1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 #include "zoned.h" 32 33 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 34 35 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 36 { 37 switch (type) { 38 case BTRFS_COMPRESS_ZLIB: 39 case BTRFS_COMPRESS_LZO: 40 case BTRFS_COMPRESS_ZSTD: 41 case BTRFS_COMPRESS_NONE: 42 return btrfs_compress_types[type]; 43 default: 44 break; 45 } 46 47 return NULL; 48 } 49 50 bool btrfs_compress_is_valid_type(const char *str, size_t len) 51 { 52 int i; 53 54 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 55 size_t comp_len = strlen(btrfs_compress_types[i]); 56 57 if (len < comp_len) 58 continue; 59 60 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 61 return true; 62 } 63 return false; 64 } 65 66 static int compression_compress_pages(int type, struct list_head *ws, 67 struct address_space *mapping, u64 start, struct page **pages, 68 unsigned long *out_pages, unsigned long *total_in, 69 unsigned long *total_out) 70 { 71 switch (type) { 72 case BTRFS_COMPRESS_ZLIB: 73 return zlib_compress_pages(ws, mapping, start, pages, 74 out_pages, total_in, total_out); 75 case BTRFS_COMPRESS_LZO: 76 return lzo_compress_pages(ws, mapping, start, pages, 77 out_pages, total_in, total_out); 78 case BTRFS_COMPRESS_ZSTD: 79 return zstd_compress_pages(ws, mapping, start, pages, 80 out_pages, total_in, total_out); 81 case BTRFS_COMPRESS_NONE: 82 default: 83 /* 84 * This can happen when compression races with remount setting 85 * it to 'no compress', while caller doesn't call 86 * inode_need_compress() to check if we really need to 87 * compress. 88 * 89 * Not a big deal, just need to inform caller that we 90 * haven't allocated any pages yet. 91 */ 92 *out_pages = 0; 93 return -E2BIG; 94 } 95 } 96 97 static int compression_decompress_bio(int type, struct list_head *ws, 98 struct compressed_bio *cb) 99 { 100 switch (type) { 101 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 102 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 103 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 104 case BTRFS_COMPRESS_NONE: 105 default: 106 /* 107 * This can't happen, the type is validated several times 108 * before we get here. 109 */ 110 BUG(); 111 } 112 } 113 114 static int compression_decompress(int type, struct list_head *ws, 115 unsigned char *data_in, struct page *dest_page, 116 unsigned long start_byte, size_t srclen, size_t destlen) 117 { 118 switch (type) { 119 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 120 start_byte, srclen, destlen); 121 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 122 start_byte, srclen, destlen); 123 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 124 start_byte, srclen, destlen); 125 case BTRFS_COMPRESS_NONE: 126 default: 127 /* 128 * This can't happen, the type is validated several times 129 * before we get here. 130 */ 131 BUG(); 132 } 133 } 134 135 static int btrfs_decompress_bio(struct compressed_bio *cb); 136 137 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 138 unsigned long disk_size) 139 { 140 return sizeof(struct compressed_bio) + 141 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size; 142 } 143 144 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 145 u64 disk_start) 146 { 147 struct btrfs_fs_info *fs_info = inode->root->fs_info; 148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 149 const u32 csum_size = fs_info->csum_size; 150 const u32 sectorsize = fs_info->sectorsize; 151 struct page *page; 152 unsigned int i; 153 char *kaddr; 154 u8 csum[BTRFS_CSUM_SIZE]; 155 struct compressed_bio *cb = bio->bi_private; 156 u8 *cb_sum = cb->sums; 157 158 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM)) 159 return 0; 160 161 shash->tfm = fs_info->csum_shash; 162 163 for (i = 0; i < cb->nr_pages; i++) { 164 u32 pg_offset; 165 u32 bytes_left = PAGE_SIZE; 166 page = cb->compressed_pages[i]; 167 168 /* Determine the remaining bytes inside the page first */ 169 if (i == cb->nr_pages - 1) 170 bytes_left = cb->compressed_len - i * PAGE_SIZE; 171 172 /* Hash through the page sector by sector */ 173 for (pg_offset = 0; pg_offset < bytes_left; 174 pg_offset += sectorsize) { 175 kaddr = kmap_atomic(page); 176 crypto_shash_digest(shash, kaddr + pg_offset, 177 sectorsize, csum); 178 kunmap_atomic(kaddr); 179 180 if (memcmp(&csum, cb_sum, csum_size) != 0) { 181 btrfs_print_data_csum_error(inode, disk_start, 182 csum, cb_sum, cb->mirror_num); 183 if (btrfs_io_bio(bio)->device) 184 btrfs_dev_stat_inc_and_print( 185 btrfs_io_bio(bio)->device, 186 BTRFS_DEV_STAT_CORRUPTION_ERRS); 187 return -EIO; 188 } 189 cb_sum += csum_size; 190 disk_start += sectorsize; 191 } 192 } 193 return 0; 194 } 195 196 /* when we finish reading compressed pages from the disk, we 197 * decompress them and then run the bio end_io routines on the 198 * decompressed pages (in the inode address space). 199 * 200 * This allows the checksumming and other IO error handling routines 201 * to work normally 202 * 203 * The compressed pages are freed here, and it must be run 204 * in process context 205 */ 206 static void end_compressed_bio_read(struct bio *bio) 207 { 208 struct compressed_bio *cb = bio->bi_private; 209 struct inode *inode; 210 struct page *page; 211 unsigned int index; 212 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 213 int ret = 0; 214 215 if (bio->bi_status) 216 cb->errors = 1; 217 218 /* if there are more bios still pending for this compressed 219 * extent, just exit 220 */ 221 if (!refcount_dec_and_test(&cb->pending_bios)) 222 goto out; 223 224 /* 225 * Record the correct mirror_num in cb->orig_bio so that 226 * read-repair can work properly. 227 */ 228 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 229 cb->mirror_num = mirror; 230 231 /* 232 * Some IO in this cb have failed, just skip checksum as there 233 * is no way it could be correct. 234 */ 235 if (cb->errors == 1) 236 goto csum_failed; 237 238 inode = cb->inode; 239 ret = check_compressed_csum(BTRFS_I(inode), bio, 240 bio->bi_iter.bi_sector << 9); 241 if (ret) 242 goto csum_failed; 243 244 /* ok, we're the last bio for this extent, lets start 245 * the decompression. 