xref: /openbmc/linux/fs/btrfs/compression.c (revision 9257bd80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 #include "zoned.h"
32 
33 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
34 
35 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
36 {
37 	switch (type) {
38 	case BTRFS_COMPRESS_ZLIB:
39 	case BTRFS_COMPRESS_LZO:
40 	case BTRFS_COMPRESS_ZSTD:
41 	case BTRFS_COMPRESS_NONE:
42 		return btrfs_compress_types[type];
43 	default:
44 		break;
45 	}
46 
47 	return NULL;
48 }
49 
50 bool btrfs_compress_is_valid_type(const char *str, size_t len)
51 {
52 	int i;
53 
54 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
55 		size_t comp_len = strlen(btrfs_compress_types[i]);
56 
57 		if (len < comp_len)
58 			continue;
59 
60 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
61 			return true;
62 	}
63 	return false;
64 }
65 
66 static int compression_compress_pages(int type, struct list_head *ws,
67                struct address_space *mapping, u64 start, struct page **pages,
68                unsigned long *out_pages, unsigned long *total_in,
69                unsigned long *total_out)
70 {
71 	switch (type) {
72 	case BTRFS_COMPRESS_ZLIB:
73 		return zlib_compress_pages(ws, mapping, start, pages,
74 				out_pages, total_in, total_out);
75 	case BTRFS_COMPRESS_LZO:
76 		return lzo_compress_pages(ws, mapping, start, pages,
77 				out_pages, total_in, total_out);
78 	case BTRFS_COMPRESS_ZSTD:
79 		return zstd_compress_pages(ws, mapping, start, pages,
80 				out_pages, total_in, total_out);
81 	case BTRFS_COMPRESS_NONE:
82 	default:
83 		/*
84 		 * This can happen when compression races with remount setting
85 		 * it to 'no compress', while caller doesn't call
86 		 * inode_need_compress() to check if we really need to
87 		 * compress.
88 		 *
89 		 * Not a big deal, just need to inform caller that we
90 		 * haven't allocated any pages yet.
91 		 */
92 		*out_pages = 0;
93 		return -E2BIG;
94 	}
95 }
96 
97 static int compression_decompress_bio(int type, struct list_head *ws,
98 		struct compressed_bio *cb)
99 {
100 	switch (type) {
101 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
102 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
103 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
104 	case BTRFS_COMPRESS_NONE:
105 	default:
106 		/*
107 		 * This can't happen, the type is validated several times
108 		 * before we get here.
109 		 */
110 		BUG();
111 	}
112 }
113 
114 static int compression_decompress(int type, struct list_head *ws,
115                unsigned char *data_in, struct page *dest_page,
116                unsigned long start_byte, size_t srclen, size_t destlen)
117 {
118 	switch (type) {
119 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
120 						start_byte, srclen, destlen);
121 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
122 						start_byte, srclen, destlen);
123 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
124 						start_byte, srclen, destlen);
125 	case BTRFS_COMPRESS_NONE:
126 	default:
127 		/*
128 		 * This can't happen, the type is validated several times
129 		 * before we get here.
130 		 */
131 		BUG();
132 	}
133 }
134 
135 static int btrfs_decompress_bio(struct compressed_bio *cb);
136 
137 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
138 				      unsigned long disk_size)
139 {
140 	return sizeof(struct compressed_bio) +
141 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
142 }
143 
144 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
145 				 u64 disk_start)
146 {
147 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
148 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149 	const u32 csum_size = fs_info->csum_size;
150 	const u32 sectorsize = fs_info->sectorsize;
151 	struct page *page;
152 	unsigned long i;
153 	char *kaddr;
154 	u8 csum[BTRFS_CSUM_SIZE];
155 	struct compressed_bio *cb = bio->bi_private;
156 	u8 *cb_sum = cb->sums;
157 
158 	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
159 		return 0;
160 
161 	shash->tfm = fs_info->csum_shash;
162 
163 	for (i = 0; i < cb->nr_pages; i++) {
164 		u32 pg_offset;
165 		u32 bytes_left = PAGE_SIZE;
166 		page = cb->compressed_pages[i];
167 
168 		/* Determine the remaining bytes inside the page first */
169 		if (i == cb->nr_pages - 1)
170 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
171 
172 		/* Hash through the page sector by sector */
173 		for (pg_offset = 0; pg_offset < bytes_left;
174 		     pg_offset += sectorsize) {
175 			kaddr = kmap_atomic(page);
176 			crypto_shash_digest(shash, kaddr + pg_offset,
177 					    sectorsize, csum);
178 			kunmap_atomic(kaddr);
179 
180 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
181 				btrfs_print_data_csum_error(inode, disk_start,
182 						csum, cb_sum, cb->mirror_num);
183 				if (btrfs_io_bio(bio)->device)
184 					btrfs_dev_stat_inc_and_print(
185 						btrfs_io_bio(bio)->device,
186 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
187 				return -EIO;
188 			}
189 			cb_sum += csum_size;
190 			disk_start += sectorsize;
191 		}
192 	}
193 	return 0;
194 }
195 
196 /* when we finish reading compressed pages from the disk, we
197  * decompress them and then run the bio end_io routines on the
198  * decompressed pages (in the inode address space).
199  *
200  * This allows the checksumming and other IO error handling routines
201  * to work normally
202  *
203  * The compressed pages are freed here, and it must be run
204  * in process context
205  */
206 static void end_compressed_bio_read(struct bio *bio)
207 {
208 	struct compressed_bio *cb = bio->bi_private;
209 	struct inode *inode;
210 	struct page *page;
211 	unsigned long index;
212 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
213 	int ret = 0;
214 
215 	if (bio->bi_status)
216 		cb->errors = 1;
217 
218 	/* if there are more bios still pending for this compressed
219 	 * extent, just exit
220 	 */
221 	if (!refcount_dec_and_test(&cb->pending_bios))
222 		goto out;
223 
224 	/*
225 	 * Record the correct mirror_num in cb->orig_bio so that
226 	 * read-repair can work properly.
227 	 */
228 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
229 	cb->mirror_num = mirror;
230 
231 	/*
232 	 * Some IO in this cb have failed, just skip checksum as there
233 	 * is no way it could be correct.
234 	 */
235 	if (cb->errors == 1)
236 		goto csum_failed;
237 
238 	inode = cb->inode;
239 	ret = check_compressed_csum(BTRFS_I(inode), bio,
240 				    bio->bi_iter.bi_sector << 9);
241 	if (ret)
242 		goto csum_failed;
243 
244 	/* ok, we're the last bio for this extent, lets start
245 	 * the decompression.
