xref: /openbmc/linux/fs/btrfs/compression.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 #include "zoned.h"
32 
33 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
34 
35 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
36 {
37 	switch (type) {
38 	case BTRFS_COMPRESS_ZLIB:
39 	case BTRFS_COMPRESS_LZO:
40 	case BTRFS_COMPRESS_ZSTD:
41 	case BTRFS_COMPRESS_NONE:
42 		return btrfs_compress_types[type];
43 	default:
44 		break;
45 	}
46 
47 	return NULL;
48 }
49 
50 bool btrfs_compress_is_valid_type(const char *str, size_t len)
51 {
52 	int i;
53 
54 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
55 		size_t comp_len = strlen(btrfs_compress_types[i]);
56 
57 		if (len < comp_len)
58 			continue;
59 
60 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
61 			return true;
62 	}
63 	return false;
64 }
65 
66 static int compression_compress_pages(int type, struct list_head *ws,
67                struct address_space *mapping, u64 start, struct page **pages,
68                unsigned long *out_pages, unsigned long *total_in,
69                unsigned long *total_out)
70 {
71 	switch (type) {
72 	case BTRFS_COMPRESS_ZLIB:
73 		return zlib_compress_pages(ws, mapping, start, pages,
74 				out_pages, total_in, total_out);
75 	case BTRFS_COMPRESS_LZO:
76 		return lzo_compress_pages(ws, mapping, start, pages,
77 				out_pages, total_in, total_out);
78 	case BTRFS_COMPRESS_ZSTD:
79 		return zstd_compress_pages(ws, mapping, start, pages,
80 				out_pages, total_in, total_out);
81 	case BTRFS_COMPRESS_NONE:
82 	default:
83 		/*
84 		 * This can happen when compression races with remount setting
85 		 * it to 'no compress', while caller doesn't call
86 		 * inode_need_compress() to check if we really need to
87 		 * compress.
88 		 *
89 		 * Not a big deal, just need to inform caller that we
90 		 * haven't allocated any pages yet.
91 		 */
92 		*out_pages = 0;
93 		return -E2BIG;
94 	}
95 }
96 
97 static int compression_decompress_bio(int type, struct list_head *ws,
98 		struct compressed_bio *cb)
99 {
100 	switch (type) {
101 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
102 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
103 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
104 	case BTRFS_COMPRESS_NONE:
105 	default:
106 		/*
107 		 * This can't happen, the type is validated several times
108 		 * before we get here.
109 		 */
110 		BUG();
111 	}
112 }
113 
114 static int compression_decompress(int type, struct list_head *ws,
115                unsigned char *data_in, struct page *dest_page,
116                unsigned long start_byte, size_t srclen, size_t destlen)
117 {
118 	switch (type) {
119 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
120 						start_byte, srclen, destlen);
121 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
122 						start_byte, srclen, destlen);
123 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
124 						start_byte, srclen, destlen);
125 	case BTRFS_COMPRESS_NONE:
126 	default:
127 		/*
128 		 * This can't happen, the type is validated several times
129 		 * before we get here.
130 		 */
131 		BUG();
132 	}
133 }
134 
135 static int btrfs_decompress_bio(struct compressed_bio *cb);
136 
137 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
138 				      unsigned long disk_size)
139 {
140 	return sizeof(struct compressed_bio) +
141 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
142 }
143 
144 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
145 				 u64 disk_start)
146 {
147 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
148 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149 	const u32 csum_size = fs_info->csum_size;
150 	const u32 sectorsize = fs_info->sectorsize;
151 	struct page *page;
152 	unsigned int i;
153 	char *kaddr;
154 	u8 csum[BTRFS_CSUM_SIZE];
155 	struct compressed_bio *cb = bio->bi_private;
156 	u8 *cb_sum = cb->sums;
157 
158 	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
159 		return 0;
160 
161 	shash->tfm = fs_info->csum_shash;
162 
163 	for (i = 0; i < cb->nr_pages; i++) {
164 		u32 pg_offset;
165 		u32 bytes_left = PAGE_SIZE;
166 		page = cb->compressed_pages[i];
167 
168 		/* Determine the remaining bytes inside the page first */
169 		if (i == cb->nr_pages - 1)
170 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
171 
172 		/* Hash through the page sector by sector */
173 		for (pg_offset = 0; pg_offset < bytes_left;
174 		     pg_offset += sectorsize) {
175 			kaddr = kmap_atomic(page);
176 			crypto_shash_digest(shash, kaddr + pg_offset,
177 					    sectorsize, csum);
178 			kunmap_atomic(kaddr);
179 
180 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
181 				btrfs_print_data_csum_error(inode, disk_start,
182 						csum, cb_sum, cb->mirror_num);
183 				if (btrfs_io_bio(bio)->device)
184 					btrfs_dev_stat_inc_and_print(
185 						btrfs_io_bio(bio)->device,
186 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
187 				return -EIO;
188 			}
189 			cb_sum += csum_size;
190 			disk_start += sectorsize;
191 		}
192 	}
193 	return 0;
194 }
195 
196 /* when we finish reading compressed pages from the disk, we
197  * decompress them and then run the bio end_io routines on the
198  * decompressed pages (in the inode address space).
199  *
200  * This allows the checksumming and other IO error handling routines
201  * to work normally
202  *
203  * The compressed pages are freed here, and it must be run
204  * in process context
205  */
206 static void end_compressed_bio_read(struct bio *bio)
207 {
208 	struct compressed_bio *cb = bio->bi_private;
209 	struct inode *inode;
210 	struct page *page;
211 	unsigned int index;
212 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
213 	int ret = 0;
214 
215 	if (bio->bi_status)
216 		cb->errors = 1;
217 
218 	/* if there are more bios still pending for this compressed
219 	 * extent, just exit
220 	 */
221 	if (!refcount_dec_and_test(&cb->pending_bios))
222 		goto out;
223 
224 	/*
225 	 * Record the correct mirror_num in cb->orig_bio so that
226 	 * read-repair can work properly.
227 	 */
228 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
229 	cb->mirror_num = mirror;
230 
231 	/*
232 	 * Some IO in this cb have failed, just skip checksum as there
233 	 * is no way it could be correct.
234 	 */
235 	if (cb->errors == 1)
236 		goto csum_failed;
237 
238 	inode = cb->inode;
239 	ret = check_compressed_csum(BTRFS_I(inode), bio,
240 				    bio->bi_iter.bi_sector << 9);
241 	if (ret)
242 		goto csum_failed;
243 
244 	/* ok, we're the last bio for this extent, lets start
245 	 * the decompression.