246 */ 247 ret = btrfs_decompress_bio(cb); 248 249 csum_failed: 250 if (ret) 251 cb->errors = 1; 252 253 /* release the compressed pages */ 254 index = 0; 255 for (index = 0; index < cb->nr_pages; index++) { 256 page = cb->compressed_pages[index]; 257 page->mapping = NULL; 258 put_page(page); 259 } 260 261 /* do io completion on the original bio */ 262 if (cb->errors) { 263 bio_io_error(cb->orig_bio); 264 } else { 265 struct bio_vec *bvec; 266 struct bvec_iter_all iter_all; 267 268 /* 269 * we have verified the checksum already, set page 270 * checked so the end_io handlers know about it 271 */ 272 ASSERT(!bio_flagged(bio, BIO_CLONED)); 273 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 274 SetPageChecked(bvec->bv_page); 275 276 bio_endio(cb->orig_bio); 277 } 278 279 /* finally free the cb struct */ 280 kfree(cb->compressed_pages); 281 kfree(cb); 282 out: 283 bio_put(bio); 284 } 285 286 /* 287 * Clear the writeback bits on all of the file 288 * pages for a compressed write 289 */ 290 static noinline void end_compressed_writeback(struct inode *inode, 291 const struct compressed_bio *cb) 292 { 293 unsigned long index = cb->start >> PAGE_SHIFT; 294 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 295 struct page *pages[16]; 296 unsigned long nr_pages = end_index - index + 1; 297 int i; 298 int ret; 299 300 if (cb->errors) 301 mapping_set_error(inode->i_mapping, -EIO); 302 303 while (nr_pages > 0) { 304 ret = find_get_pages_contig(inode->i_mapping, index, 305 min_t(unsigned long, 306 nr_pages, ARRAY_SIZE(pages)), pages); 307 if (ret == 0) { 308 nr_pages -= 1; 309 index += 1; 310 continue; 311 } 312 for (i = 0; i < ret; i++) { 313 if (cb->errors) 314 SetPageError(pages[i]); 315 end_page_writeback(pages[i]); 316 put_page(pages[i]); 317 } 318 nr_pages -= ret; 319 index += ret; 320 } 321 /* the inode may be gone now */ 322 } 323 324 /* 325 * do the cleanup once all the compressed pages hit the disk. 326 * This will clear writeback on the file pages and free the compressed 327 * pages. 328 * 329 * This also calls the writeback end hooks for the file pages so that 330 * metadata and checksums can be updated in the file. 331 */ 332 static void end_compressed_bio_write(struct bio *bio) 333 { 334 struct compressed_bio *cb = bio->bi_private; 335 struct inode *inode; 336 struct page *page; 337 unsigned int index; 338 339 if (bio->bi_status) 340 cb->errors = 1; 341 342 /* if there are more bios still pending for this compressed 343 * extent, just exit 344 */ 345 if (!refcount_dec_and_test(&cb->pending_bios)) 346 goto out; 347 348 /* ok, we're the last bio for this extent, step one is to 349 * call back into the FS and do all the end_io operations 350 */ 351 inode = cb->inode; 352 btrfs_record_physical_zoned(inode, cb->start, bio); 353 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL, 354 cb->start, cb->start + cb->len - 1, 355 bio->bi_status == BLK_STS_OK); 356 357 end_compressed_writeback(inode, cb); 358 /* note, our inode could be gone now */ 359 360 /* 361 * release the compressed pages, these came from alloc_page and 362 * are not attached to the inode at all 363 */ 364 index = 0; 365 for (index = 0; index < cb->nr_pages; index++) { 366 page = cb->compressed_pages[index]; 367 page->mapping = NULL; 368 put_page(page); 369 } 370 371 /* finally free the cb struct */ 372 kfree(cb->compressed_pages); 373 kfree(cb); 374 out: 375 bio_put(bio); 376 } 377 378 /* 379 * worker function to build and submit bios for previously compressed pages. 380 * The corresponding pages in the inode should be marked for writeback 381 * and the compressed pages should have a reference on them for dropping 382 * when the IO is complete. 383 * 384 * This also checksums the file bytes and gets things ready for 385 * the end io hooks. 386 */ 387 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 388 unsigned int len, u64 disk_start, 389 unsigned int compressed_len, 390 struct page **compressed_pages, 391 unsigned int nr_pages, 392 unsigned int write_flags, 393 struct cgroup_subsys_state *blkcg_css) 394 { 395 struct btrfs_fs_info *fs_info = inode->root->fs_info; 396 struct bio *bio = NULL; 397 struct compressed_bio *cb; 398 unsigned long bytes_left; 399 int pg_index = 0; 400 struct page *page; 401 u64 first_byte = disk_start; 402 blk_status_t ret; 403 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 404 const bool use_append = btrfs_use_zone_append(inode, disk_start); 405 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE; 406 407 WARN_ON(!PAGE_ALIGNED(start)); 408 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 409 if (!cb) 410 return BLK_STS_RESOURCE; 411 refcount_set(&cb->pending_bios, 0); 412 cb->errors = 0; 413 cb->inode = &inode->vfs_inode; 414 cb->start = start; 415 cb->len = len; 416 cb->mirror_num = 0; 417 cb->compressed_pages = compressed_pages; 418 cb->compressed_len = compressed_len; 419 cb->orig_bio = NULL; 420 cb->nr_pages = nr_pages; 421 422 bio = btrfs_bio_alloc(first_byte); 423 bio->bi_opf = bio_op | write_flags; 424 bio->bi_private = cb; 425 bio->bi_end_io = end_compressed_bio_write; 426 427 if (use_append) { 428 struct btrfs_device *device; 429 430 device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE); 431 if (IS_ERR(device)) { 432 kfree(cb); 433 bio_put(bio); 434 return BLK_STS_NOTSUPP; 435 } 436 437 bio_set_dev(bio, device->bdev); 438 } 439 440 if (blkcg_css) { 441 bio->bi_opf |= REQ_CGROUP_PUNT; 442 kthread_associate_blkcg(blkcg_css); 443 } 444 refcount_set(&cb->pending_bios, 1); 445 446 /* create and submit bios for the compressed pages */ 447 bytes_left = compressed_len; 448 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 449 int submit = 0; 450 int len = 0; 451 452 page = compressed_pages[pg_index]; 453 page->mapping = inode->vfs_inode.i_mapping; 454 if (bio->bi_iter.bi_size) 455 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 456 0); 457 458 /* 459 * Page can only be added to bio if the current bio fits in 460 * stripe. 