1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 33 34 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 35 { 36 switch (type) { 37 case BTRFS_COMPRESS_ZLIB: 38 case BTRFS_COMPRESS_LZO: 39 case BTRFS_COMPRESS_ZSTD: 40 case BTRFS_COMPRESS_NONE: 41 return btrfs_compress_types[type]; 42 default: 43 break; 44 } 45 46 return NULL; 47 } 48 49 bool btrfs_compress_is_valid_type(const char *str, size_t len) 50 { 51 int i; 52 53 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 54 size_t comp_len = strlen(btrfs_compress_types[i]); 55 56 if (len < comp_len) 57 continue; 58 59 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 60 return true; 61 } 62 return false; 63 } 64 65 static int compression_compress_pages(int type, struct list_head *ws, 66 struct address_space *mapping, u64 start, struct page **pages, 67 unsigned long *out_pages, unsigned long *total_in, 68 unsigned long *total_out) 69 { 70 switch (type) { 71 case BTRFS_COMPRESS_ZLIB: 72 return zlib_compress_pages(ws, mapping, start, pages, 73 out_pages, total_in, total_out); 74 case BTRFS_COMPRESS_LZO: 75 return lzo_compress_pages(ws, mapping, start, pages, 76 out_pages, total_in, total_out); 77 case BTRFS_COMPRESS_ZSTD: 78 return zstd_compress_pages(ws, mapping, start, pages, 79 out_pages, total_in, total_out); 80 case BTRFS_COMPRESS_NONE: 81 default: 82 /* 83 * This can't happen, the type is validated several times 84 * before we get here. As a sane fallback, return what the 85 * callers will understand as 'no compression happened'. 86 */ 87 return -E2BIG; 88 } 89 } 90 91 static int compression_decompress_bio(int type, struct list_head *ws, 92 struct compressed_bio *cb) 93 { 94 switch (type) { 95 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 96 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 97 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 98 case BTRFS_COMPRESS_NONE: 99 default: 100 /* 101 * This can't happen, the type is validated several times 102 * before we get here. 103 */ 104 BUG(); 105 } 106 } 107 108 static int compression_decompress(int type, struct list_head *ws, 109 unsigned char *data_in, struct page *dest_page, 110 unsigned long start_byte, size_t srclen, size_t destlen) 111 { 112 switch (type) { 113 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 114 start_byte, srclen, destlen); 115 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 116 start_byte, srclen, destlen); 117 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 118 start_byte, srclen, destlen); 119 case BTRFS_COMPRESS_NONE: 120 default: 121 /* 122 * This can't happen, the type is validated several times 123 * before we get here. 124 */ 125 BUG(); 126 } 127 } 128 129 static int btrfs_decompress_bio(struct compressed_bio *cb); 130 131 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 132 unsigned long disk_size) 133 { 134 return sizeof(struct compressed_bio) + 135 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size; 136 } 137 138 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 139 u64 disk_start) 140 { 141 struct btrfs_fs_info *fs_info = inode->root->fs_info; 142 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 143 const u32 csum_size = fs_info->csum_size; 144 const u32 sectorsize = fs_info->sectorsize; 145 struct page *page; 146 unsigned long i; 147 char *kaddr; 148 u8 csum[BTRFS_CSUM_SIZE]; 149 struct compressed_bio *cb = bio->bi_private; 150 u8 *cb_sum = cb->sums; 151 152 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM)) 153 return 0; 154 155 shash->tfm = fs_info->csum_shash; 156 157 for (i = 0; i < cb->nr_pages; i++) { 158 u32 pg_offset; 159 u32 bytes_left = PAGE_SIZE; 160 page = cb->compressed_pages[i]; 161 162 /* Determine the remaining bytes inside the page first */ 163 if (i == cb->nr_pages - 1) 164 bytes_left = cb->compressed_len - i * PAGE_SIZE; 165 166 /* Hash through the page sector by sector */ 167 for (pg_offset = 0; pg_offset < bytes_left; 168 pg_offset += sectorsize) { 169 kaddr = kmap_atomic(page); 170 crypto_shash_digest(shash, kaddr + pg_offset, 171 sectorsize, csum); 172 kunmap_atomic(kaddr); 173 174 if (memcmp(&csum, cb_sum, csum_size) != 0) { 175 btrfs_print_data_csum_error(inode, disk_start, 176 csum, cb_sum, cb->mirror_num); 177 if (btrfs_io_bio(bio)->device) 178 btrfs_dev_stat_inc_and_print( 179 btrfs_io_bio(bio)->device, 180 BTRFS_DEV_STAT_CORRUPTION_ERRS); 181 return -EIO; 182 } 183 cb_sum += csum_size; 184 disk_start += sectorsize; 185 } 186 } 187 return 0; 188 } 189 190 /* when we finish reading compressed pages from the disk, we 191 * decompress them and then run the bio end_io routines on the 192 * decompressed pages (in the inode address space). 193 * 194 * This allows the checksumming and other IO error handling routines 195 * to work normally 196 * 197 * The compressed pages are freed here, and it must be run 198 * in process context 199 */ 200 static void end_compressed_bio_read(struct bio *bio) 201 { 202 struct compressed_bio *cb = bio->bi_private; 203 struct inode *inode; 204 struct page *page; 205 unsigned long index; 206 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 207 int ret = 0; 208 209 if (bio->bi_status) 210 cb->errors = 1; 211 212 /* if there are more bios still pending for this compressed 213 * extent, just exit 214 */ 215 if (!refcount_dec_and_test(&cb->pending_bios)) 216 goto out; 217 218 /* 219 * Record the correct mirror_num in cb->orig_bio so that 220 * read-repair can work properly. 221 */ 222 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 223 cb->mirror_num = mirror; 224 225 /* 226 * Some IO in this cb have failed, just skip checksum as there 227 * is no way it could be correct. 228 */ 229 if (cb->errors == 1) 230 goto csum_failed; 231 232 inode = cb->inode; 233 ret = check_compressed_csum(BTRFS_I(inode), bio, 234 bio->bi_iter.bi_sector << 9); 235 if (ret) 236 goto csum_failed; 237 238 /* ok, we're the last bio for this extent, lets start 239 * the decompression. 