1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 33 34 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 35 { 36 switch (type) { 37 case BTRFS_COMPRESS_ZLIB: 38 case BTRFS_COMPRESS_LZO: 39 case BTRFS_COMPRESS_ZSTD: 40 case BTRFS_COMPRESS_NONE: 41 return btrfs_compress_types[type]; 42 default: 43 break; 44 } 45 46 return NULL; 47 } 48 49 bool btrfs_compress_is_valid_type(const char *str, size_t len) 50 { 51 int i; 52 53 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 54 size_t comp_len = strlen(btrfs_compress_types[i]); 55 56 if (len < comp_len) 57 continue; 58 59 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 60 return true; 61 } 62 return false; 63 } 64 65 static int compression_compress_pages(int type, struct list_head *ws, 66 struct address_space *mapping, u64 start, struct page **pages, 67 unsigned long *out_pages, unsigned long *total_in, 68 unsigned long *total_out) 69 { 70 switch (type) { 71 case BTRFS_COMPRESS_ZLIB: 72 return zlib_compress_pages(ws, mapping, start, pages, 73 out_pages, total_in, total_out); 74 case BTRFS_COMPRESS_LZO: 75 return lzo_compress_pages(ws, mapping, start, pages, 76 out_pages, total_in, total_out); 77 case BTRFS_COMPRESS_ZSTD: 78 return zstd_compress_pages(ws, mapping, start, pages, 79 out_pages, total_in, total_out); 80 case BTRFS_COMPRESS_NONE: 81 default: 82 /* 83 * This can't happen, the type is validated several times 84 * before we get here. As a sane fallback, return what the 85 * callers will understand as 'no compression happened'. 86 */ 87 return -E2BIG; 88 } 89 } 90 91 static int compression_decompress_bio(int type, struct list_head *ws, 92 struct compressed_bio *cb) 93 { 94 switch (type) { 95 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 96 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 97 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 98 case BTRFS_COMPRESS_NONE: 99 default: 100 /* 101 * This can't happen, the type is validated several times 102 * before we get here. 103 */ 104 BUG(); 105 } 106 } 107 108 static int compression_decompress(int type, struct list_head *ws, 109 unsigned char *data_in, struct page *dest_page, 110 unsigned long start_byte, size_t srclen, size_t destlen) 111 { 112 switch (type) { 113 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 114 start_byte, srclen, destlen); 115 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 116 start_byte, srclen, destlen); 117 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 118 start_byte, srclen, destlen); 119 case BTRFS_COMPRESS_NONE: 120 default: 121 /* 122 * This can't happen, the type is validated several times 123 * before we get here. 124 */ 125 BUG(); 126 } 127 } 128 129 static int btrfs_decompress_bio(struct compressed_bio *cb); 130 131 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 132 unsigned long disk_size) 133 { 134 return sizeof(struct compressed_bio) + 135 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size; 136 } 137 138 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 139 u64 disk_start) 140 { 141 struct btrfs_fs_info *fs_info = inode->root->fs_info; 142 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 143 const u32 csum_size = fs_info->csum_size; 144 struct page *page; 145 unsigned long i; 146 char *kaddr; 147 u8 csum[BTRFS_CSUM_SIZE]; 148 struct compressed_bio *cb = bio->bi_private; 149 u8 *cb_sum = cb->sums; 150 151 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM)) 152 return 0; 153 154 shash->tfm = fs_info->csum_shash; 155 156 for (i = 0; i < cb->nr_pages; i++) { 157 page = cb->compressed_pages[i]; 158 159 kaddr = kmap_atomic(page); 160 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum); 161 kunmap_atomic(kaddr); 162 163 if (memcmp(&csum, cb_sum, csum_size)) { 164 btrfs_print_data_csum_error(inode, disk_start, 165 csum, cb_sum, cb->mirror_num); 166 if (btrfs_io_bio(bio)->device) 167 btrfs_dev_stat_inc_and_print( 168 btrfs_io_bio(bio)->device, 169 BTRFS_DEV_STAT_CORRUPTION_ERRS); 170 return -EIO; 171 } 172 cb_sum += csum_size; 173 } 174 return 0; 175 } 176 177 /* when we finish reading compressed pages from the disk, we 178 * decompress them and then run the bio end_io routines on the 179 * decompressed pages (in the inode address space). 