461 */ 462 if (!submit) { 463 if (pg_index == 0 && use_append) 464 len = bio_add_zone_append_page(bio, page, 465 PAGE_SIZE, 0); 466 else 467 len = bio_add_page(bio, page, PAGE_SIZE, 0); 468 } 469 470 page->mapping = NULL; 471 if (submit || len < PAGE_SIZE) { 472 /* 473 * inc the count before we submit the bio so 474 * we know the end IO handler won't happen before 475 * we inc the count. Otherwise, the cb might get 476 * freed before we're done setting it up 477 */ 478 refcount_inc(&cb->pending_bios); 479 ret = btrfs_bio_wq_end_io(fs_info, bio, 480 BTRFS_WQ_ENDIO_DATA); 481 BUG_ON(ret); /* -ENOMEM */ 482 483 if (!skip_sum) { 484 ret = btrfs_csum_one_bio(inode, bio, start, 1); 485 BUG_ON(ret); /* -ENOMEM */ 486 } 487 488 ret = btrfs_map_bio(fs_info, bio, 0); 489 if (ret) { 490 bio->bi_status = ret; 491 bio_endio(bio); 492 } 493 494 bio = btrfs_bio_alloc(first_byte); 495 bio->bi_opf = bio_op | write_flags; 496 bio->bi_private = cb; 497 bio->bi_end_io = end_compressed_bio_write; 498 if (blkcg_css) 499 bio->bi_opf |= REQ_CGROUP_PUNT; 500 /* 501 * Use bio_add_page() to ensure the bio has at least one 502 * page. 503 */ 504 bio_add_page(bio, page, PAGE_SIZE, 0); 505 } 506 if (bytes_left < PAGE_SIZE) { 507 btrfs_info(fs_info, 508 "bytes left %lu compress len %u nr %u", 509 bytes_left, cb->compressed_len, cb->nr_pages); 510 } 511 bytes_left -= PAGE_SIZE; 512 first_byte += PAGE_SIZE; 513 cond_resched(); 514 } 515 516 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 517 BUG_ON(ret); /* -ENOMEM */ 518 519 if (!skip_sum) { 520 ret = btrfs_csum_one_bio(inode, bio, start, 1); 521 BUG_ON(ret); /* -ENOMEM */ 522 } 523 524 ret = btrfs_map_bio(fs_info, bio, 0); 525 if (ret) { 526 bio->bi_status = ret; 527 bio_endio(bio); 528 } 529 530 if (blkcg_css) 531 kthread_associate_blkcg(NULL); 532 533 return 0; 534 } 535 536 static u64 bio_end_offset(struct bio *bio) 537 { 538 struct bio_vec *last = bio_last_bvec_all(bio); 539 540 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 541 } 542 543 static noinline int add_ra_bio_pages(struct inode *inode, 544 u64 compressed_end, 545 struct compressed_bio *cb) 546 { 547 unsigned long end_index; 548 unsigned long pg_index; 549 u64 last_offset; 550 u64 isize = i_size_read(inode); 551 int ret; 552 struct page *page; 553 unsigned long nr_pages = 0; 554 struct extent_map *em; 555 struct address_space *mapping = inode->i_mapping; 556 struct extent_map_tree *em_tree; 557 struct extent_io_tree *tree; 558 u64 end; 559 int misses = 0; 560 561 last_offset = bio_end_offset(cb->orig_bio); 562 em_tree = &BTRFS_I(inode)->extent_tree; 563 tree = &BTRFS_I(inode)->io_tree; 564 565 if (isize == 0) 566 return 0; 567 568 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 569 570 while (last_offset < compressed_end) { 571 pg_index = last_offset >> PAGE_SHIFT; 572 573 if (pg_index > end_index) 574 break; 575 576 page = xa_load(&mapping->i_pages, pg_index); 577 if (page && !xa_is_value(page)) { 578 misses++; 579 if (misses > 4) 580 break; 581 goto next; 582 } 583 584 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 585 ~__GFP_FS)); 586 if (!page) 587 break; 588 589 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 590 put_page(page); 591 goto next; 592 } 593 594 /* 595 * at this point, we have a locked page in the page cache 596 * for these bytes in the file. But, we have to make 597 * sure they map to this compressed extent on disk. 598 */ 599 ret = set_page_extent_mapped(page); 600 if (ret < 0) { 601 unlock_page(page); 602 put_page(page); 603 break; 604 } 605 606 end = last_offset + PAGE_SIZE - 1; 607 lock_extent(tree, last_offset, end); 608 read_lock(&em_tree->lock); 609 em = lookup_extent_mapping(em_tree, last_offset, 610 PAGE_SIZE); 611 read_unlock(&em_tree->lock); 612 613 if (!em || last_offset < em->start || 614 (last_offset + PAGE_SIZE > extent_map_end(em)) || 615 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 616 free_extent_map(em); 617 unlock_extent(tree, last_offset, end); 618 unlock_page(page); 619 put_page(page); 620 break; 621 } 622 free_extent_map(em); 623 624 if (page->index == end_index) { 625 size_t zero_offset = offset_in_page(isize); 626 627 if (zero_offset) { 628 int zeros; 629 zeros = PAGE_SIZE - zero_offset; 630 memzero_page(page, zero_offset, zeros); 631 flush_dcache_page(page); 632 } 633 } 634 635 ret = bio_add_page(cb->orig_bio, page, 636 PAGE_SIZE, 0); 637 638 if (ret == PAGE_SIZE) { 639 nr_pages++; 640 put_page(page); 641 } else { 642 unlock_extent(tree, last_offset, end); 643 unlock_page(page); 644 put_page(page); 645 break; 646 } 647 next: 648 last_offset += PAGE_SIZE; 649 } 650 return 0; 651 } 652 653 /* 654 * for a compressed read, the bio we get passed has all the inode pages 655 * in it. We don't actually do IO on those pages but allocate new ones 656 * to hold the compressed pages on disk. 657 * 658 * bio->bi_iter.bi_sector points to the compressed extent on disk 659 * bio->bi_io_vec points to all of the inode pages 660 * 661 * After the compressed pages are read, we copy the bytes into the 662 * bio we were passed and then call the bio end_io calls 663 */ 664 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 665 int mirror_num, unsigned long bio_flags) 666 { 667 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 668 struct extent_map_tree *em_tree; 669 struct compressed_bio *cb; 670 unsigned int compressed_len; 671 unsigned int nr_pages; 672 unsigned int pg_index; 673 struct page *page; 674 struct bio *comp_bio; 675 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9; 676 u64 em_len; 677 u64 em_start; 678 struct extent_map *em; 679 blk_status_t ret = BLK_STS_RESOURCE; 680 int faili = 0; 681 u8 *sums; 682 683 em_tree = &BTRFS_I(inode)->extent_tree; 684 685 /* we need the actual starting offset of this extent in the file */ 686 read_lock(&em_tree->lock); 687 em = lookup_extent_mapping(em_tree, 688 page_offset(bio_first_page_all(bio)), 689 fs_info->sectorsize); 690 read_unlock(&em_tree->lock); 691 if (!em) 692 return BLK_STS_IOERR; 693 694 compressed_len = em->block_len; 695 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 696 if (!cb) 697 goto out; 698 699 refcount_set(&cb->pending_bios, 