246 	 */
247 	ret = btrfs_decompress_bio(cb);
248 
249 csum_failed:
250 	if (ret)
251 		cb->errors = 1;
252 
253 	/* release the compressed pages */
254 	index = 0;
255 	for (index = 0; index < cb->nr_pages; index++) {
256 		page = cb->compressed_pages[index];
257 		page->mapping = NULL;
258 		put_page(page);
259 	}
260 
261 	/* do io completion on the original bio */
262 	if (cb->errors) {
263 		bio_io_error(cb->orig_bio);
264 	} else {
265 		struct bio_vec *bvec;
266 		struct bvec_iter_all iter_all;
267 
268 		/*
269 		 * we have verified the checksum already, set page
270 		 * checked so the end_io handlers know about it
271 		 */
272 		ASSERT(!bio_flagged(bio, BIO_CLONED));
273 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
274 			SetPageChecked(bvec->bv_page);
275 
276 		bio_endio(cb->orig_bio);
277 	}
278 
279 	/* finally free the cb struct */
280 	kfree(cb->compressed_pages);
281 	kfree(cb);
282 out:
283 	bio_put(bio);
284 }
285 
286 /*
287  * Clear the writeback bits on all of the file
288  * pages for a compressed write
289  */
290 static noinline void end_compressed_writeback(struct inode *inode,
291 					      const struct compressed_bio *cb)
292 {
293 	unsigned long index = cb->start >> PAGE_SHIFT;
294 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
295 	struct page *pages[16];
296 	unsigned long nr_pages = end_index - index + 1;
297 	int i;
298 	int ret;
299 
300 	if (cb->errors)
301 		mapping_set_error(inode->i_mapping, -EIO);
302 
303 	while (nr_pages > 0) {
304 		ret = find_get_pages_contig(inode->i_mapping, index,
305 				     min_t(unsigned long,
306 				     nr_pages, ARRAY_SIZE(pages)), pages);
307 		if (ret == 0) {
308 			nr_pages -= 1;
309 			index += 1;
310 			continue;
311 		}
312 		for (i = 0; i < ret; i++) {
313 			if (cb->errors)
314 				SetPageError(pages[i]);
315 			end_page_writeback(pages[i]);
316 			put_page(pages[i]);
317 		}
318 		nr_pages -= ret;
319 		index += ret;
320 	}
321 	/* the inode may be gone now */
322 }
323 
324 /*
325  * do the cleanup once all the compressed pages hit the disk.
326  * This will clear writeback on the file pages and free the compressed
327  * pages.
328  *
329  * This also calls the writeback end hooks for the file pages so that
330  * metadata and checksums can be updated in the file.
331  */
332 static void end_compressed_bio_write(struct bio *bio)
333 {
334 	struct compressed_bio *cb = bio->bi_private;
335 	struct inode *inode;
336 	struct page *page;
337 	unsigned long index;
338 
339 	if (bio->bi_status)
340 		cb->errors = 1;
341 
342 	/* if there are more bios still pending for this compressed
343 	 * extent, just exit
344 	 */
345 	if (!refcount_dec_and_test(&cb->pending_bios))
346 		goto out;
347 
348 	/* ok, we're the last bio for this extent, step one is to
349 	 * call back into the FS and do all the end_io operations
350 	 */
351 	inode = cb->inode;
352 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
353 	btrfs_record_physical_zoned(inode, cb->start, bio);
354 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
355 			cb->start, cb->start + cb->len - 1,
356 			bio->bi_status == BLK_STS_OK);
357 	cb->compressed_pages[0]->mapping = NULL;
358 
359 	end_compressed_writeback(inode, cb);
360 	/* note, our inode could be gone now */
361 
362 	/*
363 	 * release the compressed pages, these came from alloc_page and
364 	 * are not attached to the inode at all
365 	 */
366 	index = 0;
367 	for (index = 0; index < cb->nr_pages; index++) {
368 		page = cb->compressed_pages[index];
369 		page->mapping = NULL;
370 		put_page(page);
371 	}
372 
373 	/* finally free the cb struct */
374 	kfree(cb->compressed_pages);
375 	kfree(cb);
376 out:
377 	bio_put(bio);
378 }
379 
380 /*
381  * worker function to build and submit bios for previously compressed pages.
382  * The corresponding pages in the inode should be marked for writeback
383  * and the compressed pages should have a reference on them for dropping
384  * when the IO is complete.
385  *
386  * This also checksums the file bytes and gets things ready for
387  * the end io hooks.
388  */
389 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
390 				 unsigned long len, u64 disk_start,
391 				 unsigned long compressed_len,
392 				 struct page **compressed_pages,
393 				 unsigned long nr_pages,
394 				 unsigned int write_flags,
395 				 struct cgroup_subsys_state *blkcg_css)
396 {
397 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
398 	struct bio *bio = NULL;
399 	struct compressed_bio *cb;
400 	unsigned long bytes_left;
401 	int pg_index = 0;
402 	struct page *page;
403 	u64 first_byte = disk_start;
404 	blk_status_t ret;
405 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
406 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
407 	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
408 
409 	WARN_ON(!PAGE_ALIGNED(start));
410 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
411 	if (!cb)
412 		return BLK_STS_RESOURCE;
413 	refcount_set(&cb->pending_bios, 0);
414 	cb->errors = 0;
415 	cb->inode = &inode->vfs_inode;
416 	cb->start = start;
417 	cb->len = len;
418 	cb->mirror_num = 0;
419 	cb->compressed_pages = compressed_pages;
420 	cb->compressed_len = compressed_len;
421 	cb->orig_bio = NULL;
422 	cb->nr_pages = nr_pages;
423 
424 	bio = btrfs_bio_alloc(first_byte);
425 	bio->bi_opf = bio_op | write_flags;
426 	bio->bi_private = cb;
427 	bio->bi_end_io = end_compressed_bio_write;
428 
429 	if (use_append) {
430 		struct extent_map *em;
431 		struct map_lookup *map;
432 		struct block_device *bdev;
433 
434 		em = btrfs_get_chunk_map(fs_info, disk_start, PAGE_SIZE);
435 		if (IS_ERR(em)) {
436 			kfree(cb);
437 			bio_put(bio);
438 			return BLK_STS_NOTSUPP;
439 		}
440 
441 		map = em->map_lookup;
442 		/* We only support single profile for now */
443 		ASSERT(map->num_stripes == 1);
444 		bdev = map->stripes[0].dev->bdev;
445 
446 		bio_set_dev(bio, bdev);
447 		free_extent_map(em);
448 	}
449 
450 	if (blkcg_css) {
451 		bio->bi_opf |= REQ_CGROUP_PUNT;
452 		kthread_associate_blkcg(blkcg_css);
453 	}
454 	refcount_set(&cb->pending_bios, 1);
455 
456 	/* create and submit bios for the compressed pages */
457 	bytes_left = compressed_len;
458 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
459 		int submit = 0;
460 		int len;
461 
462 		page = compressed_pages[pg_index];
463 		page->mapping = inode->vfs_inode.i_mapping;
464 		if (bio->bi_iter.bi_size)
465 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
466 							  0);
467 
468 		if (pg_index == 0 && use_append)
469 			len = bio_add_zone_append_page(bio, page, PAGE_SIZE, 0);
470 		else
471 			len = bio_add_page(bio, page, PAGE_SIZE, 0);
472 
473 		page->mapping = NULL;
474 		if (submit || len < PAGE_SIZE) {
475 			/*
476 			 * inc the count before we submit the bio so
477 			 * we know the end IO handler won't happen before
478 			 * we inc the count.  Otherwise, the cb might get
479 			 * freed before we're done setting it up
480 			 */
481 			refcount_inc(&cb->pending_bios);
482 			ret = btrfs_bio_wq_end_io(fs_info, bio,
483 						  BTRFS_WQ_ENDIO_DATA);
484 			BUG_ON(ret); /* -ENOMEM */
485 
486 			if (!skip_sum) {
487 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
488 				BUG_ON(ret); /* -ENOMEM */
489 			}
490 
491 			ret = btrfs_map_bio(fs_info, bio, 0);
492 			if (ret) {
493 				bio->bi_status = ret;
494 				bio_endio(bio);
495 			}
496 
497 			bio = btrfs_bio_alloc(first_byte);
498 			bio->bi_opf = bio_op | write_flags;
499 			bio->bi_private = cb;
500 			bio->bi_end_io = end_compressed_bio_write;
501 			if (blkcg_css)
502 				bio->bi_opf |= REQ_CGROUP_PUNT;
503 			/*
504 			 * Use bio_add_page() to ensure the bio has at least one
505 			 * page.