180 * 181 * This allows the checksumming and other IO error handling routines 182 * to work normally 183 * 184 * The compressed pages are freed here, and it must be run 185 * in process context 186 */ 187 static void end_compressed_bio_read(struct bio *bio) 188 { 189 struct compressed_bio *cb = bio->bi_private; 190 struct inode *inode; 191 struct page *page; 192 unsigned long index; 193 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 194 int ret = 0; 195 196 if (bio->bi_status) 197 cb->errors = 1; 198 199 /* if there are more bios still pending for this compressed 200 * extent, just exit 201 */ 202 if (!refcount_dec_and_test(&cb->pending_bios)) 203 goto out; 204 205 /* 206 * Record the correct mirror_num in cb->orig_bio so that 207 * read-repair can work properly. 208 */ 209 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 210 cb->mirror_num = mirror; 211 212 /* 213 * Some IO in this cb have failed, just skip checksum as there 214 * is no way it could be correct. 215 */ 216 if (cb->errors == 1) 217 goto csum_failed; 218 219 inode = cb->inode; 220 ret = check_compressed_csum(BTRFS_I(inode), bio, 221 bio->bi_iter.bi_sector << 9); 222 if (ret) 223 goto csum_failed; 224 225 /* ok, we're the last bio for this extent, lets start 226 * the decompression. 227 */ 228 ret = btrfs_decompress_bio(cb); 229 230 csum_failed: 231 if (ret) 232 cb->errors = 1; 233 234 /* release the compressed pages */ 235 index = 0; 236 for (index = 0; index < cb->nr_pages; index++) { 237 page = cb->compressed_pages[index]; 238 page->mapping = NULL; 239 put_page(page); 240 } 241 242 /* do io completion on the original bio */ 243 if (cb->errors) { 244 bio_io_error(cb->orig_bio); 245 } else { 246 struct bio_vec *bvec; 247 struct bvec_iter_all iter_all; 248 249 /* 250 * we have verified the checksum already, set page 251 * checked so the end_io handlers know about it 252 */ 253 ASSERT(!bio_flagged(bio, BIO_CLONED)); 254 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 255 SetPageChecked(bvec->bv_page); 256 257 bio_endio(cb->orig_bio); 258 } 259 260 /* finally free the cb struct */ 261 kfree(cb->compressed_pages); 262 kfree(cb); 263 out: 264 bio_put(bio); 265 } 266 267 /* 268 * Clear the writeback bits on all of the file 269 * pages for a compressed write 270 */ 271 static noinline void end_compressed_writeback(struct inode *inode, 272 const struct compressed_bio *cb) 273 { 274 unsigned long index = cb->start >> PAGE_SHIFT; 275 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 276 struct page *pages[16]; 277 unsigned long nr_pages = end_index - index + 1; 278 int i; 279 int ret; 280 281 if (cb->errors) 282 mapping_set_error(inode->i_mapping, -EIO); 283 284 while (nr_pages > 0) { 285 ret = find_get_pages_contig(inode->i_mapping, index, 286 min_t(unsigned long, 287 nr_pages, ARRAY_SIZE(pages)), pages); 288 if (ret == 0) { 289 nr_pages -= 1; 290 index += 1; 291 continue; 292 } 293 for (i = 0; i < ret; i++) { 294 if (cb->errors) 295 SetPageError(pages[i]); 296 end_page_writeback(pages[i]); 297 put_page(pages[i]); 298 } 299 nr_pages -= ret; 300 index += ret; 301 } 302 /* the inode may be gone now */ 303 } 304 305 /* 306 * do the cleanup once all the compressed pages hit the disk. 307 * This will clear writeback on the file pages and free the compressed 308 * pages. 309 * 310 * This also calls the writeback end hooks for the file pages so that 311 * metadata and checksums can be updated in the file. 312 */ 313 static void end_compressed_bio_write(struct bio *bio) 314 { 315 struct compressed_bio *cb = bio->bi_private; 316 struct inode *inode; 317 struct page *page; 318 unsigned long index; 319 320 if (bio->bi_status) 321 cb->errors = 1; 322 323 /* if there are more bios still pending for this compressed 324 * extent, just exit 325 */ 326 if (!refcount_dec_and_test(&cb->pending_bios)) 327 goto out; 328 329 /* ok, we're the last bio for this extent, step one is to 330 * call back into