xref: /openbmc/linux/fs/btrfs/compression.c (revision 9726bfcd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "volumes.h"
26 #include "ordered-data.h"
27 #include "compression.h"
28 #include "extent_io.h"
29 #include "extent_map.h"
30 
31 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
32 
33 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
34 {
35 	switch (type) {
36 	case BTRFS_COMPRESS_ZLIB:
37 	case BTRFS_COMPRESS_LZO:
38 	case BTRFS_COMPRESS_ZSTD:
39 	case BTRFS_COMPRESS_NONE:
40 		return btrfs_compress_types[type];
41 	}
42 
43 	return NULL;
44 }
45 
46 bool btrfs_compress_is_valid_type(const char *str, size_t len)
47 {
48 	int i;
49 
50 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
51 		size_t comp_len = strlen(btrfs_compress_types[i]);
52 
53 		if (len < comp_len)
54 			continue;
55 
56 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
57 			return true;
58 	}
59 	return false;
60 }
61 
62 static int btrfs_decompress_bio(struct compressed_bio *cb);
63 
64 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
65 				      unsigned long disk_size)
66 {
67 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
68 
69 	return sizeof(struct compressed_bio) +
70 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
71 }
72 
73 static int check_compressed_csum(struct btrfs_inode *inode,
74 				 struct compressed_bio *cb,
75 				 u64 disk_start)
76 {
77 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
78 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
80 	int ret;
81 	struct page *page;
82 	unsigned long i;
83 	char *kaddr;
84 	u8 csum[BTRFS_CSUM_SIZE];
85 	u8 *cb_sum = cb->sums;
86 
87 	if (inode->flags & BTRFS_INODE_NODATASUM)
88 		return 0;
89 
90 	shash->tfm = fs_info->csum_shash;
91 
92 	for (i = 0; i < cb->nr_pages; i++) {
93 		page = cb->compressed_pages[i];
94 
95 		crypto_shash_init(shash);
96 		kaddr = kmap_atomic(page);
97 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
98 		kunmap_atomic(kaddr);
99 		crypto_shash_final(shash, (u8 *)&csum);
100 
101 		if (memcmp(&csum, cb_sum, csum_size)) {
102 			btrfs_print_data_csum_error(inode, disk_start,
103 					csum, cb_sum, cb->mirror_num);
104 			ret = -EIO;
105 			goto fail;
106 		}
107 		cb_sum += csum_size;
108 
109 	}
110 	ret = 0;
111 fail:
112 	return ret;
113 }
114 
115 /* when we finish reading compressed pages from the disk, we
116  * decompress them and then run the bio end_io routines on the
117  * decompressed pages (in the inode address space).
118  *
119  * This allows the checksumming and other IO error handling routines
120  * to work normally
121  *
122  * The compressed pages are freed here, and it must be run
123  * in process context
124  */
125 static void end_compressed_bio_read(struct bio *bio)
126 {
127 	struct compressed_bio *cb = bio->bi_private;
128 	struct inode *inode;
129 	struct page *page;
130 	unsigned long index;
131 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
132 	int ret = 0;
133 
134 	if (bio->bi_status)
135 		cb->errors = 1;
136 
137 	/* if there are more bios still pending for this compressed
138 	 * extent, just exit
139 	 */
140 	if (!refcount_dec_and_test(&cb->pending_bios))
141 		goto out;
142 
143 	/*
144 	 * Record the correct mirror_num in cb->orig_bio so that
145 	 * read-repair can work properly.
146 	 */
147 	ASSERT(btrfs_io_bio(cb->orig_bio));
148 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
149 	cb->mirror_num = mirror;
150 
151 	/*
152 	 * Some IO in this cb have failed, just skip checksum as there
153 	 * is no way it could be correct.
154 	 */
155 	if (cb->errors == 1)
156 		goto csum_failed;
157 
158 	inode = cb->inode;
159 	ret = check_compressed_csum(BTRFS_I(inode), cb,
160 				    (u64)bio->bi_iter.bi_sector << 9);
161 	if (ret)
162 		goto csum_failed;
163 
164 	/* ok, we're the last bio for this extent, lets start
165 	 * the decompression.
166 	 */
167 	ret = btrfs_decompress_bio(cb);
168 
169 csum_failed:
170 	if (ret)
171 		cb->errors = 1;
172 
173 	/* release the compressed pages */
174 	index = 0;
175 	for (index = 0; index < cb->nr_pages; index++) {
176 		page = cb->compressed_pages[index];
177 		page->mapping = NULL;
178 		put_page(page);
179 	}
180 
181 	/* do io completion on the original bio */
182 	if (cb->errors) {
183 		bio_io_error(cb->orig_bio);
184 	} else {
185 		struct bio_vec *bvec;
186 		struct bvec_iter_all iter_all;
187 
188 		/*
189 		 * we have verified the checksum already, set page
190 		 * checked so the end_io handlers know about it
191 		 */
192 		ASSERT(!bio_flagged(bio, BIO_CLONED));
193 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
194 			SetPageChecked(bvec->bv_page);
195 
196 		bio_endio(cb->orig_bio);
197 	}
198 
199 	/* finally free the cb struct */
200 	kfree(cb->compressed_pages);
201 	kfree(cb);
202 out:
203 	bio_put(bio);
204 }
205 
206 /*
207  * Clear the writeback bits on all of the file
208  * pages for a compressed write
209  */
210 static noinline void end_compressed_writeback(struct inode *inode,
211 					      const struct compressed_bio *cb)
212 {
213 	unsigned long index = cb->start >> PAGE_SHIFT;
214 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
215 	struct page *pages[16];
216 	unsigned long nr_pages = end_index - index + 1;
217 	int i;
218 	int ret;
219 
220 	if (cb->errors)
221 		mapping_set_error(inode->i_mapping, -EIO);
222 
223 	while (nr_pages > 0) {
224 		ret = find_get_pages_contig(inode->i_mapping, index,
225 				     min_t(unsigned long,
226 				     nr_pages, ARRAY_SIZE(pages)), pages);
227 		if (ret == 0) {
228 			nr_pages -= 1;
229 			index += 1;
230 			continue;
231 		}
232 		for (i = 0; i < ret; i++) {
233 			if (cb->errors)
234 				SetPageError(pages[i]);
235 			end_page_writeback(pages[i]);
236 			put_page(pages[i]);
237 		}
238 		nr_pages -= ret;
239 		index += ret;
240 	}
241 	/* the inode may be gone now */
242 }
243 
244 /*
245  * do the cleanup once all the compressed pages hit the disk.