506 			 */
507 			bio_add_page(bio, page, PAGE_SIZE, 0);
508 		}
509 		if (bytes_left < PAGE_SIZE) {
510 			btrfs_info(fs_info,
511 					"bytes left %lu compress len %lu nr %lu",
512 			       bytes_left, cb->compressed_len, cb->nr_pages);
513 		}
514 		bytes_left -= PAGE_SIZE;
515 		first_byte += PAGE_SIZE;
516 		cond_resched();
517 	}
518 
519 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
520 	BUG_ON(ret); /* -ENOMEM */
521 
522 	if (!skip_sum) {
523 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
524 		BUG_ON(ret); /* -ENOMEM */
525 	}
526 
527 	ret = btrfs_map_bio(fs_info, bio, 0);
528 	if (ret) {
529 		bio->bi_status = ret;
530 		bio_endio(bio);
531 	}
532 
533 	if (blkcg_css)
534 		kthread_associate_blkcg(NULL);
535 
536 	return 0;
537 }
538 
539 static u64 bio_end_offset(struct bio *bio)
540 {
541 	struct bio_vec *last = bio_last_bvec_all(bio);
542 
543 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
544 }
545 
546 static noinline int add_ra_bio_pages(struct inode *inode,
547 				     u64 compressed_end,
548 				     struct compressed_bio *cb)
549 {
550 	unsigned long end_index;
551 	unsigned long pg_index;
552 	u64 last_offset;
553 	u64 isize = i_size_read(inode);
554 	int ret;
555 	struct page *page;
556 	unsigned long nr_pages = 0;
557 	struct extent_map *em;
558 	struct address_space *mapping = inode->i_mapping;
559 	struct extent_map_tree *em_tree;
560 	struct extent_io_tree *tree;
561 	u64 end;
562 	int misses = 0;
563 
564 	last_offset = bio_end_offset(cb->orig_bio);
565 	em_tree = &BTRFS_I(inode)->extent_tree;
566 	tree = &BTRFS_I(inode)->io_tree;
567 
568 	if (isize == 0)
569 		return 0;
570 
571 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
572 
573 	while (last_offset < compressed_end) {
574 		pg_index = last_offset >> PAGE_SHIFT;
575 
576 		if (pg_index > end_index)
577 			break;
578 
579 		page = xa_load(&mapping->i_pages, pg_index);
580 		if (page && !xa_is_value(page)) {
581 			misses++;
582 			if (misses > 4)
583 				break;
584 			goto next;
585 		}
586 
587 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
588 								 ~__GFP_FS));
589 		if (!page)
590 			break;
591 
592 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
593 			put_page(page);
594 			goto next;
595 		}
596 
597 		/*
598 		 * at this point, we have a locked page in the page cache
599 		 * for these bytes in the file.  But, we have to make
600 		 * sure they map to this compressed extent on disk.
601 		 */
602 		ret = set_page_extent_mapped(page);
603 		if (ret < 0) {
604 			unlock_page(page);
605 			put_page(page);
606 			break;
607 		}
608 
609 		end = last_offset + PAGE_SIZE - 1;
610 		lock_extent(tree, last_offset, end);
611 		read_lock(&em_tree->lock);
612 		em = lookup_extent_mapping(em_tree, last_offset,
613 					   PAGE_SIZE);
614 		read_unlock(&em_tree->lock);
615 
616 		if (!em || last_offset < em->start ||
617 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
618 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
619 			free_extent_map(em);
620 			unlock_extent(tree, last_offset, end);
621 			unlock_page(page);
622 			put_page(page);
623 			break;
624 		}
625 		free_extent_map(em);
626 
627 		if (page->index == end_index) {
628 			size_t zero_offset = offset_in_page(isize);
629 
630 			if (zero_offset) {
631 				int zeros;
632 				zeros = PAGE_SIZE - zero_offset;
633 				memzero_page(page, zero_offset, zeros);
634 				flush_dcache_page(page);
635 			}
636 		}
637 
638 		ret = bio_add_page(cb->orig_bio, page,
639 				   PAGE_SIZE, 0);
640 
641 		if (ret == PAGE_SIZE) {
642 			nr_pages++;
643 			put_page(page);
644 		} else {
645 			unlock_extent(tree, last_offset, end);
646 			unlock_page(page);
647 			put_page(page);
648 			break;
649 		}
650 next:
651 		last_offset += PAGE_SIZE;
652 	}
653 	return 0;
654 }
655 
656 /*
657  * for a compressed read, the bio we get passed has all the inode pages
658  * in it.  We don't actually do IO on those pages but allocate new ones
659  * to hold the compressed pages on disk.