246 	 */
247 	ret = btrfs_decompress_bio(cb);
248 
249 csum_failed:
250 	if (ret)
251 		cb->errors = 1;
252 
253 	/* release the compressed pages */
254 	index = 0;
255 	for (index = 0; index < cb->nr_pages; index++) {
256 		page = cb->compressed_pages[index];
257 		page->mapping = NULL;
258 		put_page(page);
259 	}
260 
261 	/* do io completion on the original bio */
262 	if (cb->errors) {
263 		bio_io_error(cb->orig_bio);
264 	} else {
265 		struct bio_vec *bvec;
266 		struct bvec_iter_all iter_all;
267 
268 		/*
269 		 * we have verified the checksum already, set page
270 		 * checked so the end_io handlers know about it
271 		 */
272 		ASSERT(!bio_flagged(bio, BIO_CLONED));
273 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
274 			SetPageChecked(bvec->bv_page);
275 
276 		bio_endio(cb->orig_bio);
277 	}
278 
279 	/* finally free the cb struct */
280 	kfree(cb->compressed_pages);
281 	kfree(cb);
282 out:
283 	bio_put(bio);
284 }
285 
286 /*
287  * Clear the writeback bits on all of the file
288  * pages for a compressed write
289  */
290 static noinline void end_compressed_writeback(struct inode *inode,
291 					      const struct compressed_bio *cb)
292 {
293 	unsigned long index = cb->start >> PAGE_SHIFT;
294 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
295 	struct page *pages[16];
296 	unsigned long nr_pages = end_index - index + 1;
297 	int i;
298 	int ret;
299 
300 	if (cb->errors)
301 		mapping_set_error(inode->i_mapping, -EIO);
302 
303 	while (nr_pages > 0) {
304 		ret = find_get_pages_contig(inode->i_mapping, index,
305 				     min_t(unsigned long,
306 				     nr_pages, ARRAY_SIZE(pages)), pages);
307 		if (ret == 0) {
308 			nr_pages -= 1;
309 			index += 1;
310 			continue;
311 		}
312 		for (i = 0; i < ret; i++) {
313 			if (cb->errors)
314 				SetPageError(pages[i]);
315 			end_page_writeback(pages[i]);
316 			put_page(pages[i]);
317 		}
318 		nr_pages -= ret;
319 		index += ret;
320 	}
321 	/* the inode may be gone now */
322 }
323 
324 /*
325  * do the cleanup once all the compressed pages hit the disk.
326  * This will clear writeback on the file pages and free the compressed
327  * pages.
328  *
329  * This also calls the writeback end hooks for the file pages so that
330  * metadata and checksums can be updated in the file.
331  */
332 static void end_compressed_bio_write(struct bio *bio)
333 {
334 	struct compressed_bio *cb = bio->bi_private;
335 	struct inode *inode;
336 	struct page *page;
337 	unsigned int index;
338 
339 	if (bio->bi_status)
340 		cb->errors = 1;
341 
342 	/* if there are more bios still pending for this compressed
343 	 * extent, just exit
344 	 */
345 	if (!refcount_dec_and_test(&cb->pending_bios))
346 		goto out;
347 
348 	/* ok, we're the last bio for this extent, step one is to
349 	 * call back into the FS and do all the end_io operations
350 	 */
351 	inode = cb->inode;
352 	btrfs_record_physical_zoned(inode, cb->start, bio);
353 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
354 			cb->start, cb->start + cb->len - 1,
355 			bio->bi_status == BLK_STS_OK);
356 
357 	end_compressed_writeback(inode, cb);
358 	/* note, our inode could be gone now */
359 
360 	/*
361 	 * release the compressed pages, these came from alloc_page and
362 	 * are not attached to the inode at all
363 	 */
364 	index = 0;
365 	for (index = 0; index < cb->nr_pages; index++) {
366 		page = cb->compressed_pages[index];
367 		page->mapping = NULL;
368 		put_page(page);
369 	}
370 
371 	/* finally free the cb struct */
372 	kfree(cb->compressed_pages);
373 	kfree(cb);
374 out:
375 	bio_put(bio);
376 }
377 
378 /*
379  * worker function to build and submit bios for previously compressed pages.
380  * The corresponding pages in the inode should be marked for writeback
381  * and the compressed pages should have a reference on them for dropping
382  * when the IO is complete.
383  *
384  * This also checksums the file bytes and gets things ready for
385  * the end io hooks.
386  */
387 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
388 				 unsigned int len, u64 disk_start,
389 				 unsigned int compressed_len,
390 				 struct page **compressed_pages,
391 				 unsigned int nr_pages,
392 				 unsigned int write_flags,
393 				 struct cgroup_subsys_state *blkcg_css)
394 {
395 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
396 	struct bio *bio = NULL;
397 	struct compressed_bio *cb;
398 	unsigned long bytes_left;
399 	int pg_index = 0;
400 	struct page *page;
401 	u64 first_byte = disk_start;
402 	blk_status_t ret;
403 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
404 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
405 	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
406 
407 	WARN_ON(!PAGE_ALIGNED(start));
408 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
409 	if (!cb)
410 		return BLK_STS_RESOURCE;
411 	refcount_set(&cb->pending_bios, 0);
412 	cb->errors = 0;
413 	cb->inode = &inode->vfs_inode;
414 	cb->start = start;
415 	cb->len = len;
416 	cb->mirror_num = 0;
417 	cb->compressed_pages = compressed_pages;
418 	cb->compressed_len = compressed_len;
419 	cb->orig_bio = NULL;
420 	cb->nr_pages = nr_pages;
421 
422 	bio = btrfs_bio_alloc(first_byte);
423 	bio->bi_opf = bio_op | write_flags;
424 	bio->bi_private = cb;
425 	bio->bi_end_io = end_compressed_bio_write;
426 
427 	if (use_append) {
428 		struct btrfs_device *device;
429 
430 		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
431 		if (IS_ERR(device)) {
432 			kfree(cb);
433 			bio_put(bio);
434 			return BLK_STS_NOTSUPP;
435 		}
436 
437 		bio_set_dev(bio, device->bdev);
438 	}
439 
440 	if (blkcg_css) {
441 		bio->bi_opf |= REQ_CGROUP_PUNT;
442 		kthread_associate_blkcg(blkcg_css);
443 	}
444 	refcount_set(&cb->pending_bios, 1);
445 
446 	/* create and submit bios for the compressed pages */
447 	bytes_left = compressed_len;
448 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
449 		int submit = 0;
450 		int len = 0;
451 
452 		page = compressed_pages[pg_index];
453 		page->mapping = inode->vfs_inode.i_mapping;
454 		if (bio->bi_iter.bi_size)
455 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
456 							  0);
457 
458 		/*
459 		 * Page can only be added to bio if the current bio fits in
460 		 * stripe.