246  * This will clear writeback on the file pages and free the compressed
247  * pages.
248  *
249  * This also calls the writeback end hooks for the file pages so that
250  * metadata and checksums can be updated in the file.
251  */
252 static void end_compressed_bio_write(struct bio *bio)
253 {
254 	struct compressed_bio *cb = bio->bi_private;
255 	struct inode *inode;
256 	struct page *page;
257 	unsigned long index;
258 
259 	if (bio->bi_status)
260 		cb->errors = 1;
261 
262 	/* if there are more bios still pending for this compressed
263 	 * extent, just exit
264 	 */
265 	if (!refcount_dec_and_test(&cb->pending_bios))
266 		goto out;
267 
268 	/* ok, we're the last bio for this extent, step one is to
269 	 * call back into the FS and do all the end_io operations
270 	 */
271 	inode = cb->inode;
272 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
273 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
274 			cb->start, cb->start + cb->len - 1,
275 			bio->bi_status == BLK_STS_OK);
276 	cb->compressed_pages[0]->mapping = NULL;
277 
278 	end_compressed_writeback(inode, cb);
279 	/* note, our inode could be gone now */
280 
281 	/*
282 	 * release the compressed pages, these came from alloc_page and
283 	 * are not attached to the inode at all
284 	 */
285 	index = 0;
286 	for (index = 0; index < cb->nr_pages; index++) {
287 		page = cb->compressed_pages[index];
288 		page->mapping = NULL;
289 		put_page(page);
290 	}
291 
292 	/* finally free the cb struct */
293 	kfree(cb->compressed_pages);
294 	kfree(cb);
295 out:
296 	bio_put(bio);
297 }
298 
299 /*
300  * worker function to build and submit bios for previously compressed pages.
301  * The corresponding pages in the inode should be marked for writeback
302  * and the compressed pages should have a reference on them for dropping
303  * when the IO is complete.
304  *
305  * This also checksums the file bytes and gets things ready for
306  * the end io hooks.
307  */
308 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
309 				 unsigned long len, u64 disk_start,
310 				 unsigned long compressed_len,
311 				 struct page **compressed_pages,
312 				 unsigned long nr_pages,
313 				 unsigned int write_flags)
314 {
315 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
316 	struct bio *bio = NULL;
317 	struct compressed_bio *cb;
318 	unsigned long bytes_left;
319 	int pg_index = 0;
320 	struct page *page;
321 	u64 first_byte = disk_start;
322 	struct block_device *bdev;
323 	blk_status_t ret;
324 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
325 
326 	WARN_ON(!PAGE_ALIGNED(start));
327 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
328 	if (!cb)
329 		return BLK_STS_RESOURCE;
330 	refcount_set(&cb->pending_bios, 0);
331 	cb->errors = 0;
332 	cb->inode = inode;
333 	cb->start = start;
334 	cb->len = len;
335 	cb->mirror_num = 0;
336 	cb->compressed_pages = compressed_pages;
337 	cb->compressed_len = compressed_len;
338 	cb->orig_bio = NULL;
339 	cb->nr_pages = nr_pages;
340 
341 	bdev = fs_info->fs_devices->latest_bdev;
342 
343 	bio = btrfs_bio_alloc(first_byte);
344 	bio_set_dev(bio, bdev);
345 	bio->bi_opf = REQ_OP_WRITE | write_flags;
346 	bio->bi_private = cb;
347 	bio->bi_end_io = end_compressed_bio_write;
348 	refcount_set(&cb->pending_bios, 1);
349 
350 	/* create and submit bios for the compressed pages */
351 	bytes_left = compressed_len;
352 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
353 		int submit = 0;
354 
355 		page = compressed_pages[pg_index];
356 		page->mapping = inode->i_mapping;
357 		if (bio->bi_iter.bi_size)
358 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
359 							  0);
360 
361 		page->mapping = NULL;
362 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
363 		    PAGE_SIZE) {
364 			/*
365 			 * inc the count before we submit the bio so
366 			 * we know the end IO handler won't happen before
367 			 * we inc the count.  Otherwise, the cb might get
368 			 * freed before we're done setting it up
369 			 */
370 			refcount_inc(&cb->pending_bios);
371 			ret = btrfs_bio_wq_end_io(fs_info, bio,
372 						  BTRFS_WQ_ENDIO_DATA);
373 			BUG_ON(ret); /* -ENOMEM */
374 
375 			if (!skip_sum) {
376 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
377 				BUG_ON(ret); /* -ENOMEM */
378 			}
379 
380 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
381 			if (ret) {
382 				bio->bi_status = ret;
383 				bio_endio(bio);
384 			}
385 
386 			bio = btrfs_bio_alloc(first_byte);
387 			bio_set_dev(bio, bdev);
388 			bio->bi_opf = REQ_OP_WRITE | write_flags;
389 			bio->bi_private = cb;
390 			bio->bi_end_io = end_compressed_bio_write;
391 			bio_add_page(bio, page, PAGE_SIZE, 0);
392 		}
393 		if (bytes_left < PAGE_SIZE) {
394 			btrfs_info(fs_info,
395 					"bytes left %lu compress len %lu nr %lu",
396 			       bytes_left, cb->compressed_len, cb->nr_pages);
397 		}
398 		bytes_left -= PAGE_SIZE;
399 		first_byte += PAGE_SIZE;
400 		cond_resched();
401 	}
402 
403 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
404 	BUG_ON(ret); /* -ENOMEM */
405 
406 	if (!skip_sum) {
407 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
408 		BUG_ON(ret); /* -ENOMEM */
409 	}
410 
411 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
412 	if (ret) {
413 		bio->bi_status = ret;
414 		bio_endio(bio);
415 	}
416 
417 	return 0;
418 }
419 
420 static u64 bio_end_offset(struct bio *bio)
421 {
422 	struct bio_vec *last = bio_last_bvec_all(bio);
423 
424 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
425 }
426 
427 static noinline int add_ra_bio_pages(struct inode *inode,
428 				     u64 compressed_end,
429 				     struct compressed_bio *cb)
430 {
431 	unsigned long end_index;
432 	unsigned long pg_index;
433 	u64 last_offset;
434 	u64 isize = i_size_read(inode);
435 	int ret;
436 	struct page *page;
437 	unsigned long nr_pages = 0;
438 	struct extent_map *em;
439 	struct address_space *mapping = inode->i_mapping;
440 	struct extent_map_tree *em_tree;
441 	struct extent_io_tree *tree;
442 	u64 end;
443 	int misses = 0;
444 
445 	last_offset = bio_end_offset(cb->orig_bio);
446 	em_tree = &BTRFS_I(inode)->extent_tree;
447 	tree = &BTRFS_I(inode)->io_tree;
448 
449 	if (isize == 0)
450 		return 0;
451 
452 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
453 
454 	while (last_offset < compressed_end) {
455 		pg_index = last_offset >> PAGE_SHIFT;
456 
457 		if (pg_index > end_index)
458 			break;
459 
460 		page = xa_load(&mapping->i_pages, pg_index);
461 		if (page && !xa_is_value(page)) {
462 			misses++;
463 			if (misses > 4)
464 				break;
465 			goto next;
466 		}
467 
468 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
469 								 ~__GFP_FS));
470 		if (!page)
471 			break;
472 
473 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
474 			put_page(page);
475 			goto next;
476 		}
477 
478 		end = last_offset + PAGE_SIZE - 1;
479 		/*
480 		 * at this point, we have a locked page in the page cache
481 		 * for these bytes in the file.  But, we have to make
482 		 * sure they map to this compressed extent on disk.