240 */ 241 ret = btrfs_decompress_bio(cb); 242 243 csum_failed: 244 if (ret) 245 cb->errors = 1; 246 247 /* release the compressed pages */ 248 index = 0; 249 for (index = 0; index < cb->nr_pages; index++) { 250 page = cb->compressed_pages[index]; 251 page->mapping = NULL; 252 put_page(page); 253 } 254 255 /* do io completion on the original bio */ 256 if (cb->errors) { 257 bio_io_error(cb->orig_bio); 258 } else { 259 struct bio_vec *bvec; 260 struct bvec_iter_all iter_all; 261 262 /* 263 * we have verified the checksum already, set page 264 * checked so the end_io handlers know about it 265 */ 266 ASSERT(!bio_flagged(bio, BIO_CLONED)); 267 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 268 SetPageChecked(bvec->bv_page); 269 270 bio_endio(cb->orig_bio); 271 } 272 273 /* finally free the cb struct */ 274 kfree(cb->compressed_pages); 275 kfree(cb); 276 out: 277 bio_put(bio); 278 } 279 280 /* 281 * Clear the writeback bits on all of the file 282 * pages for a compressed write 283 */ 284 static noinline void end_compressed_writeback(struct inode *inode, 285 const struct compressed_bio *cb) 286 { 287 unsigned long index = cb->start >> PAGE_SHIFT; 288 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 289 struct page *pages[16]; 290 unsigned long nr_pages = end_index - index + 1; 291 int i; 292 int ret; 293 294 if (cb->errors) 295 mapping_set_error(inode->i_mapping, -EIO); 296 297 while (nr_pages > 0) { 298 ret = find_get_pages_contig(inode->i_mapping, index, 299 min_t(unsigned long, 300 nr_pages, ARRAY_SIZE(pages)), pages); 301 if (ret == 0) { 302 nr_pages -= 1; 303 index += 1; 304 continue; 305 } 306 for (i = 0; i < ret; i++) { 307 if (cb->errors) 308 SetPageError(pages[i]); 309 end_page_writeback(pages[i]); 310 put_page(pages[i]); 311 } 312 nr_pages -= ret; 313 index += ret; 314 } 315 /* the inode may be gone now */ 316 } 317 318 /* 319 * do the cleanup once all the compressed pages hit the disk. 320 * This will clear writeback on the file pages and free the compressed 321 * pages. 322 * 323 * This also calls the writeback end hooks for the file pages so that 324 * metadata and checksums can be updated in the file. 325 */ 326 static void end_compressed_bio_write(struct bio *bio) 327 { 328 struct compressed_bio *cb = bio->bi_private; 329 struct inode *inode; 330 struct page *page; 331 unsigned long index; 332 333 if (bio->bi_status) 334 cb->errors = 1; 335 336 /* if there are more bios still pending for this compressed 337 * extent, just exit 338 */ 339 if (!refcount_dec_and_test(&cb->pending_bios)) 340 goto out; 341 342 /* ok, we're the last bio for this extent, step one is to 343 * call back into the FS and do all the end_io operations 344 */ 345 inode = cb->inode; 346 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 347 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 348 cb->start, cb->start + cb->len - 1, 349 bio->bi_status == BLK_STS_OK); 350 cb->compressed_pages[0]->mapping = NULL; 351 352 end_compressed_writeback(inode, cb); 353 /* note, our inode could be gone now */ 354 355 /* 356 * release the compressed pages, these came from alloc_page and 357 * are not attached to the inode at all 358 */ 359 index = 0; 360 for (index = 0; index < cb->nr_pages; index++) { 361 page = cb->compressed_pages[index]; 362 page->mapping = NULL; 363 put_page(page); 364 } 365 366 /* finally free the cb struct */ 367 kfree(cb->compressed_pages); 368 kfree(cb); 369 out: 370 bio_put(bio); 371 } 372 373 /* 374 * worker function to build and submit bios for previously compressed pages. 375 * The corresponding pages in the inode should be marked for writeback 376 * and the compressed pages should have a reference on them for dropping 377 * when the IO is complete. 378 * 379 * This also checksums the file bytes and gets things ready for 380 * the end io hooks. 381 */ 382 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 383 unsigned long len, u64 disk_start, 384 unsigned long compressed_len, 385 struct page **compressed_pages, 386 unsigned long nr_pages, 387 unsigned int write_flags, 388 struct cgroup_subsys_state *blkcg_css) 389 { 390 struct btrfs_fs_info *fs_info = inode->root->fs_info; 391 struct bio *bio = NULL; 392 struct compressed_bio *cb; 393 unsigned long bytes_left; 394 int pg_index = 0; 395 struct page *page; 396 u64 first_byte = disk_start; 397 blk_status_t ret; 398 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 399 400 WARN_ON(!PAGE_ALIGNED(start)); 401 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 402 if (!cb) 403 return BLK_STS_RESOURCE; 404 refcount_set(&cb->pending_bios, 0); 405 cb->errors = 0; 406 cb->inode = &inode->vfs_inode; 407 cb->start = start; 408 cb->len = len; 409 cb->mirror_num = 0; 410 cb->compressed_pages = compressed_pages; 411 cb->compressed_len = compressed_len; 412 cb->orig_bio = NULL; 413 cb->nr_pages = nr_pages; 414 415 bio = btrfs_bio_alloc(first_byte); 416 bio->bi_opf = REQ_OP_WRITE | write_flags; 417 bio->bi_private = cb; 418 bio->bi_end_io = end_compressed_bio_write; 419 420 if (blkcg_css) { 421 bio->bi_opf |= REQ_CGROUP_PUNT; 422 kthread_associate_blkcg(blkcg_css); 423 } 424 refcount_set(&cb->pending_bios, 1); 425 426 /* create and submit bios for the compressed pages */ 427 bytes_left = compressed_len; 428 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 429 int submit = 0; 430 431 page = compressed_pages[pg_index]; 432 page->mapping = inode->vfs_inode.i_mapping; 433 if (bio->bi_iter.bi_size) 434 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 435 0); 436 437 page->mapping = NULL; 438 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 439 PAGE_SIZE) { 440 /* 441 * inc the count before we submit the bio so 442 * we know the end IO handler won't happen before 443 * we inc the count. Otherwise, the cb might get 444 * freed before we're done setting it up 445 */ 446 refcount_inc(&cb->pending_bios); 447 ret = btrfs_bio_wq_end_io(fs_info, bio, 448 BTRFS_WQ_ENDIO_DATA); 449 BUG_ON(ret); /* -ENOMEM */ 450 451 if (!skip_sum) { 452 ret = btrfs_csum_one_bio(inode, bio, start, 1); 453 BUG_ON(ret); /* -ENOMEM */ 454 } 455 456 ret = btrfs_map_bio(fs_info, bio, 0); 457 if (ret) { 458 bio->bi_status = ret; 459 bio_endio(bio); 460 } 