660  *
661  * bio->bi_iter.bi_sector points to the compressed extent on disk
662  * bio->bi_io_vec points to all of the inode pages
663  *
664  * After the compressed pages are read, we copy the bytes into the
665  * bio we were passed and then call the bio end_io calls
666  */
667 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
668 				 int mirror_num, unsigned long bio_flags)
669 {
670 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
671 	struct extent_map_tree *em_tree;
672 	struct compressed_bio *cb;
673 	unsigned long compressed_len;
674 	unsigned long nr_pages;
675 	unsigned long pg_index;
676 	struct page *page;
677 	struct bio *comp_bio;
678 	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
679 	u64 em_len;
680 	u64 em_start;
681 	struct extent_map *em;
682 	blk_status_t ret = BLK_STS_RESOURCE;
683 	int faili = 0;
684 	u8 *sums;
685 
686 	em_tree = &BTRFS_I(inode)->extent_tree;
687 
688 	/* we need the actual starting offset of this extent in the file */
689 	read_lock(&em_tree->lock);
690 	em = lookup_extent_mapping(em_tree,
691 				   page_offset(bio_first_page_all(bio)),
692 				   fs_info->sectorsize);
693 	read_unlock(&em_tree->lock);
694 	if (!em)
695 		return BLK_STS_IOERR;
696 
697 	compressed_len = em->block_len;
698 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
699 	if (!cb)
700 		goto out;
701 
702 	refcount_set(&cb->pending_bios, 0);
703 	cb->errors = 0;
704 	cb->inode = inode;
705 	cb->mirror_num = mirror_num;
706 	sums = cb->sums;
707 
708 	cb->start = em->orig_start;
709 	em_len = em->len;
710 	em_start = em->start;
711 
712 	free_extent_map(em);
713 	em = NULL;
714 
715 	cb->len = bio->bi_iter.bi_size;
716 	cb->compressed_len = compressed_len;
717 	cb->compress_type = extent_compress_type(bio_flags);
718 	cb->orig_bio = bio;
719 
720 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
721 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
722 				       GFP_NOFS);
723 	if (!cb->compressed_pages)
724 		goto fail1;
725 
726 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
727 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
728 							      __GFP_HIGHMEM);
729 		if (!cb->compressed_pages[pg_index]) {
730 			faili = pg_index - 1;
731 			ret = BLK_STS_RESOURCE;
732 			goto fail2;
733 		}
734 	}
735 	faili = nr_pages - 1;
736 	cb->nr_pages = nr_pages;
737 
738 	add_ra_bio_pages(inode, em_start + em_len, cb);
739 
740 	/* include any pages we added in add_ra-bio_pages */
741 	cb->len = bio->bi_iter.bi_size;
742 
743 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
744 	comp_bio->bi_opf = REQ_OP_READ;
745 	comp_bio->bi_private = cb;
746 	comp_bio->bi_end_io = end_compressed_bio_read;
747 	refcount_set(&cb->pending_bios, 1);
748 
749 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
750 		u32 pg_len = PAGE_SIZE;
751 		int submit = 0;
752 
753 		/*
754 		 * To handle subpage case, we need to make sure the bio only
755 		 * covers the range we need.
756 		 *
757 		 * If we're at the last page, truncate the length to only cover
758 		 * the remaining part.
759 		 */
760 		if (pg_index == nr_pages - 1)
761 			pg_len = min_t(u32, PAGE_SIZE,
762 					compressed_len - pg_index * PAGE_SIZE);
763 
764 		page = cb->compressed_pages[pg_index];
765 		page->mapping = inode->i_mapping;
766 		page->index = em_start >> PAGE_SHIFT;
767 
768 		if (comp_bio->bi_iter.bi_size)
769 			submit = btrfs_bio_fits_in_stripe(page, pg_len,
770 							  comp_bio, 0);
771 
772 		page->mapping = NULL;
773 		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
774 			unsigned int nr_sectors;
775 
776 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
777 						  BTRFS_WQ_ENDIO_DATA);
778 			BUG_ON(ret); /* -ENOMEM */
779 
780 			/*
781 			 * inc the count before we submit the bio so
782 			 * we know the end IO handler won't happen before
783 			 * we inc the count.  Otherwise, the cb might get
784 			 * freed before we're done setting it up
785 			 */
786 			refcount_inc(&cb->pending_bios);
787 
788 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
789 			BUG_ON(ret); /* -ENOMEM */
790 
791 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
792 						  fs_info->sectorsize);
793 			sums += fs_info->csum_size * nr_sectors;
794 
795 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
796 			if (ret) {
797 				comp_bio->bi_status = ret;
798 				bio_endio(comp_bio);
799 			}
800 
801 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
802 			comp_bio->bi_opf = REQ_OP_READ;
803 			comp_bio->bi_private = cb;
804 			comp_bio->bi_end_io = end_compressed_bio_read;
805 
806 			bio_add_page(comp_bio, page, pg_len, 0);
807 		}
808 		cur_disk_byte += pg_len;
809 	}
810 
811 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
812 	BUG_ON(ret); /* -ENOMEM */
813 
814 	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
815 	BUG_ON(ret); /* -ENOMEM */
816 
817 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
818 	if (ret) {
819 		comp_bio->bi_status = ret;
820 		bio_endio(comp_bio);
821 	}
822 
823 	return 0;
824 
825 fail2:
826 	while (faili >= 0) {
827 		__free_page(cb->compressed_pages[faili]);
828 		faili--;
829 	}
830 
831 	kfree(cb->compressed_pages);
832 fail1:
833 	kfree(cb);
834 out:
835 	free_extent_map(em);
836 	return ret;
837 }
838 
839 /*
840  * Heuristic uses systematic sampling to collect data from the input data
841  * range, the logic can be tuned by the following constants:
842  *
843  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
844  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
845  */
846 #define SAMPLING_READ_SIZE	(16)
847 #define SAMPLING_INTERVAL	(256)
848 
849 /*
850  * For statistical analysis of the input data we consider bytes that form a
851  * Galois Field of 256 objects. Each object has an attribute count, ie. how
852  * many times the object appeared in the sample.
853  */
854 #define BUCKET_SIZE		(256)
855 
856 /*
857  * The size of the sample is based on a statistical sampling rule of thumb.
858  * The common way is to perform sampling tests as long as the number of
859  * elements in each cell is at least 5.
860  *
861  * Instead of 5, we choose 32 to obtain more accurate results.
862  * If the data contain the maximum number of symbols, which is 256, we obtain a
863  * sample size bound by 8192.
864  *
865  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
866  * from up to 512 locations.
867  */
868 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
869 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
870 
871 struct bucket_item {
872 	u32 count;
873 };
874 
875 struct heuristic_ws {
876 	/* Partial copy of input data */
877 	u8 *sample;
878 	u32 sample_size;
879 	/* Buckets store counters for each byte value */
880 	struct bucket_item *bucket;
881 	/* Sorting buffer */
882 	struct bucket_item *bucket_b;
883 	struct list_head list;
884 };
885 
886 static struct workspace_manager heuristic_wsm;
887 
888 static void free_heuristic_ws(struct list_head *ws)
889 {
890 	struct heuristic_ws *workspace;
891 
892 	workspace = list_entry(ws, struct heuristic_ws, list);
893 
894 	kvfree(workspace->sample);
895 	kfree(workspace->bucket);
896 	kfree(workspace->bucket_b);
897 	kfree(workspace);
898 }
899 
900 static struct list_head *alloc_heuristic_ws(unsigned int level)
901 {
902 	struct heuristic_ws *ws;
903 
904 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
905 	if (!ws)
906 		return ERR_PTR(-ENOMEM);
907 
908 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
909 	if (!ws->sample)
910 		goto fail;
911 
912 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
913 	if (!ws->bucket)
914 		goto fail;
915 
916 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
917 	if (!ws->bucket_b)
918 		goto fail;
919 
920 	INIT_LIST_HEAD(&ws->list);
921 	return &ws->list;
922 fail:
923 	free_heuristic_ws(&ws->list);
924 	return ERR_PTR(-ENOMEM);
925 }
926 
927 const struct btrfs_compress_op btrfs_heuristic_compress = {
928 	.workspace_manager = &heuristic_wsm,
929 };
930 
931 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
932 	/* The heuristic is represented as compression type 0 */
933 	&btrfs_heuristic_compress,
934 	&btrfs_zlib_compress,
935 	&btrfs_lzo_compress,
936 	&btrfs_zstd_compress,
937 };
938 
939 static struct list_head *alloc_workspace(int type, unsigned int level)
940 {
941 	switch (type) {
942 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
943 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
944 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
945 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
946 	default:
947 		/*
948 		 * This can't happen, the type is validated several times
949 		 * before we get here.
