xref: /openbmc/linux/fs/btrfs/compression.c (revision 9eda7c1f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 
32 int zlib_compress_pages(struct list_head *ws, struct address_space *mapping,
33 		u64 start, struct page **pages, unsigned long *out_pages,
34 		unsigned long *total_in, unsigned long *total_out);
35 int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
36 int zlib_decompress(struct list_head *ws, unsigned char *data_in,
37 		struct page *dest_page, unsigned long start_byte, size_t srclen,
38 		size_t destlen);
39 struct list_head *zlib_alloc_workspace(unsigned int level);
40 void zlib_free_workspace(struct list_head *ws);
41 struct list_head *zlib_get_workspace(unsigned int level);
42 
43 int lzo_compress_pages(struct list_head *ws, struct address_space *mapping,
44 		u64 start, struct page **pages, unsigned long *out_pages,
45 		unsigned long *total_in, unsigned long *total_out);
46 int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
47 int lzo_decompress(struct list_head *ws, unsigned char *data_in,
48 		struct page *dest_page, unsigned long start_byte, size_t srclen,
49 		size_t destlen);
50 struct list_head *lzo_alloc_workspace(unsigned int level);
51 void lzo_free_workspace(struct list_head *ws);
52 
53 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
54 		u64 start, struct page **pages, unsigned long *out_pages,
55 		unsigned long *total_in, unsigned long *total_out);
56 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
57 int zstd_decompress(struct list_head *ws, unsigned char *data_in,
58 		struct page *dest_page, unsigned long start_byte, size_t srclen,
59 		size_t destlen);
60 void zstd_init_workspace_manager(void);
61 void zstd_cleanup_workspace_manager(void);
62 struct list_head *zstd_alloc_workspace(unsigned int level);
63 void zstd_free_workspace(struct list_head *ws);
64 struct list_head *zstd_get_workspace(unsigned int level);
65 void zstd_put_workspace(struct list_head *ws);
66 
67 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
68 
69 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
70 {
71 	switch (type) {
72 	case BTRFS_COMPRESS_ZLIB:
73 	case BTRFS_COMPRESS_LZO:
74 	case BTRFS_COMPRESS_ZSTD:
75 	case BTRFS_COMPRESS_NONE:
76 		return btrfs_compress_types[type];
77 	default:
78 		break;
79 	}
80 
81 	return NULL;
82 }
83 
84 bool btrfs_compress_is_valid_type(const char *str, size_t len)
85 {
86 	int i;
87 
88 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
89 		size_t comp_len = strlen(btrfs_compress_types[i]);
90 
91 		if (len < comp_len)
92 			continue;
93 
94 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
95 			return true;
96 	}
97 	return false;
98 }
99 
100 static int compression_compress_pages(int type, struct list_head *ws,
101                struct address_space *mapping, u64 start, struct page **pages,
102                unsigned long *out_pages, unsigned long *total_in,
103                unsigned long *total_out)
104 {
105 	switch (type) {
106 	case BTRFS_COMPRESS_ZLIB:
107 		return zlib_compress_pages(ws, mapping, start, pages,
108 				out_pages, total_in, total_out);
109 	case BTRFS_COMPRESS_LZO:
110 		return lzo_compress_pages(ws, mapping, start, pages,
111 				out_pages, total_in, total_out);
112 	case BTRFS_COMPRESS_ZSTD:
113 		return zstd_compress_pages(ws, mapping, start, pages,
114 				out_pages, total_in, total_out);
115 	case BTRFS_COMPRESS_NONE:
116 	default:
117 		/*
118 		 * This can't happen, the type is validated several times
119 		 * before we get here. As a sane fallback, return what the
120 		 * callers will understand as 'no compression happened'.
121 		 */
122 		return -E2BIG;
123 	}
124 }
125 
126 static int compression_decompress_bio(int type, struct list_head *ws,
127 		struct compressed_bio *cb)
128 {
129 	switch (type) {
130 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
131 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
132 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
133 	case BTRFS_COMPRESS_NONE:
134 	default:
135 		/*
136 		 * This can't happen, the type is validated several times
137 		 * before we get here.
138 		 */
139 		BUG();
140 	}
141 }
142 
143 static int compression_decompress(int type, struct list_head *ws,
144                unsigned char *data_in, struct page *dest_page,
145                unsigned long start_byte, size_t srclen, size_t destlen)
146 {
147 	switch (type) {
148 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
149 						start_byte, srclen, destlen);
150 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
151 						start_byte, srclen, destlen);
152 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
153 						start_byte, srclen, destlen);
154 	case BTRFS_COMPRESS_NONE:
155 	default:
156 		/*
157 		 * This can't happen, the type is validated several times
158 		 * before we get here.
159 		 */
160 		BUG();
161 	}
162 }
163 
164 static int btrfs_decompress_bio(struct compressed_bio *cb);
165 
166 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
167 				      unsigned long disk_size)
168 {
169 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
170 
171 	return sizeof(struct compressed_bio) +
172 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
173 }
174 
175 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
176 				 u64 disk_start)
177 {
178 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
179 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
180 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
181 	struct page *page;
182 	unsigned long i;
183 	char *kaddr;
184 	u8 csum[BTRFS_CSUM_SIZE];
185 	struct compressed_bio *cb = bio->bi_private;
186 	u8 *cb_sum = cb->sums;
187 
188 	if (inode->flags & BTRFS_INODE_NODATASUM)
189 		return 0;
190 
191 	shash->tfm = fs_info->csum_shash;
192 
193 	for (i = 0; i < cb->nr_pages; i++) {
194 		page = cb->compressed_pages[i];
195 
196 		kaddr = kmap_atomic(page);
197 		crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
198 		kunmap_atomic(kaddr);
199 
200 		if (memcmp(&csum, cb_sum, csum_size)) {
201 			btrfs_print_data_csum_error(inode, disk_start,
202 					csum, cb_sum, cb->mirror_num);
203 			if (btrfs_io_bio(bio)->device)
204 				btrfs_dev_stat_inc_and_print(
205 					btrfs_io_bio(bio)->device,
206 					BTRFS_DEV_STAT_CORRUPTION_ERRS);
207 			return -EIO;
208 		}
209 		cb_sum += csum_size;
210 	}
211 	return 0;
212 }
213 
214 /* when we finish reading compressed pages from the disk, we
215  * decompress them and then run the bio end_io routines on the
216  * decompressed pages (in the inode address space).
217  *
218  * This allows the checksumming and other IO error handling routines
219  * to work normally
220  *
221  * The compressed pages are freed here, and it must be run
222  * in process context
223  */
224 static void end_compressed_bio_read(struct bio *bio)
225 {
226 	struct compressed_bio *cb = bio->bi_private;
227 	struct inode *inode;
228 	struct page *page;
229 	unsigned long index;
230 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
231 	int ret = 0;
232 
233 	if (bio->bi_status)
234 		cb->errors = 1;
235 
236 	/* if there are more bios still pending for this compressed
237 	 * extent, just exit
238 	 */
239 	if (!refcount_dec_and_test(&cb->pending_bios))
240 		goto out;
241 
242 	/*
243 	 * Record the correct mirror_num in cb->orig_bio so that
244 	 * read-repair can work properly.