461 462 bio = btrfs_bio_alloc(first_byte); 463 bio->bi_opf = REQ_OP_WRITE | write_flags; 464 bio->bi_private = cb; 465 bio->bi_end_io = end_compressed_bio_write; 466 if (blkcg_css) 467 bio->bi_opf |= REQ_CGROUP_PUNT; 468 bio_add_page(bio, page, PAGE_SIZE, 0); 469 } 470 if (bytes_left < PAGE_SIZE) { 471 btrfs_info(fs_info, 472 "bytes left %lu compress len %lu nr %lu", 473 bytes_left, cb->compressed_len, cb->nr_pages); 474 } 475 bytes_left -= PAGE_SIZE; 476 first_byte += PAGE_SIZE; 477 cond_resched(); 478 } 479 480 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 481 BUG_ON(ret); /* -ENOMEM */ 482 483 if (!skip_sum) { 484 ret = btrfs_csum_one_bio(inode, bio, start, 1); 485 BUG_ON(ret); /* -ENOMEM */ 486 } 487 488 ret = btrfs_map_bio(fs_info, bio, 0); 489 if (ret) { 490 bio->bi_status = ret; 491 bio_endio(bio); 492 } 493 494 if (blkcg_css) 495 kthread_associate_blkcg(NULL); 496 497 return 0; 498 } 499 500 static u64 bio_end_offset(struct bio *bio) 501 { 502 struct bio_vec *last = bio_last_bvec_all(bio); 503 504 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 505 } 506 507 static noinline int add_ra_bio_pages(struct inode *inode, 508 u64 compressed_end, 509 struct compressed_bio *cb) 510 { 511 unsigned long end_index; 512 unsigned long pg_index; 513 u64 last_offset; 514 u64 isize = i_size_read(inode); 515 int ret; 516 struct page *page; 517 unsigned long nr_pages = 0; 518 struct extent_map *em; 519 struct address_space *mapping = inode->i_mapping; 520 struct extent_map_tree *em_tree; 521 struct extent_io_tree *tree; 522 u64 end; 523 int misses = 0; 524 525 last_offset = bio_end_offset(cb->orig_bio); 526 em_tree = &BTRFS_I(inode)->extent_tree; 527 tree = &BTRFS_I(inode)->io_tree; 528 529 if (isize == 0) 530 return 0; 531 532 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 533 534 while (last_offset < compressed_end) { 535 pg_index = last_offset >> PAGE_SHIFT; 536 537 if (pg_index > end_index) 538 break; 539 540 page = xa_load(&mapping->i_pages, pg_index); 541 if (page && !xa_is_value(page)) { 542 misses++; 543 if (misses > 4) 544 break; 545 goto next; 546 } 547 548 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 549 ~__GFP_FS)); 550 if (!page) 551 break; 552 553 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 554 put_page(page); 555 goto next; 556 } 557 558 /* 559 * at this point, we have a locked page in the page cache 560 * for these bytes in the file. But, we have to make 561 * sure they map to this compressed extent on disk. 562 */ 563 ret = set_page_extent_mapped(page); 564 if (ret < 0) { 565 unlock_page(page); 566 put_page(page); 567 break; 568 } 569 570 end = last_offset + PAGE_SIZE - 1; 571 lock_extent(tree, last_offset, end); 572 read_lock(&em_tree->lock); 573 em = lookup_extent_mapping(em_tree, last_offset, 574 PAGE_SIZE); 575 read_unlock(&em_tree->lock); 576 577 if (!em || last_offset < em->start || 578 (last_offset + PAGE_SIZE > extent_map_end(em)) || 579 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 580 free_extent_map(em); 581 unlock_extent(tree, last_offset, end); 582 unlock_page(page); 583 put_page(page); 584 break; 585 } 586 free_extent_map(em); 587 588 if (page->index == end_index) { 589 char *userpage; 590 size_t zero_offset = offset_in_page(isize); 591 592 if (zero_offset) { 593 int zeros; 594 zeros = PAGE_SIZE - zero_offset; 595 userpage = kmap_atomic(page); 596 memset(userpage + zero_offset, 0, zeros); 597 flush_dcache_page(page); 598 kunmap_atomic(userpage); 599 } 600 } 601 602 ret = bio_add_page(cb->orig_bio, page, 603 PAGE_SIZE, 0); 604 605 if (ret == PAGE_SIZE) { 606 nr_pages++; 607 put_page(page); 608 } else { 609 unlock_extent(tree, last_offset, end); 610 unlock_page(page); 611 put_page(page); 612 break; 613 } 614 next: 615 last_offset += PAGE_SIZE; 616 } 617 return 0; 618 } 619 620 /* 621 * for a compressed read, the bio we get passed has all the inode pages 622 * in it. We don't actually do IO on those pages but allocate new ones 623 * to hold the compressed pages on disk. 624 * 625 * bio->bi_iter.bi_sector points to the compressed extent on disk 626 * bio->bi_io_vec points to all of the inode pages 627 * 628 * After the compressed pages are read, we copy the bytes into the 629 * bio we were passed and then call the bio end_io calls 630 */ 631 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 632 int mirror_num, unsigned long bio_flags) 633 { 634 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 635 struct extent_map_tree *em_tree; 636 struct compressed_bio *cb; 637 unsigned long compressed_len; 638 unsigned long nr_pages; 639 unsigned long pg_index; 640 struct page *page; 641 struct bio *comp_bio; 642 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9; 643 u64 em_len; 644 u64 em_start; 645 struct extent_map *em; 646 blk_status_t ret = BLK_STS_RESOURCE; 647 int faili = 0; 648 u8 *sums; 649 650 em_tree = &BTRFS_I(inode)->extent_tree; 651 652 /* we need the actual starting offset of this extent in the file */ 653 read_lock(&em_tree->lock); 654 em = lookup_extent_mapping(em_tree, 655 page_offset(bio_first_page_all(bio)), 656 fs_info->sectorsize); 657 read_unlock(&em_tree->lock); 658 if (!em) 659 return BLK_STS_IOERR; 660 661 compressed_len = em->block_len; 662 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 663 if (!cb) 664 goto out; 665 666 refcount_set(&cb->pending_bios, 0); 667 cb->errors = 0; 668 cb->inode = inode; 669 cb->mirror_num = mirror_num; 670 sums = cb->sums; 671 672 cb->start = em->orig_start; 673 em_len = em->len; 674 em_start = em->start; 675 676 free_extent_map(em); 677 em = NULL; 678 679 cb->len = bio->bi_iter.bi_size; 680 cb->compressed_len = compressed_len; 681 cb->compress_type = extent_compress_type(bio_flags); 682 cb->orig_bio = bio; 683 684 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 685 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 686 GFP_NOFS); 687 if (!cb->compressed_pages) 688 goto fail1; 689 690 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 691 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 692 __GFP_HIGHMEM); 693 if (!cb->compressed_pages[pg_index]) { 694 faili = pg_index - 1; 695 ret = BLK_STS_RESOURCE; 696 goto fail2; 697 } 698 } 699 faili = nr_pages - 1; 700 cb->nr_pages = nr_pages; 701 702 add_ra_bio_pages(inode, em_start + em_len, cb); 703 704 /* include any pages we added in add_ra-bio_pages */ 705 cb->len = bio->bi_iter.bi_size; 706 707 comp_bio = btrfs_bio_alloc(cur_disk_byte); 708 comp_bio->bi_opf = REQ_OP_READ; 709 comp_bio->bi_private = cb; 710 comp_bio->bi_end_io = end_compressed_bio_read; 711 refcount_set(&cb->pending_bios, 1); 712 713 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 714 u32 pg_len = PAGE_SIZE; 715 int submit = 0; 716 717 /* 718 * To handle subpage case, we need to make sure the bio only 719 * covers the range we need. 720 * 721 * If we're at the last page, truncate the length to only cover 722 * the remaining part. 723 */ 724 if (pg_index == nr_pages - 1) 725 pg_len = min_t(u32, PAGE_SIZE, 726 compressed_len - pg_index * PAGE_SIZE); 727 728 page = cb->compressed_pages[pg_index]; 729 page->mapping = inode->i_mapping; 730 page->index = em_start >> PAGE_SHIFT; 731 732 if (comp_bio->bi_iter.bi_size) 733 submit = btrfs_bio_fits_in_stripe(page, pg_len, 734 comp_bio, 0); 735 736 page->mapping = NULL; 737 if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) { 738 unsigned int nr_sectors; 739 740 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 741 BTRFS_WQ_ENDIO_DATA); 742 BUG_ON(ret); /* -ENOMEM */ 743 744 /* 745 * inc the count before we submit the bio so 746 * we know the end IO handler won't happen before 747 * we inc the count. Otherwise, the cb might get 748 * freed before we're done setting it up 749 */ 750 refcount_inc(&cb->pending_bios); 751 752 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 753 BUG_ON(ret); /* -ENOMEM */ 754 755 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 756 fs_info->sectorsize); 757 sums += fs_info->csum_size * nr_sectors; 758 759 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 760 if (ret) { 761 comp_bio->bi_status = ret; 762 bio_endio(comp_bio); 763 } 764 765 comp_bio = btrfs_bio_alloc(cur_disk_byte); 766 comp_bio->bi_opf = REQ_OP_READ; 767 comp_bio->bi_private = cb; 768 comp_bio->bi_end_io = end_compressed_bio_read; 769 770 bio_add_page(comp_bio, page, pg_len, 0); 771 } 772 cur_disk_byte += pg_len; 773 } 774 775 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 776 BUG_ON(ret); /* -ENOMEM */ 777 778 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 779 BUG_ON(ret); /* -ENOMEM */ 780 781 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 782 if (ret) { 783 comp_bio->bi_status = ret; 784 bio_endio(comp_bio); 785 } 786 787 return 0; 788 789 fail2: 790 while (faili >= 0) { 791 __free_page(cb->compressed_pages[faili]); 792 faili--; 793 } 794 795 kfree(cb->compressed_pages); 796 fail1: 797 kfree(cb); 798 out: 799 free_extent_map(em); 800 return ret; 801 } 802 803 /* 804 * Heuristic uses systematic sampling to collect data from the input data 805 * range, the logic can be tuned by the following constants: 806 * 807 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 808 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 809 */ 810 #define SAMPLING_READ_SIZE (16) 811 #define SAMPLING_INTERVAL (256) 812 813 /* 814 * For statistical analysis of the input data we consider bytes that form a 815 * Galois Field of 256 objects. Each object has an attribute count, ie. how 816 * many times the object appeared in the sample. 817 */ 818 #define BUCKET_SIZE (256) 819 820 /* 821 * The size of the sample is based on a statistical sampling rule of thumb. 822 * The common way is to perform sampling tests as long as the number of 823 * elements in each cell is at least 5. 824 * 825 * Instead of 5, we choose 32 to obtain more accurate results. 826 * If the data contain the maximum number of symbols, which is 256, we obtain a 827 * sample size bound by 8192. 828 * 829 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 830 * from up to 512 locations. 831 */ 832 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 833 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 834 835 struct bucket_item { 836 u32 count; 837 }; 838 839 struct heuristic_ws { 840 /* Partial copy of input data */ 841 u8 *sample; 842 u32 sample_size; 843 /* Buckets store counters for each byte value */ 844 struct bucket_item *bucket; 845 /* Sorting buffer */ 846 struct bucket_item *bucket_b; 847 struct list_head list; 848 }; 849 850 static struct workspace_manager heuristic_wsm; 851 852 static void free_heuristic_ws(struct list_head *ws) 853 { 854 struct heuristic_ws *workspace; 855 856 workspace = list_entry(ws, struct heuristic_ws, list); 857 858 kvfree(workspace->sample); 859 kfree(workspace->bucket); 860 kfree(workspace->bucket_b); 861 kfree(workspace); 862 } 863 864 static struct list_head *alloc_heuristic_ws(unsigned int level) 865 { 866 struct heuristic_ws *ws; 867 868 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 869 if (!ws) 870 return ERR_PTR(-ENOMEM); 871 872 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 873 if (!ws->sample) 874 goto fail; 875 876 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 877 if (!ws->bucket) 878 goto fail; 879 880 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 881 if (!ws->bucket_b) 882 goto fail; 883 884 INIT_LIST_HEAD(&ws->list); 885 return &ws->list; 886 fail: 887 free_heuristic_ws(&ws->list); 888 return ERR_PTR(-ENOMEM); 889 } 890 891 const struct btrfs_compress_op btrfs_heuristic_compress = { 892 .workspace_manager = &heuristic_wsm, 893 }; 894 895 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 896 /* The heuristic is represented as compression type 0 */ 897 &btrfs_heuristic_compress, 898 &btrfs_zlib_compress, 899 &btrfs_lzo_compress, 900 &btrfs_zstd_compress, 901 }; 902 903 static struct list_head *alloc_workspace(int type, unsigned int level) 904 { 905 switch (type) { 906 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 907 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 908 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 