483 		 */
484 		set_page_extent_mapped(page);
485 		lock_extent(tree, last_offset, end);
486 		read_lock(&em_tree->lock);
487 		em = lookup_extent_mapping(em_tree, last_offset,
488 					   PAGE_SIZE);
489 		read_unlock(&em_tree->lock);
490 
491 		if (!em || last_offset < em->start ||
492 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
493 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
494 			free_extent_map(em);
495 			unlock_extent(tree, last_offset, end);
496 			unlock_page(page);
497 			put_page(page);
498 			break;
499 		}
500 		free_extent_map(em);
501 
502 		if (page->index == end_index) {
503 			char *userpage;
504 			size_t zero_offset = offset_in_page(isize);
505 
506 			if (zero_offset) {
507 				int zeros;
508 				zeros = PAGE_SIZE - zero_offset;
509 				userpage = kmap_atomic(page);
510 				memset(userpage + zero_offset, 0, zeros);
511 				flush_dcache_page(page);
512 				kunmap_atomic(userpage);
513 			}
514 		}
515 
516 		ret = bio_add_page(cb->orig_bio, page,
517 				   PAGE_SIZE, 0);
518 
519 		if (ret == PAGE_SIZE) {
520 			nr_pages++;
521 			put_page(page);
522 		} else {
523 			unlock_extent(tree, last_offset, end);
524 			unlock_page(page);
525 			put_page(page);
526 			break;
527 		}
528 next:
529 		last_offset += PAGE_SIZE;
530 	}
531 	return 0;
532 }
533 
534 /*
535  * for a compressed read, the bio we get passed has all the inode pages
536  * in it.  We don't actually do IO on those pages but allocate new ones
537  * to hold the compressed pages on disk.
538  *
539  * bio->bi_iter.bi_sector points to the compressed extent on disk
540  * bio->bi_io_vec points to all of the inode pages
541  *
542  * After the compressed pages are read, we copy the bytes into the
543  * bio we were passed and then call the bio end_io calls
544  */
545 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
546 				 int mirror_num, unsigned long bio_flags)
547 {
548 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
549 	struct extent_map_tree *em_tree;
550 	struct compressed_bio *cb;
551 	unsigned long compressed_len;
552 	unsigned long nr_pages;
553 	unsigned long pg_index;
554 	struct page *page;
555 	struct block_device *bdev;
556 	struct bio *comp_bio;
557 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
558 	u64 em_len;
559 	u64 em_start;
560 	struct extent_map *em;
561 	blk_status_t ret = BLK_STS_RESOURCE;
562 	int faili = 0;
563 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
564 	u8 *sums;
565 
566 	em_tree = &BTRFS_I(inode)->extent_tree;
567 
568 	/* we need the actual starting offset of this extent in the file */
569 	read_lock(&em_tree->lock);
570 	em = lookup_extent_mapping(em_tree,
571 				   page_offset(bio_first_page_all(bio)),
572 				   PAGE_SIZE);
573 	read_unlock(&em_tree->lock);
574 	if (!em)
575 		return BLK_STS_IOERR;
576 
577 	compressed_len = em->block_len;
578 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
579 	if (!cb)
580 		goto out;
581 
582 	refcount_set(&cb->pending_bios, 0);
583 	cb->errors = 0;
584 	cb->inode = inode;
585 	cb->mirror_num = mirror_num;
586 	sums = cb->sums;
587 
588 	cb->start = em->orig_start;
589 	em_len = em->len;
590 	em_start = em->start;
591 
592 	free_extent_map(em);
593 	em = NULL;
594 
595 	cb->len = bio->bi_iter.bi_size;
596 	cb->compressed_len = compressed_len;
597 	cb->compress_type = extent_compress_type(bio_flags);
598 	cb->orig_bio = bio;
599 
600 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
601 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
602 				       GFP_NOFS);
603 	if (!cb->compressed_pages)
604 		goto fail1;
605 
606 	bdev = fs_info->fs_devices->latest_bdev;
607 
608 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
609 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
610 							      __GFP_HIGHMEM);
611 		if (!cb->compressed_pages[pg_index]) {
612 			faili = pg_index - 1;
613 			ret = BLK_STS_RESOURCE;
614 			goto fail2;
615 		}
616 	}
617 	faili = nr_pages - 1;
618 	cb->nr_pages = nr_pages;
619 
620 	add_ra_bio_pages(inode, em_start + em_len, cb);
621 
622 	/* include any pages we added in add_ra-bio_pages */
623 	cb->len = bio->bi_iter.bi_size;
624 
625 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
626 	bio_set_dev(comp_bio, bdev);
627 	comp_bio->bi_opf = REQ_OP_READ;
628 	comp_bio->bi_private = cb;
629 	comp_bio->bi_end_io = end_compressed_bio_read;
630 	refcount_set(&cb->pending_bios, 1);
631 
632 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
633 		int submit = 0;
634 
635 		page = cb->compressed_pages[pg_index];
636 		page->mapping = inode->i_mapping;
637 		page->index = em_start >> PAGE_SHIFT;
638 
639 		if (comp_bio->bi_iter.bi_size)
640 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
641 							  comp_bio, 0);
642 
643 		page->mapping = NULL;
644 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
645 		    PAGE_SIZE) {
646 			unsigned int nr_sectors;
647 
648 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
649 						  BTRFS_WQ_ENDIO_DATA);
650 			BUG_ON(ret); /* -ENOMEM */
651 
652 			/*
653 			 * inc the count before we submit the bio so
654 			 * we know the end IO handler won't happen before
655 			 * we inc the count.  Otherwise, the cb might get
656 			 * freed before we're done setting it up
657 			 */
658 			refcount_inc(&cb->pending_bios);
659 
660 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
661 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
662 							    sums);
663 				BUG_ON(ret); /* -ENOMEM */
664 			}
665 
666 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
667 						  fs_info->sectorsize);
668 			sums += csum_size * nr_sectors;
669 
670 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
671 			if (ret) {
672 				comp_bio->bi_status = ret;
673 				bio_endio(comp_bio);
674 			}
675 
676 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