245 	 */
246 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
247 	cb->mirror_num = mirror;
248 
249 	/*
250 	 * Some IO in this cb have failed, just skip checksum as there
251 	 * is no way it could be correct.
252 	 */
253 	if (cb->errors == 1)
254 		goto csum_failed;
255 
256 	inode = cb->inode;
257 	ret = check_compressed_csum(BTRFS_I(inode), bio,
258 				    (u64)bio->bi_iter.bi_sector << 9);
259 	if (ret)
260 		goto csum_failed;
261 
262 	/* ok, we're the last bio for this extent, lets start
263 	 * the decompression.
264 	 */
265 	ret = btrfs_decompress_bio(cb);
266 
267 csum_failed:
268 	if (ret)
269 		cb->errors = 1;
270 
271 	/* release the compressed pages */
272 	index = 0;
273 	for (index = 0; index < cb->nr_pages; index++) {
274 		page = cb->compressed_pages[index];
275 		page->mapping = NULL;
276 		put_page(page);
277 	}
278 
279 	/* do io completion on the original bio */
280 	if (cb->errors) {
281 		bio_io_error(cb->orig_bio);
282 	} else {
283 		struct bio_vec *bvec;
284 		struct bvec_iter_all iter_all;
285 
286 		/*
287 		 * we have verified the checksum already, set page
288 		 * checked so the end_io handlers know about it
289 		 */
290 		ASSERT(!bio_flagged(bio, BIO_CLONED));
291 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
292 			SetPageChecked(bvec->bv_page);
293 
294 		bio_endio(cb->orig_bio);
295 	}
296 
297 	/* finally free the cb struct */
298 	kfree(cb->compressed_pages);
299 	kfree(cb);
300 out:
301 	bio_put(bio);
302 }
303 
304 /*
305  * Clear the writeback bits on all of the file
306  * pages for a compressed write
307  */
308 static noinline void end_compressed_writeback(struct inode *inode,
309 					      const struct compressed_bio *cb)
310 {
311 	unsigned long index = cb->start >> PAGE_SHIFT;
312 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
313 	struct page *pages[16];
314 	unsigned long nr_pages = end_index - index + 1;
315 	int i;
316 	int ret;
317 
318 	if (cb->errors)
319 		mapping_set_error(inode->i_mapping, -EIO);
320 
321 	while (nr_pages > 0) {
322 		ret = find_get_pages_contig(inode->i_mapping, index,
323 				     min_t(unsigned long,
324 				     nr_pages, ARRAY_SIZE(pages)), pages);
325 		if (ret == 0) {
326 			nr_pages -= 1;
327 			index += 1;
328 			continue;
329 		}
330 		for (i = 0; i < ret; i++) {
331 			if (cb->errors)
332 				SetPageError(pages[i]);
333 			end_page_writeback(pages[i]);
334 			put_page(pages[i]);
335 		}
336 		nr_pages -= ret;
337 		index += ret;
338 	}
339 	/* the inode may be gone now */
340 }
341 
342 /*
343  * do the cleanup once all the compressed pages hit the disk.
344  * This will clear writeback on the file pages and free the compressed
345  * pages.
346  *
347  * This also calls the writeback end hooks for the file pages so that
348  * metadata and checksums can be updated in the file.
349  */
350 static void end_compressed_bio_write(struct bio *bio)
351 {
352 	struct compressed_bio *cb = bio->bi_private;
353 	struct inode *inode;
354 	struct page *page;
355 	unsigned long index;
356 
357 	if (bio->bi_status)
358 		cb->errors = 1;
359 
360 	/* if there are more bios still pending for this compressed
361 	 * extent, just exit
362 	 */
363 	if (!refcount_dec_and_test(&cb->pending_bios))
364 		goto out;
365 
366 	/* ok, we're the last bio for this extent, step one is to
367 	 * call back into the FS and do all the end_io operations
368 	 */
369 	inode = cb->inode;
370 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
371 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
372 			cb->start, cb->start + cb->len - 1,
373 			bio->bi_status == BLK_STS_OK);
374 	cb->compressed_pages[0]->mapping = NULL;
375 
376 	end_compressed_writeback(inode, cb);
377 	/* note, our inode could be gone now */
378 
379 	/*
380 	 * release the compressed pages, these came from alloc_page and
381 	 * are not attached to the inode at all
382 	 */
383 	index = 0;
384 	for (index = 0; index < cb->nr_pages; index++) {
385 		page = cb->compressed_pages[index];
386 		page->mapping = NULL;
387 		put_page(page);
388 	}
389 
390 	/* finally free the cb struct */
391 	kfree(cb->compressed_pages);
392 	kfree(cb);
393 out:
394 	bio_put(bio);
395 }
396 
397 /*
398  * worker function to build and submit bios for previously compressed pages.
399  * The corresponding pages in the inode should be marked for writeback
400  * and the compressed pages should have a reference on them for dropping
401  * when the IO is complete.
402  *
403  * This also checksums the file bytes and gets things ready for
404  * the end io hooks.