909 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 910 default: 911 /* 912 * This can't happen, the type is validated several times 913 * before we get here. 914 */ 915 BUG(); 916 } 917 } 918 919 static void free_workspace(int type, struct list_head *ws) 920 { 921 switch (type) { 922 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 923 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 924 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 925 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 926 default: 927 /* 928 * This can't happen, the type is validated several times 929 * before we get here. 930 */ 931 BUG(); 932 } 933 } 934 935 static void btrfs_init_workspace_manager(int type) 936 { 937 struct workspace_manager *wsm; 938 struct list_head *workspace; 939 940 wsm = btrfs_compress_op[type]->workspace_manager; 941 INIT_LIST_HEAD(&wsm->idle_ws); 942 spin_lock_init(&wsm->ws_lock); 943 atomic_set(&wsm->total_ws, 0); 944 init_waitqueue_head(&wsm->ws_wait); 945 946 /* 947 * Preallocate one workspace for each compression type so we can 948 * guarantee forward progress in the worst case 949 */ 950 workspace = alloc_workspace(type, 0); 951 if (IS_ERR(workspace)) { 952 pr_warn( 953 "BTRFS: cannot preallocate compression workspace, will try later\n"); 954 } else { 955 atomic_set(&wsm->total_ws, 1); 956 wsm->free_ws = 1; 957 list_add(workspace, &wsm->idle_ws); 958 } 959 } 960 961 static void btrfs_cleanup_workspace_manager(int type) 962 { 963 struct workspace_manager *wsman; 964 struct list_head *ws; 965 966 wsman = btrfs_compress_op[type]->workspace_manager; 967 while (!list_empty(&wsman->idle_ws)) { 968 ws = wsman->idle_ws.next; 969 list_del(ws); 970 free_workspace(type, ws); 971 atomic_dec(&wsman->total_ws); 972 } 973 } 974 975 /* 976 * This finds an available workspace or allocates a new one. 977 * If it's not possible to allocate a new one, waits until there's one. 978 * Preallocation makes a forward progress guarantees and we do not return 979 * errors. 980 */ 981 struct list_head *btrfs_get_workspace(int type, unsigned int level) 982 { 983 struct workspace_manager *wsm; 984 struct list_head *workspace; 985 int cpus = num_online_cpus(); 986 unsigned nofs_flag; 987 struct list_head *idle_ws; 988 spinlock_t *ws_lock; 989 atomic_t *total_ws; 990 wait_queue_head_t *ws_wait; 991 int *free_ws; 992 993 wsm = btrfs_compress_op[type]->workspace_manager; 994 idle_ws = &wsm->idle_ws; 995 ws_lock = &wsm->ws_lock; 996 total_ws = &wsm->total_ws; 997 ws_wait = &wsm->ws_wait; 998 free_ws = &wsm->free_ws; 999 1000 again: 1001 spin_lock(ws_lock); 1002 if (!list_empty(idle_ws)) { 1003 workspace = idle_ws->next; 1004 list_del(workspace); 1005 (*free_ws)--; 1006 spin_unlock(ws_lock); 1007 return workspace; 1008 1009 } 1010 if (atomic_read(total_ws) > cpus) { 1011 DEFINE_WAIT(wait); 1012 1013 spin_unlock(ws_lock); 1014 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1015 if (atomic_read(total_ws) > cpus && !*free_ws) 1016 schedule(); 1017 finish_wait(ws_wait, &wait); 1018 goto again; 1019 } 1020 atomic_inc(total_ws); 1021 spin_unlock(ws_lock); 1022 1023 /* 1024 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1025 * to turn it off here because we might get called from the restricted 1026 * context of btrfs_compress_bio/btrfs_compress_pages 1027 */ 1028 nofs_flag = memalloc_nofs_save(); 1029 workspace = alloc_workspace(type, level); 1030 memalloc_nofs_restore(nofs_flag); 1031 1032 if (IS_ERR(workspace)) { 1033 atomic_dec(total_ws); 1034 wake_up(ws_wait); 1035 1036 /* 1037 * Do not return the error but go back to waiting. There's a 1038 * workspace preallocated for each type and the compression 1039 * time is bounded so we get to a workspace eventually. This 1040 * makes our caller's life easier. 1041 * 1042 * To prevent silent and low-probability deadlocks (when the 1043 * initial preallocation fails), check if there are any 1044 * workspaces at all. 1045 */ 1046 if (atomic_read(total_ws) == 0) { 1047 static DEFINE_RATELIMIT_STATE(_rs, 1048 /* once per minute */ 60 * HZ, 1049 /* no burst */ 1); 1050 1051 if (__ratelimit(&_rs)) { 1052 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1053 } 1054 } 1055 goto again; 1056 } 1057 return workspace; 1058 } 1059 1060 static struct list_head *get_workspace(int type, int level) 1061 { 1062 switch (type) { 1063 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1064 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1065 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1066 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1067 default: 1068 /* 1069 * This can't happen, the type is validated several times 1070 * before we get here. 1071 */ 1072 BUG(); 1073 } 1074 } 1075 1076 /* 1077 * put a workspace struct back on the list or free it if we have enough 1078 * idle ones sitting around 1079 */ 1080 void btrfs_put_workspace(int type, struct list_head *ws) 1081 { 1082 struct workspace_manager *wsm; 1083 struct list_head *idle_ws; 1084 spinlock_t *ws_lock; 1085 atomic_t *total_ws; 1086 wait_queue_head_t *ws_wait; 1087 int *free_ws; 1088 1089 wsm = btrfs_compress_op[type]->workspace_manager; 1090 idle_ws = &wsm->idle_ws; 1091 ws_lock = &wsm->ws_lock; 1092 total_ws = &wsm->total_ws; 1093 ws_wait = &wsm->ws_wait; 1094 free_ws = &wsm->free_ws; 1095 1096 spin_lock(ws_lock); 1097 if (*free_ws <= num_online_cpus()) { 1098 list_add(ws, idle_ws); 1099 (*free_ws)++; 1100 spin_unlock(ws_lock); 1101 goto wake; 1102 } 1103 spin_unlock(ws_lock); 1104 1105 free_workspace(type, ws); 1106 atomic_dec(total_ws); 1107 wake: 1108 cond_wake_up(ws_wait); 1109 } 1110 1111 static void put_workspace(int type, struct list_head *ws) 1112 { 1113 switch (type) { 1114 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1115 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1116 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1117 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1118 default: 1119 /* 1120 * This can't happen, the type is validated several times 1121 * before we get here. 1122 */ 1123 BUG(); 1124 } 1125 } 1126 1127 /* 1128 * Adjust @level according to the limits of the compression algorithm or 1129 * fallback to default 1130 */ 1131 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1132 { 1133 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1134 1135 if (level == 0) 1136 level = ops->default_level; 1137 else 1138 level = min(level, ops->max_level); 1139 1140 return level; 1141 } 1142 1143 /* 1144 * Given an address space and start and length, compress the bytes into @pages 1145 * that are allocated on demand. 