461 		 */
462 		if (!submit) {
463 			if (pg_index == 0 && use_append)
464 				len = bio_add_zone_append_page(bio, page,
465 							       PAGE_SIZE, 0);
466 			else
467 				len = bio_add_page(bio, page, PAGE_SIZE, 0);
468 		}
469 
470 		page->mapping = NULL;
471 		if (submit || len < PAGE_SIZE) {
472 			/*
473 			 * inc the count before we submit the bio so
474 			 * we know the end IO handler won't happen before
475 			 * we inc the count.  Otherwise, the cb might get
476 			 * freed before we're done setting it up
477 			 */
478 			refcount_inc(&cb->pending_bios);
479 			ret = btrfs_bio_wq_end_io(fs_info, bio,
480 						  BTRFS_WQ_ENDIO_DATA);
481 			BUG_ON(ret); /* -ENOMEM */
482 
483 			if (!skip_sum) {
484 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
485 				BUG_ON(ret); /* -ENOMEM */
486 			}
487 
488 			ret = btrfs_map_bio(fs_info, bio, 0);
489 			if (ret) {
490 				bio->bi_status = ret;
491 				bio_endio(bio);
492 			}
493 
494 			bio = btrfs_bio_alloc(first_byte);
495 			bio->bi_opf = bio_op | write_flags;
496 			bio->bi_private = cb;
497 			bio->bi_end_io = end_compressed_bio_write;
498 			if (blkcg_css)
499 				bio->bi_opf |= REQ_CGROUP_PUNT;
500 			/*
501 			 * Use bio_add_page() to ensure the bio has at least one
502 			 * page.
503 			 */
504 			bio_add_page(bio, page, PAGE_SIZE, 0);
505 		}
506 		if (bytes_left < PAGE_SIZE) {
507 			btrfs_info(fs_info,
508 					"bytes left %lu compress len %u nr %u",
509 			       bytes_left, cb->compressed_len, cb->nr_pages);
510 		}
511 		bytes_left -= PAGE_SIZE;
512 		first_byte += PAGE_SIZE;
513 		cond_resched();
514 	}
515 
516 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
517 	BUG_ON(ret); /* -ENOMEM */
518 
519 	if (!skip_sum) {
520 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
521 		BUG_ON(ret); /* -ENOMEM */
522 	}
523 
524 	ret = btrfs_map_bio(fs_info, bio, 0);
525 	if (ret) {
526 		bio->bi_status = ret;
527 		bio_endio(bio);
528 	}
529 
530 	if (blkcg_css)
531 		kthread_associate_blkcg(NULL);
532 
533 	return 0;
534 }
535 
536 static u64 bio_end_offset(struct bio *bio)
537 {
538 	struct bio_vec *last = bio_last_bvec_all(bio);
539 
540 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
541 }
542 
543 static noinline int add_ra_bio_pages(struct inode *inode,
544 				     u64 compressed_end,
545 				     struct compressed_bio *cb)
546 {
547 	unsigned long end_index;
548 	unsigned long pg_index;
549 	u64 last_offset;
550 	u64 isize = i_size_read(inode);
551 	int ret;
552 	struct page *page;
553 	unsigned long nr_pages = 0;
554 	struct extent_map *em;
555 	struct address_space *mapping = inode->i_mapping;
556 	struct extent_map_tree *em_tree;
557 	struct extent_io_tree *tree;
558 	u64 end;
559 	int misses = 0;
560 
561 	last_offset = bio_end_offset(cb->orig_bio);
562 	em_tree = &BTRFS_I(inode)->extent_tree;
563 	tree = &BTRFS_I(inode)->io_tree;
564 
565 	if (isize == 0)
566 		return 0;
567 
568 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
569 
570 	while (last_offset < compressed_end) {
571 		pg_index = last_offset >> PAGE_SHIFT;
572 
573 		if (pg_index > end_index)
574 			break;
575 
576 		page = xa_load(&mapping->i_pages, pg_index);
577 		if (page && !xa_is_value(page)) {
578 			misses++;
579 			if (misses > 4)
580 				break;
581 			goto next;
582 		}
583 
584 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
585 								 ~__GFP_FS));
586 		if (!page)
587 			break;
588 
589 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
590 			put_page(page);
591 			goto next;
592 		}
593 
594 		/*
595 		 * at this point, we have a locked page in the page cache
596 		 * for these bytes in the file.  But, we have to make
597 		 * sure they map to this compressed extent on disk.
598 		 */
599 		ret = set_page_extent_mapped(page);
600 		if (ret < 0) {
601 			unlock_page(page);
602 			put_page(page);
603 			break;
604 		}
605 
606 		end = last_offset + PAGE_SIZE - 1;
607 		lock_extent(tree, last_offset, end);
608 		read_lock(&em_tree->lock);
609 		em = lookup_extent_mapping(em_tree, last_offset,
610 					   PAGE_SIZE);
611 		read_unlock(&em_tree->lock);
612 
613 		if (!em || last_offset < em->start ||
614 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
615 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
616 			free_extent_map(em);
617 			unlock_extent(tree, last_offset, end);
618 			unlock_page(page);
619 			put_page(page);
620 			break;
621 		}
622 		free_extent_map(em);
623 
624 		if (page->index == end_index) {
625 			size_t zero_offset = offset_in_page(isize);
626 
627 			if (zero_offset) {
628 				int zeros;
629 				zeros = PAGE_SIZE - zero_offset;
630 				memzero_page(page, zero_offset, zeros);
631 				flush_dcache_page(page);
632 			}
633 		}
634 
635 		ret = bio_add_page(cb->orig_bio, page,
636 				   PAGE_SIZE, 0);
637 
638 		if (ret == PAGE_SIZE) {
639 			nr_pages++;
640 			put_page(page);
641 		} else {
642 			unlock_extent(tree, last_offset, end);
643 			unlock_page(page);
644 			put_page(page);
645 			break;
646 		}
647 next:
648 		last_offset += PAGE_SIZE;
649 	}
650 	return 0;
651 }
652 
653 /*
654  * for a compressed read, the bio we get passed has all the inode pages
655  * in it.  We don't actually do IO on those pages but allocate new ones
656  * to hold the compressed pages on disk.