677 			bio_set_dev(comp_bio, bdev);
678 			comp_bio->bi_opf = REQ_OP_READ;
679 			comp_bio->bi_private = cb;
680 			comp_bio->bi_end_io = end_compressed_bio_read;
681 
682 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
683 		}
684 		cur_disk_byte += PAGE_SIZE;
685 	}
686 
687 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
688 	BUG_ON(ret); /* -ENOMEM */
689 
690 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
691 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
692 		BUG_ON(ret); /* -ENOMEM */
693 	}
694 
695 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
696 	if (ret) {
697 		comp_bio->bi_status = ret;
698 		bio_endio(comp_bio);
699 	}
700 
701 	return 0;
702 
703 fail2:
704 	while (faili >= 0) {
705 		__free_page(cb->compressed_pages[faili]);
706 		faili--;
707 	}
708 
709 	kfree(cb->compressed_pages);
710 fail1:
711 	kfree(cb);
712 out:
713 	free_extent_map(em);
714 	return ret;
715 }
716 
717 /*
718  * Heuristic uses systematic sampling to collect data from the input data
719  * range, the logic can be tuned by the following constants:
720  *
721  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
722  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
723  */
724 #define SAMPLING_READ_SIZE	(16)
725 #define SAMPLING_INTERVAL	(256)
726 
727 /*
728  * For statistical analysis of the input data we consider bytes that form a
729  * Galois Field of 256 objects. Each object has an attribute count, ie. how
730  * many times the object appeared in the sample.
731  */
732 #define BUCKET_SIZE		(256)
733 
734 /*
735  * The size of the sample is based on a statistical sampling rule of thumb.
736  * The common way is to perform sampling tests as long as the number of
737  * elements in each cell is at least 5.
738  *
739  * Instead of 5, we choose 32 to obtain more accurate results.
740  * If the data contain the maximum number of symbols, which is 256, we obtain a
741  * sample size bound by 8192.
742  *
743  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
744  * from up to 512 locations.
745  */
746 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
747 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
748 
749 struct bucket_item {
750 	u32 count;
751 };
752 
753 struct heuristic_ws {
754 	/* Partial copy of input data */
755 	u8 *sample;
756 	u32 sample_size;
757 	/* Buckets store counters for each byte value */
758 	struct bucket_item *bucket;
759 	/* Sorting buffer */
760 	struct bucket_item *bucket_b;
761 	struct list_head list;
762 };
763 
764 static struct workspace_manager heuristic_wsm;
765 
766 static void heuristic_init_workspace_manager(void)
767 {
768 	btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
769 }
770 
771 static void heuristic_cleanup_workspace_manager(void)
772 {
773 	btrfs_cleanup_workspace_manager(&heuristic_wsm);
774 }
775 
776 static struct list_head *heuristic_get_workspace(unsigned int level)
777 {
778 	return btrfs_get_workspace(&heuristic_wsm, level);
779 }
780 
781 static void heuristic_put_workspace(struct list_head *ws)
782 {
783 	btrfs_put_workspace(&heuristic_wsm, ws);
784 }
785 
786 static void free_heuristic_ws(struct list_head *ws)
787 {
788 	struct heuristic_ws *workspace;
789 
790 	workspace = list_entry(ws, struct heuristic_ws, list);
791 
792 	kvfree(workspace->sample);
793 	kfree(workspace->bucket);
794 	kfree(workspace->bucket_b);
795 	kfree(workspace);
796 }
797 
798 static struct list_head *alloc_heuristic_ws(unsigned int level)
799 {
800 	struct heuristic_ws *ws;
801 
802 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
803 	if (!ws)
804 		return ERR_PTR(-ENOMEM);
805 
806 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
807 	if (!ws->sample)
808 		goto fail;
809 
810 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
811 	if (!ws->bucket)
812 		goto fail;
813 
814 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
815 	if (!ws->bucket_b)
816 		goto fail;
817 
818 	INIT_LIST_HEAD(&ws->list);
819 	return &ws->list;
820 fail:
821 	free_heuristic_ws(&ws->list);
822 	return ERR_PTR(-ENOMEM);
823 }
824 
825 const struct btrfs_compress_op btrfs_heuristic_compress = {
826 	.init_workspace_manager = heuristic_init_workspace_manager,
827 	.cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
828 	.get_workspace = heuristic_get_workspace,
829 	.put_workspace = heuristic_put_workspace,
830 	.alloc_workspace = alloc_heuristic_ws,
831 	.free_workspace = free_heuristic_ws,
832 };
833 
834 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
835 	/* The heuristic is represented as compression type 0 */
836 	&btrfs_heuristic_compress,
837 	&btrfs_zlib_compress,
838 	&btrfs_lzo_compress,
839 	&btrfs_zstd_compress,
840 };
841 
842 void btrfs_init_workspace_manager(struct workspace_manager *wsm,
843 				  const struct btrfs_compress_op *ops)
844 {
845 	struct list_head *workspace;
846 
847 	wsm->ops = ops;
848 
849 	INIT_LIST_HEAD(&wsm->idle_ws);
850 	spin_lock_init(&wsm->ws_lock);
851 	atomic_set(&wsm->total_ws, 0);
852 	init_waitqueue_head(&wsm->ws_wait);
853 
854 	/*
855 	 * Preallocate one workspace for each compression type so we can
856 	 * guarantee forward progress in the worst case
857 	 */
858 	workspace = wsm->ops->alloc_workspace(0);
859 	if (IS_ERR(workspace)) {
860 		pr_warn(
861 	"BTRFS: cannot preallocate compression workspace, will try later\n");
862 	} else {
863 		atomic_set(&wsm->total_ws, 1);
864 		wsm->free_ws = 1;
865 		list_add(workspace, &wsm->idle_ws);
866 	}
867 }
868 
869 void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
870 {
871 	struct list_head *ws;
872 
873 	while (!list_empty(&wsman->idle_ws)) {
874 		ws = wsman->idle_ws.next;
875 		list_del(ws);
876 		wsman->ops->free_workspace(ws);
877 		atomic_dec(&wsman->total_ws);
878 	}
879 }
880 
881 /*
882  * This finds an available workspace or allocates a new one.