the FS and do all the end_io operations 331 */ 332 inode = cb->inode; 333 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 334 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 335 cb->start, cb->start + cb->len - 1, 336 bio->bi_status == BLK_STS_OK); 337 cb->compressed_pages[0]->mapping = NULL; 338 339 end_compressed_writeback(inode, cb); 340 /* note, our inode could be gone now */ 341 342 /* 343 * release the compressed pages, these came from alloc_page and 344 * are not attached to the inode at all 345 */ 346 index = 0; 347 for (index = 0; index < cb->nr_pages; index++) { 348 page = cb->compressed_pages[index]; 349 page->mapping = NULL; 350 put_page(page); 351 } 352 353 /* finally free the cb struct */ 354 kfree(cb->compressed_pages); 355 kfree(cb); 356 out: 357 bio_put(bio); 358 } 359 360 /* 361 * worker function to build and submit bios for previously compressed pages. 362 * The corresponding pages in the inode should be marked for writeback 363 * and the compressed pages should have a reference on them for dropping 364 * when the IO is complete. 365 * 366 * This also checksums the file bytes and gets things ready for 367 * the end io hooks. 368 */ 369 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 370 unsigned long len, u64 disk_start, 371 unsigned long compressed_len, 372 struct page **compressed_pages, 373 unsigned long nr_pages, 374 unsigned int write_flags, 375 struct cgroup_subsys_state *blkcg_css) 376 { 377 struct btrfs_fs_info *fs_info = inode->root->fs_info; 378 struct bio *bio = NULL; 379 struct compressed_bio *cb; 380 unsigned long bytes_left; 381 int pg_index = 0; 382 struct page *page; 383 u64 first_byte = disk_start; 384 blk_status_t ret; 385 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 386 387 WARN_ON(!PAGE_ALIGNED(start)); 388 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 389 if (!cb) 390 return BLK_STS_RESOURCE; 391 refcount_set(&cb->pending_bios, 0); 392 cb->errors = 0; 393 cb->inode = &inode->vfs_inode; 394 cb->start = start; 395 cb->len = len; 396 cb->mirror_num = 0; 397 cb->compressed_pages = compressed_pages; 398 cb->compressed_len = compressed_len; 399 cb->orig_bio = NULL; 400 cb->nr_pages = nr_pages; 401 402 bio = btrfs_bio_alloc(first_byte); 403 bio->bi_opf = REQ_OP_WRITE | write_flags; 404 bio->bi_private = cb; 405 bio->bi_end_io = end_compressed_bio_write; 406 407 if (blkcg_css) { 408 bio->bi_opf |= REQ_CGROUP_PUNT; 409 kthread_associate_blkcg(blkcg_css); 410 } 411 refcount_set(&cb->pending_bios, 1); 412 413 /* create and submit bios for the compressed pages */ 414 bytes_left = compressed_len; 415 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 416 int submit = 0; 417 418 page = compressed_pages[pg_index]; 419 page->mapping = inode->vfs_inode.i_mapping; 420 if (bio->bi_iter.bi_size) 421 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 422 0); 423 424 page->mapping = NULL; 425 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 426 PAGE_SIZE) { 427 /* 428 * inc the count before we submit the bio so 429 * we know the end IO handler won't happen before 430 * we inc the count. Otherwise, the cb might get 431 * freed before we're done setting it up 432 */ 433 refcount_inc(&cb->pending_bios); 434 ret = btrfs_bio_wq_end_io(fs_info, bio, 435 BTRFS_WQ_ENDIO_DATA); 436 BUG_ON(ret); /* -ENOMEM */ 437 438 if (!skip_sum) { 439 ret = btrfs_csum_one_bio(inode, bio, start, 1); 440 BUG_ON(ret); /* -ENOMEM */ 441 } 442 443 ret = btrfs_map_bio(fs_info, bio, 0); 444 if (ret) { 445 bio->bi_status = ret; 446 bio_endio(bio); 447 } 448 449 bio = btrfs_bio_alloc(first_byte); 450 bio->bi_opf = REQ_OP_WRITE | write_flags; 451 bio->bi_private = cb; 452 bio->bi_end_io = end_compressed_bio_write; 453 if (blkcg_css) 454 bio->bi_opf |= REQ_CGROUP_PUNT; 455 bio_add_page(bio, page, PAGE_SIZE, 0); 456 } 457 if (bytes_left < PAGE_SIZE) { 458 btrfs_info(fs_info, 459 "bytes left %lu compress len %lu nr %lu", 460 bytes_left, cb->compressed_len, cb->nr_pages); 461 } 462 bytes_left -= PAGE_SIZE; 463 first_byte += PAGE_SIZE; 464 cond_resched(); 465 } 466 467 