657  *
658  * bio->bi_iter.bi_sector points to the compressed extent on disk
659  * bio->bi_io_vec points to all of the inode pages
660  *
661  * After the compressed pages are read, we copy the bytes into the
662  * bio we were passed and then call the bio end_io calls
663  */
664 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
665 				 int mirror_num, unsigned long bio_flags)
666 {
667 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
668 	struct extent_map_tree *em_tree;
669 	struct compressed_bio *cb;
670 	unsigned int compressed_len;
671 	unsigned int nr_pages;
672 	unsigned int pg_index;
673 	struct page *page;
674 	struct bio *comp_bio;
675 	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
676 	u64 em_len;
677 	u64 em_start;
678 	struct extent_map *em;
679 	blk_status_t ret = BLK_STS_RESOURCE;
680 	int faili = 0;
681 	u8 *sums;
682 
683 	em_tree = &BTRFS_I(inode)->extent_tree;
684 
685 	/* we need the actual starting offset of this extent in the file */
686 	read_lock(&em_tree->lock);
687 	em = lookup_extent_mapping(em_tree,
688 				   page_offset(bio_first_page_all(bio)),
689 				   fs_info->sectorsize);
690 	read_unlock(&em_tree->lock);
691 	if (!em)
692 		return BLK_STS_IOERR;
693 
694 	compressed_len = em->block_len;
695 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
696 	if (!cb)
697 		goto out;
698 
699 	refcount_set(&cb->pending_bios, 0);
700 	cb->errors = 0;
701 	cb->inode = inode;
702 	cb->mirror_num = mirror_num;
703 	sums = cb->sums;
704 
705 	cb->start = em->orig_start;
706 	em_len = em->len;
707 	em_start = em->start;
708 
709 	free_extent_map(em);
710 	em = NULL;
711 
712 	cb->len = bio->bi_iter.bi_size;
713 	cb->compressed_len = compressed_len;
714 	cb->compress_type = extent_compress_type(bio_flags);
715 	cb->orig_bio = bio;
716 
717 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
718 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
719 				       GFP_NOFS);
720 	if (!cb->compressed_pages)
721 		goto fail1;
722 
723 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
724 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
725 							      __GFP_HIGHMEM);
726 		if (!cb->compressed_pages[pg_index]) {
727 			faili = pg_index - 1;
728 			ret = BLK_STS_RESOURCE;
729 			goto fail2;
730 		}
731 	}
732 	faili = nr_pages - 1;
733 	cb->nr_pages = nr_pages;
734 
735 	add_ra_bio_pages(inode, em_start + em_len, cb);
736 
737 	/* include any pages we added in add_ra-bio_pages */
738 	cb->len = bio->bi_iter.bi_size;
739 
740 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
741 	comp_bio->bi_opf = REQ_OP_READ;
742 	comp_bio->bi_private = cb;
743 	comp_bio->bi_end_io = end_compressed_bio_read;
744 	refcount_set(&cb->pending_bios, 1);
745 
746 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
747 		u32 pg_len = PAGE_SIZE;
748 		int submit = 0;
749 
750 		/*
751 		 * To handle subpage case, we need to make sure the bio only
752 		 * covers the range we need.
753 		 *
754 		 * If we're at the last page, truncate the length to only cover
755 		 * the remaining part.
756 		 */
757 		if (pg_index == nr_pages - 1)
758 			pg_len = min_t(u32, PAGE_SIZE,
759 					compressed_len - pg_index * PAGE_SIZE);
760 
761 		page = cb->compressed_pages[pg_index];
762 		page->mapping = inode->i_mapping;
763 		page->index = em_start >> PAGE_SHIFT;
764 
765 		if (comp_bio->bi_iter.bi_size)
766 			submit = btrfs_bio_fits_in_stripe(page, pg_len,
767 							  comp_bio, 0);
768 
769 		page->mapping = NULL;
770 		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
771 			unsigned int nr_sectors;
772 
773 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
774 						  BTRFS_WQ_ENDIO_DATA);
775 			BUG_ON(ret); /* -ENOMEM */
776 
777 			/*
778 			 * inc the count before we submit the bio so
779 			 * we know the end IO handler won't happen before
780 			 * we inc the count.  Otherwise, the cb might get
781 			 * freed before we're done setting it up
782 			 */
783 			refcount_inc(&cb->pending_bios);
784 
785 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
786 			BUG_ON(ret); /* -ENOMEM */
787 
788 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
789 						  fs_info->sectorsize);
790 			sums += fs_info->csum_size * nr_sectors;
791 
792 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
793 			if (ret) {
794 				comp_bio->bi_status = ret;
795 				bio_endio(comp_bio);
796 			}
797 
798 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
799 			comp_bio->bi_opf = REQ_OP_READ;
800 			comp_bio->bi_private = cb;
801 			comp_bio->bi_end_io = end_compressed_bio_read;
802 
803 			bio_add_page(comp_bio, page, pg_len, 0);
804 		}
805 		cur_disk_byte += pg_len;
806 	}
807 
808 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
809 	BUG_ON(ret); /* -ENOMEM */
810 
811 	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
812 	BUG_ON(ret); /* -ENOMEM */
813 
814 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
815 	if (ret) {
816 		comp_bio->bi_status = ret;
817 		bio_endio(comp_bio);
818 	}
819 
820 	return 0;
821 
822 fail2:
823 	while (faili >= 0) {
824 		__free_page(cb->compressed_pages[faili]);
825 		faili--;
826 	}
827 
828 	kfree(cb->compressed_pages);
829 fail1:
830 	kfree(cb);
831 out:
832 	free_extent_map(em);
833 	return ret;
834 }
835 
836 /*
837  * Heuristic uses systematic sampling to collect data from the input data
838  * range, the logic can be tuned by the following constants:
839  *
840  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
841  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
842  */
843 #define SAMPLING_READ_SIZE	(16)
844 #define SAMPLING_INTERVAL	(256)
845 
846 /*
847  * For statistical analysis of the input data we consider bytes that form a
848  * Galois Field of 256 objects. Each object has an attribute count, ie. how
849  * many times the object appeared in the sample.
850  */
851 #define BUCKET_SIZE		(256)
852 
853 /*
854  * The size of the sample is based on a statistical sampling rule of thumb.
855  * The common way is to perform sampling tests as long as the number of
856  * elements in each cell is at least 5.
857  *
858  * Instead of 5, we choose 32 to obtain more accurate results.
859  * If the data contain the maximum number of symbols, which is 256, we obtain a
860  * sample size bound by 8192.
861  *
862  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
863  * from up to 512 locations.