883  * If it's not possible to allocate a new one, waits until there's one.
884  * Preallocation makes a forward progress guarantees and we do not return
885  * errors.
886  */
887 struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
888 				      unsigned int level)
889 {
890 	struct list_head *workspace;
891 	int cpus = num_online_cpus();
892 	unsigned nofs_flag;
893 	struct list_head *idle_ws;
894 	spinlock_t *ws_lock;
895 	atomic_t *total_ws;
896 	wait_queue_head_t *ws_wait;
897 	int *free_ws;
898 
899 	idle_ws	 = &wsm->idle_ws;
900 	ws_lock	 = &wsm->ws_lock;
901 	total_ws = &wsm->total_ws;
902 	ws_wait	 = &wsm->ws_wait;
903 	free_ws	 = &wsm->free_ws;
904 
905 again:
906 	spin_lock(ws_lock);
907 	if (!list_empty(idle_ws)) {
908 		workspace = idle_ws->next;
909 		list_del(workspace);
910 		(*free_ws)--;
911 		spin_unlock(ws_lock);
912 		return workspace;
913 
914 	}
915 	if (atomic_read(total_ws) > cpus) {
916 		DEFINE_WAIT(wait);
917 
918 		spin_unlock(ws_lock);
919 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
920 		if (atomic_read(total_ws) > cpus && !*free_ws)
921 			schedule();
922 		finish_wait(ws_wait, &wait);
923 		goto again;
924 	}
925 	atomic_inc(total_ws);
926 	spin_unlock(ws_lock);
927 
928 	/*
929 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
930 	 * to turn it off here because we might get called from the restricted
931 	 * context of btrfs_compress_bio/btrfs_compress_pages
932 	 */
933 	nofs_flag = memalloc_nofs_save();
934 	workspace = wsm->ops->alloc_workspace(level);
935 	memalloc_nofs_restore(nofs_flag);
936 
937 	if (IS_ERR(workspace)) {
938 		atomic_dec(total_ws);
939 		wake_up(ws_wait);
940 
941 		/*
942 		 * Do not return the error but go back to waiting. There's a
943 		 * workspace preallocated for each type and the compression
944 		 * time is bounded so we get to a workspace eventually. This
945 		 * makes our caller's life easier.
946 		 *
947 		 * To prevent silent and low-probability deadlocks (when the
948 		 * initial preallocation fails), check if there are any
949 		 * workspaces at all.
950 		 */
951 		if (atomic_read(total_ws) == 0) {
952 			static DEFINE_RATELIMIT_STATE(_rs,
953 					/* once per minute */ 60 * HZ,
954 					/* no burst */ 1);
955 
956 			if (__ratelimit(&_rs)) {
957 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
958 			}
959 		}
960 		goto again;
961 	}
962 	return workspace;
963 }
964 
965 static struct list_head *get_workspace(int type, int level)
966 {
967 	return btrfs_compress_op[type]->get_workspace(level);
968 }
969 
970 /*
971  * put a workspace struct back on the list or free it if we have enough
972  * idle ones sitting around
973  */
974 void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
975 {
976 	struct list_head *idle_ws;
977 	spinlock_t *ws_lock;
978 	atomic_t *total_ws;
979 	wait_queue_head_t *ws_wait;
980 	int *free_ws;
981 
982 	idle_ws	 = &wsm->idle_ws;
983 	ws_lock	 = &wsm->ws_lock;
984 	total_ws = &wsm->total_ws;
985 	ws_wait	 = &wsm->ws_wait;
986 	free_ws	 = &wsm->free_ws;
987 
988 	spin_lock(ws_lock);
989 	if (*free_ws <= num_online_cpus()) {
990 		list_add(ws, idle_ws);
991 		(*free_ws)++;
992 		spin_unlock(ws_lock);
993 		goto wake;
994 	}
995 	spin_unlock(ws_lock);
996 
997 	wsm->ops->free_workspace(ws);
998 	atomic_dec(total_ws);
999 wake:
1000 	cond_wake_up(ws_wait);
1001 }
1002 
1003 static void put_workspace(int type, struct list_head *ws)
1004 {
1005 	return btrfs_compress_op[type]->put_workspace(ws);
1006 }
1007 
1008 /*
1009  * Given an address space and start and length, compress the bytes into @pages
1010  * that are allocated on demand.
1011  *
1012  * @type_level is encoded algorithm and level, where level 0 means whatever
1013  * default the algorithm chooses and is opaque here;
1014  * - compression algo are 0-3
1015  * - the level are bits 4-7
1016  *
1017  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1018  * and returns number of actually allocated pages
1019  *
1020  * @total_in is used to return the number of bytes actually read.  It
1021  * may be smaller than the input length if we had to exit early because we
1022  * ran out of room in the pages array or because we cross the
1023  * max_out threshold.