950 		 */
951 		BUG();
952 	}
953 }
954 
955 static void free_workspace(int type, struct list_head *ws)
956 {
957 	switch (type) {
958 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
959 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
960 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
961 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
962 	default:
963 		/*
964 		 * This can't happen, the type is validated several times
965 		 * before we get here.
966 		 */
967 		BUG();
968 	}
969 }
970 
971 static void btrfs_init_workspace_manager(int type)
972 {
973 	struct workspace_manager *wsm;
974 	struct list_head *workspace;
975 
976 	wsm = btrfs_compress_op[type]->workspace_manager;
977 	INIT_LIST_HEAD(&wsm->idle_ws);
978 	spin_lock_init(&wsm->ws_lock);
979 	atomic_set(&wsm->total_ws, 0);
980 	init_waitqueue_head(&wsm->ws_wait);
981 
982 	/*
983 	 * Preallocate one workspace for each compression type so we can
984 	 * guarantee forward progress in the worst case
985 	 */
986 	workspace = alloc_workspace(type, 0);
987 	if (IS_ERR(workspace)) {
988 		pr_warn(
989 	"BTRFS: cannot preallocate compression workspace, will try later\n");
990 	} else {
991 		atomic_set(&wsm->total_ws, 1);
992 		wsm->free_ws = 1;
993 		list_add(workspace, &wsm->idle_ws);
994 	}
995 }
996 
997 static void btrfs_cleanup_workspace_manager(int type)
998 {
999 	struct workspace_manager *wsman;
1000 	struct list_head *ws;
1001 
1002 	wsman = btrfs_compress_op[type]->workspace_manager;
1003 	while (!list_empty(&wsman->idle_ws)) {
1004 		ws = wsman->idle_ws.next;
1005 		list_del(ws);
1006 		free_workspace(type, ws);
1007 		atomic_dec(&wsman->total_ws);
1008 	}
1009 }
1010 
1011 /*
1012  * This finds an available workspace or allocates a new one.
1013  * If it's not possible to allocate a new one, waits until there's one.
1014  * Preallocation makes a forward progress guarantees and we do not return
1015  * errors.
1016  */
1017 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1018 {
1019 	struct workspace_manager *wsm;
1020 	struct list_head *workspace;
1021 	int cpus = num_online_cpus();
1022 	unsigned nofs_flag;
1023 	struct list_head *idle_ws;
1024 	spinlock_t *ws_lock;
1025 	atomic_t *total_ws;
1026 	wait_queue_head_t *ws_wait;
1027 	int *free_ws;
1028 
1029 	wsm = btrfs_compress_op[type]->workspace_manager;
1030 	idle_ws	 = &wsm->idle_ws;
1031 	ws_lock	 = &wsm->ws_lock;
1032 	total_ws = &wsm->total_ws;
1033 	ws_wait	 = &wsm->ws_wait;
1034 	free_ws	 = &wsm->free_ws;
1035 
1036 again:
1037 	spin_lock(ws_lock);
1038 	if (!list_empty(idle_ws)) {
1039 		workspace = idle_ws->next;
1040 		list_del(workspace);
1041 		(*free_ws)--;
1042 		spin_unlock(ws_lock);
1043 		return workspace;
1044 
1045 	}
1046 	if (atomic_read(total_ws) > cpus) {
1047 		DEFINE_WAIT(wait);
1048 
1049 		spin_unlock(ws_lock);
1050 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1051 		if (atomic_read(total_ws) > cpus && !*free_ws)
1052 			schedule();
1053 		finish_wait(ws_wait, &wait);
1054 		goto again;
1055 	}
1056 	atomic_inc(total_ws);
1057 	spin_unlock(ws_lock);
1058 
1059 	/*
1060 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1061 	 * to turn it off here because we might get called from the restricted
1062 	 * context of btrfs_compress_bio/btrfs_compress_pages
1063 	 */
1064 	nofs_flag = memalloc_nofs_save();
1065 	workspace = alloc_workspace(type, level);
1066 	memalloc_nofs_restore(nofs_flag);
1067 
1068 	if (IS_ERR(workspace)) {
1069 		atomic_dec(total_ws);
1070 		wake_up(ws_wait);
1071 
1072 		/*
1073 		 * Do not return the error but go back to waiting. There's a
1074 		 * workspace preallocated for each type and the compression
1075 		 * time is bounded so we get to a workspace eventually. This
1076 		 * makes our caller's life easier.
1077 		 *
1078 		 * To prevent silent and low-probability deadlocks (when the
1079 		 * initial preallocation fails), check if there are any
1080 		 * workspaces at all.
1081 		 */
1082 		if (atomic_read(total_ws) == 0) {
1083 			static DEFINE_RATELIMIT_STATE(_rs,
1084 					/* once per minute */ 60 * HZ,
1085 					/* no burst */ 1);
1086 
1087 			if (__ratelimit(&_rs)) {
1088 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1089 			}
1090 		}
1091 		goto again;
1092 	}
1093 	return workspace;
1094 }
1095 
1096 static struct list_head *get_workspace(int type, int level)
1097 {
1098 	switch (type) {
1099 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1100 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1101 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1102 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1103 	default:
1104 		/*
1105 		 * This can't happen, the type is validated several times
1106 		 * before we get here.