864  */
865 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
866 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
867 
868 struct bucket_item {
869 	u32 count;
870 };
871 
872 struct heuristic_ws {
873 	/* Partial copy of input data */
874 	u8 *sample;
875 	u32 sample_size;
876 	/* Buckets store counters for each byte value */
877 	struct bucket_item *bucket;
878 	/* Sorting buffer */
879 	struct bucket_item *bucket_b;
880 	struct list_head list;
881 };
882 
883 static struct workspace_manager heuristic_wsm;
884 
885 static void free_heuristic_ws(struct list_head *ws)
886 {
887 	struct heuristic_ws *workspace;
888 
889 	workspace = list_entry(ws, struct heuristic_ws, list);
890 
891 	kvfree(workspace->sample);
892 	kfree(workspace->bucket);
893 	kfree(workspace->bucket_b);
894 	kfree(workspace);
895 }
896 
897 static struct list_head *alloc_heuristic_ws(unsigned int level)
898 {
899 	struct heuristic_ws *ws;
900 
901 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
902 	if (!ws)
903 		return ERR_PTR(-ENOMEM);
904 
905 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
906 	if (!ws->sample)
907 		goto fail;
908 
909 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
910 	if (!ws->bucket)
911 		goto fail;
912 
913 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
914 	if (!ws->bucket_b)
915 		goto fail;
916 
917 	INIT_LIST_HEAD(&ws->list);
918 	return &ws->list;
919 fail:
920 	free_heuristic_ws(&ws->list);
921 	return ERR_PTR(-ENOMEM);
922 }
923 
924 const struct btrfs_compress_op btrfs_heuristic_compress = {
925 	.workspace_manager = &heuristic_wsm,
926 };
927 
928 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
929 	/* The heuristic is represented as compression type 0 */
930 	&btrfs_heuristic_compress,
931 	&btrfs_zlib_compress,
932 	&btrfs_lzo_compress,
933 	&btrfs_zstd_compress,
934 };
935 
936 static struct list_head *alloc_workspace(int type, unsigned int level)
937 {
938 	switch (type) {
939 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
940 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
941 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
942 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
943 	default:
944 		/*
945 		 * This can't happen, the type is validated several times
946 		 * before we get here.
947 		 */
948 		BUG();
949 	}
950 }
951 
952 static void free_workspace(int type, struct list_head *ws)
953 {
954 	switch (type) {
955 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
956 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
957 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
958 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
959 	default:
960 		/*
961 		 * This can't happen, the type is validated several times
962 		 * before we get here.
963 		 */
964 		BUG();
965 	}
966 }
967 
968 static void btrfs_init_workspace_manager(int type)
969 {
970 	struct workspace_manager *wsm;
971 	struct list_head *workspace;
972 
973 	wsm = btrfs_compress_op[type]->workspace_manager;
974 	INIT_LIST_HEAD(&wsm->idle_ws);
975 	spin_lock_init(&wsm->ws_lock);
976 	atomic_set(&wsm->total_ws, 0);
977 	init_waitqueue_head(&wsm->ws_wait);
978 
979 	/*
980 	 * Preallocate one workspace for each compression type so we can
981 	 * guarantee forward progress in the worst case
982 	 */
983 	workspace = alloc_workspace(type, 0);
984 	if (IS_ERR(workspace)) {
985 		pr_warn(
986 	"BTRFS: cannot preallocate compression workspace, will try later\n");
987 	} else {
988 		atomic_set(&wsm->total_ws, 1);
989 		wsm->free_ws = 1;
990 		list_add(workspace, &wsm->idle_ws);
991 	}
992 }
993 
994 static void btrfs_cleanup_workspace_manager(int type)
995 {
996 	struct workspace_manager *wsman;
997 	struct list_head *ws;
998 
999 	wsman = btrfs_compress_op[type]->workspace_manager;
1000 	while (!list_empty(&wsman->idle_ws)) {
1001 		ws = wsman->idle_ws.next;
1002 		list_del(ws);
1003 		free_workspace(type, ws);
1004 		atomic_dec(&wsman->total_ws);
1005 	}
1006 }
1007 
1008 /*
1009  * This finds an available workspace or allocates a new one.
1010  * If it's not possible to allocate a new one, waits until there's one.
1011  * Preallocation makes a forward progress guarantees and we do not return
1012  * errors.
1013  */
1014 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1015 {
1016 	struct workspace_manager *wsm;
1017 	struct list_head *workspace;
1018 	int cpus = num_online_cpus();
1019 	unsigned nofs_flag;
1020 	struct list_head *idle_ws;
1021 	spinlock_t *ws_lock;
1022 	atomic_t *total_ws;
1023 	wait_queue_head_t *ws_wait;
1024 	int *free_ws;
1025 
1026 	wsm = btrfs_compress_op[type]->workspace_manager;
1027 	idle_ws	 = &wsm->idle_ws;
1028 	ws_lock	 = &wsm->ws_lock;
1029 	total_ws = &wsm->total_ws;
1030 	ws_wait	 = &wsm->ws_wait;
1031 	free_ws	 = &wsm->free_ws;
1032 
1033 again:
1034 	spin_lock(ws_lock);
1035 	if (!list_empty(idle_ws)) {
1036 		workspace = idle_ws->next;
1037 		list_del(workspace);
1038 		(*free_ws)--;
1039 		spin_unlock(ws_lock);
1040 		return workspace;
1041 
1042 	}
1043 	if (atomic_read(total_ws) > cpus) {
1044 		DEFINE_WAIT(wait);
1045 
1046 		spin_unlock(ws_lock);
1047 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1048 		if (atomic_read(total_ws) > cpus && !*free_ws)
1049 			schedule();
1050 		finish_wait(ws_wait, &wait);
1051 		goto again;
1052 	}
1053 	atomic_inc(total_ws);
1054 	spin_unlock(ws_lock);
1055 
1056 	/*
1057 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1058 	 * to turn it off here because we might get called from the restricted
1059 	 * context of btrfs_compress_bio/btrfs_compress_pages
1060 	 */
1061 	nofs_flag = memalloc_nofs_save();
1062 	workspace = alloc_workspace(type, level);
1063 	memalloc_nofs_restore(nofs_flag);
1064 
1065 	if (IS_ERR(workspace)) {
1066 		atomic_dec(total_ws);
1067 		wake_up(ws_wait);
1068 
1069 		/*
1070 		 * Do not return the error but go back to waiting. There's a
1071 		 * workspace preallocated for each type and the compression
1072 		 * time is bounded so we get to a workspace eventually. This
1073 		 * makes our caller's life easier.
1074 		 *
1075 		 * To prevent silent and low-probability deadlocks (when the
1076 		 * initial preallocation fails), check if there are any
1077 		 * workspaces at all.
1078 		 */
1079 		if (atomic_read(total_ws) == 0) {
1080 			static DEFINE_RATELIMIT_STATE(_rs,
1081 					/* once per minute */ 60 * HZ,
1082 					/* no burst */ 1);
1083 
1084 			if (__ratelimit(&_rs)) {
1085 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1086 			}
1087 		}
1088 		goto again;
1089 	}
1090 	return workspace;
1091 }
1092 
1093 static struct list_head *get_workspace(int type, int level)
1094 {
1095 	switch (type) {
1096 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1097 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1098 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1099 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1100 	default:
1101 		/*
1102 		 * This can't happen, the type is validated several times
1103 		 * before we get here.