0); 700 cb->errors = 0; 701 cb->inode = inode; 702 cb->mirror_num = mirror_num; 703 sums = cb->sums; 704 705 cb->start = em->orig_start; 706 em_len = em->len; 707 em_start = em->start; 708 709 free_extent_map(em); 710 em = NULL; 711 712 cb->len = bio->bi_iter.bi_size; 713 cb->compressed_len = compressed_len; 714 cb->compress_type = extent_compress_type(bio_flags); 715 cb->orig_bio = bio; 716 717 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 718 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 719 GFP_NOFS); 720 if (!cb->compressed_pages) 721 goto fail1; 722 723 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 724 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 725 __GFP_HIGHMEM); 726 if (!cb->compressed_pages[pg_index]) { 727 faili = pg_index - 1; 728 ret = BLK_STS_RESOURCE; 729 goto fail2; 730 } 731 } 732 faili = nr_pages - 1; 733 cb->nr_pages = nr_pages; 734 735 add_ra_bio_pages(inode, em_start + em_len, cb); 736 737 /* include any pages we added in add_ra-bio_pages */ 738 cb->len = bio->bi_iter.bi_size; 739 740 comp_bio = btrfs_bio_alloc(cur_disk_byte); 741 comp_bio->bi_opf = REQ_OP_READ; 742 comp_bio->bi_private = cb; 743 comp_bio->bi_end_io = end_compressed_bio_read; 744 refcount_set(&cb->pending_bios, 1); 745 746 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 747 u32 pg_len = PAGE_SIZE; 748 int submit = 0; 749 750 /* 751 * To handle subpage case, we need to make sure the bio only 752 * covers the range we need. 753 * 754 * If we're at the last page, truncate the length to only cover 755 * the remaining part. 756 */ 757 if (pg_index == nr_pages - 1) 758 pg_len = min_t(u32, PAGE_SIZE, 759 compressed_len - pg_index * PAGE_SIZE); 760 761 page = cb->compressed_pages[pg_index]; 762 page->mapping = inode->i_mapping; 763 page->index = em_start >> PAGE_SHIFT; 764 765 if (comp_bio->bi_iter.bi_size) 766 submit = btrfs_bio_fits_in_stripe(page, pg_len, 767 comp_bio, 0); 768 769 page->mapping = NULL; 770 if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) { 771 unsigned int nr_sectors; 772 773 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 774 BTRFS_WQ_ENDIO_DATA); 775 BUG_ON(ret); /* -ENOMEM */ 776 777 /* 778 * inc the count before we submit the bio so 779 * we know the end IO handler won't happen before 780 * we inc the count. Otherwise, the cb might get 781 * freed before we're done setting it up 782 */ 783 refcount_inc(&cb->pending_bios); 784 785 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 786 BUG_ON(ret); /* -ENOMEM */ 787 788 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 789 fs_info->sectorsize); 790 sums += fs_info->csum_size * nr_sectors; 791 792 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 793 if (ret) { 794 comp_bio->bi_status = ret; 795 bio_endio(comp_bio); 796 } 797 798 comp_bio = btrfs_bio_alloc(cur_disk_byte); 799 comp_bio->bi_opf = REQ_OP_READ; 800 comp_bio->bi_private = cb; 801 comp_bio->bi_end_io = end_compressed_bio_read; 802 803 bio_add_page(comp_bio, page, pg_len, 0); 804 } 805 cur_disk_byte += pg_len; 806 } 807 808 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 809 BUG_ON(ret); /* -ENOMEM */ 810 811 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 812 BUG_ON(ret); /* -ENOMEM */ 813 814 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 815 if (ret) { 816 comp_bio->bi_status = ret; 817 bio_endio(comp_bio); 818 } 819 820 return 0; 821 822 fail2: 823 while (faili >= 0) { 824 __free_page(cb->compressed_pages[faili]); 825 faili--; 826 } 827 828 kfree(cb->compressed_pages); 829 fail1: 830 kfree(cb); 831 out: 832 free_extent_map(em); 833 return ret; 834 } 835 836 /* 837 * Heuristic uses systematic sampling to collect data from the input data 838 * range, the logic can be tuned by the following constants: 839 * 840 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 841 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 842 */ 843 #define SAMPLING_READ_SIZE (16) 844 #define SAMPLING_INTERVAL (256) 845 846 /* 847 * For statistical analysis of the input data we consider bytes that form a 848 * Galois Field of 256 objects. Each object has an attribute count, ie. how 849 * many times the object appeared in the sample. 850 */ 851 #define BUCKET_SIZE (256) 852 853 /* 854 * The size of the sample is based on a statistical sampling rule of thumb. 855 * The common way is to perform sampling tests as long as the number of 856 * elements in each cell is at least 5. 857 * 858 * Instead of 5, we choose 32 to obtain more accurate results. 859 * If the data contain the maximum number of symbols, which is 256, we obtain a 860 * sample size bound by 8192. 861 * 862 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 863 * from up to 512 locations. 864 */ 865 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 866 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 867 868 struct bucket_item { 869 u32 count; 870 }; 871 872 struct heuristic_ws { 873 /* Partial copy of input data */ 874 u8 *sample; 875 u32 sample_size; 876 /* Buckets store counters for each byte value */ 877 struct bucket_item *bucket; 878 /* Sorting buffer */ 879 struct bucket_item *bucket_b; 880 struct list_head list; 881 }; 882 883 static struct workspace_manager heuristic_wsm; 884 885 static void free_heuristic_ws(struct list_head *ws) 886 { 887 struct heuristic_ws *workspace; 888 889 workspace = list_entry(ws, struct heuristic_ws, list); 890 891 kvfree(workspace->sample); 892 kfree(workspace->bucket); 893 kfree(workspace->bucket_b); 894 kfree(workspace); 895 } 896 897 static struct list_head *alloc_heuristic_ws(unsigned int level) 898 { 899 struct heuristic_ws *ws; 900 901 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 902 if (!ws) 903 return ERR_PTR(-ENOMEM); 904 905 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 906 if (!ws->sample) 907 goto fail; 908 909 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 910 if (!ws->bucket) 911 goto fail; 912 913 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 914 if (!ws->bucket_b) 915 goto fail; 916 917 INIT_LIST_HEAD(&ws->list); 918 return &ws->list; 919 