405  */
406 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
407 				 unsigned long len, u64 disk_start,
408 				 unsigned long compressed_len,
409 				 struct page **compressed_pages,
410 				 unsigned long nr_pages,
411 				 unsigned int write_flags,
412 				 struct cgroup_subsys_state *blkcg_css)
413 {
414 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
415 	struct bio *bio = NULL;
416 	struct compressed_bio *cb;
417 	unsigned long bytes_left;
418 	int pg_index = 0;
419 	struct page *page;
420 	u64 first_byte = disk_start;
421 	blk_status_t ret;
422 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
423 
424 	WARN_ON(!PAGE_ALIGNED(start));
425 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
426 	if (!cb)
427 		return BLK_STS_RESOURCE;
428 	refcount_set(&cb->pending_bios, 0);
429 	cb->errors = 0;
430 	cb->inode = &inode->vfs_inode;
431 	cb->start = start;
432 	cb->len = len;
433 	cb->mirror_num = 0;
434 	cb->compressed_pages = compressed_pages;
435 	cb->compressed_len = compressed_len;
436 	cb->orig_bio = NULL;
437 	cb->nr_pages = nr_pages;
438 
439 	bio = btrfs_bio_alloc(first_byte);
440 	bio->bi_opf = REQ_OP_WRITE | write_flags;
441 	bio->bi_private = cb;
442 	bio->bi_end_io = end_compressed_bio_write;
443 
444 	if (blkcg_css) {
445 		bio->bi_opf |= REQ_CGROUP_PUNT;
446 		kthread_associate_blkcg(blkcg_css);
447 	}
448 	refcount_set(&cb->pending_bios, 1);
449 
450 	/* create and submit bios for the compressed pages */
451 	bytes_left = compressed_len;
452 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
453 		int submit = 0;
454 
455 		page = compressed_pages[pg_index];
456 		page->mapping = inode->vfs_inode.i_mapping;
457 		if (bio->bi_iter.bi_size)
458 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
459 							  0);
460 
461 		page->mapping = NULL;
462 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
463 		    PAGE_SIZE) {
464 			/*
465 			 * inc the count before we submit the bio so
466 			 * we know the end IO handler won't happen before
467 			 * we inc the count.  Otherwise, the cb might get
468 			 * freed before we're done setting it up
469 			 */
470 			refcount_inc(&cb->pending_bios);
471 			ret = btrfs_bio_wq_end_io(fs_info, bio,
472 						  BTRFS_WQ_ENDIO_DATA);
473 			BUG_ON(ret); /* -ENOMEM */
474 
475 			if (!skip_sum) {
476 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
477 				BUG_ON(ret); /* -ENOMEM */
478 			}
479 
480 			ret = btrfs_map_bio(fs_info, bio, 0);
481 			if (ret) {
482 				bio->bi_status = ret;
483 				bio_endio(bio);
484 			}
485 
486 			bio = btrfs_bio_alloc(first_byte);
487 			bio->bi_opf = REQ_OP_WRITE | write_flags;
488 			bio->bi_private = cb;
489 			bio->bi_end_io = end_compressed_bio_write;
490 			if (blkcg_css)
491 				bio->bi_opf |= REQ_CGROUP_PUNT;
492 			bio_add_page(bio, page, PAGE_SIZE, 0);
493 		}
494 		if (bytes_left < PAGE_SIZE) {
495 			btrfs_info(fs_info,
496 					"bytes left %lu compress len %lu nr %lu",
497 			       bytes_left, cb->compressed_len, cb->nr_pages);
498 		}
499 		bytes_left -= PAGE_SIZE;
500 		first_byte += PAGE_SIZE;
501 		cond_resched();
502 	}
503 
504 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
505 	BUG_ON(ret); /* -ENOMEM */
506 
507 	if (!skip_sum) {
508 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
509 		BUG_ON(ret); /* -ENOMEM */
510 	}
511 
512 	ret = btrfs_map_bio(fs_info, bio, 0);
513 	if (ret) {
514 		bio->bi_status = ret;
515 		bio_endio(bio);
516 	}
517 
518 	if (blkcg_css)
519 		kthread_associate_blkcg(NULL);
520 
521 	return 0;
522 }
523 
524 static u64 bio_end_offset(struct bio *bio)
525 {
526 	struct bio_vec *last = bio_last_bvec_all(bio);
527 
528 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
529 }
530 
531 static noinline int add_ra_bio_pages(struct inode *inode,
532 				     u64 compressed_end,
533 				     struct compressed_bio *cb)
534 {
535 	unsigned long end_index;
536 	unsigned long pg_index;
537 	u64 last_offset;
538 	u64 isize = i_size_read(inode);
539 	int ret;
540 	struct page *page;
541 	unsigned long nr_pages = 0;
542 	struct extent_map *em;
543 	struct address_space *mapping = inode->i_mapping;
544 	struct extent_map_tree *em_tree;
545 	struct extent_io_tree *tree;
546 	u64 end;
547 	int misses = 0;
548 
549 	last_offset = bio_end_offset(cb->orig_bio);
550 	em_tree = &BTRFS_I(inode)->extent_tree;
551 	tree = &BTRFS_I(inode)->io_tree;
552 
553 	if (isize == 0)
554 		return 0;
555 
556 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
557 
558 	while (last_offset < compressed_end) {
559 		pg_index = last_offset >> PAGE_SHIFT;
560 
561 		if (pg_index > end_index)
562 			break;
563 
564 		page = xa_load(&mapping->i_pages, pg_index);
565 		if (page && !xa_is_value(page)) {
566 			misses++;
567 			if (misses > 4)
568 				break;
569 			goto next;
570 		}
571 
572 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
573 								 ~__GFP_FS));
574 		if (!page)
575 			break;
576 
577 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
578 			put_page(page);
579 			goto next;
580 		}
581 
582 		end = last_offset + PAGE_SIZE - 1;
583 		/*
584 		 * at this point, we have a locked page in the page cache
585 		 * for these bytes in the file.  But, we have to make
586 		 * sure they map to this compressed extent on disk.
587 		 */
588 		set_page_extent_mapped(page);
589 		lock_extent(tree, last_offset, end);
590 		read_lock(&em_tree->lock);
591 		em = lookup_extent_mapping(em_tree, last_offset,
592 					   PAGE_SIZE);
593 		read_unlock(&em_tree->lock);
594 
595 		if (!em || last_offset < em->start ||
596 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
597 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
598 			free_extent_map(em);
599 			unlock_extent(tree, last_offset, end);
600 			unlock_page(page);
601 			put_page(page);
602 			break;
603 		}
604 		free_extent_map(em);
605 
606 		if (page->index == end_index) {
607 			char *userpage;
608 			size_t zero_offset = offset_in_page(isize);
609 
610 			if (zero_offset) {
611 				int zeros;
612 				zeros = PAGE_SIZE - zero_offset;
613 				userpage = kmap_atomic(page);
614 				memset(userpage + zero_offset, 0, zeros);
615 				flush_dcache_page(page);
616 				kunmap_atomic(userpage);
617 			}
618 		}
619 
620 		ret = bio_add_page(cb->orig_bio, page,
621 				   PAGE_SIZE, 0);
622 
623 		if (ret == PAGE_SIZE) {
624 			nr_pages++;
625 			put_page(page);
626 		} else {
627 			unlock_extent(tree, last_offset, end);
628 			unlock_page(page);
629 			put_page(page);
630 			break;
631 		}
632 next:
633 		last_offset += PAGE_SIZE;
634 	}
635 	return 0;
636 }
637 
638 /*
639  * for a compressed read, the bio we get passed has all the inode pages
640  * in it.  We don't actually do IO on those pages but allocate new ones
641  * to hold the compressed pages on disk.