1104 		 */
1105 		BUG();
1106 	}
1107 }
1108 
1109 /*
1110  * put a workspace struct back on the list or free it if we have enough
1111  * idle ones sitting around
1112  */
1113 void btrfs_put_workspace(int type, struct list_head *ws)
1114 {
1115 	struct workspace_manager *wsm;
1116 	struct list_head *idle_ws;
1117 	spinlock_t *ws_lock;
1118 	atomic_t *total_ws;
1119 	wait_queue_head_t *ws_wait;
1120 	int *free_ws;
1121 
1122 	wsm = btrfs_compress_op[type]->workspace_manager;
1123 	idle_ws	 = &wsm->idle_ws;
1124 	ws_lock	 = &wsm->ws_lock;
1125 	total_ws = &wsm->total_ws;
1126 	ws_wait	 = &wsm->ws_wait;
1127 	free_ws	 = &wsm->free_ws;
1128 
1129 	spin_lock(ws_lock);
1130 	if (*free_ws <= num_online_cpus()) {
1131 		list_add(ws, idle_ws);
1132 		(*free_ws)++;
1133 		spin_unlock(ws_lock);
1134 		goto wake;
1135 	}
1136 	spin_unlock(ws_lock);
1137 
1138 	free_workspace(type, ws);
1139 	atomic_dec(total_ws);
1140 wake:
1141 	cond_wake_up(ws_wait);
1142 }
1143 
1144 static void put_workspace(int type, struct list_head *ws)
1145 {
1146 	switch (type) {
1147 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1148 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1149 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1150 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1151 	default:
1152 		/*
1153 		 * This can't happen, the type is validated several times
1154 		 * before we get here.
1155 		 */
1156 		BUG();
1157 	}
1158 }
1159 
1160 /*
1161  * Adjust @level according to the limits of the compression algorithm or
1162  * fallback to default
1163  */
1164 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1165 {
1166 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1167 
1168 	if (level == 0)
1169 		level = ops->default_level;
1170 	else
1171 		level = min(level, ops->max_level);
1172 
1173 	return level;
1174 }
1175 
1176 /*
1177  * Given an address space and start and length, compress the bytes into @pages
1178  * that are allocated on demand.
1179  *
1180  * @type_level is encoded algorithm and level, where level 0 means whatever
1181  * default the algorithm chooses and is opaque here;
1182  * - compression algo are 0-3
1183  * - the level are bits 4-7
1184  *
1185  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1186  * and returns number of actually allocated pages
1187  *
1188  * @total_in is used to return the number of bytes actually read.  It
1189  * may be smaller than the input length if we had to exit early because we
1190  * ran out of room in the pages array or because we cross the
1191  * max_out threshold.
1192  *
1193  * @total_out is an in/out parameter, must be set to the input length and will
1194  * be also used to return the total number of compressed bytes
1195  */
1196 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1197 			 u64 start, struct page **pages,
1198 			 unsigned long *out_pages,
1199 			 unsigned long *total_in,
1200 			 unsigned long *total_out)
1201 {
1202 	int type = btrfs_compress_type(type_level);
1203 	int level = btrfs_compress_level(type_level);
1204 	struct list_head *workspace;
1205 	int ret;
1206 
1207 	level = btrfs_compress_set_level(type, level);
1208 	workspace = get_workspace(type, level);
1209 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1210 					 out_pages, total_in, total_out);
1211 	put_workspace(type, workspace);
1212 	return ret;
1213 }
1214 
1215 static int btrfs_decompress_bio(struct compressed_bio *cb)
1216 {
1217 	struct list_head *workspace;
1218 	int ret;
1219 	int type = cb->compress_type;
1220 
1221 	workspace = get_workspace(type, 0);
1222 	ret = compression_decompress_bio(type, workspace, cb);
1223 	put_workspace(type, workspace);
1224 
1225 	return ret;
1226 }
1227 
1228 /*
1229  * a less complex decompression routine.  Our compressed data fits in a
1230  * single page, and we want to read a single page out of it.
1231  * start_byte tells us the offset into the compressed data we're interested in
1232  */
1233 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1234 		     unsigned long start_byte, size_t srclen, size_t destlen)
1235 {
1236 	struct list_head *workspace;
1237 	int ret;
1238 
1239 	workspace = get_workspace(type, 0);
1240 	ret = compression_decompress(type, workspace, data_in, dest_page,
1241 				     start_byte, srclen, destlen);
1242 	put_workspace(type, workspace);
1243 
1244 	return ret;
1245 }
1246 
1247 void __init btrfs_init_compress(void)
1248 {
1249 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1250 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1251 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1252 	zstd_init_workspace_manager();
1253 }
1254 
1255 void __cold btrfs_exit_compress(void)
1256 {
1257 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1258 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1259 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1260 	zstd_cleanup_workspace_manager();
1261 }
1262 
1263 /*
1264  * Copy uncompressed data from working buffer to pages.
1265  *
1266  * buf_start is the byte offset we're of the start of our workspace buffer.
1267  *
1268  * total_out is the last byte of the buffer
1269  */
1270 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1271 			      unsigned long total_out, u64 disk_start,
1272 			      struct bio *bio)
1273 {
1274 	unsigned long buf_offset;
1275 	unsigned long current_buf_start;
1276 	unsigned long start_byte;
1277 	unsigned long prev_start_byte;
1278 	unsigned long working_bytes = total_out - buf_start;
1279 	unsigned long bytes;
1280 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1281 
1282 	/*
1283 	 * start byte is the first byte of the page we're currently
1284 	 * copying into relative to the start of the compressed data.
1285 	 */
1286 	start_byte = page_offset(bvec.bv_page) - disk_start;
1287 
1288 	/* we haven't yet hit data corresponding to this page */
1289 	if (total_out <= start_byte)
1290 		return 1;
1291 
1292 	/*
1293 	 * the start of the data we care about is offset into
1294 	 * the middle of our working buffer
1295 	 */
1296 	if (total_out > start_byte && buf_start < start_byte) {
1297 		buf_offset = start_byte - buf_start;
1298 		working_bytes -= buf_offset;
1299 	} else {
1300 		buf_offset = 0;
1301 	}
1302 	current_buf_start = buf_start;
1303 
1304 	/* copy bytes from the working buffer into the pages */
1305 	while (working_bytes > 0) {
1306 		bytes = min_t(unsigned long, bvec.bv_len,
1307 				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1308 		bytes = min(bytes, working_bytes);
1309 
1310 		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
1311 			       bytes);
1312 		flush_dcache_page(bvec.bv_page);
1313 
1314 		buf_offset += bytes;
1315 		working_bytes -= bytes;
1316 		current_buf_start += bytes;
1317 
1318 		/* check if we need to pick another page */
1319 		bio_advance(bio, bytes);
1320 		if (!bio->bi_iter.bi_size)
1321 			return 0;
1322 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1323 		prev_start_byte = start_byte;
1324 		start_byte = page_offset(bvec.bv_page) - disk_start;
1325 
1326 		/*
1327 		 * We need to make sure we're only adjusting
1328 		 * our offset into compression working buffer when
1329 		 * we're switching pages.  Otherwise we can incorrectly
1330 		 * keep copying when we were actually done.