fail: 920 free_heuristic_ws(&ws->list); 921 return ERR_PTR(-ENOMEM); 922 } 923 924 const struct btrfs_compress_op btrfs_heuristic_compress = { 925 .workspace_manager = &heuristic_wsm, 926 }; 927 928 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 929 /* The heuristic is represented as compression type 0 */ 930 &btrfs_heuristic_compress, 931 &btrfs_zlib_compress, 932 &btrfs_lzo_compress, 933 &btrfs_zstd_compress, 934 }; 935 936 static struct list_head *alloc_workspace(int type, unsigned int level) 937 { 938 switch (type) { 939 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 940 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 941 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 942 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 943 default: 944 /* 945 * This can't happen, the type is validated several times 946 * before we get here. 947 */ 948 BUG(); 949 } 950 } 951 952 static void free_workspace(int type, struct list_head *ws) 953 { 954 switch (type) { 955 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 956 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 957 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 958 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 959 default: 960 /* 961 * This can't happen, the type is validated several times 962 * before we get here. 963 */ 964 BUG(); 965 } 966 } 967 968 static void btrfs_init_workspace_manager(int type) 969 { 970 struct workspace_manager *wsm; 971 struct list_head *workspace; 972 973 wsm = btrfs_compress_op[type]->workspace_manager; 974 INIT_LIST_HEAD(&wsm->idle_ws); 975 spin_lock_init(&wsm->ws_lock); 976 atomic_set(&wsm->total_ws, 0); 977 init_waitqueue_head(&wsm->ws_wait); 978 979 /* 980 * Preallocate one workspace for each compression type so we can 981 * guarantee forward progress in the worst case 982 */ 983 workspace = alloc_workspace(type, 0); 984 if (IS_ERR(workspace)) { 985 pr_warn( 986 "BTRFS: cannot preallocate compression workspace, will try later\n"); 987 } else { 988 atomic_set(&wsm->total_ws, 1); 989 wsm->free_ws = 1; 990 list_add(workspace, &wsm->idle_ws); 991 } 992 } 993 994 static void btrfs_cleanup_workspace_manager(int type) 995 { 996 struct workspace_manager *wsman; 997 struct list_head *ws; 998 999 wsman = btrfs_compress_op[type]->workspace_manager; 1000 while (!list_empty(&wsman->idle_ws)) { 1001 ws = wsman->idle_ws.next; 1002 list_del(ws); 1003 free_workspace(type, ws); 1004 atomic_dec(&wsman->total_ws); 1005 } 1006 } 1007 1008 /* 1009 * This finds an available workspace or allocates a new one. 1010 * If it's not possible to allocate a new one, waits until there's one. 1011 * Preallocation makes a forward progress guarantees and we do not return 1012 * errors. 1013 */ 1014 struct list_head *btrfs_get_workspace(int type, unsigned int level) 1015 { 1016 struct workspace_manager *wsm; 1017 struct list_head *workspace; 1018 int cpus = num_online_cpus(); 1019 unsigned nofs_flag; 1020 struct list_head *idle_ws; 1021 spinlock_t *ws_lock; 1022 atomic_t *total_ws; 1023 wait_queue_head_t *ws_wait; 1024 int *free_ws; 1025 1026 wsm = btrfs_compress_op[type]->workspace_manager; 1027 idle_ws = &wsm->idle_ws; 1028 ws_lock = &wsm->ws_lock; 1029 total_ws = &wsm->total_ws; 1030 ws_wait = &wsm->ws_wait; 1031 free_ws = &wsm->free_ws; 1032 1033 again: 1034 spin_lock(ws_lock); 1035 if (!list_empty(idle_ws)) { 1036 workspace = idle_ws->next; 1037 list_del(workspace); 1038 (*free_ws)--; 1039 spin_unlock(ws_lock); 1040 return workspace; 1041 1042 } 1043 if (atomic_read(total_ws) > cpus) { 1044 DEFINE_WAIT(wait); 1045 1046 spin_unlock(ws_lock); 1047 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1048 if (atomic_read(total_ws) > cpus && !*free_ws) 1049 schedule(); 1050 finish_wait(ws_wait, &wait); 1051 goto again; 1052 } 1053 atomic_inc(total_ws); 1054 spin_unlock(ws_lock); 1055 1056 /* 1057 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1058 * to turn it off here because we might get called from the restricted 1059 * context of btrfs_compress_bio/btrfs_compress_pages 1060 */ 1061 nofs_flag = memalloc_nofs_save(); 1062 workspace = alloc_workspace(type, level); 1063 memalloc_nofs_restore(nofs_flag); 1064 1065 if (IS_ERR(workspace)) { 1066 atomic_dec(total_ws); 1067 wake_up(ws_wait); 1068 1069 /* 1070 * Do not return the error but go back to waiting. There's a 1071 * workspace preallocated for each type and the compression 1072 * time is bounded so we get to a workspace eventually. This 1073 * makes our caller's life easier. 1074 * 1075 * To prevent silent and low-probability deadlocks (when the 1076 * initial preallocation fails), check if there are any 1077 * workspaces at all. 1078 */ 1079 if (atomic_read(total_ws) == 0) { 1080 static DEFINE_RATELIMIT_STATE(_rs, 1081 /* once per minute */ 60 * HZ, 1082 /* no burst */ 1); 1083 1084 if (__ratelimit(&_rs)) { 1085 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1086 } 1087 } 1088 goto again; 1089 } 1090 return workspace; 1091 } 1092 1093 static struct list_head *get_workspace(int type, int level) 1094 { 1095 switch (type) { 1096 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1097 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1098 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1099 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1100 default: 1101 /* 1102 * This can't happen, the type is validated several times 1103 * before we get here. 1104 */ 1105 BUG(); 1106 } 1107 } 1108 1109 /* 1110 * put a workspace struct back on the list or free it if we have enough 1111 * idle ones sitting around 1112 */ 1113 void btrfs_put_workspace(int type, struct list_head *ws) 1114 { 1115 struct workspace_manager *wsm; 1116 struct list_head *idle_ws; 1117 spinlock_t *ws_lock; 1118 atomic_t *total_ws; 1119 wait_queue_head_t *ws_wait; 1120 int *free_ws; 1121 1122 wsm = btrfs_compress_op[type]->workspace_manager; 1123 idle_ws = &wsm->idle_ws; 1124 ws_lock = &wsm->ws_lock; 1125 total_ws = &wsm->total_ws; 1126 ws_wait = &wsm->ws_wait; 1127 free_ws = &wsm->free_ws; 1128 1129 spin_lock(ws_lock); 1130 if (*free_ws <= num_online_cpus()) { 