1024  *
1025  * @total_out is an in/out parameter, must be set to the input length and will
1026  * be also used to return the total number of compressed bytes
1027  *
1028  * @max_out tells us the max number of bytes that we're allowed to
1029  * stuff into pages
1030  */
1031 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1032 			 u64 start, struct page **pages,
1033 			 unsigned long *out_pages,
1034 			 unsigned long *total_in,
1035 			 unsigned long *total_out)
1036 {
1037 	int type = btrfs_compress_type(type_level);
1038 	int level = btrfs_compress_level(type_level);
1039 	struct list_head *workspace;
1040 	int ret;
1041 
1042 	level = btrfs_compress_op[type]->set_level(level);
1043 	workspace = get_workspace(type, level);
1044 	ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1045 						      start, pages,
1046 						      out_pages,
1047 						      total_in, total_out);
1048 	put_workspace(type, workspace);
1049 	return ret;
1050 }
1051 
1052 /*
1053  * pages_in is an array of pages with compressed data.
1054  *
1055  * disk_start is the starting logical offset of this array in the file
1056  *
1057  * orig_bio contains the pages from the file that we want to decompress into
1058  *
1059  * srclen is the number of bytes in pages_in
1060  *
1061  * The basic idea is that we have a bio that was created by readpages.
1062  * The pages in the bio are for the uncompressed data, and they may not
1063  * be contiguous.  They all correspond to the range of bytes covered by
1064  * the compressed extent.
1065  */
1066 static int btrfs_decompress_bio(struct compressed_bio *cb)
1067 {
1068 	struct list_head *workspace;
1069 	int ret;
1070 	int type = cb->compress_type;
1071 
1072 	workspace = get_workspace(type, 0);
1073 	ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1074 	put_workspace(type, workspace);
1075 
1076 	return ret;
1077 }
1078 
1079 /*
1080  * a less complex decompression routine.  Our compressed data fits in a
1081  * single page, and we want to read a single page out of it.
1082  * start_byte tells us the offset into the compressed data we're interested in
1083  */
1084 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1085 		     unsigned long start_byte, size_t srclen, size_t destlen)
1086 {
1087 	struct list_head *workspace;
1088 	int ret;
1089 
1090 	workspace = get_workspace(type, 0);
1091 	ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1092 						  dest_page, start_byte,
1093 						  srclen, destlen);
1094 	put_workspace(type, workspace);
1095 
1096 	return ret;
1097 }
1098 
1099 void __init btrfs_init_compress(void)
1100 {
1101 	int i;
1102 
1103 	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1104 		btrfs_compress_op[i]->init_workspace_manager();
1105 }
1106 
1107 void __cold btrfs_exit_compress(void)
1108 {
1109 	int i;
1110 
1111 	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1112 		btrfs_compress_op[i]->cleanup_workspace_manager();
1113 }
1114 
1115 /*
1116  * Copy uncompressed data from working buffer to pages.
1117  *
1118  * buf_start is the byte offset we're of the start of our workspace buffer.
1119  *
1120  * total_out is the last byte of the buffer
1121  */
1122 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1123 			      unsigned long total_out, u64 disk_start,
1124 			      struct bio *bio)
1125 {
1126 	unsigned long buf_offset;
1127 	unsigned long current_buf_start;
1128 	unsigned long start_byte;
1129 	unsigned long prev_start_byte;
1130 	unsigned long working_bytes = total_out - buf_start;
1131 	unsigned long bytes;
1132 	char *kaddr;
1133 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1134 
1135 	/*
1136 	 * start byte is the first byte of the page we're currently
1137 	 * copying into relative to the start of the compressed data.
1138 	 */
1139 	start_byte = page_offset(bvec.bv_page) - disk_start;
1140 
1141 	/* we haven't yet hit data corresponding to this page */
1142 	if (total_out <= start_byte)
1143 		return 1;
1144 
1145 	/*
1146 	 * the start of the data we care about is offset into
1147 	 * the middle of our working buffer
1148 	 */
1149 	if (total_out > start_byte && buf_start < start_byte) {
1150 		buf_offset = start_byte - buf_start;
1151 		working_bytes -= buf_offset;
1152 	} else {
1153 		buf_offset = 0;
1154 	}
1155 	current_buf_start = buf_start;
1156 
1157 	/* copy bytes from the working buffer into the pages */
1158 	while (working_bytes > 0) {
1159 		bytes = min_t(unsigned long, bvec.bv_len,
1160 				PAGE_SIZE - buf_offset);
1161 		bytes = min(bytes, working_bytes);
1162 
1163 		kaddr = kmap_atomic(bvec.bv_page);
1164 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1165 		kunmap_atomic(kaddr);
1166 		flush_dcache_page(bvec.bv_page);
1167 
1168 		buf_offset += bytes;
1169 		working_bytes -= bytes;
1170 		current_buf_start += bytes;
1171 
1172 		/* check if we need to pick another page */
1173 		bio_advance(bio, bytes);
1174 		if (!bio->bi_iter.bi_size)
1175 			return 0;
1176 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1177 		prev_start_byte = start_byte;
1178 		start_byte = page_offset(bvec.bv_page) - disk_start;
1179 
1180 		/*
1181 		 * We need to make sure we're only adjusting
1182 		 * our offset into compression working buffer when
1183 		 * we're switching pages.  Otherwise we can incorrectly
1184 		 * keep copying when we were actually done.
1185 		 */
1186 		if (start_byte != prev_start_byte) {
1187 			/*
1188 			 * make sure our new page is covered by this
1189 			 * working buffer
1190 			 */
1191 			if (total_out <= start_byte)
1192 				return 1;
1193 
1194 			/*
1195 			 * the next page in the biovec might not be adjacent
1196 			 * to the last page, but it might still be found
1197 			 * inside this working buffer. bump our offset pointer
1198 			 */
1199 			if (total_out > start_byte &&
1200 			    current_buf_start < start_byte) {
1201 				buf_offset = start_byte - buf_start;
1202 				working_bytes = total_out - start_byte;
1203 				current_buf_start = buf_start + buf_offset;
1204 			}
1205 		}
1206 	}
1207 
1208 	return 1;
1209 }
1210 
1211 /*
1212  * Shannon Entropy calculation
1213  *
1214  * Pure byte distribution analysis fails to determine compressibility of data.