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 468 BUG_ON(ret); /* -ENOMEM */ 469 470 if (!skip_sum) { 471 ret = btrfs_csum_one_bio(inode, bio, start, 1); 472 BUG_ON(ret); /* -ENOMEM */ 473 } 474 475 ret = btrfs_map_bio(fs_info, bio, 0); 476 if (ret) { 477 bio->bi_status = ret; 478 bio_endio(bio); 479 } 480 481 if (blkcg_css) 482 kthread_associate_blkcg(NULL); 483 484 return 0; 485 } 486 487 static u64 bio_end_offset(struct bio *bio) 488 { 489 struct bio_vec *last = bio_last_bvec_all(bio); 490 491 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 492 } 493 494 static noinline int add_ra_bio_pages(struct inode *inode, 495 u64 compressed_end, 496 struct compressed_bio *cb) 497 { 498 unsigned long end_index; 499 unsigned long pg_index; 500 u64 last_offset; 501 u64 isize = i_size_read(inode); 502 int ret; 503 struct page *page; 504 unsigned long nr_pages = 0; 505 struct extent_map *em; 506 struct address_space *mapping = inode->i_mapping; 507 struct extent_map_tree *em_tree; 508 struct extent_io_tree *tree; 509 u64 end; 510 int misses = 0; 511 512 last_offset = bio_end_offset(cb->orig_bio); 513 em_tree = &BTRFS_I(inode)->extent_tree; 514 tree = &BTRFS_I(inode)->io_tree; 515 516 if (isize == 0) 517 return 0; 518 519 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 520 521 while (last_offset < compressed_end) { 522 pg_index = last_offset >> PAGE_SHIFT; 523 524 if (pg_index > end_index) 525 break; 526 527 page = xa_load(&mapping->i_pages, pg_index); 528 if (page && !xa_is_value(page)) { 529 misses++; 530 if (misses > 4) 531 break; 532 goto next; 533 } 534 535 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 536 ~__GFP_FS)); 537 if (!page) 538 break; 539 540 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 541 put_page(page); 542 goto next; 543 } 544 545 end = last_offset + PAGE_SIZE - 1; 546 /* 547 * at this point, we have a locked page in the page cache 548 * for these bytes in the file. But, we have to make 549 * sure they map to this compressed extent on disk. 550 */ 551 set_page_extent_mapped(page); 552 lock_extent(tree, last_offset, end); 553 read_lock(&em_tree->lock); 554 em = lookup_extent_mapping(em_tree, last_offset, 555 PAGE_SIZE); 556 read_unlock(&em_tree->lock); 557 558 if (!em || last_offset < em->start || 559 (last_offset + PAGE_SIZE > extent_map_end(em)) || 560 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 561 free_extent_map(em); 562 unlock_extent(tree, last_offset, end); 563 unlock_page(page); 564 put_page(page); 565 break; 566 } 567 free_extent_map(em); 568 569 if (page->index == end_index) { 570 char *userpage; 571 size_t zero_offset = offset_in_page(isize); 572 573 if (zero_offset) { 574 int zeros; 575 zeros = PAGE_SIZE - zero_offset; 576 userpage = kmap_atomic(page); 577 memset(userpage + zero_offset, 0, zeros); 578 flush_dcache_page(page); 579 kunmap_atomic(userpage); 580 } 581 } 582 583 ret = bio_add_page(cb->orig_bio, page, 584 PAGE_SIZE, 0); 585 586 if (ret == PAGE_SIZE) { 587 nr_pages++; 588 put_page(page); 589 } else { 590 unlock_extent(tree, last_offset, end); 591 unlock_page(page); 592 put_page(page); 593 break; 594 } 595 next: 596 last_offset += PAGE_SIZE; 597 } 598 return 0; 599 } 600 601 /* 602 * for a compressed read, the bio we get passed has all the inode pages 603 * in it. We don't actually do IO on those pages but allocate new ones 604 * to hold the compressed pages on disk. 605 * 606 * bio->bi_iter.bi_sector points to the compressed extent on disk 607 * bio->bi_io_vec points to all of the inode pages 608 * 609 * After the compressed pages are read, we copy the bytes into the 610 * bio we were passed and then call the bio end_io calls 611 */ 612 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 613 int mirror_num, unsigned long bio_flags) 614 { 615 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 616 struct extent_map_tree *em_tree; 617 struct compressed_bio *cb; 618 unsigned long compressed_len; 619 unsigned long nr_pages; 620 unsigned long pg_index; 621 struct page *page; 622 struct bio *comp_bio; 623 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9; 