642  *
643  * bio->bi_iter.bi_sector points to the compressed extent on disk
644  * bio->bi_io_vec points to all of the inode pages
645  *
646  * After the compressed pages are read, we copy the bytes into the
647  * bio we were passed and then call the bio end_io calls
648  */
649 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
650 				 int mirror_num, unsigned long bio_flags)
651 {
652 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
653 	struct extent_map_tree *em_tree;
654 	struct compressed_bio *cb;
655 	unsigned long compressed_len;
656 	unsigned long nr_pages;
657 	unsigned long pg_index;
658 	struct page *page;
659 	struct bio *comp_bio;
660 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
661 	u64 em_len;
662 	u64 em_start;
663 	struct extent_map *em;
664 	blk_status_t ret = BLK_STS_RESOURCE;
665 	int faili = 0;
666 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
667 	u8 *sums;
668 
669 	em_tree = &BTRFS_I(inode)->extent_tree;
670 
671 	/* we need the actual starting offset of this extent in the file */
672 	read_lock(&em_tree->lock);
673 	em = lookup_extent_mapping(em_tree,
674 				   page_offset(bio_first_page_all(bio)),
675 				   PAGE_SIZE);
676 	read_unlock(&em_tree->lock);
677 	if (!em)
678 		return BLK_STS_IOERR;
679 
680 	compressed_len = em->block_len;
681 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
682 	if (!cb)
683 		goto out;
684 
685 	refcount_set(&cb->pending_bios, 0);
686 	cb->errors = 0;
687 	cb->inode = inode;
688 	cb->mirror_num = mirror_num;
689 	sums = cb->sums;
690 
691 	cb->start = em->orig_start;
692 	em_len = em->len;
693 	em_start = em->start;
694 
695 	free_extent_map(em);
696 	em = NULL;
697 
698 	cb->len = bio->bi_iter.bi_size;
699 	cb->compressed_len = compressed_len;
700 	cb->compress_type = extent_compress_type(bio_flags);
701 	cb->orig_bio = bio;
702 
703 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
704 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
705 				       GFP_NOFS);
706 	if (!cb->compressed_pages)
707 		goto fail1;
708 
709 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
710 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
711 							      __GFP_HIGHMEM);
712 		if (!cb->compressed_pages[pg_index]) {
713 			faili = pg_index - 1;
714 			ret = BLK_STS_RESOURCE;
715 			goto fail2;
716 		}
717 	}
718 	faili = nr_pages - 1;
719 	cb->nr_pages = nr_pages;
720 
721 	add_ra_bio_pages(inode, em_start + em_len, cb);
722 
723 	/* include any pages we added in add_ra-bio_pages */
724 	cb->len = bio->bi_iter.bi_size;
725 
726 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
727 	comp_bio->bi_opf = REQ_OP_READ;
728 	comp_bio->bi_private = cb;
729 	comp_bio->bi_end_io = end_compressed_bio_read;
730 	refcount_set(&cb->pending_bios, 1);
731 
732 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
733 		int submit = 0;
734 
735 		page = cb->compressed_pages[pg_index];
736 		page->mapping = inode->i_mapping;
737 		page->index = em_start >> PAGE_SHIFT;
738 
739 		if (comp_bio->bi_iter.bi_size)
740 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
741 							  comp_bio, 0);
742 
743 		page->mapping = NULL;
744 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
745 		    PAGE_SIZE) {
746 			unsigned int nr_sectors;
747 
748 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
749 						  BTRFS_WQ_ENDIO_DATA);
750 			BUG_ON(ret); /* -ENOMEM */
751 
752 			/*
753 			 * inc the count before we submit the bio so
754 			 * we know the end IO handler won't happen before
755 			 * we inc the count.  Otherwise, the cb might get
756 			 * freed before we're done setting it up
757 			 */
758 			refcount_inc(&cb->pending_bios);
759 
760 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
761 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
762 							    (u64)-1, sums);
763 				BUG_ON(ret); /* -ENOMEM */
764 			}
765 
766 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
767 						  fs_info->sectorsize);
768 			sums += csum_size * nr_sectors;
769 
770 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
771 			if (ret) {
772 				comp_bio->bi_status = ret;
773 				bio_endio(comp_bio);
774 			}
775 
776 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
777 			comp_bio->bi_opf = REQ_OP_READ;
778 			comp_bio->bi_private = cb;
779 			comp_bio->bi_end_io = end_compressed_bio_read;
780 
781 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
782 		}
783 		cur_disk_byte += PAGE_SIZE;
784 	}
785 
786 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
787 	BUG_ON(ret); /* -ENOMEM */
788 
789 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
790 		ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
791 		BUG_ON(ret); /* -ENOMEM */
792 	}
793 
794 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
795 	if (ret) {
796 		comp_bio->bi_status = ret;
797 		bio_endio(comp_bio);
798 	}
799 
800 	return 0;
801 
802 fail2:
803 	while (faili >= 0) {
804 		__free_page(cb->compressed_pages[faili]);
805 		faili--;
806 	}
807 
808 	kfree(cb->compressed_pages);
809 fail1:
810 	kfree(cb);
811 out:
812 	free_extent_map(em);
813 	return ret;
814 }
815 
816 /*
817  * Heuristic uses systematic sampling to collect data from the input data
818  * range, the logic can be tuned by the following constants:
819  *
820  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
821  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
822  */
823 #define SAMPLING_READ_SIZE	(16)
824 #define SAMPLING_INTERVAL	(256)
825 
826 /*
827  * For statistical analysis of the input data we consider bytes that form a
828  * Galois Field of 256 objects. Each object has an attribute count, ie. how
829  * many times the object appeared in the sample.
830  */
831 #define BUCKET_SIZE		(256)
832 
833 /*
834  * The size of the sample is based on a statistical sampling rule of thumb.
835  * The common way is to perform sampling tests as long as the number of
836  * elements in each cell is at least 5.
837  *
838  * Instead of 5, we choose 32 to obtain more accurate results.
839  * If the data contain the maximum number of symbols, which is 256, we obtain a
840  * sample size bound by 8192.
841  *
842  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
843  * from up to 512 locations.
844  */
845 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
846 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
847 
848 struct bucket_item {
849 	u32 count;
850 };
851 
852 struct heuristic_ws {
853 	/* Partial copy of input data */
854 	u8 *sample;
855 	u32 sample_size;
856 	/* Buckets store counters for each byte value */
857 	struct bucket_item *bucket;
858 	/* Sorting buffer */
859 	struct bucket_item *bucket_b;
860 	struct list_head list;
861 };
862 
863 static struct workspace_manager heuristic_wsm;
864 
865 static void free_heuristic_ws(struct list_head *ws)
866 {
867 	struct heuristic_ws *workspace;
868 
869 	workspace = list_entry(ws, struct heuristic_ws, list);
870 
871 	kvfree(workspace->sample);
872 	kfree(workspace->bucket);
873 	kfree(workspace->bucket_b);
874 	kfree(workspace);
875 }
876 
877 static struct list_head *alloc_heuristic_ws(unsigned int level)
878 {
879 	struct heuristic_ws *ws;
880 
881 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
882 	if (!ws)
883 		return ERR_PTR(-ENOMEM);
884 
885 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
886 	if (!ws->sample)
887 		goto fail;
888 
889 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
890 	if (!ws->bucket)
891 		goto fail;
892 
893 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
894 	if (!ws->bucket_b)
895 		goto fail;
896 
897 	INIT_LIST_HEAD(&ws->list);
898 	return &ws->list;
899 fail:
900 	free_heuristic_ws(&ws->list);
901 	return ERR_PTR(-ENOMEM);
902 }
903 
904 const struct btrfs_compress_op btrfs_heuristic_compress = {
905 	.workspace_manager = &heuristic_wsm,
906 };
907 
908 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
909 	/* The heuristic is represented as compression type 0 */
910 	&btrfs_heuristic_compress,
911 	&btrfs_zlib_compress,
912 	&btrfs_lzo_compress,
913 	&btrfs_zstd_compress,
914 };
915 
916 static struct list_head *alloc_workspace(int type, unsigned int level)
917 {
918 	switch (type) {
919 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
920 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
921 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
922 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
923 	default:
924 		/*
925 		 * This can't happen, the type is validated several times
926 		 * before we get here.