1107 		 */
1108 		BUG();
1109 	}
1110 }
1111 
1112 /*
1113  * put a workspace struct back on the list or free it if we have enough
1114  * idle ones sitting around
1115  */
1116 void btrfs_put_workspace(int type, struct list_head *ws)
1117 {
1118 	struct workspace_manager *wsm;
1119 	struct list_head *idle_ws;
1120 	spinlock_t *ws_lock;
1121 	atomic_t *total_ws;
1122 	wait_queue_head_t *ws_wait;
1123 	int *free_ws;
1124 
1125 	wsm = btrfs_compress_op[type]->workspace_manager;
1126 	idle_ws	 = &wsm->idle_ws;
1127 	ws_lock	 = &wsm->ws_lock;
1128 	total_ws = &wsm->total_ws;
1129 	ws_wait	 = &wsm->ws_wait;
1130 	free_ws	 = &wsm->free_ws;
1131 
1132 	spin_lock(ws_lock);
1133 	if (*free_ws <= num_online_cpus()) {
1134 		list_add(ws, idle_ws);
1135 		(*free_ws)++;
1136 		spin_unlock(ws_lock);
1137 		goto wake;
1138 	}
1139 	spin_unlock(ws_lock);
1140 
1141 	free_workspace(type, ws);
1142 	atomic_dec(total_ws);
1143 wake:
1144 	cond_wake_up(ws_wait);
1145 }
1146 
1147 static void put_workspace(int type, struct list_head *ws)
1148 {
1149 	switch (type) {
1150 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1151 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1152 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1153 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1154 	default:
1155 		/*
1156 		 * This can't happen, the type is validated several times
1157 		 * before we get here.
1158 		 */
1159 		BUG();
1160 	}
1161 }
1162 
1163 /*
1164  * Adjust @level according to the limits of the compression algorithm or
1165  * fallback to default
1166  */
1167 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1168 {
1169 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1170 
1171 	if (level == 0)
1172 		level = ops->default_level;
1173 	else
1174 		level = min(level, ops->max_level);
1175 
1176 	return level;
1177 }
1178 
1179 /*
1180  * Given an address space and start and length, compress the bytes into @pages
1181  * that are allocated on demand.
1182  *
1183  * @type_level is encoded algorithm and level, where level 0 means whatever
1184  * default the algorithm chooses and is opaque here;
1185  * - compression algo are 0-3
1186  * - the level are bits 4-7
1187  *
1188  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1189  * and returns number of actually allocated pages
1190  *
1191  * @total_in is used to return the number of bytes actually read.  It
1192  * may be smaller than the input length if we had to exit early because we
1193  * ran out of room in the pages array or because we cross the
1194  * max_out threshold.
1195  *
1196  * @total_out is an in/out parameter, must be set to the input length and will
1197  * be also used to return the total number of compressed bytes
1198  *
1199  * @max_out tells us the max number of bytes that we're allowed to
1200  * stuff into pages
1201  */
1202 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1203 			 u64 start, struct page **pages,
1204 			 unsigned long *out_pages,
1205 			 unsigned long *total_in,
1206 			 unsigned long *total_out)
1207 {
1208 	int type = btrfs_compress_type(type_level);
1209 	int level = btrfs_compress_level(type_level);
1210 	struct list_head *workspace;
1211 	int ret;
1212 
1213 	level = btrfs_compress_set_level(type, level);
1214 	workspace = get_workspace(type, level);
1215 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1216 					 out_pages, total_in, total_out);
1217 	put_workspace(type, workspace);
1218 	return ret;
1219 }
1220 
1221 /*
1222  * pages_in is an array of pages with compressed data.
1223  *
1224  * disk_start is the starting logical offset of this array in the file
1225  *
1226  * orig_bio contains the pages from the file that we want to decompress into
1227  *
1228  * srclen is the number of bytes in pages_in
1229  *
1230  * The basic idea is that we have a bio that was created by readpages.
1231  * The pages in the bio are for the uncompressed data, and they may not
1232  * be contiguous.  They all correspond to the range of bytes covered by
1233  * the compressed extent.
1234  */
1235 static int btrfs_decompress_bio(struct compressed_bio *cb)
1236 {
1237 	struct list_head *workspace;
1238 	int ret;
1239 	int type = cb->compress_type;
1240 
1241 	workspace = get_workspace(type, 0);
1242 	ret = compression_decompress_bio(type, workspace, cb);
1243 	put_workspace(type, workspace);
1244 
1245 	return ret;
1246 }
1247 
1248 /*
1249  * a less complex decompression routine.  Our compressed data fits in a
1250  * single page, and we want to read a single page out of it.
1251  * start_byte tells us the offset into the compressed data we're interested in
1252  */
1253 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1254 		     unsigned long start_byte, size_t srclen, size_t destlen)
1255 {
1256 	struct list_head *workspace;
1257 	int ret;
1258 
1259 	workspace = get_workspace(type, 0);
1260 	ret = compression_decompress(type, workspace, data_in, dest_page,
1261 				     start_byte, srclen, destlen);
1262 	put_workspace(type, workspace);
1263 
1264 	return ret;
1265 }
1266 
1267 void __init btrfs_init_compress(void)
1268 {
1269 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1270 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1271 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1272 	zstd_init_workspace_manager();
1273 }
1274 
1275 void __cold btrfs_exit_compress(void)
1276 {
1277 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1278 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1279 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1280 	zstd_cleanup_workspace_manager();
1281 }
1282 
1283 /*
1284  * Copy uncompressed data from working buffer to pages.
1285  *
1286  * buf_start is the byte offset we're of the start of our workspace buffer.
1287  *
1288  * total_out is the last byte of the buffer
1289  */
1290 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1291 			      unsigned long total_out, u64 disk_start,
1292 			      struct bio *bio)
1293 {
1294 	unsigned long buf_offset;
1295 	unsigned long current_buf_start;
1296 	unsigned long start_byte;
1297 	unsigned long prev_start_byte;
1298 	unsigned long working_bytes = total_out - buf_start;
1299 	unsigned long bytes;
1300 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1301 
1302 	/*
1303 	 * start byte is the first byte of the page we're currently
1304 	 * copying into relative to the start of the compressed data.
1305 	 */
1306 	start_byte = page_offset(bvec.bv_page) - disk_start;
1307 
1308 	/* we haven't yet hit data corresponding to this page */
1309 	if (total_out <= start_byte)
1310 		return 1;
1311 
1312 	/*
1313 	 * the start of the data we care about is offset into
1314 	 * the middle of our working buffer
1315 	 */
1316 	if (total_out > start_byte && buf_start < start_byte) {
1317 		buf_offset = start_byte - buf_start;
1318 		working_bytes -= buf_offset;
1319 	} else {
1320 		buf_offset = 0;
1321 	}
1322 	current_buf_start = buf_start;
1323 
1324 	/* copy bytes from the working buffer into the pages */
1325 	while (working_bytes > 0) {
1326 		bytes = min_t(unsigned long, bvec.bv_len,
1327 				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1328 		bytes = min(bytes, working_bytes);
1329 
1330 		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
1331 			       bytes);
1332 		flush_dcache_page(bvec.bv_page);
1333 
1334 		buf_offset += bytes;
1335 		working_bytes -= bytes;
1336 		current_buf_start += bytes;
1337 
1338 		/* check if we need to pick another page */
1339 		bio_advance(bio, bytes);
1340 		if (!bio->bi_iter.bi_size)
1341 			return 0;
1342 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1343 		prev_start_byte = start_byte;
1344 		start_byte = page_offset(bvec.bv_page) - disk_start;
1345 
1346 		/*
1347 		 * We need to make sure we're only adjusting
1348 		 * our offset into compression working buffer when
1349 		 * we're switching pages.  Otherwise we can incorrectly
1350 		 * keep copying when we were actually done.