624 u64 em_len; 625 u64 em_start; 626 struct extent_map *em; 627 blk_status_t ret = BLK_STS_RESOURCE; 628 int faili = 0; 629 u8 *sums; 630 631 em_tree = &BTRFS_I(inode)->extent_tree; 632 633 /* we need the actual starting offset of this extent in the file */ 634 read_lock(&em_tree->lock); 635 em = lookup_extent_mapping(em_tree, 636 page_offset(bio_first_page_all(bio)), 637 PAGE_SIZE); 638 read_unlock(&em_tree->lock); 639 if (!em) 640 return BLK_STS_IOERR; 641 642 compressed_len = em->block_len; 643 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 644 if (!cb) 645 goto out; 646 647 refcount_set(&cb->pending_bios, 0); 648 cb->errors = 0; 649 cb->inode = inode; 650 cb->mirror_num = mirror_num; 651 sums = cb->sums; 652 653 cb->start = em->orig_start; 654 em_len = em->len; 655 em_start = em->start; 656 657 free_extent_map(em); 658 em = NULL; 659 660 cb->len = bio->bi_iter.bi_size; 661 cb->compressed_len = compressed_len; 662 cb->compress_type = extent_compress_type(bio_flags); 663 cb->orig_bio = bio; 664 665 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 666 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 667 GFP_NOFS); 668 if (!cb->compressed_pages) 669 goto fail1; 670 671 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 672 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 673 __GFP_HIGHMEM); 674 if (!cb->compressed_pages[pg_index]) { 675 faili = pg_index - 1; 676 ret = BLK_STS_RESOURCE; 677 goto fail2; 678 } 679 } 680 faili = nr_pages - 1; 681 cb->nr_pages = nr_pages; 682 683 add_ra_bio_pages(inode, em_start + em_len, cb); 684 685 /* include any pages we added in add_ra-bio_pages */ 686 cb->len = bio->bi_iter.bi_size; 687 688 comp_bio = btrfs_bio_alloc(cur_disk_byte); 689 comp_bio->bi_opf = REQ_OP_READ; 690 comp_bio->bi_private = cb; 691 comp_bio->bi_end_io = end_compressed_bio_read; 692 refcount_set(&cb->pending_bios, 1); 693 694 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 695 int submit = 0; 696 697 page = cb->compressed_pages[pg_index]; 698 page->mapping = inode->i_mapping; 699 page->index = em_start >> PAGE_SHIFT; 700 701 if (comp_bio->bi_iter.bi_size) 702 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, 703 comp_bio, 0); 704 705 page->mapping = NULL; 706 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 707 PAGE_SIZE) { 708 unsigned int nr_sectors; 709 710 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 711 BTRFS_WQ_ENDIO_DATA); 712 BUG_ON(ret); /* -ENOMEM */ 713 714 /* 715 * inc the count before we submit the bio so 716 * we know the end IO handler won't happen before 717 * we inc the count. Otherwise, the cb might get 718 * freed before we're done setting it up 719 */ 720 refcount_inc(&cb->pending_bios); 721 722 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 723 BUG_ON(ret); /* -ENOMEM */ 724 725 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 726 fs_info->sectorsize); 727 sums += fs_info->csum_size * nr_sectors; 728 729 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 730 if (ret) { 731 comp_bio->bi_status = ret; 732 bio_endio(comp_bio); 733 } 734 735 comp_bio = btrfs_bio_alloc(cur_disk_byte); 736 comp_bio->bi_opf = REQ_OP_READ; 737 comp_bio->bi_private = cb; 738 comp_bio->bi_end_io = end_compressed_bio_read; 739 740 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 741 } 742 cur_disk_byte += PAGE_SIZE; 743 } 744 745 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 746 BUG_ON(ret); /* -ENOMEM */ 747 748 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 749 BUG_ON(ret); /* -ENOMEM */ 750 751 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 752 if (ret) { 753 comp_bio->bi_status = ret; 754 bio_endio(comp_bio); 755 } 756 757 return 0; 758 759 fail2: 760 while (faili >= 0) { 761 __free_page(cb->compressed_pages[faili]); 762 faili--; 763 } 764 765 kfree(cb->compressed_pages); 766 fail1: 767 kfree(cb); 768 out: 769 free_extent_map(em); 770 return ret; 771 } 772 773 /* 774 * Heuristic uses systematic sampling to collect data from the input data 775 * range, the logic can be tuned by the following constants: 776 * 777 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 778 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 779 */ 780 #define SAMPLING_READ_SIZE (16) 781 #define SAMPLING_INTERVAL (256) 782 783 /* 784 * For statistical analysis of the input data we consider bytes that form a 785 * Galois Field of 256 objects. Each object has an attribute count, ie. how 786 * many times the object appeared in the sample. 