1131 list_add(ws, idle_ws); 1132 (*free_ws)++; 1133 spin_unlock(ws_lock); 1134 goto wake; 1135 } 1136 spin_unlock(ws_lock); 1137 1138 free_workspace(type, ws); 1139 atomic_dec(total_ws); 1140 wake: 1141 cond_wake_up(ws_wait); 1142 } 1143 1144 static void put_workspace(int type, struct list_head *ws) 1145 { 1146 switch (type) { 1147 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1148 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1149 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1150 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1151 default: 1152 /* 1153 * This can't happen, the type is validated several times 1154 * before we get here. 1155 */ 1156 BUG(); 1157 } 1158 } 1159 1160 /* 1161 * Adjust @level according to the limits of the compression algorithm or 1162 * fallback to default 1163 */ 1164 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1165 { 1166 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1167 1168 if (level == 0) 1169 level = ops->default_level; 1170 else 1171 level = min(level, ops->max_level); 1172 1173 return level; 1174 } 1175 1176 /* 1177 * Given an address space and start and length, compress the bytes into @pages 1178 * that are allocated on demand. 1179 * 1180 * @type_level is encoded algorithm and level, where level 0 means whatever 1181 * default the algorithm chooses and is opaque here; 1182 * - compression algo are 0-3 1183 * - the level are bits 4-7 1184 * 1185 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1186 * and returns number of actually allocated pages 1187 * 1188 * @total_in is used to return the number of bytes actually read. It 1189 * may be smaller than the input length if we had to exit early because we 1190 * ran out of room in the pages array or because we cross the 1191 * max_out threshold. 1192 * 1193 * @total_out is an in/out parameter, must be set to the input length and will 1194 * be also used to return the total number of compressed bytes 1195 */ 1196 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1197 u64 start, struct page **pages, 1198 unsigned long *out_pages, 1199 unsigned long *total_in, 1200 unsigned long *total_out) 1201 { 1202 int type = btrfs_compress_type(type_level); 1203 int level = btrfs_compress_level(type_level); 1204 struct list_head *workspace; 1205 int ret; 1206 1207 level = btrfs_compress_set_level(type, level); 1208 workspace = get_workspace(type, level); 1209 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1210 out_pages, total_in, total_out); 1211 put_workspace(type, workspace); 1212 return ret; 1213 } 1214 1215 static int btrfs_decompress_bio(struct compressed_bio *cb) 1216 { 1217 struct list_head *workspace; 1218 int ret; 1219 int type = cb->compress_type; 1220 1221 workspace = get_workspace(type, 0); 1222 ret = compression_decompress_bio(type, workspace, cb); 1223 put_workspace(type, workspace); 1224 1225 return ret; 1226 } 1227 1228 /* 1229 * a less complex decompression routine. Our compressed data fits in a 1230 * single page, and we want to read a single page out of it. 1231 * start_byte tells us the offset into the compressed data we're interested in 1232 */ 1233 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1234 unsigned long start_byte, size_t srclen, size_t destlen) 1235 { 1236 struct list_head *workspace; 1237 int ret; 1238 1239 workspace = get_workspace(type, 0); 1240 ret = compression_decompress(type, workspace, data_in, dest_page, 1241 start_byte, srclen, destlen); 1242 put_workspace(type, workspace); 1243 1244 return ret; 1245 } 1246 1247 void __init btrfs_init_compress(void) 1248 { 1249 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1250 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1251 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1252 zstd_init_workspace_manager(); 1253 } 1254 1255 void __cold btrfs_exit_compress(void) 1256 { 1257 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1258 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1259 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1260 zstd_cleanup_workspace_manager(); 1261 } 1262 1263 /* 1264 * Copy uncompressed data from working buffer to pages. 1265 * 1266 * buf_start is the byte offset we're of the start of our workspace buffer. 1267 * 1268 * total_out is the last byte of the buffer 1269 */ 1270 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1271 unsigned long total_out, u64 disk_start, 1272 struct bio *bio) 1273 { 1274 unsigned long buf_offset; 1275 unsigned long current_buf_start; 1276 unsigned long start_byte; 1277 unsigned long prev_start_byte; 1278 unsigned long working_bytes = total_out - buf_start; 1279 unsigned long bytes; 1280 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1281 1282 /* 1283 * start byte is the first byte of the page we're currently 1284 * copying into relative to the start of the compressed data. 1285 */ 1286 start_byte = page_offset(bvec.bv_page) - disk_start; 1287 1288 /* we haven't yet hit data corresponding to this page */ 1289 if (total_out <= start_byte) 1290 return 1; 1291 1292 /* 1293 * the start of the data we care about is offset into 1294 * the middle of our working buffer 1295 */ 1296 if (total_out > start_byte && buf_start < start_byte) { 1297 buf_offset = start_byte - buf_start; 1298 working_bytes -= buf_offset; 1299 } else { 1300 buf_offset = 0; 1301 } 1302 current_buf_start = buf_start; 1303 1304 /* copy bytes from the working buffer into the pages */ 1305 while (working_bytes > 0) { 1306 bytes = min_t(unsigned long, bvec.bv_len, 1307 PAGE_SIZE - (buf_offset % PAGE_SIZE)); 1308 bytes = min(bytes, working_bytes); 1309 1310 memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset, 1311 bytes); 1312 flush_dcache_page(bvec.bv_page); 1313 1314 buf_offset += bytes; 1315 working_bytes -= bytes; 1316 current_buf_start += bytes; 1317 1318 /* check if we need to pick another page */ 1319 bio_advance(bio, bytes); 1320 if (!bio->bi_iter.bi_size) 1321 return 0; 1322 bvec = bio_iter_iovec(bio, bio->bi_iter); 1323 prev_start_byte = start_byte; 1324 start_byte = page_offset(bvec.bv_page) - disk_start; 