1351 		 */
1352 		if (start_byte != prev_start_byte) {
1353 			/*
1354 			 * make sure our new page is covered by this
1355 			 * working buffer
1356 			 */
1357 			if (total_out <= start_byte)
1358 				return 1;
1359 
1360 			/*
1361 			 * the next page in the biovec might not be adjacent
1362 			 * to the last page, but it might still be found
1363 			 * inside this working buffer. bump our offset pointer
1364 			 */
1365 			if (total_out > start_byte &&
1366 			    current_buf_start < start_byte) {
1367 				buf_offset = start_byte - buf_start;
1368 				working_bytes = total_out - start_byte;
1369 				current_buf_start = buf_start + buf_offset;
1370 			}
1371 		}
1372 	}
1373 
1374 	return 1;
1375 }
1376 
1377 /*
1378  * Shannon Entropy calculation
1379  *
1380  * Pure byte distribution analysis fails to determine compressibility of data.
1381  * Try calculating entropy to estimate the average minimum number of bits
1382  * needed to encode the sampled data.
1383  *
1384  * For convenience, return the percentage of needed bits, instead of amount of
1385  * bits directly.
1386  *
1387  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1388  *			    and can be compressible with high probability
1389  *
1390  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1391  *
1392  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1393  */
1394 #define ENTROPY_LVL_ACEPTABLE		(65)
1395 #define ENTROPY_LVL_HIGH		(80)
1396 
1397 /*
1398  * For increasead precision in shannon_entropy calculation,
1399  * let's do pow(n, M) to save more digits after comma:
1400  *
1401  * - maximum int bit length is 64
1402  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1403  * - 13 * 4 = 52 < 64		-> M = 4
1404  *
1405  * So use pow(n, 4).
1406  */
1407 static inline u32 ilog2_w(u64 n)
1408 {
1409 	return ilog2(n * n * n * n);
1410 }
1411 
1412 static u32 shannon_entropy(struct heuristic_ws *ws)
1413 {
1414 	const u32 entropy_max = 8 * ilog2_w(2);
1415 	u32 entropy_sum = 0;
1416 	u32 p, p_base, sz_base;
1417 	u32 i;
1418 
1419 	sz_base = ilog2_w(ws->sample_size);
1420 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1421 		p = ws->bucket[i].count;
1422 		p_base = ilog2_w(p);
1423 		entropy_sum += p * (sz_base - p_base);
1424 	}
1425 
1426 	entropy_sum /= ws->sample_size;
1427 	return entropy_sum * 100 / entropy_max;
1428 }
1429 
1430 #define RADIX_BASE		4U
1431 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1432 
1433 static u8 get4bits(u64 num, int shift) {
1434 	u8 low4bits;
1435 
1436 	num >>= shift;
1437 	/* Reverse order */
1438 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1439 	return low4bits;
1440 }
1441 
1442 /*
1443  * Use 4 bits as radix base
1444  * Use 16 u32 counters for calculating new position in buf array
1445  *
1446  * @array     - array that will be sorted
1447  * @array_buf - buffer array to store sorting results
1448  *              must be equal in size to @array
1449  * @num       - array size
1450  */
1451 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1452 		       int num)
1453 {
1454 	u64 max_num;
1455 	u64 buf_num;
1456 	u32 counters[COUNTERS_SIZE];
1457 	u32 new_addr;
1458 	u32 addr;
1459 	int bitlen;
1460 	int shift;
1461 	int i;
1462 
1463 	/*
1464 	 * Try avoid useless loop iterations for small numbers stored in big
1465 	 * counters.  Example: 48 33 4 ... in 64bit array
1466 	 */
1467 	max_num = array[0].count;
1468 	for (i = 1; i < num; i++) {
1469 		buf_num = array[i].count;
1470 		if (buf_num > max_num)
1471 			max_num = buf_num;
1472 	}
1473 
1474 	buf_num = ilog2(max_num);
1475 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1476 
1477 	shift = 0;
1478 	while (shift < bitlen) {
1479 		memset(counters, 0, sizeof(counters));
1480 
1481 		for (i = 0; i < num; i++) {
1482 			buf_num = array[i].count;
1483 			addr = get4bits(buf_num, shift);
1484 			counters[addr]++;
1485 		}
1486 
1487 		for (i = 1; i < COUNTERS_SIZE; i++)
1488 			counters[i] += counters[i - 1];
1489 
1490 		for (i = num - 1; i >= 0; i--) {
1491 			buf_num = array[i].count;
1492 			addr = get4bits(buf_num, shift);
1493 			counters[addr]--;
1494 			new_addr = counters[addr];
1495 			array_buf[new_addr] = array[i];
1496 		}
1497 
1498 		shift += RADIX_BASE;
1499 
1500 		/*
1501 		 * Normal radix expects to move data from a temporary array, to
1502 		 * the main one.  But that requires some CPU time. Avoid that
1503 		 * by doing another sort iteration to original array instead of
1504 		 * memcpy()
1505 		 */
1506 		memset(counters, 0, sizeof(counters));
1507 
1508 		for (i = 0; i < num; i ++) {
1509 			buf_num = array_buf[i].count;
1510 			addr = get4bits(buf_num, shift);
1511 			counters[addr]++;
1512 		}
1513 
1514 		for (i = 1; i < COUNTERS_SIZE; i++)
1515 			counters[i] += counters[i - 1];
1516 
1517 		for (i = num - 1; i >= 0; i--) {
1518 			buf_num = array_buf[i].count;
1519 			addr = get4bits(buf_num, shift);
1520 			counters[addr]--;
1521 			new_addr = counters[addr];
1522 			array[new_addr] = array_buf[i];
1523 		}
1524 
1525 		shift += RADIX_BASE;
1526 	}
1527 }
1528 
1529 /*
1530  * Size of the core byte set - how many bytes cover 90% of the sample
1531  *
1532  * There are several types of structured binary data that use nearly all byte
1533  * values. The distribution can be uniform and counts in all buckets will be
1534  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1535  *
1536  * Other possibility is normal (Gaussian) distribution, where the data could
1537  * be potentially compressible, but we have to take a few more steps to decide
1538  * how much.
