size_t srclen, size_t destlen) 954 { 955 struct list_head *workspace; 956 int ret; 957 958 workspace = find_workspace(type); 959 if (IS_ERR(workspace)) 960 return PTR_ERR(workspace); 961 962 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 963 dest_page, start_byte, 964 srclen, destlen); 965 966 free_workspace(type, workspace); 967 return ret; 968 } 969 970 void btrfs_exit_compress(void) 971 { 972 free_workspaces(); 973 } 974 975 /* 976 * Copy uncompressed data from working buffer to pages. 977 * 978 * buf_start is the byte offset we're of the start of our workspace buffer. 979 * 980 * total_out is the last byte of the buffer 981 */ 982 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, 983 unsigned long total_out, u64 disk_start, 984 struct bio_vec *bvec, int vcnt, 985 unsigned long *pg_index, 986 unsigned long *pg_offset) 987 { 988 unsigned long buf_offset; 989 unsigned long current_buf_start; 990 unsigned long start_byte; 991 unsigned long working_bytes = total_out - buf_start; 992 unsigned long bytes; 993 char *kaddr; 994 struct page *page_out = bvec[*pg_index].bv_page; 995 996 /* 997 * start byte is the first byte of the page we're currently 998 * copying into relative to the start of the compressed data. 999 */ 1000 start_byte = page_offset(page_out) - disk_start; 1001 1002 /* we haven't yet hit data corresponding to this page */ 1003 if (total_out <= start_byte) 1004 return 1; 1005 1006 /* 1007 * the start of the data we care about is offset into 1008 * the middle of our working buffer 1009 */ 1010 if (total_out > start_byte && buf_start < start_byte) { 1011 buf_offset = start_byte - buf_start; 1012 working_bytes -= buf_offset; 1013 } else { 1014 buf_offset = 0; 1015 } 1016 current_buf_start = buf_start; 1017 1018 /* copy bytes from the working buffer into the pages */ 1019 while (working_bytes > 0) { 1020 bytes = min(PAGE_CACHE_SIZE - *pg_offset, 1021 PAGE_CACHE_SIZE - buf_offset); 1022 bytes = min(bytes, working_bytes); 1023 kaddr = kmap_atomic(page_out); 1024 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); 1025 kunmap_atomic(kaddr); 1026 flush_dcache_page(page_out); 1027 1028 *pg_offset += bytes; 1029 buf_offset += bytes; 1030 working_bytes -= bytes; 1031 current_buf_start += bytes; 1032 1033 /* check if we need to pick another page */ 1034 if (*pg_offset == PAGE_CACHE_SIZE) { 1035 (*pg_index)++; 1036 if (*pg_index >= vcnt) 1037 return 0; 1038 1039 page_out = bvec[*pg_index].bv_page; 1040 *pg_offset = 0; 1041 start_byte = page_offset(page_out) - disk_start; 1042 1043 /* 1044 * make sure our new page is covered by this 1045 * working buffer 1046 */ 1047 if (total_out <= start_byte) 1048 return 1; 1049 1050 /* 1051 * the next page in the biovec might not be adjacent 1052 * to the last page, but it might still be found 1053 * inside this working buffer. bump our offset pointer 1054 */ 1055 if (total_out > start_byte && 1056 current_buf_start < start_byte) { 1057 buf_offset = start_byte - buf_start; 1058 working_bytes = total_out - start_byte; 1059 current_buf_start = buf_start + buf_offset; 1060 } 1061 } 1062 } 1063 1064 return 1; 1065 } 1066 1067 /* 1068 * When uncompressing data, we need to make sure and zero any parts of 1069 * the biovec that were not filled in by the decompression code. pg_index 1070 * and pg_offset indicate the last page and the last offset of that page 1071 * that have been filled in. This will zero everything remaining in the 1072 * biovec. 1073 */ 1074 void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt, 1075 unsigned long pg_index, 1076 unsigned long pg_offset) 1077 { 1078 while (pg_index < vcnt) { 1079 struct page *page = bvec[pg_index].bv_page; 1080 unsigned long off = bvec[pg_index].bv_offset; 1081 unsigned long len = bvec[pg_index].bv_len; 1082 1083 if (pg_offset < off) 1084 pg_offset = off; 1085 if (pg_offset < off + len) { 1086 unsigned long bytes = off + len - pg_offset; 1087 char *kaddr; 1088 1089 kaddr = kmap_atomic(page); 1090 memset(kaddr + pg_offset, 0, bytes); 1091 kunmap_atomic(kaddr); 1092 } 1093 pg_index++; 1094 pg_offset = 0; 1095 } 1096 } 1097