1146 * 1147 * @type_level is encoded algorithm and level, where level 0 means whatever 1148 * default the algorithm chooses and is opaque here; 1149 * - compression algo are 0-3 1150 * - the level are bits 4-7 1151 * 1152 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1153 * and returns number of actually allocated pages 1154 * 1155 * @total_in is used to return the number of bytes actually read. It 1156 * may be smaller than the input length if we had to exit early because we 1157 * ran out of room in the pages array or because we cross the 1158 * max_out threshold. 1159 * 1160 * @total_out is an in/out parameter, must be set to the input length and will 1161 * be also used to return the total number of compressed bytes 1162 * 1163 * @max_out tells us the max number of bytes that we're allowed to 1164 * stuff into pages 1165 */ 1166 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1167 u64 start, struct page **pages, 1168 unsigned long *out_pages, 1169 unsigned long *total_in, 1170 unsigned long *total_out) 1171 { 1172 int type = btrfs_compress_type(type_level); 1173 int level = btrfs_compress_level(type_level); 1174 struct list_head *workspace; 1175 int ret; 1176 1177 level = btrfs_compress_set_level(type, level); 1178 workspace = get_workspace(type, level); 1179 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1180 out_pages, total_in, total_out); 1181 put_workspace(type, workspace); 1182 return ret; 1183 } 1184 1185 /* 1186 * pages_in is an array of pages with compressed data. 1187 * 1188 * disk_start is the starting logical offset of this array in the file 1189 * 1190 * orig_bio contains the pages from the file that we want to decompress into 1191 * 1192 * srclen is the number of bytes in pages_in 1193 * 1194 * The basic idea is that we have a bio that was created by readpages. 1195 * The pages in the bio are for the uncompressed data, and they may not 1196 * be contiguous. They all correspond to the range of bytes covered by 1197 * the compressed extent. 1198 */ 1199 static int btrfs_decompress_bio(struct compressed_bio *cb) 1200 { 1201 struct list_head *workspace; 1202 int ret; 1203 int type = cb->compress_type; 1204 1205 workspace = get_workspace(type, 0); 1206 ret = compression_decompress_bio(type, workspace, cb); 1207 put_workspace(type, workspace); 1208 1209 return ret; 1210 } 1211 1212 /* 1213 * a less complex decompression routine. Our compressed data fits in a 1214 * single page, and we want to read a single page out of it. 1215 * start_byte tells us the offset into the compressed data we're interested in 1216 */ 1217 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1218 unsigned long start_byte, size_t srclen, size_t destlen) 1219 { 1220 struct list_head *workspace; 1221 int ret; 1222 1223 workspace = get_workspace(type, 0); 1224 ret = compression_decompress(type, workspace, data_in, dest_page, 1225 start_byte, srclen, destlen); 1226 put_workspace(type, workspace); 1227 1228 return ret; 1229 } 1230 1231 void __init btrfs_init_compress(void) 1232 { 1233 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1234 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1235 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1236 zstd_init_workspace_manager(); 1237 } 1238 1239 void __cold btrfs_exit_compress(void) 1240 { 1241 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1242 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1243 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1244 zstd_cleanup_workspace_manager(); 1245 } 1246 1247 /* 1248 * Copy uncompressed data from working buffer to pages. 1249 * 1250 * buf_start is the byte offset we're of the start of our workspace buffer. 1251 * 1252 * total_out is the last byte of the buffer 1253 */ 1254 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1255 unsigned long total_out, u64 disk_start, 1256 struct bio *bio) 1257 { 1258 unsigned long buf_offset; 1259 unsigned long current_buf_start; 1260 unsigned long start_byte; 1261 unsigned long prev_start_byte; 1262 unsigned long working_bytes = total_out - buf_start; 1263 unsigned long bytes; 1264 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1265 1266 /* 1267 * start byte is the first byte of the page we're currently 1268 * copying into relative to the start of the compressed data. 1269 */ 1270 start_byte = page_offset(bvec.bv_page) - disk_start; 1271 1272 /* we haven't yet hit data corresponding to this page */ 1273 if (total_out <= start_byte) 1274 return 1; 1275 1276 /* 1277 * the start of the data we care about is offset into 1278 * the middle of our working buffer 1279 */ 1280 if (total_out > start_byte && buf_start < start_byte) { 1281 buf_offset = start_byte - buf_start; 1282 working_bytes -= buf_offset; 1283 } else { 1284 buf_offset = 0; 1285 } 1286 current_buf_start = buf_start; 1287 1288 /* copy bytes from the working buffer into the pages */ 1289 while (working_bytes > 0) { 1290 bytes = min_t(unsigned long, bvec.bv_len, 1291 PAGE_SIZE - (buf_offset % PAGE_SIZE)); 1292 bytes = min(bytes, working_bytes); 1293 1294 memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset, 1295 bytes); 1296 flush_dcache_page(bvec.bv_page); 1297 1298 buf_offset += bytes; 1299 working_bytes -= bytes; 1300 current_buf_start += bytes; 1301 1302 /* check if we need to pick another page */ 1303 bio_advance(bio, bytes); 1304 if (!bio->bi_iter.bi_size) 1305 return 0; 1306 bvec = bio_iter_iovec(bio, bio->bi_iter); 1307 prev_start_byte = start_byte; 1308 start_byte = page_offset(bvec.bv_page) - disk_start; 1309 1310 /* 