1539  *
1540  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1541  *                       compression algo can easy fix that
1542  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1543  *                       probability is not compressible
1544  */
1545 #define BYTE_CORE_SET_LOW		(64)
1546 #define BYTE_CORE_SET_HIGH		(200)
1547 
1548 static int byte_core_set_size(struct heuristic_ws *ws)
1549 {
1550 	u32 i;
1551 	u32 coreset_sum = 0;
1552 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1553 	struct bucket_item *bucket = ws->bucket;
1554 
1555 	/* Sort in reverse order */
1556 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1557 
1558 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1559 		coreset_sum += bucket[i].count;
1560 
1561 	if (coreset_sum > core_set_threshold)
1562 		return i;
1563 
1564 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1565 		coreset_sum += bucket[i].count;
1566 		if (coreset_sum > core_set_threshold)
1567 			break;
1568 	}
1569 
1570 	return i;
1571 }
1572 
1573 /*
1574  * Count byte values in buckets.
1575  * This heuristic can detect textual data (configs, xml, json, html, etc).
1576  * Because in most text-like data byte set is restricted to limited number of
1577  * possible characters, and that restriction in most cases makes data easy to
1578  * compress.
1579  *
1580  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1581  *	less - compressible
1582  *	more - need additional analysis
1583  */
1584 #define BYTE_SET_THRESHOLD		(64)
1585 
1586 static u32 byte_set_size(const struct heuristic_ws *ws)
1587 {
1588 	u32 i;
1589 	u32 byte_set_size = 0;
1590 
1591 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1592 		if (ws->bucket[i].count > 0)
1593 			byte_set_size++;
1594 	}
1595 
1596 	/*
1597 	 * Continue collecting count of byte values in buckets.  If the byte
1598 	 * set size is bigger then the threshold, it's pointless to continue,
1599 	 * the detection technique would fail for this type of data.
1600 	 */
1601 	for (; i < BUCKET_SIZE; i++) {
1602 		if (ws->bucket[i].count > 0) {
1603 			byte_set_size++;
1604 			if (byte_set_size > BYTE_SET_THRESHOLD)
1605 				return byte_set_size;
1606 		}
1607 	}
1608 
1609 	return byte_set_size;
1610 }
1611 
1612 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1613 {
1614 	const u32 half_of_sample = ws->sample_size / 2;
1615 	const u8 *data = ws->sample;
1616 
1617 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1618 }
1619 
1620 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1621 				     struct heuristic_ws *ws)
1622 {
1623 	struct page *page;
1624 	u64 index, index_end;
1625 	u32 i, curr_sample_pos;
1626 	u8 *in_data;
1627 
1628 	/*
1629 	 * Compression handles the input data by chunks of 128KiB
1630 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1631 	 *
1632 	 * We do the same for the heuristic and loop over the whole range.
1633 	 *
1634 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1635 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1636 	 */
1637 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1638 		end = start + BTRFS_MAX_UNCOMPRESSED;
1639 
1640 	index = start >> PAGE_SHIFT;
1641 	index_end = end >> PAGE_SHIFT;
1642 
1643 	/* Don't miss unaligned end */
1644 	if (!IS_ALIGNED(end, PAGE_SIZE))
1645 		index_end++;
1646 
1647 	curr_sample_pos = 0;
1648 	while (index < index_end) {
1649 		page = find_get_page(inode->i_mapping, index);
1650 		in_data = kmap_local_page(page);
1651 		/* Handle case where the start is not aligned to PAGE_SIZE */
1652 		i = start % PAGE_SIZE;
1653 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1654 			/* Don't sample any garbage from the last page */
1655 			if (start > end - SAMPLING_READ_SIZE)
1656 				break;
1657 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1658 					SAMPLING_READ_SIZE);
1659 			i += SAMPLING_INTERVAL;
1660 			start += SAMPLING_INTERVAL;
1661 			curr_sample_pos += SAMPLING_READ_SIZE;
1662 		}
1663 		kunmap_local(in_data);
1664 		put_page(page);
1665 
1666 		index++;
1667 	}
1668 
1669 	ws->sample_size = curr_sample_pos;
1670 }
1671 
1672 /*
1673  * Compression heuristic.
1674  *
1675  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1676  * quickly (compared to direct compression) detect data characteristics
1677  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1678  * data.
1679  *
1680  * The following types of analysis can be performed:
1681  * - detect mostly zero data
1682  * - detect data with low "byte set" size (text, etc)
1683  * - detect data with low/high "core byte" set
1684  *
1685  * Return non-zero if the compression should be done, 0 otherwise.
1686  */
1687 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1688 {
1689 	struct list_head *ws_list = get_workspace(0, 0);
1690 	struct heuristic_ws *ws;
1691 	u32 i;
1692 	u8 byte;
1693 	int ret = 0;
1694 
1695 	ws = list_entry(ws_list, struct heuristic_ws, list);
1696 
1697 	heuristic_collect_sample(inode, start, end, ws);
1698 
1699 	if (sample_repeated_patterns(ws)) {
1700 		ret = 1;
1701 		goto out;
1702 	}
1703 
1704 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1705 
1706 	for (i = 0; i < ws->sample_size; i++) {
1707 		byte = ws->sample[i];
1708 		ws->bucket[byte].count++;
1709 	}
1710 
1711 	i = byte_set_size(ws);
1712 	if (i < BYTE_SET_THRESHOLD) {
1713 		ret = 2;
1714 		goto out;
1715 	}
1716 
1717 	i = byte_core_set_size(ws);
1718 	if (i <= BYTE_CORE_SET_LOW) {
1719 		ret = 3;
1720 		goto out;
1721 	}
1722 
1723 	if (i >= BYTE_CORE_SET_HIGH) {
1724 		ret = 0;
1725 		goto out;
1726 	}
1727 
1728 	i = shannon_entropy(ws);
1729 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1730 		ret = 4;
1731 		goto out;
1732 	}
1733 
1734 	/*
1735 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1736 	 * needed to give green light to compression.
1737 	 *
1738 	 * For now just assume that compression at that level is not worth the
1739 	 * resources because:
1740 	 *
1741 	 * 1. it is possible to defrag the data later
1742 	 *
1743 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1744 	 * values, every bucket has counter at level ~54. The heuristic would
1745 	 * be confused. This can happen when data have some internal repeated
1746 	 * patterns like "abbacbbc...". This can be detected by analyzing
1747 	 * pairs of bytes, which is too costly.
1748 	 */
1749 	if (i < ENTROPY_LVL_HIGH) {
1750 		ret = 5;
1751 		goto out;
1752 	} else {
1753 		ret = 0;
1754 		goto out;
1755 	}
1756 
1757 out:
1758 	put_workspace(0, ws_list);
1759 	return ret;
1760 }
1761 
1762 /*
1763  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1764  * level, unrecognized string will set the default level
1765  */
1766 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1767 {
1768 	unsigned int level = 0;
1769 	int ret;
1770 
1771 	if (!type)
1772 		return 0;
1773 
1774 	if (str[0] == ':') {
1775 		ret = kstrtouint(str + 1, 10, &level);
1776 		if (ret)
1777 			level = 0;
1778 	}
1779 
1780 	level = btrfs_compress_set_level(type, level);
1781 
1782 	return level;
1783 }
1784