1331 		 */
1332 		if (start_byte != prev_start_byte) {
1333 			/*
1334 			 * make sure our new page is covered by this
1335 			 * working buffer
1336 			 */
1337 			if (total_out <= start_byte)
1338 				return 1;
1339 
1340 			/*
1341 			 * the next page in the biovec might not be adjacent
1342 			 * to the last page, but it might still be found
1343 			 * inside this working buffer. bump our offset pointer
1344 			 */
1345 			if (total_out > start_byte &&
1346 			    current_buf_start < start_byte) {
1347 				buf_offset = start_byte - buf_start;
1348 				working_bytes = total_out - start_byte;
1349 				current_buf_start = buf_start + buf_offset;
1350 			}
1351 		}
1352 	}
1353 
1354 	return 1;
1355 }
1356 
1357 /*
1358  * Shannon Entropy calculation
1359  *
1360  * Pure byte distribution analysis fails to determine compressibility of data.
1361  * Try calculating entropy to estimate the average minimum number of bits
1362  * needed to encode the sampled data.
1363  *
1364  * For convenience, return the percentage of needed bits, instead of amount of
1365  * bits directly.
1366  *
1367  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1368  *			    and can be compressible with high probability
1369  *
1370  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1371  *
1372  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1373  */
1374 #define ENTROPY_LVL_ACEPTABLE		(65)
1375 #define ENTROPY_LVL_HIGH		(80)
1376 
1377 /*
1378  * For increasead precision in shannon_entropy calculation,
1379  * let's do pow(n, M) to save more digits after comma:
1380  *
1381  * - maximum int bit length is 64
1382  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1383  * - 13 * 4 = 52 < 64		-> M = 4
1384  *
1385  * So use pow(n, 4).
1386  */
1387 static inline u32 ilog2_w(u64 n)
1388 {
1389 	return ilog2(n * n * n * n);
1390 }
1391 
1392 static u32 shannon_entropy(struct heuristic_ws *ws)
1393 {
1394 	const u32 entropy_max = 8 * ilog2_w(2);
1395 	u32 entropy_sum = 0;
1396 	u32 p, p_base, sz_base;
1397 	u32 i;
1398 
1399 	sz_base = ilog2_w(ws->sample_size);
1400 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1401 		p = ws->bucket[i].count;
1402 		p_base = ilog2_w(p);
1403 		entropy_sum += p * (sz_base - p_base);
1404 	}
1405 
1406 	entropy_sum /= ws->sample_size;
1407 	return entropy_sum * 100 / entropy_max;
1408 }
1409 
1410 #define RADIX_BASE		4U
1411 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1412 
1413 static u8 get4bits(u64 num, int shift) {
1414 	u8 low4bits;
1415 
1416 	num >>= shift;
1417 	/* Reverse order */
1418 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1419 	return low4bits;
1420 }
1421 
1422 /*
1423  * Use 4 bits as radix base
1424  * Use 16 u32 counters for calculating new position in buf array
1425  *
1426  * @array     - array that will be sorted
1427  * @array_buf - buffer array to store sorting results
1428  *              must be equal in size to @array
1429  * @num       - array size
1430  */
1431 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1432 		       int num)
1433 {
1434 	u64 max_num;
1435 	u64 buf_num;
1436 	u32 counters[COUNTERS_SIZE];
1437 	u32 new_addr;
1438 	u32 addr;
1439 	int bitlen;
1440 	int shift;
1441 	int i;
1442 
1443 	/*
1444 	 * Try avoid useless loop iterations for small numbers stored in big
1445 	 * counters.  Example: 48 33 4 ... in 64bit array
1446 	 */
1447 	max_num = array[0].count;
1448 	for (i = 1; i < num; i++) {
1449 		buf_num = array[i].count;
1450 		if (buf_num > max_num)
1451 			max_num = buf_num;
1452 	}
1453 
1454 	buf_num = ilog2(max_num);
1455 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1456 
1457 	shift = 0;
1458 	while (shift < bitlen) {
1459 		memset(counters, 0, sizeof(counters));
1460 
1461 		for (i = 0; i < num; i++) {
1462 			buf_num = array[i].count;
1463 			addr = get4bits(buf_num, shift);
1464 			counters[addr]++;
1465 		}
1466 
1467 		for (i = 1; i < COUNTERS_SIZE; i++)
1468 			counters[i] += counters[i - 1];
1469 
1470 		for (i = num - 1; i >= 0; i--) {
1471 			buf_num = array[i].count;
1472 			addr = get4bits(buf_num, shift);
1473 			counters[addr]--;
1474 			new_addr = counters[addr];
1475 			array_buf[new_addr] = array[i];
1476 		}
1477 
1478 		shift += RADIX_BASE;
1479 
1480 		/*
1481 		 * Normal radix expects to move data from a temporary array, to
1482 		 * the main one.  But that requires some CPU time. Avoid that
1483 		 * by doing another sort iteration to original array instead of
1484 		 * memcpy()
1485 		 */
1486 		memset(counters, 0, sizeof(counters));
1487 
1488 		for (i = 0; i < num; i ++) {
1489 			buf_num = array_buf[i].count;
1490 			addr = get4bits(buf_num, shift);
1491 			counters[addr]++;
1492 		}
1493 
1494 		for (i = 1; i < COUNTERS_SIZE; i++)
1495 			counters[i] += counters[i - 1];
1496 
1497 		for (i = num - 1; i >= 0; i--) {
1498 			buf_num = array_buf[i].count;
1499 			addr = get4bits(buf_num, shift);
1500 			counters[addr]--;
1501 			new_addr = counters[addr];
1502 			array[new_addr] = array_buf[i];
1503 		}
1504 
1505 		shift += RADIX_BASE;
1506 	}
1507 }
1508 
1509 /*
1510  * Size of the core byte set - how many bytes cover 90% of the sample
1511  *
1512  * There are several types of structured binary data that use nearly all byte
1513  * values. The distribution can be uniform and counts in all buckets will be
1514  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1515  *
1516  * Other possibility is normal (Gaussian) distribution, where the data could
1517  * be potentially compressible, but we have to take a few more steps to decide
1518  * how much.
1519  *
1520  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1521  *                       compression algo can easy fix that
1522  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1523  *                       probability is not compressible
1524  */
1525 #define BYTE_CORE_SET_LOW		(64)
1526 #define BYTE_CORE_SET_HIGH		(200)
1527 
1528 static int byte_core_set_size(struct heuristic_ws *ws)
1529 {
1530 	u32 i;
1531 	u32 coreset_sum = 0;
1532 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1533 	struct bucket_item *bucket = ws->bucket;
1534 
1535 	/* Sort in reverse order */
1536 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1537 
1538 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1539 		coreset_sum += bucket[i].count;
1540 
1541 	if (coreset_sum > core_set_threshold)
1542 		return i;
1543 
1544 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1545 		coreset_sum += bucket[i].count;
1546 		if (coreset_sum > core_set_threshold)
1547 			break;
1548 	}
1549 
1550 	return i;
1551 }
1552 
1553 /*
1554  * Count byte values in buckets.