927 		 */
928 		BUG();
929 	}
930 }
931 
932 static void free_workspace(int type, struct list_head *ws)
933 {
934 	switch (type) {
935 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
936 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
937 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
938 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
939 	default:
940 		/*
941 		 * This can't happen, the type is validated several times
942 		 * before we get here.
943 		 */
944 		BUG();
945 	}
946 }
947 
948 static void btrfs_init_workspace_manager(int type)
949 {
950 	struct workspace_manager *wsm;
951 	struct list_head *workspace;
952 
953 	wsm = btrfs_compress_op[type]->workspace_manager;
954 	INIT_LIST_HEAD(&wsm->idle_ws);
955 	spin_lock_init(&wsm->ws_lock);
956 	atomic_set(&wsm->total_ws, 0);
957 	init_waitqueue_head(&wsm->ws_wait);
958 
959 	/*
960 	 * Preallocate one workspace for each compression type so we can
961 	 * guarantee forward progress in the worst case
962 	 */
963 	workspace = alloc_workspace(type, 0);
964 	if (IS_ERR(workspace)) {
965 		pr_warn(
966 	"BTRFS: cannot preallocate compression workspace, will try later\n");
967 	} else {
968 		atomic_set(&wsm->total_ws, 1);
969 		wsm->free_ws = 1;
970 		list_add(workspace, &wsm->idle_ws);
971 	}
972 }
973 
974 static void btrfs_cleanup_workspace_manager(int type)
975 {
976 	struct workspace_manager *wsman;
977 	struct list_head *ws;
978 
979 	wsman = btrfs_compress_op[type]->workspace_manager;
980 	while (!list_empty(&wsman->idle_ws)) {
981 		ws = wsman->idle_ws.next;
982 		list_del(ws);
983 		free_workspace(type, ws);
984 		atomic_dec(&wsman->total_ws);
985 	}
986 }
987 
988 /*
989  * This finds an available workspace or allocates a new one.
990  * If it's not possible to allocate a new one, waits until there's one.
991  * Preallocation makes a forward progress guarantees and we do not return
992  * errors.
993  */
994 struct list_head *btrfs_get_workspace(int type, unsigned int level)
995 {
996 	struct workspace_manager *wsm;
997 	struct list_head *workspace;
998 	int cpus = num_online_cpus();
999 	unsigned nofs_flag;
1000 	struct list_head *idle_ws;
1001 	spinlock_t *ws_lock;
1002 	atomic_t *total_ws;
1003 	wait_queue_head_t *ws_wait;
1004 	int *free_ws;
1005 
1006 	wsm = btrfs_compress_op[type]->workspace_manager;
1007 	idle_ws	 = &wsm->idle_ws;
1008 	ws_lock	 = &wsm->ws_lock;
1009 	total_ws = &wsm->total_ws;
1010 	ws_wait	 = &wsm->ws_wait;
1011 	free_ws	 = &wsm->free_ws;
1012 
1013 again:
1014 	spin_lock(ws_lock);
1015 	if (!list_empty(idle_ws)) {
1016 		workspace = idle_ws->next;
1017 		list_del(workspace);
1018 		(*free_ws)--;
1019 		spin_unlock(ws_lock);
1020 		return workspace;
1021 
1022 	}
1023 	if (atomic_read(total_ws) > cpus) {
1024 		DEFINE_WAIT(wait);
1025 
1026 		spin_unlock(ws_lock);
1027 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1028 		if (atomic_read(total_ws) > cpus && !*free_ws)
1029 			schedule();
1030 		finish_wait(ws_wait, &wait);
1031 		goto again;
1032 	}
1033 	atomic_inc(total_ws);
1034 	spin_unlock(ws_lock);
1035 
1036 	/*
1037 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1038 	 * to turn it off here because we might get called from the restricted
1039 	 * context of btrfs_compress_bio/btrfs_compress_pages
1040 	 */
1041 	nofs_flag = memalloc_nofs_save();
1042 	workspace = alloc_workspace(type, level);
1043 	memalloc_nofs_restore(nofs_flag);
1044 
1045 	if (IS_ERR(workspace)) {
1046 		atomic_dec(total_ws);
1047 		wake_up(ws_wait);
1048 
1049 		/*
1050 		 * Do not return the error but go back to waiting. There's a
1051 		 * workspace preallocated for each type and the compression
1052 		 * time is bounded so we get to a workspace eventually. This
1053 		 * makes our caller's life easier.
1054 		 *
1055 		 * To prevent silent and low-probability deadlocks (when the
1056 		 * initial preallocation fails), check if there are any
1057 		 * workspaces at all.
1058 		 */
1059 		if (atomic_read(total_ws) == 0) {
1060 			static DEFINE_RATELIMIT_STATE(_rs,
1061 					/* once per minute */ 60 * HZ,
1062 					/* no burst */ 1);
1063 
1064 			if (__ratelimit(&_rs)) {
1065 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1066 			}
1067 		}
1068 		goto again;
1069 	}
1070 	return workspace;
1071 }
1072 
1073 static struct list_head *get_workspace(int type, int level)
1074 {
1075 	switch (type) {
1076 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1077 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1078 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1079 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1080 	default:
1081 		/*
1082 		 * This can't happen, the type is validated several times
1083 		 * before we get here.