1325 1326 /* 1327 * We need to make sure we're only adjusting 1328 * our offset into compression working buffer when 1329 * we're switching pages. Otherwise we can incorrectly 1330 * keep copying when we were actually done. 1331 */ 1332 if (start_byte != prev_start_byte) { 1333 /* 1334 * make sure our new page is covered by this 1335 * working buffer 1336 */ 1337 if (total_out <= start_byte) 1338 return 1; 1339 1340 /* 1341 * the next page in the biovec might not be adjacent 1342 * to the last page, but it might still be found 1343 * inside this working buffer. bump our offset pointer 1344 */ 1345 if (total_out > start_byte && 1346 current_buf_start < start_byte) { 1347 buf_offset = start_byte - buf_start; 1348 working_bytes = total_out - start_byte; 1349 current_buf_start = buf_start + buf_offset; 1350 } 1351 } 1352 } 1353 1354 return 1; 1355 } 1356 1357 /* 1358 * Shannon Entropy calculation 1359 * 1360 * Pure byte distribution analysis fails to determine compressibility of data. 1361 * Try calculating entropy to estimate the average minimum number of bits 1362 * needed to encode the sampled data. 1363 * 1364 * For convenience, return the percentage of needed bits, instead of amount of 1365 * bits directly. 1366 * 1367 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1368 * and can be compressible with high probability 1369 * 1370 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1371 * 1372 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1373 */ 1374 #define ENTROPY_LVL_ACEPTABLE (65) 1375 #define ENTROPY_LVL_HIGH (80) 1376 1377 /* 1378 * For increasead precision in shannon_entropy calculation, 1379 * let's do pow(n, M) to save more digits after comma: 1380 * 1381 * - maximum int bit length is 64 1382 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1383 * - 13 * 4 = 52 < 64 -> M = 4 1384 * 1385 * So use pow(n, 4). 1386 */ 1387 static inline u32 ilog2_w(u64 n) 1388 { 1389 return ilog2(n * n * n * n); 1390 } 1391 1392 static u32 shannon_entropy(struct heuristic_ws *ws) 1393 { 1394 const u32 entropy_max = 8 * ilog2_w(2); 1395 u32 entropy_sum = 0; 1396 u32 p, p_base, sz_base; 1397 u32 i; 1398 1399 sz_base = ilog2_w(ws->sample_size); 1400 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1401 p = ws->bucket[i].count; 1402 p_base = ilog2_w(p); 1403 entropy_sum += p * (sz_base - p_base); 1404 } 1405 1406 entropy_sum /= ws->sample_size; 1407 return entropy_sum * 100 / entropy_max; 1408 } 1409 1410 #define RADIX_BASE 4U 1411 #define COUNTERS_SIZE (1U << RADIX_BASE) 1412 1413 static u8 get4bits(u64 num, int shift) { 1414 u8 low4bits; 1415 1416 num >>= shift; 1417 /* Reverse order */ 1418 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1419 return low4bits; 1420 } 1421 1422 /* 1423 * Use 4 bits as radix base 1424 * Use 16 u32 counters for calculating new position in buf array 1425 * 1426 * @array - array that will be sorted 1427 * @array_buf - buffer array to store sorting results 1428 * must be equal in size to @array 1429 * @num - array size 1430 */ 1431 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1432 int num) 1433 { 1434 u64 max_num; 1435 u64 buf_num; 1436 u32 counters[COUNTERS_SIZE]; 1437 u32 new_addr; 1438 u32 addr; 1439 int bitlen; 1440 int shift; 1441 int i; 1442 1443 /* 1444 * Try avoid useless loop iterations for small numbers stored in big 1445 * counters. Example: 48 33 4 ... in 64bit array 1446 */ 1447 max_num = array[0].count; 1448 for (i = 1; i < num; i++) { 1449 buf_num = array[i].count; 1450 if (buf_num > max_num) 1451 max_num = buf_num; 1452 } 1453 1454 buf_num = ilog2(max_num); 1455 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1456 1457 shift = 0; 1458 while (shift < bitlen) { 1459 memset(counters, 0, sizeof(counters)); 1460 1461 for (i = 0; i < num; i++) { 1462 buf_num = array[i].count; 1463 addr = get4bits(buf_num, shift); 1464 counters[addr]++; 1465 } 1466 1467 for (i = 1; i < COUNTERS_SIZE; i++) 1468 counters[i] += counters[i - 1]; 1469 1470 for (i = num - 1; i >= 0; i--) { 1471 buf_num = array[i].count; 1472 addr = get4bits(buf_num, shift); 1473 counters[addr]--; 1474 new_addr = counters[addr]; 1475 array_buf[new_addr] = array[i]; 1476 } 1477 1478 shift += RADIX_BASE; 1479 1480 /* 1481 * Normal radix expects to move data from a temporary array, to 1482 * the main one. But that requires some CPU time. Avoid that 1483 * by doing another sort iteration to original array instead of 1484 * memcpy() 1485 */ 1486 memset(counters, 0, sizeof(counters)); 1487 1488 for (i = 0; i < num; i ++) { 1489 buf_num = array_buf[i].count; 1490 addr = get4bits(buf_num, shift); 1491 counters[addr]++; 1492 } 1493 1494 for (i = 1; i < COUNTERS_SIZE; i++) 1495 counters[i] += counters[i - 1]; 1496 1497 for (i = num - 1; i >= 0; i--) { 1498 buf_num = array_buf[i].count; 1499 addr = get4bits(buf_num, shift); 1500 counters[addr]--; 1501 new_addr = counters[addr]; 1502 array[new_addr] = array_buf[i]; 1503 } 1504 1505 shift += RADIX_BASE; 1506 } 1507 } 1508 1509 /* 1510 * Size of the core byte set - how many bytes cover 90% of the sample 1511 * 1512 * There are several types of structured binary data that use nearly all byte 1513 * values. The distribution can be uniform and counts in all buckets will be 1514 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1515 * 1516 * Other possibility is normal (Gaussian) distribution, where the data could 1517 * be potentially compressible, but we have to take a few more steps to decide 1518 * how much. 1519 * 1520 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1521 * compression algo can easy fix that 1522 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1523 * probability is not compressible 1524 */ 1525 #define BYTE_CORE_SET_LOW (64) 1526 #define BYTE_CORE_SET_HIGH (200) 1527 1528 static int byte_core_set_size(struct heuristic_ws *ws) 1529 { 1530 u32 i; 1531 u32 coreset_sum = 0; 1532 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1533 struct bucket_item *bucket = ws->bucket; 1534 1535 /* Sort in reverse order */ 1536 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1537 1538 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1539 coreset_sum += bucket[i].count; 1540 1541 if (coreset_sum > core_set_threshold) 1542 return i; 1543 1544 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1545 coreset_sum += bucket[i].count; 1546 if (coreset_sum > core_set_threshold) 1547 break; 1548 } 1549 1550 return i; 1551 } 1552 1553 /* 1554 * Count byte values in buckets. 