787 */ 788 #define BUCKET_SIZE (256) 789 790 /* 791 * The size of the sample is based on a statistical sampling rule of thumb. 792 * The common way is to perform sampling tests as long as the number of 793 * elements in each cell is at least 5. 794 * 795 * Instead of 5, we choose 32 to obtain more accurate results. 796 * If the data contain the maximum number of symbols, which is 256, we obtain a 797 * sample size bound by 8192. 798 * 799 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 800 * from up to 512 locations. 801 */ 802 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 803 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 804 805 struct bucket_item { 806 u32 count; 807 }; 808 809 struct heuristic_ws { 810 /* Partial copy of input data */ 811 u8 *sample; 812 u32 sample_size; 813 /* Buckets store counters for each byte value */ 814 struct bucket_item *bucket; 815 /* Sorting buffer */ 816 struct bucket_item *bucket_b; 817 struct list_head list; 818 }; 819 820 static struct workspace_manager heuristic_wsm; 821 822 static void free_heuristic_ws(struct list_head *ws) 823 { 824 struct heuristic_ws *workspace; 825 826 workspace = list_entry(ws, struct heuristic_ws, list); 827 828 kvfree(workspace->sample); 829 kfree(workspace->bucket); 830 kfree(workspace->bucket_b); 831 kfree(workspace); 832 } 833 834 static struct list_head *alloc_heuristic_ws(unsigned int level) 835 { 836 struct heuristic_ws *ws; 837 838 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 839 if (!ws) 840 return ERR_PTR(-ENOMEM); 841 842 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 843 if (!ws->sample) 844 goto fail; 845 846 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 847 if (!ws->bucket) 848 goto fail; 849 850 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 851 if (!ws->bucket_b) 852 goto fail; 853 854 INIT_LIST_HEAD(&ws->list); 855 return &ws->list; 856 fail: 857 free_heuristic_ws(&ws->list); 858 return ERR_PTR(-ENOMEM); 859 } 860 861 const struct btrfs_compress_op btrfs_heuristic_compress = { 862 .workspace_manager = &heuristic_wsm, 863 }; 864 865 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 866 /* The heuristic is represented as compression type 0 */ 867 &btrfs_heuristic_compress, 868 &btrfs_zlib_compress, 869 &btrfs_lzo_compress, 870 &btrfs_zstd_compress, 871 }; 872 873 static struct list_head *alloc_workspace(int type, unsigned int level) 874 { 875 switch (type) { 876 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 877 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 878 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 879 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 880 default: 881 /* 882 * This can't happen, the type is validated several times 883 * before we get here. 884 */ 885 BUG(); 886 } 887 } 888 889 static void free_workspace(int type, struct list_head *ws) 890 { 891 switch (type) { 892 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 893 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 894 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 895 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 896 default: 897 /* 898 * This can't happen, the type is validated several times 899 * before we get here. 900 */ 901 BUG(); 902 } 903 } 904 905 static void btrfs_init_workspace_manager(int type) 906 { 907 struct workspace_manager *wsm; 908 struct list_head *workspace; 909 910 wsm = btrfs_compress_op[type]->workspace_manager; 911 INIT_LIST_HEAD(&wsm->idle_ws); 912 spin_lock_init(&wsm->ws_lock); 913 atomic_set(&wsm->total_ws, 0); 914 init_waitqueue_head(&wsm->ws_wait); 915 916 /* 917 * Preallocate one workspace for each compression