1215  * Try calculating entropy to estimate the average minimum number of bits
1216  * needed to encode the sampled data.
1217  *
1218  * For convenience, return the percentage of needed bits, instead of amount of
1219  * bits directly.
1220  *
1221  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1222  *			    and can be compressible with high probability
1223  *
1224  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1225  *
1226  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1227  */
1228 #define ENTROPY_LVL_ACEPTABLE		(65)
1229 #define ENTROPY_LVL_HIGH		(80)
1230 
1231 /*
1232  * For increasead precision in shannon_entropy calculation,
1233  * let's do pow(n, M) to save more digits after comma:
1234  *
1235  * - maximum int bit length is 64
1236  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1237  * - 13 * 4 = 52 < 64		-> M = 4
1238  *
1239  * So use pow(n, 4).
1240  */
1241 static inline u32 ilog2_w(u64 n)
1242 {
1243 	return ilog2(n * n * n * n);
1244 }
1245 
1246 static u32 shannon_entropy(struct heuristic_ws *ws)
1247 {
1248 	const u32 entropy_max = 8 * ilog2_w(2);
1249 	u32 entropy_sum = 0;
1250 	u32 p, p_base, sz_base;
1251 	u32 i;
1252 
1253 	sz_base = ilog2_w(ws->sample_size);
1254 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1255 		p = ws->bucket[i].count;
1256 		p_base = ilog2_w(p);
1257 		entropy_sum += p * (sz_base - p_base);
1258 	}
1259 
1260 	entropy_sum /= ws->sample_size;
1261 	return entropy_sum * 100 / entropy_max;
1262 }
1263 
1264 #define RADIX_BASE		4U
1265 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1266 
1267 static u8 get4bits(u64 num, int shift) {
1268 	u8 low4bits;
1269 
1270 	num >>= shift;
1271 	/* Reverse order */
1272 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1273 	return low4bits;
1274 }
1275 
1276 /*
1277  * Use 4 bits as radix base
1278  * Use 16 u32 counters for calculating new position in buf array
1279  *
1280  * @array     - array that will be sorted
1281  * @array_buf - buffer array to store sorting results
1282  *              must be equal in size to @array
1283  * @num       - array size
1284  */
1285 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1286 		       int num)
1287 {
1288 	u64 max_num;
1289 	u64 buf_num;
1290 	u32 counters[COUNTERS_SIZE];
1291 	u32 new_addr;
1292 	u32 addr;
1293 	int bitlen;
1294 	int shift;
1295 	int i;
1296 
1297 	/*
1298 	 * Try avoid useless loop iterations for small numbers stored in big
1299 	 * counters.  Example: 48 33 4 ... in 64bit array
1300 	 */
1301 	max_num = array[0].count;
1302 	for (i = 1; i < num; i++) {
1303 		buf_num = array[i].count;
1304 		if (buf_num > max_num)
1305 			max_num = buf_num;
1306 	}
1307 
1308 	buf_num = ilog2(max_num);
1309 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1310 
1311 	shift = 0;
1312 	while (shift < bitlen) {
1313 		memset(counters, 0, sizeof(counters));
1314 
1315 		for (i = 0; i < num; i++) {
1316 			buf_num = array[i].count;
1317 			addr = get4bits(buf_num, shift);
1318 			counters[addr]++;
1319 		}
1320 
1321 		for (i = 1; i < COUNTERS_SIZE; i++)
1322 			counters[i] += counters[i - 1];
1323 
1324 		for (i = num - 1; i >= 0; i--) {
1325 			buf_num = array[i].count;
1326 			addr = get4bits(buf_num, shift);
1327 			counters[addr]--;
1328 			new_addr = counters[addr];
1329 			array_buf[new_addr] = array[i];
1330 		}
1331 
1332 		shift += RADIX_BASE;
1333 
1334 		/*
1335 		 * Normal radix expects to move data from a temporary array, to
1336 		 * the main one.  But that requires some CPU time. Avoid that
1337 		 * by doing another sort iteration to original array instead of
1338 		 * memcpy()
1339 		 */
1340 		memset(counters, 0, sizeof(counters));
1341 
1342 		for (i = 0; i < num; i ++) {
1343 			buf_num = array_buf[i].count;
1344 			addr = get4bits(buf_num, shift);
1345 			counters[addr]++;
1346 		}
1347 
1348 		for (i = 1; i < COUNTERS_SIZE; i++)
1349 			counters[i] += counters[i - 1];
1350 
1351 		for (i = num - 1; i >= 0; i--) {
1352 			buf_num = array_buf[i].count;
1353 			addr = get4bits(buf_num, shift);
1354 			counters[addr]--;
1355 			new_addr = counters[addr];
1356 			array[new_addr] = array_buf[i];
1357 		}
1358 
1359 		shift += RADIX_BASE;
1360 	}
1361 }
1362 
1363 /*
1364  * Size of the core byte set - how many bytes cover 90% of the sample
1365  *
1366  * There are several types of structured binary data that use nearly all byte
1367  * values. The distribution can be uniform and counts in all buckets will be
1368  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1369  *
1370  * Other possibility is normal (Gaussian) distribution, where the data could
1371  * be potentially compressible, but we have to take a few more steps to decide
1372  * how much.
1373  *
1374  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1375  *                       compression algo can easy fix that
1376  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1377  *                       probability is not compressible
1378  */
1379 #define BYTE_CORE_SET_LOW		(64)
1380 #define BYTE_CORE_SET_HIGH		(200)
1381 
1382 static int byte_core_set_size(struct heuristic_ws *ws)
1383 {
1384 	u32 i;
1385 	u32 coreset_sum = 0;
1386 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1387 	struct bucket_item *bucket = ws->bucket;
1388 
1389 	/* Sort in reverse order */
1390 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1391 
1392 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1393 		coreset_sum += bucket[i].count;
1394 
1395 	if (coreset_sum > core_set_threshold)
1396 		return i;
1397 
1398 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1399 		coreset_sum += bucket[i].count;
1400 		if (coreset_sum > core_set_threshold)
1401 			break;
1402 	}
1403 
1404 	return i;
1405 }
1406 
1407 /*
1408  * Count byte values in buckets.
1409  * This heuristic can detect textual data (configs, xml, json, html, etc).