1084 		 */
1085 		BUG();
1086 	}
1087 }
1088 
1089 /*
1090  * put a workspace struct back on the list or free it if we have enough
1091  * idle ones sitting around
1092  */
1093 void btrfs_put_workspace(int type, struct list_head *ws)
1094 {
1095 	struct workspace_manager *wsm;
1096 	struct list_head *idle_ws;
1097 	spinlock_t *ws_lock;
1098 	atomic_t *total_ws;
1099 	wait_queue_head_t *ws_wait;
1100 	int *free_ws;
1101 
1102 	wsm = btrfs_compress_op[type]->workspace_manager;
1103 	idle_ws	 = &wsm->idle_ws;
1104 	ws_lock	 = &wsm->ws_lock;
1105 	total_ws = &wsm->total_ws;
1106 	ws_wait	 = &wsm->ws_wait;
1107 	free_ws	 = &wsm->free_ws;
1108 
1109 	spin_lock(ws_lock);
1110 	if (*free_ws <= num_online_cpus()) {
1111 		list_add(ws, idle_ws);
1112 		(*free_ws)++;
1113 		spin_unlock(ws_lock);
1114 		goto wake;
1115 	}
1116 	spin_unlock(ws_lock);
1117 
1118 	free_workspace(type, ws);
1119 	atomic_dec(total_ws);
1120 wake:
1121 	cond_wake_up(ws_wait);
1122 }
1123 
1124 static void put_workspace(int type, struct list_head *ws)
1125 {
1126 	switch (type) {
1127 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1128 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1129 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1130 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1131 	default:
1132 		/*
1133 		 * This can't happen, the type is validated several times
1134 		 * before we get here.
1135 		 */
1136 		BUG();
1137 	}
1138 }
1139 
1140 /*
1141  * Adjust @level according to the limits of the compression algorithm or
1142  * fallback to default
1143  */
1144 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1145 {
1146 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1147 
1148 	if (level == 0)
1149 		level = ops->default_level;
1150 	else
1151 		level = min(level, ops->max_level);
1152 
1153 	return level;
1154 }
1155 
1156 /*
1157  * Given an address space and start and length, compress the bytes into @pages
1158  * that are allocated on demand.
1159  *
1160  * @type_level is encoded algorithm and level, where level 0 means whatever
1161  * default the algorithm chooses and is opaque here;
1162  * - compression algo are 0-3
1163  * - the level are bits 4-7
1164  *
1165  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1166  * and returns number of actually allocated pages
1167  *
1168  * @total_in is used to return the number of bytes actually read.  It
1169  * may be smaller than the input length if we had to exit early because we
1170  * ran out of room in the pages array or because we cross the
1171  * max_out threshold.
1172  *
1173  * @total_out is an in/out parameter, must be set to the input length and will
1174  * be also used to return the total number of compressed bytes
1175  *
1176  * @max_out tells us the max number of bytes that we're allowed to
1177  * stuff into pages
1178  */
1179 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1180 			 u64 start, struct page **pages,
1181 			 unsigned long *out_pages,
1182 			 unsigned long *total_in,
1183 			 unsigned long *total_out)
1184 {
1185 	int type = btrfs_compress_type(type_level);
1186 	int level = btrfs_compress_level(type_level);
1187 	struct list_head *workspace;
1188 	int ret;
1189 
1190 	level = btrfs_compress_set_level(type, level);
1191 	workspace = get_workspace(type, level);
1192 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1193 					 out_pages, total_in, total_out);
1194 	put_workspace(type, workspace);
1195 	return ret;
1196 }
1197 
1198 /*
1199  * pages_in is an array of pages with compressed data.
1200  *
1201  * disk_start is the starting logical offset of this array in the file
1202  *
1203  * orig_bio contains the pages from the file that we want to decompress into
1204  *
1205  * srclen is the number of bytes in pages_in
1206  *
1207  * The basic idea is that we have a bio that was created by readpages.
1208  * The pages in the bio are for the uncompressed data, and they may not
1209  * be contiguous.  They all correspond to the range of bytes covered by
1210  * the compressed extent.
1211  */
1212 static int btrfs_decompress_bio(struct compressed_bio *cb)
1213 {
1214 	struct list_head *workspace;
1215 	int ret;
1216 	int type = cb->compress_type;
1217 
1218 	workspace = get_workspace(type, 0);
1219 	ret = compression_decompress_bio(type, workspace, cb);
1220 	put_workspace(type, workspace);
1221 
1222 	return ret;
1223 }
1224 
1225 /*
1226  * a less complex decompression routine.  Our compressed data fits in a
1227  * single page, and we want to read a single page out of it.
1228  * start_byte tells us the offset into the compressed data we're interested in
1229  */
1230 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1231 		     unsigned long start_byte, size_t srclen, size_t destlen)
1232 {
1233 	struct list_head *workspace;
1234 	int ret;
1235 
1236 	workspace = get_workspace(type, 0);
1237 	ret = compression_decompress(type, workspace, data_in, dest_page,
1238 				     start_byte, srclen, destlen);
1239 	put_workspace(type, workspace);
1240 
1241 	return ret;
1242 }
1243 
1244 void __init btrfs_init_compress(void)
1245 {
1246 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1247 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1248 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1249 	zstd_init_workspace_manager();
1250 }
1251 
1252 void __cold btrfs_exit_compress(void)
1253 {
1254 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1255 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1256 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1257 	zstd_cleanup_workspace_manager();
1258 }
1259 
1260 /*
1261  * Copy uncompressed data from working buffer to pages.
1262  *
1263  * buf_start is the byte offset we're of the start of our workspace buffer.
1264  *
1265  * total_out is the last byte of the buffer
1266  */
1267 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1268 			      unsigned long total_out, u64 disk_start,
1269 			      struct bio *bio)
1270 {
1271 	unsigned long buf_offset;
1272 	unsigned long current_buf_start;
1273 	unsigned long start_byte;
1274 	unsigned long prev_start_byte;
1275 	unsigned long working_bytes = total_out - buf_start;
1276 	unsigned long bytes;
1277 	char *kaddr;
1278 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1279 
1280 	/*
1281 	 * start byte is the first byte of the page we're currently
1282 	 * copying into relative to the start of the compressed data.
1283 	 */
1284 	start_byte = page_offset(bvec.bv_page) - disk_start;
1285 
1286 	/* we haven't yet hit data corresponding to this page */
1287 	if (total_out <= start_byte)
1288 		return 1;
1289 
1290 	/*
1291 	 * the start of the data we care about is offset into
1292 	 * the middle of our working buffer
1293 	 */
1294 	if (total_out > start_byte && buf_start < start_byte) {
1295 		buf_offset = start_byte - buf_start;
1296 		working_bytes -= buf_offset;
1297 	} else {
1298 		buf_offset = 0;
1299 	}
1300 	current_buf_start = buf_start;
1301 
1302 	/* copy bytes from the working buffer into the pages */
1303 	while (working_bytes > 0) {
1304 		bytes = min_t(unsigned long, bvec.bv_len,
1305 				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1306 		bytes = min(bytes, working_bytes);
1307 
1308 		kaddr = kmap_atomic(bvec.bv_page);
1309 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1310 		kunmap_atomic(kaddr);
1311 		flush_dcache_page(bvec.bv_page);
1312 
1313 		buf_offset += bytes;
1314 		working_bytes -= bytes;
1315 		current_buf_start += bytes;
1316 
1317 		/* check if we need to pick another page */
1318 		bio_advance(bio, bytes);
1319 		if (!bio->bi_iter.bi_size)
1320 			return 0;
1321 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1322 		prev_start_byte = start_byte;
1323 		start_byte = page_offset(bvec.bv_page) - disk_start;
1324 
1325 		/*
1326 		 * We need to make sure we're only adjusting
1327 		 * our offset into compression working buffer when
1328 		 * we're switching pages.  Otherwise we can incorrectly
1329 		 * keep copying when we were actually done.