1311 * We need to make sure we're only adjusting 1312 * our offset into compression working buffer when 1313 * we're switching pages. Otherwise we can incorrectly 1314 * keep copying when we were actually done. 1315 */ 1316 if (start_byte != prev_start_byte) { 1317 /* 1318 * make sure our new page is covered by this 1319 * working buffer 1320 */ 1321 if (total_out <= start_byte) 1322 return 1; 1323 1324 /* 1325 * the next page in the biovec might not be adjacent 1326 * to the last page, but it might still be found 1327 * inside this working buffer. bump our offset pointer 1328 */ 1329 if (total_out > start_byte && 1330 current_buf_start < start_byte) { 1331 buf_offset = start_byte - buf_start; 1332 working_bytes = total_out - start_byte; 1333 current_buf_start = buf_start + buf_offset; 1334 } 1335 } 1336 } 1337 1338 return 1; 1339 } 1340 1341 /* 1342 * Shannon Entropy calculation 1343 * 1344 * Pure byte distribution analysis fails to determine compressibility of data. 1345 * Try calculating entropy to estimate the average minimum number of bits 1346 * needed to encode the sampled data. 1347 * 1348 * For convenience, return the percentage of needed bits, instead of amount of 1349 * bits directly. 1350 * 1351 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1352 * and can be compressible with high probability 1353 * 1354 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1355 * 1356 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1357 */ 1358 #define ENTROPY_LVL_ACEPTABLE (65) 1359 #define ENTROPY_LVL_HIGH (80) 1360 1361 /* 1362 * For increasead precision in shannon_entropy calculation, 1363 * let's do pow(n, M) to save more digits after comma: 1364 * 1365 * - maximum int bit length is 64 1366 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1367 * - 13 * 4 = 52 < 64 -> M = 4 1368 * 1369 * So use pow(n, 4). 1370 */ 1371 static inline u32 ilog2_w(u64 n) 1372 { 1373 return ilog2(n * n * n * n); 1374 } 1375 1376 static u32 shannon_entropy(struct heuristic_ws *ws) 1377 { 1378 const u32 entropy_max = 8 * ilog2_w(2); 1379 u32 entropy_sum = 0; 1380 u32 p, p_base, sz_base; 1381 u32 i; 1382 1383 sz_base = ilog2_w(ws->sample_size); 1384 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1385 p = ws->bucket[i].count; 1386 p_base = ilog2_w(p); 1387 entropy_sum += p * (sz_base - p_base); 1388 } 1389 1390 entropy_sum /= ws->sample_size; 1391 return entropy_sum * 100 / entropy_max; 1392 } 1393 1394 #define RADIX_BASE 4U 1395 #define COUNTERS_SIZE (1U << RADIX_BASE) 1396 1397 static u8 get4bits(u64 num, int shift) { 1398 u8 low4bits; 1399 1400 num >>= shift; 1401 /* Reverse order */ 1402 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1403 return low4bits; 1404 } 1405 1406 /* 1407 * Use 4 bits as radix base 1408 * Use 16 u32 counters for calculating new position in buf array 1409 * 1410 * @array - array that will be sorted 1411 * @array_buf - buffer array to store sorting results 1412 * must be equal in size to @array 1413 * @num - array size 1414 */ 1415 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1416 int num) 1417 { 1418 u64 max_num; 1419 u64 buf_num; 1420 u32 counters[COUNTERS_SIZE]; 1421 u32 new_addr; 1422 u32 addr; 1423 int bitlen; 1424 int shift; 1425 int i; 1426 1427 /* 1428 * Try avoid useless loop iterations for small numbers stored in big 1429 * counters. Example: 48 33 4 ... in 64bit array 1430 */ 1431 max_num = array[0].count; 1432 for (i = 1; i < num; i++) { 1433 buf_num = array[i].count; 1434 if (buf_num > max_num) 1435 max_num = buf_num; 1436 } 1437 1438 buf_num = ilog2(max_num); 1439 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1440 1441 shift = 0; 1442 while (shift < bitlen) { 1443 memset(counters, 0, sizeof(counters)); 1444 1445 for (i = 0; i < num; i++) { 1446 buf_num = array[i].count; 1447 addr = get4bits(buf_num, shift); 1448 counters[addr]++; 1449 } 1450 1451 for (i = 1; i < COUNTERS_SIZE; i++) 1452 counters[i] += counters[i - 1]; 1453 1454 for (i = num - 1; i >= 0; i--) { 1455 buf_num = array[i].count; 1456 addr = get4bits(buf_num, shift); 1457 counters[addr]--; 1458 new_addr = counters[addr]; 1459 array_buf[new_addr] = array[i]; 1460 } 1461 1462 shift += RADIX_BASE; 1463 1464 /* 1465 * Normal radix expects to move data from a temporary array, to 1466 * the main one. But that requires some CPU time. Avoid that 1467 * by doing another sort iteration to original array instead of 1468 * memcpy() 1469 */ 1470 memset(counters, 0, sizeof(counters)); 1471 1472 for (i = 0; i < num; i ++) { 1473 buf_num = array_buf[i].count; 1474 addr = get4bits(buf_num, shift); 1475 counters[addr]++; 1476 } 1477 1478 for (i = 1; i < COUNTERS_SIZE; i++) 1479 counters[i] += counters[i - 1]; 1480 1481 for (i = num - 1; i >= 0; i--) { 1482 buf_num = array_buf[i].count; 1483 addr = get4bits(buf_num, shift); 1484 counters[addr]--; 1485 new_addr = counters[addr]; 1486 array[new_addr] = array_buf[i]; 1487 } 1488 1489 shift += RADIX_BASE; 1490 } 1491 } 1492 1493 /* 1494 * Size of the core byte set - how many bytes cover 90% of the sample 1495 * 1496 * There are several types of structured binary data that use nearly all byte 1497 * values. The distribution can be uniform and counts in all buckets will be 1498 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1499 * 1500 * Other possibility is normal (Gaussian) distribution, where the data could 1501 * be potentially compressible, but we have to take a few more steps to decide 1502 * how much. 1503 * 1504 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1505 * compression algo can easy fix that 1506 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1507 * probability is not compressible 1508 */ 1509 #define BYTE_CORE_SET_LOW (64) 1510 #define BYTE_CORE_SET_HIGH (200) 1511 1512 static int byte_core_set_size(struct heuristic_ws *ws) 1513 { 1514 u32 i; 1515 u32 coreset_sum = 0; 1516 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1517 struct bucket_item *bucket = ws->bucket; 1518 1519 /* Sort in reverse order */ 1520 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1521 1522 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1523 coreset_sum += bucket[i].count; 1524 1525 if (coreset_sum > core_set_threshold) 1526 return i; 1527 1528 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1529 coreset_sum += bucket[i].count; 1530 if (coreset_sum > core_set_threshold) 1531 break; 1532 } 1533 1534 return i; 1535 } 1536 1537 /* 1538 * Count byte values in buckets. 