1410  * Because in most text-like data byte set is restricted to limited number of
1411  * possible characters, and that restriction in most cases makes data easy to
1412  * compress.
1413  *
1414  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1415  *	less - compressible
1416  *	more - need additional analysis
1417  */
1418 #define BYTE_SET_THRESHOLD		(64)
1419 
1420 static u32 byte_set_size(const struct heuristic_ws *ws)
1421 {
1422 	u32 i;
1423 	u32 byte_set_size = 0;
1424 
1425 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1426 		if (ws->bucket[i].count > 0)
1427 			byte_set_size++;
1428 	}
1429 
1430 	/*
1431 	 * Continue collecting count of byte values in buckets.  If the byte
1432 	 * set size is bigger then the threshold, it's pointless to continue,
1433 	 * the detection technique would fail for this type of data.
1434 	 */
1435 	for (; i < BUCKET_SIZE; i++) {
1436 		if (ws->bucket[i].count > 0) {
1437 			byte_set_size++;
1438 			if (byte_set_size > BYTE_SET_THRESHOLD)
1439 				return byte_set_size;
1440 		}
1441 	}
1442 
1443 	return byte_set_size;
1444 }
1445 
1446 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1447 {
1448 	const u32 half_of_sample = ws->sample_size / 2;
1449 	const u8 *data = ws->sample;
1450 
1451 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1452 }
1453 
1454 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1455 				     struct heuristic_ws *ws)
1456 {
1457 	struct page *page;
1458 	u64 index, index_end;
1459 	u32 i, curr_sample_pos;
1460 	u8 *in_data;
1461 
1462 	/*
1463 	 * Compression handles the input data by chunks of 128KiB
1464 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1465 	 *
1466 	 * We do the same for the heuristic and loop over the whole range.
1467 	 *
1468 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1469 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1470 	 */
1471 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1472 		end = start + BTRFS_MAX_UNCOMPRESSED;
1473 
1474 	index = start >> PAGE_SHIFT;
1475 	index_end = end >> PAGE_SHIFT;
1476 
1477 	/* Don't miss unaligned end */
1478 	if (!IS_ALIGNED(end, PAGE_SIZE))
1479 		index_end++;
1480 
1481 	curr_sample_pos = 0;
1482 	while (index < index_end) {
1483 		page = find_get_page(inode->i_mapping, index);
1484 		in_data = kmap(page);
1485 		/* Handle case where the start is not aligned to PAGE_SIZE */
1486 		i = start % PAGE_SIZE;
1487 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1488 			/* Don't sample any garbage from the last page */
1489 			if (start > end - SAMPLING_READ_SIZE)
1490 				break;
1491 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1492 					SAMPLING_READ_SIZE);
1493 			i += SAMPLING_INTERVAL;
1494 			start += SAMPLING_INTERVAL;
1495 			curr_sample_pos += SAMPLING_READ_SIZE;
1496 		}
1497 		kunmap(page);
1498 		put_page(page);
1499 
1500 		index++;
1501 	}
1502 
1503 	ws->sample_size = curr_sample_pos;
1504 }
1505 
1506 /*
1507  * Compression heuristic.
1508  *
1509  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1510  * quickly (compared to direct compression) detect data characteristics
1511  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1512  * data.
1513  *
1514  * The following types of analysis can be performed:
1515  * - detect mostly zero data
1516  * - detect data with low "byte set" size (text, etc)
1517  * - detect data with low/high "core byte" set
1518  *
1519  * Return non-zero if the compression should be done, 0 otherwise.
1520  */
1521 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1522 {
1523 	struct list_head *ws_list = get_workspace(0, 0);
1524 	struct heuristic_ws *ws;
1525 	u32 i;
1526 	u8 byte;
1527 	int ret = 0;
1528 
1529 	ws = list_entry(ws_list, struct heuristic_ws, list);
1530 
1531 	heuristic_collect_sample(inode, start, end, ws);
1532 
1533 	if (sample_repeated_patterns(ws)) {
1534 		ret = 1;
1535 		goto out;
1536 	}
1537 
1538 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1539 
1540 	for (i = 0; i < ws->sample_size; i++) {
1541 		byte = ws->sample[i];
1542 		ws->bucket[byte].count++;
1543 	}
1544 
1545 	i = byte_set_size(ws);
1546 	if (i < BYTE_SET_THRESHOLD) {
1547 		ret = 2;
1548 		goto out;
1549 	}
1550 
1551 	i = byte_core_set_size(ws);
1552 	if (i <= BYTE_CORE_SET_LOW) {
1553 		ret = 3;
1554 		goto out;
1555 	}
1556 
1557 	if (i >= BYTE_CORE_SET_HIGH) {
1558 		ret = 0;
1559 		goto out;
1560 	}
1561 
1562 	i = shannon_entropy(ws);
1563 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1564 		ret = 4;
1565 		goto out;
1566 	}
1567 
1568 	/*
1569 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1570 	 * needed to give green light to compression.
1571 	 *
1572 	 * For now just assume that compression at that level is not worth the
1573 	 * resources because:
1574 	 *
1575 	 * 1. it is possible to defrag the data later
1576 	 *
1577 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1578 	 * values, every bucket has counter at level ~54. The heuristic would
1579 	 * be confused. This can happen when data have some internal repeated
1580 	 * patterns like "abbacbbc...". This can be detected by analyzing
1581 	 * pairs of bytes, which is too costly.
1582 	 */
1583 	if (i < ENTROPY_LVL_HIGH) {
1584 		ret = 5;
1585 		goto out;
1586 	} else {
1587 		ret = 0;
1588 		goto out;
1589 	}
1590 
1591 out:
1592 	put_workspace(0, ws_list);
1593 	return ret;
1594 }
1595 
1596 /*
1597  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1598  * level, unrecognized string will set the default level
1599  */
1600 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1601 {
1602 	unsigned int level = 0;
1603 	int ret;
1604 
1605 	if (!type)
1606 		return 0;
1607 
1608 	if (str[0] == ':') {
1609 		ret = kstrtouint(str + 1, 10, &level);
1610 		if (ret)
1611 			level = 0;
1612 	}
1613 
1614 	level = btrfs_compress_op[type]->set_level(level);
1615 
1616 	return level;
1617 }
1618