1330 		 */
1331 		if (start_byte != prev_start_byte) {
1332 			/*
1333 			 * make sure our new page is covered by this
1334 			 * working buffer
1335 			 */
1336 			if (total_out <= start_byte)
1337 				return 1;
1338 
1339 			/*
1340 			 * the next page in the biovec might not be adjacent
1341 			 * to the last page, but it might still be found
1342 			 * inside this working buffer. bump our offset pointer
1343 			 */
1344 			if (total_out > start_byte &&
1345 			    current_buf_start < start_byte) {
1346 				buf_offset = start_byte - buf_start;
1347 				working_bytes = total_out - start_byte;
1348 				current_buf_start = buf_start + buf_offset;
1349 			}
1350 		}
1351 	}
1352 
1353 	return 1;
1354 }
1355 
1356 /*
1357  * Shannon Entropy calculation
1358  *
1359  * Pure byte distribution analysis fails to determine compressibility of data.
1360  * Try calculating entropy to estimate the average minimum number of bits
1361  * needed to encode the sampled data.
1362  *
1363  * For convenience, return the percentage of needed bits, instead of amount of
1364  * bits directly.
1365  *
1366  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1367  *			    and can be compressible with high probability
1368  *
1369  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1370  *
1371  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1372  */
1373 #define ENTROPY_LVL_ACEPTABLE		(65)
1374 #define ENTROPY_LVL_HIGH		(80)
1375 
1376 /*
1377  * For increasead precision in shannon_entropy calculation,
1378  * let's do pow(n, M) to save more digits after comma:
1379  *
1380  * - maximum int bit length is 64
1381  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1382  * - 13 * 4 = 52 < 64		-> M = 4
1383  *
1384  * So use pow(n, 4).
1385  */
1386 static inline u32 ilog2_w(u64 n)
1387 {
1388 	return ilog2(n * n * n * n);
1389 }
1390 
1391 static u32 shannon_entropy(struct heuristic_ws *ws)
1392 {
1393 	const u32 entropy_max = 8 * ilog2_w(2);
1394 	u32 entropy_sum = 0;
1395 	u32 p, p_base, sz_base;
1396 	u32 i;
1397 
1398 	sz_base = ilog2_w(ws->sample_size);
1399 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1400 		p = ws->bucket[i].count;
1401 		p_base = ilog2_w(p);
1402 		entropy_sum += p * (sz_base - p_base);
1403 	}
1404 
1405 	entropy_sum /= ws->sample_size;
1406 	return entropy_sum * 100 / entropy_max;
1407 }
1408 
1409 #define RADIX_BASE		4U
1410 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1411 
1412 static u8 get4bits(u64 num, int shift) {
1413 	u8 low4bits;
1414 
1415 	num >>= shift;
1416 	/* Reverse order */
1417 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1418 	return low4bits;
1419 }
1420 
1421 /*
1422  * Use 4 bits as radix base
1423  * Use 16 u32 counters for calculating new position in buf array
1424  *
1425  * @array     - array that will be sorted
1426  * @array_buf - buffer array to store sorting results
1427  *              must be equal in size to @array
1428  * @num       - array size
1429  */
1430 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1431 		       int num)
1432 {
1433 	u64 max_num;
1434 	u64 buf_num;
1435 	u32 counters[COUNTERS_SIZE];
1436 	u32 new_addr;
1437 	u32 addr;
1438 	int bitlen;
1439 	int shift;
1440 	int i;
1441 
1442 	/*
1443 	 * Try avoid useless loop iterations for small numbers stored in big
1444 	 * counters.  Example: 48 33 4 ... in 64bit array
1445 	 */
1446 	max_num = array[0].count;
1447 	for (i = 1; i < num; i++) {
1448 		buf_num = array[i].count;
1449 		if (buf_num > max_num)
1450 			max_num = buf_num;
1451 	}
1452 
1453 	buf_num = ilog2(max_num);
1454 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1455 
1456 	shift = 0;
1457 	while (shift < bitlen) {
1458 		memset(counters, 0, sizeof(counters));
1459 
1460 		for (i = 0; i < num; i++) {
1461 			buf_num = array[i].count;
1462 			addr = get4bits(buf_num, shift);
1463 			counters[addr]++;
1464 		}
1465 
1466 		for (i = 1; i < COUNTERS_SIZE; i++)
1467 			counters[i] += counters[i - 1];
1468 
1469 		for (i = num - 1; i >= 0; i--) {
1470 			buf_num = array[i].count;
1471 			addr = get4bits(buf_num, shift);
1472 			counters[addr]--;
1473 			new_addr = counters[addr];
1474 			array_buf[new_addr] = array[i];
1475 		}
1476 
1477 		shift += RADIX_BASE;
1478 
1479 		/*
1480 		 * Normal radix expects to move data from a temporary array, to
1481 		 * the main one.  But that requires some CPU time. Avoid that
1482 		 * by doing another sort iteration to original array instead of
1483 		 * memcpy()
1484 		 */
1485 		memset(counters, 0, sizeof(counters));
1486 
1487 		for (i = 0; i < num; i ++) {
1488 			buf_num = array_buf[i].count;
1489 			addr = get4bits(buf_num, shift);
1490 			counters[addr]++;
1491 		}
1492 
1493 		for (i = 1; i < COUNTERS_SIZE; i++)
1494 			counters[i] += counters[i - 1];
1495 
1496 		for (i = num - 1; i >= 0; i--) {
1497 			buf_num = array_buf[i].count;
1498 			addr = get4bits(buf_num, shift);
1499 			counters[addr]--;
1500 			new_addr = counters[addr];
1501 			array[new_addr] = array_buf[i];
1502 		}
1503 
1504 		shift += RADIX_BASE;
1505 	}
1506 }
1507 
1508 /*
1509  * Size of the core byte set - how many bytes cover 90% of the sample
1510  *
1511  * There are several types of structured binary data that use nearly all byte
1512  * values. The distribution can be uniform and counts in all buckets will be
1513  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1514  *
1515  * Other possibility is normal (Gaussian) distribution, where the data could
1516  * be potentially compressible, but we have to take a few more steps to decide
1517  * how much.