1539 * This heuristic can detect textual data (configs, xml, json, html, etc). 1540 * Because in most text-like data byte set is restricted to limited number of 1541 * possible characters, and that restriction in most cases makes data easy to 1542 * compress. 1543 * 1544 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1545 * less - compressible 1546 * more - need additional analysis 1547 */ 1548 #define BYTE_SET_THRESHOLD (64) 1549 1550 static u32 byte_set_size(const struct heuristic_ws *ws) 1551 { 1552 u32 i; 1553 u32 byte_set_size = 0; 1554 1555 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1556 if (ws->bucket[i].count > 0) 1557 byte_set_size++; 1558 } 1559 1560 /* 1561 * Continue collecting count of byte values in buckets. If the byte 1562 * set size is bigger then the threshold, it's pointless to continue, 1563 * the detection technique would fail for this type of data. 1564 */ 1565 for (; i < BUCKET_SIZE; i++) { 1566 if (ws->bucket[i].count > 0) { 1567 byte_set_size++; 1568 if (byte_set_size > BYTE_SET_THRESHOLD) 1569 return byte_set_size; 1570 } 1571 } 1572 1573 return byte_set_size; 1574 } 1575 1576 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1577 { 1578 const u32 half_of_sample = ws->sample_size / 2; 1579 const u8 *data = ws->sample; 1580 1581 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1582 } 1583 1584 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1585 struct heuristic_ws *ws) 1586 { 1587 struct page *page; 1588 u64 index, index_end; 1589 u32 i, curr_sample_pos; 1590 u8 *in_data; 1591 1592 /* 1593 * Compression handles the input data by chunks of 128KiB 1594 * (defined by BTRFS_MAX_UNCOMPRESSED) 1595 * 1596 * We do the same for the heuristic and loop over the whole range. 1597 * 1598 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1599 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1600 */ 1601 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1602 end = start + BTRFS_MAX_UNCOMPRESSED; 1603 1604 index = start >> PAGE_SHIFT; 1605 index_end = end >> PAGE_SHIFT; 1606 1607 /* Don't miss unaligned end */ 1608 if (!IS_ALIGNED(end, PAGE_SIZE)) 1609 index_end++; 1610 1611 curr_sample_pos = 0; 1612 while (index < index_end) { 1613 page = find_get_page(inode->i_mapping, index); 1614 in_data = kmap(page); 1615 /* Handle case where the start is not aligned to PAGE_SIZE */ 1616 i = start % PAGE_SIZE; 1617 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1618 /* Don't sample any garbage from the last page */ 1619 if (start > end - SAMPLING_READ_SIZE) 1620 break; 1621 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1622 SAMPLING_READ_SIZE); 1623 i += SAMPLING_INTERVAL; 1624 start += SAMPLING_INTERVAL; 1625 curr_sample_pos += SAMPLING_READ_SIZE; 1626 } 1627 kunmap(page); 1628 put_page(page); 1629 1630 index++; 1631 } 1632 1633 ws->sample_size = curr_sample_pos; 1634 } 1635 1636 /* 1637 * Compression heuristic. 1638 * 1639 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1640 * quickly (compared to direct compression) detect data characteristics 1641 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1642 * data. 1643 * 1644 * The following types of analysis can be performed: 1645 * - detect mostly zero data 1646 * - detect data with low "byte set" size (text, etc) 1647 * - detect data with low/high "core byte" set 1648 * 1649 * Return non-zero if the compression should be done, 0 otherwise. 1650 */ 1651 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1652 { 1653 struct list_head *ws_list = get_workspace(0, 0); 1654 struct heuristic_ws *ws; 1655 u32 i; 1656 u8 byte; 1657 int ret = 0; 1658 1659 ws = list_entry(ws_list, struct heuristic_ws, list); 1660 1661 heuristic_collect_sample(inode, start, end, ws); 1662 1663 if (sample_repeated_patterns(ws)) { 1664 ret = 1; 1665 goto out; 1666 } 1667 1668 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1669 1670 for (i = 0; i < ws->sample_size; i++) { 1671 byte = ws->sample[i]; 1672 ws->bucket[byte].count++; 1673 } 1674 1675 i = byte_set_size(ws); 1676 if (i < BYTE_SET_THRESHOLD) { 1677 ret = 2; 1678 goto out; 1679 } 1680 1681 i = byte_core_set_size(ws); 1682 if (i <= BYTE_CORE_SET_LOW) { 1683 ret = 3; 1684 goto out; 1685 } 1686 1687 if (i >= BYTE_CORE_SET_HIGH) { 1688 ret = 0; 1689 goto out; 1690 } 1691 1692 i = shannon_entropy(ws); 1693 if (i <= ENTROPY_LVL_ACEPTABLE) { 1694 ret = 4; 1695 goto out; 1696 } 1697 1698 /* 1699 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1700 * needed to give green light to compression. 1701 * 1702 * For now just assume that compression at that level is not worth the 1703 * resources because: 1704 * 1705 * 1. it is possible to defrag the data later 1706 * 1707 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1708 * values, every bucket has counter at level ~54. The heuristic would 1709 * be confused. This can happen when data have some internal repeated 1710 * patterns like "abbacbbc...". This can be detected by analyzing 1711 * pairs of bytes, which is too costly. 1712 */ 1713 if (i < ENTROPY_LVL_HIGH) { 1714 ret = 5; 1715 goto out; 1716 } else { 1717 ret = 0; 1718 goto out; 1719 } 1720 1721 out: 1722 put_workspace(0, ws_list); 1723 return ret; 1724 } 1725 1726 /* 1727 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1728 * level, unrecognized string will set the default level 1729 */ 1730 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1731 { 1732 unsigned int level = 0; 1733 int ret; 1734 1735 if (!type) 1736 return 0; 1737 1738 if (str[0] == ':') { 1739 ret = kstrtouint(str + 1, 10, &level); 1740 if (ret) 1741 level = 0; 1742 } 1743 1744 level = btrfs_compress_set_level(type, level); 1745 1746 return level; 1747 } 1748