1555  * This heuristic can detect textual data (configs, xml, json, html, etc).
1556  * Because in most text-like data byte set is restricted to limited number of
1557  * possible characters, and that restriction in most cases makes data easy to
1558  * compress.
1559  *
1560  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1561  *	less - compressible
1562  *	more - need additional analysis
1563  */
1564 #define BYTE_SET_THRESHOLD		(64)
1565 
1566 static u32 byte_set_size(const struct heuristic_ws *ws)
1567 {
1568 	u32 i;
1569 	u32 byte_set_size = 0;
1570 
1571 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1572 		if (ws->bucket[i].count > 0)
1573 			byte_set_size++;
1574 	}
1575 
1576 	/*
1577 	 * Continue collecting count of byte values in buckets.  If the byte
1578 	 * set size is bigger then the threshold, it's pointless to continue,
1579 	 * the detection technique would fail for this type of data.
1580 	 */
1581 	for (; i < BUCKET_SIZE; i++) {
1582 		if (ws->bucket[i].count > 0) {
1583 			byte_set_size++;
1584 			if (byte_set_size > BYTE_SET_THRESHOLD)
1585 				return byte_set_size;
1586 		}
1587 	}
1588 
1589 	return byte_set_size;
1590 }
1591 
1592 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1593 {
1594 	const u32 half_of_sample = ws->sample_size / 2;
1595 	const u8 *data = ws->sample;
1596 
1597 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1598 }
1599 
1600 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1601 				     struct heuristic_ws *ws)
1602 {
1603 	struct page *page;
1604 	u64 index, index_end;
1605 	u32 i, curr_sample_pos;
1606 	u8 *in_data;
1607 
1608 	/*
1609 	 * Compression handles the input data by chunks of 128KiB
1610 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1611 	 *
1612 	 * We do the same for the heuristic and loop over the whole range.
1613 	 *
1614 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1615 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1616 	 */
1617 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1618 		end = start + BTRFS_MAX_UNCOMPRESSED;
1619 
1620 	index = start >> PAGE_SHIFT;
1621 	index_end = end >> PAGE_SHIFT;
1622 
1623 	/* Don't miss unaligned end */
1624 	if (!IS_ALIGNED(end, PAGE_SIZE))
1625 		index_end++;
1626 
1627 	curr_sample_pos = 0;
1628 	while (index < index_end) {
1629 		page = find_get_page(inode->i_mapping, index);
1630 		in_data = kmap_local_page(page);
1631 		/* Handle case where the start is not aligned to PAGE_SIZE */
1632 		i = start % PAGE_SIZE;
1633 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1634 			/* Don't sample any garbage from the last page */
1635 			if (start > end - SAMPLING_READ_SIZE)
1636 				break;
1637 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1638 					SAMPLING_READ_SIZE);
1639 			i += SAMPLING_INTERVAL;
1640 			start += SAMPLING_INTERVAL;
1641 			curr_sample_pos += SAMPLING_READ_SIZE;
1642 		}
1643 		kunmap_local(in_data);
1644 		put_page(page);
1645 
1646 		index++;
1647 	}
1648 
1649 	ws->sample_size = curr_sample_pos;
1650 }
1651 
1652 /*
1653  * Compression heuristic.
1654  *
1655  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1656  * quickly (compared to direct compression) detect data characteristics
1657  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1658  * data.
1659  *
1660  * The following types of analysis can be performed:
1661  * - detect mostly zero data
1662  * - detect data with low "byte set" size (text, etc)
1663  * - detect data with low/high "core byte" set
1664  *
1665  * Return non-zero if the compression should be done, 0 otherwise.
1666  */
1667 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1668 {
1669 	struct list_head *ws_list = get_workspace(0, 0);
1670 	struct heuristic_ws *ws;
1671 	u32 i;
1672 	u8 byte;
1673 	int ret = 0;
1674 
1675 	ws = list_entry(ws_list, struct heuristic_ws, list);
1676 
1677 	heuristic_collect_sample(inode, start, end, ws);
1678 
1679 	if (sample_repeated_patterns(ws)) {
1680 		ret = 1;
1681 		goto out;
1682 	}
1683 
1684 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1685 
1686 	for (i = 0; i < ws->sample_size; i++) {
1687 		byte = ws->sample[i];
1688 		ws->bucket[byte].count++;
1689 	}
1690 
1691 	i = byte_set_size(ws);
1692 	if (i < BYTE_SET_THRESHOLD) {
1693 		ret = 2;
1694 		goto out;
1695 	}
1696 
1697 	i = byte_core_set_size(ws);
1698 	if (i <= BYTE_CORE_SET_LOW) {
1699 		ret = 3;
1700 		goto out;
1701 	}
1702 
1703 	if (i >= BYTE_CORE_SET_HIGH) {
1704 		ret = 0;
1705 		goto out;
1706 	}
1707 
1708 	i = shannon_entropy(ws);
1709 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1710 		ret = 4;
1711 		goto out;
1712 	}
1713 
1714 	/*
1715 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1716 	 * needed to give green light to compression.
1717 	 *
1718 	 * For now just assume that compression at that level is not worth the
1719 	 * resources because:
1720 	 *
1721 	 * 1. it is possible to defrag the data later
1722 	 *
1723 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1724 	 * values, every bucket has counter at level ~54. The heuristic would
1725 	 * be confused. This can happen when data have some internal repeated
1726 	 * patterns like "abbacbbc...". This can be detected by analyzing
1727 	 * pairs of bytes, which is too costly.
1728 	 */
1729 	if (i < ENTROPY_LVL_HIGH) {
1730 		ret = 5;
1731 		goto out;
1732 	} else {
1733 		ret = 0;
1734 		goto out;
1735 	}
1736 
1737 out:
1738 	put_workspace(0, ws_list);
1739 	return ret;
1740 }
1741 
1742 /*
1743  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1744  * level, unrecognized string will set the default level
1745  */
1746 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1747 {
1748 	unsigned int level = 0;
1749 	int ret;
1750 
1751 	if (!type)
1752 		return 0;
1753 
1754 	if (str[0] == ':') {
1755 		ret = kstrtouint(str + 1, 10, &level);
1756 		if (ret)
1757 			level = 0;
1758 	}
1759 
1760 	level = btrfs_compress_set_level(type, level);
1761 
1762 	return level;
1763 }
1764