1518  *
1519  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1520  *                       compression algo can easy fix that
1521  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1522  *                       probability is not compressible
1523  */
1524 #define BYTE_CORE_SET_LOW		(64)
1525 #define BYTE_CORE_SET_HIGH		(200)
1526 
1527 static int byte_core_set_size(struct heuristic_ws *ws)
1528 {
1529 	u32 i;
1530 	u32 coreset_sum = 0;
1531 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1532 	struct bucket_item *bucket = ws->bucket;
1533 
1534 	/* Sort in reverse order */
1535 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1536 
1537 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1538 		coreset_sum += bucket[i].count;
1539 
1540 	if (coreset_sum > core_set_threshold)
1541 		return i;
1542 
1543 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1544 		coreset_sum += bucket[i].count;
1545 		if (coreset_sum > core_set_threshold)
1546 			break;
1547 	}
1548 
1549 	return i;
1550 }
1551 
1552 /*
1553  * Count byte values in buckets.
1554  * This heuristic can detect textual data (configs, xml, json, html, etc).
1555  * Because in most text-like data byte set is restricted to limited number of
1556  * possible characters, and that restriction in most cases makes data easy to
1557  * compress.
1558  *
1559  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1560  *	less - compressible
1561  *	more - need additional analysis
1562  */
1563 #define BYTE_SET_THRESHOLD		(64)
1564 
1565 static u32 byte_set_size(const struct heuristic_ws *ws)
1566 {
1567 	u32 i;
1568 	u32 byte_set_size = 0;
1569 
1570 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1571 		if (ws->bucket[i].count > 0)
1572 			byte_set_size++;
1573 	}
1574 
1575 	/*
1576 	 * Continue collecting count of byte values in buckets.  If the byte
1577 	 * set size is bigger then the threshold, it's pointless to continue,
1578 	 * the detection technique would fail for this type of data.
1579 	 */
1580 	for (; i < BUCKET_SIZE; i++) {
1581 		if (ws->bucket[i].count > 0) {
1582 			byte_set_size++;
1583 			if (byte_set_size > BYTE_SET_THRESHOLD)
1584 				return byte_set_size;
1585 		}
1586 	}
1587 
1588 	return byte_set_size;
1589 }
1590 
1591 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1592 {
1593 	const u32 half_of_sample = ws->sample_size / 2;
1594 	const u8 *data = ws->sample;
1595 
1596 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1597 }
1598 
1599 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1600 				     struct heuristic_ws *ws)
1601 {
1602 	struct page *page;
1603 	u64 index, index_end;
1604 	u32 i, curr_sample_pos;
1605 	u8 *in_data;
1606 
1607 	/*
1608 	 * Compression handles the input data by chunks of 128KiB
1609 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1610 	 *
1611 	 * We do the same for the heuristic and loop over the whole range.
1612 	 *
1613 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1614 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1615 	 */
1616 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1617 		end = start + BTRFS_MAX_UNCOMPRESSED;
1618 
1619 	index = start >> PAGE_SHIFT;
1620 	index_end = end >> PAGE_SHIFT;
1621 
1622 	/* Don't miss unaligned end */
1623 	if (!IS_ALIGNED(end, PAGE_SIZE))
1624 		index_end++;
1625 
1626 	curr_sample_pos = 0;
1627 	while (index < index_end) {
1628 		page = find_get_page(inode->i_mapping, index);
1629 		in_data = kmap(page);
1630 		/* Handle case where the start is not aligned to PAGE_SIZE */
1631 		i = start % PAGE_SIZE;
1632 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1633 			/* Don't sample any garbage from the last page */
1634 			if (start > end - SAMPLING_READ_SIZE)
1635 				break;
1636 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1637 					SAMPLING_READ_SIZE);
1638 			i += SAMPLING_INTERVAL;
1639 			start += SAMPLING_INTERVAL;
1640 			curr_sample_pos += SAMPLING_READ_SIZE;
1641 		}
1642 		kunmap(page);
1643 		put_page(page);
1644 
1645 		index++;
1646 	}
1647 
1648 	ws->sample_size = curr_sample_pos;
1649 }
1650 
1651 /*
1652  * Compression heuristic.
1653  *
1654  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1655  * quickly (compared to direct compression) detect data characteristics
1656  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1657  * data.
1658  *
1659  * The following types of analysis can be performed:
1660  * - detect mostly zero data
1661  * - detect data with low "byte set" size (text, etc)
1662  * - detect data with low/high "core byte" set
1663  *
1664  * Return non-zero if the compression should be done, 0 otherwise.
1665  */
1666 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1667 {
1668 	struct list_head *ws_list = get_workspace(0, 0);
1669 	struct heuristic_ws *ws;
1670 	u32 i;
1671 	u8 byte;
1672 	int ret = 0;
1673 
1674 	ws = list_entry(ws_list, struct heuristic_ws, list);
1675 
1676 	heuristic_collect_sample(inode, start, end, ws);
1677 
1678 	if (sample_repeated_patterns(ws)) {
1679 		ret = 1;
1680 		goto out;
1681 	}
1682 
1683 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1684 
1685 	for (i = 0; i < ws->sample_size; i++) {
1686 		byte = ws->sample[i];
1687 		ws->bucket[byte].count++;
1688 	}
1689 
1690 	i = byte_set_size(ws);
1691 	if (i < BYTE_SET_THRESHOLD) {
1692 		ret = 2;
1693 		goto out;
1694 	}
1695 
1696 	i = byte_core_set_size(ws);
1697 	if (i <= BYTE_CORE_SET_LOW) {
1698 		ret = 3;
1699 		goto out;
1700 	}
1701 
1702 	if (i >= BYTE_CORE_SET_HIGH) {
1703 		ret = 0;
1704 		goto out;
1705 	}
1706 
1707 	i = shannon_entropy(ws);
1708 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1709 		ret = 4;
1710 		goto out;
1711 	}
1712 
1713 	/*
1714 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1715 	 * needed to give green light to compression.
1716 	 *
1717 	 * For now just assume that compression at that level is not worth the
1718 	 * resources because:
1719 	 *
1720 	 * 1. it is possible to defrag the data later
1721 	 *
1722 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1723 	 * values, every bucket has counter at level ~54. The heuristic would
1724 	 * be confused. This can happen when data have some internal repeated
1725 	 * patterns like "abbacbbc...". This can be detected by analyzing
1726 	 * pairs of bytes, which is too costly.
1727 	 */
1728 	if (i < ENTROPY_LVL_HIGH) {
1729 		ret = 5;
1730 		goto out;
1731 	} else {
1732 		ret = 0;
1733 		goto out;
1734 	}
1735 
1736 out:
1737 	put_workspace(0, ws_list);
1738 	return ret;
1739 }
1740 
1741 /*
1742  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1743  * level, unrecognized string will set the default level
1744  */
1745 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1746 {
1747 	unsigned int level = 0;
1748 	int ret;
1749 
1750 	if (!type)
1751 		return 0;
1752 
1753 	if (str[0] == ':') {
1754 		ret = kstrtouint(str + 1, 10, &level);
1755 		if (ret)
1756 			level = 0;
1757 	}
1758 
1759 	level = btrfs_compress_set_level(type, level);
1760 
1761 	return level;
1762 }
1763