1555 * This heuristic can detect textual data (configs, xml, json, html, etc). 1556 * Because in most text-like data byte set is restricted to limited number of 1557 * possible characters, and that restriction in most cases makes data easy to 1558 * compress. 1559 * 1560 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1561 * less - compressible 1562 * more - need additional analysis 1563 */ 1564 #define BYTE_SET_THRESHOLD (64) 1565 1566 static u32 byte_set_size(const struct heuristic_ws *ws) 1567 { 1568 u32 i; 1569 u32 byte_set_size = 0; 1570 1571 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1572 if (ws->bucket[i].count > 0) 1573 byte_set_size++; 1574 } 1575 1576 /* 1577 * Continue collecting count of byte values in buckets. If the byte 1578 * set size is bigger then the threshold, it's pointless to continue, 1579 * the detection technique would fail for this type of data. 1580 */ 1581 for (; i < BUCKET_SIZE; i++) { 1582 if (ws->bucket[i].count > 0) { 1583 byte_set_size++; 1584 if (byte_set_size > BYTE_SET_THRESHOLD) 1585 return byte_set_size; 1586 } 1587 } 1588 1589 return byte_set_size; 1590 } 1591 1592 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1593 { 1594 const u32 half_of_sample = ws->sample_size / 2; 1595 const u8 *data = ws->sample; 1596 1597 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1598 } 1599 1600 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1601 struct heuristic_ws *ws) 1602 { 1603 struct page *page; 1604 u64 index, index_end; 1605 u32 i, curr_sample_pos; 1606 u8 *in_data; 1607 1608 /* 1609 * Compression handles the input data by chunks of 128KiB 1610 * (defined by BTRFS_MAX_UNCOMPRESSED) 1611 * 1612 * We do the same for the heuristic and loop over the whole range. 1613 * 1614 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1615 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1616 */ 1617 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1618 end = start + BTRFS_MAX_UNCOMPRESSED; 1619 1620 index = start >> PAGE_SHIFT; 1621 index_end = end >> PAGE_SHIFT; 1622 1623 /* Don't miss unaligned end */ 1624 if (!IS_ALIGNED(end, PAGE_SIZE)) 1625 index_end++; 1626 1627 curr_sample_pos = 0; 1628 while (index < index_end) { 1629 page = find_get_page(inode->i_mapping, index); 1630 in_data = kmap_local_page(page); 1631 /* Handle case where the start is not aligned to PAGE_SIZE */ 1632 i = start % PAGE_SIZE; 1633 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1634 /* Don't sample any garbage from the last page */ 1635 if (start > end - SAMPLING_READ_SIZE) 1636 break; 1637 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1638 SAMPLING_READ_SIZE); 1639 i += SAMPLING_INTERVAL; 1640 start += SAMPLING_INTERVAL; 1641 curr_sample_pos += SAMPLING_READ_SIZE; 1642 } 1643 kunmap_local(in_data); 1644 put_page(page); 1645 1646 index++; 1647 } 1648 1649 ws->sample_size = curr_sample_pos; 1650 } 1651 1652 /* 1653 * Compression heuristic. 1654 * 1655 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1656 * quickly (compared to direct compression) detect data characteristics 1657 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1658 * data. 1659 * 1660 * The following types of analysis can be performed: 1661 * - detect mostly zero data 1662 * - detect data with low "byte set" size (text, etc) 1663 * - detect data with low/high "core byte" set 1664 * 1665 * Return non-zero if the compression should be done, 0 otherwise. 1666 */ 1667 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1668 { 1669 struct list_head *ws_list = get_workspace(0, 0); 1670 struct heuristic_ws *ws; 1671 u32 i; 1672 u8 byte; 1673 int ret = 0; 1674 1675 ws = list_entry(ws_list, struct heuristic_ws, list); 1676 1677 heuristic_collect_sample(inode, start, end, ws); 1678 1679 if (sample_repeated_patterns(ws)) { 1680 ret = 1; 1681 goto out; 1682 } 1683 1684 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1685 1686 for (i = 0; i < ws->sample_size; i++) { 1687 byte = ws->sample[i]; 1688 ws->bucket[byte].count++; 1689 } 1690 1691 i = byte_set_size(ws); 1692 if (i < BYTE_SET_THRESHOLD) { 1693 ret = 2; 1694 goto out; 1695 } 1696 1697 i = byte_core_set_size(ws); 1698 if (i <= BYTE_CORE_SET_LOW) { 1699 ret = 3; 1700 goto out; 1701 } 1702 1703 if (i >= BYTE_CORE_SET_HIGH) { 1704 ret = 0; 1705 goto out; 1706 } 1707 1708 i = shannon_entropy(ws); 1709 if (i <= ENTROPY_LVL_ACEPTABLE) { 1710 ret = 4; 1711 goto out; 1712 } 1713 1714 /* 1715 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1716 * needed to give green light to compression. 1717 * 1718 * For now just assume that compression at that level is not worth the 1719 * resources because: 1720 * 1721 * 1. it is possible to defrag the data later 1722 * 1723 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1724 * values, every bucket has counter at level ~54. The heuristic would 1725 * be confused. This can happen when data have some internal repeated 1726 * patterns like "abbacbbc...". This can be detected by analyzing 1727 * pairs of bytes, which is too costly. 1728 */ 1729 if (i < ENTROPY_LVL_HIGH) { 1730 ret = 5; 1731 goto out; 1732 } else { 1733 ret = 0; 1734 goto out; 1735 } 1736 1737 out: 1738 put_workspace(0, ws_list); 1739 return ret; 1740 } 1741 1742 /* 1743 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1744 * level, unrecognized string will set the default level 1745 */ 1746 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1747 { 1748 unsigned int level = 0; 1749 int ret; 1750 1751 if (!type) 1752 return 0; 1753 1754 if (str[0] == ':') { 1755 ret = kstrtouint(str + 1, 10, &level); 1756 if (ret) 1757 level = 0; 1758 } 1759 1760 level = btrfs_compress_set_level(type, level); 1761 1762 return level; 1763 } 1764