type so we can 918 * guarantee forward progress in the worst case 919 */ 920 workspace = alloc_workspace(type, 0); 921 if (IS_ERR(workspace)) { 922 pr_warn( 923 "BTRFS: cannot preallocate compression workspace, will try later\n"); 924 } else { 925 atomic_set(&wsm->total_ws, 1); 926 wsm->free_ws = 1; 927 list_add(workspace, &wsm->idle_ws); 928 } 929 } 930 931 static void btrfs_cleanup_workspace_manager(int type) 932 { 933 struct workspace_manager *wsman; 934 struct list_head *ws; 935 936 wsman = btrfs_compress_op[type]->workspace_manager; 937 while (!list_empty(&wsman->idle_ws)) { 938 ws = wsman->idle_ws.next; 939 list_del(ws); 940 free_workspace(type, ws); 941 atomic_dec(&wsman->total_ws); 942 } 943 } 944 945 /* 946 * This finds an available workspace or allocates a new one. 947 * If it's not possible to allocate a new one, waits until there's one. 948 * Preallocation makes a forward progress guarantees and we do not return 949 * errors. 950 */ 951 struct list_head *btrfs_get_workspace(int type, unsigned int level) 952 { 953 struct workspace_manager *wsm; 954 struct list_head *workspace; 955 int cpus = num_online_cpus(); 956 unsigned nofs_flag; 957 struct list_head *idle_ws; 958 spinlock_t *ws_lock; 959 atomic_t *total_ws; 960 wait_queue_head_t *ws_wait; 961 int *free_ws; 962 963 wsm = btrfs_compress_op[type]->workspace_manager; 964 idle_ws = &wsm->idle_ws; 965 ws_lock = &wsm->ws_lock; 966 total_ws = &wsm->total_ws; 967 ws_wait = &wsm->ws_wait; 968 free_ws = &wsm->free_ws; 969 970 again: 971 spin_lock(ws_lock); 972 if (!list_empty(idle_ws)) { 973 workspace = idle_ws->next; 974 list_del(workspace); 975 (*free_ws)--; 976 spin_unlock(ws_lock); 977 return workspace; 978 979 } 980 if (atomic_read(total_ws) > cpus) { 981 DEFINE_WAIT(wait); 982 983 spin_unlock(ws_lock); 984 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 985 if (atomic_read(total_ws) > cpus && !*free_ws) 986 schedule(); 987 finish_wait(ws_wait, &wait); 988 goto again; 989 } 990 atomic_inc(total_ws); 991 spin_unlock(ws_lock); 992 993 /* 994 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 995 * to turn it off here because we might get called from the restricted 996 * context of btrfs_compress_bio/btrfs_compress_pages 997 */ 998 nofs_flag = memalloc_nofs_save(); 999 workspace = alloc_workspace(type, level); 1000 memalloc_nofs_restore(nofs_flag); 1001 1002 if (IS_ERR(workspace)) { 1003 atomic_dec(total_ws); 1004 wake_up(ws_wait); 1005 1006 /* 1007 * Do not return the error but go back to waiting. There's a 1008 * workspace preallocated for each type and the compression 1009 * time is bounded so we get to a workspace eventually. This 1010 * makes our caller's life easier. 1011 * 1012 * To prevent silent and low-probability deadlocks (when the 1013 * initial preallocation fails), check if there are any 1014 * workspaces at all. 1015 */ 1016 if (atomic_read(total_ws) == 0) { 1017 static DEFINE_RATELIMIT_STATE(_rs, 1018 /* once per minute */ 60 * HZ, 1019 /* no burst */ 1); 1020 1021 if (__ratelimit(&_rs)) { 1022 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1023 } 1024 } 1025 goto again; 1026 } 1027 return workspace; 1028 } 1029 1030 static struct list_head *get_workspace(int type, int level) 1031 { 1032 switch (type) { 1033 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1034 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1035 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1036 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1037 default: 1038 /* 1039 * This can't happen, the type is validated several times 1040 * before we get here. 1041 */ 1042 BUG(); 1043 } 1044 } 1045 1046 /* 1047 * put a workspace struct back on the list or free it if we have enough 1048 * idle ones sitting around 1049 */ 1050 void btrfs_put_workspace(int type, struct list_head *ws) 1051 { 1052 struct workspace_manager *wsm; 1053 struct list_head *idle_ws; 1054 spinlock_t *ws_lock; 1055 atomic_t *total_ws; 1056 wait_queue_head_t *ws_wait; 1057 int *free_ws; 1058 1059 wsm = btrfs_compress_op[type]->workspace_manager; 1060 idle_ws = &wsm->idle_ws; 1061 ws_lock = &wsm->ws_lock; 1062 total_ws = &wsm->total_ws; 1063 ws_wait = &wsm->ws_wait; 1064 free_ws = &wsm->free_ws; 1065 1066 spin_lock(ws_lock); 1067 if (*free_ws <= num_online_cpus()) { 1068 list_add(ws, idle_ws); 1069 (*free_ws)++; 1070 spin_unlock(ws_lock); 1071 goto wake; 1072 } 1073 spin_unlock(ws_lock); 1074 1075 free_workspace(type, ws); 1076 atomic_dec(total_ws); 1077 wake: 1078 cond_wake_up(ws_wait); 1079 } 1080 1081 static void put_workspace(int type, struct list_head *ws) 1082 { 1083 switch (type) { 1084 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1085 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1086 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1087 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1088 default: 1089 /* 1090 * This can't happen, the type is validated several times 1091 * before we get here. 1092 */ 1093 BUG(); 1094 } 1095 } 1096 1097 /* 1098 * Adjust @level according to the limits of the compression algorithm or 1099 * fallback to default 1100 */ 1101 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1102 { 1103 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1104 1105 if (level == 0) 1106 level = ops->default_level; 1107 else 1108 level = min(level, ops->max_level); 1109 1110 return level; 1111 } 1112 1113 /* 1114 * Given an address space and start and length, compress the bytes into @pages 1115 * that are allocated on demand. 1116 * 1117 * @type_level is encoded algorithm and level, where level 0 means whatever 1118 * default the algorithm chooses and is opaque here; 1119 * - compression algo are 0-3 1120 * - the level are bits 4-7 1121 * 1122 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1123 * and returns number of actually allocated pages 1124 * 1125 * @total_in is used to return the number of bytes actually read. It 1126 * may be smaller than the input length if we had to exit early because we 1127 * ran out of room in the pages array or because we cross the 1128 * max_out threshold. 1129 * 1130 * @total_out is an in/out parameter, must be set to the input length and will 1131 * be also used to return the total number of compressed bytes 1132 * 1133 * @max_out tells us the max number of bytes that we're allowed to 1134 * stuff into pages 1135 */ 1136 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1137 u64 start, struct page **pages, 1138 unsigned long *out_pages, 1139 unsigned long *total_in, 1140 unsigned long *total_out) 1141 { 1142 int type = btrfs_compress_type(type_level); 1143 int level = btrfs_compress_level(type_level); 1144 struct list_head *workspace; 1145 int ret; 1146 1147 level = btrfs_compress_set_level(type, level); 1148 workspace = get_workspace(type, level); 1149 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1150 out_pages, total_in, total_out); 1151 put_workspace(type, workspace); 1152 return ret; 1153 } 1154 1155 /* 1156 * pages_in is an array of pages with compressed data. 1157 * 1158 * disk_start is the starting logical offset of this array in the file 1159 * 1160 * orig_bio contains the pages from the file that we want to decompress into 1161 * 1162 * srclen is the number of bytes in pages_in 1163 * 1164 * The basic idea is that we have a bio that was created by readpages. 1165 * The pages in the bio are for the uncompressed data, and they may not 1166 * be contiguous. They all correspond to the range of bytes covered by 1167 * the compressed extent. 1168 */ 1169 static int btrfs_decompress_bio(struct compressed_bio *cb) 1170 { 1171 struct list_head *workspace; 1172 int ret; 1173 int type = cb->compress_type; 1174 1175 workspace = get_workspace(type, 0); 1176 ret = compression_decompress_bio(type, workspace, cb); 1177 put_workspace(type, workspace); 1178 1179 return ret; 1180 } 1181 1182 /* 1183 * a less complex decompression routine. Our compressed data fits in a 1184 * single page, and we want to read a single page out of it. 1185 * start_byte tells us the offset into the compressed data we're interested in 1186 */ 1187 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1188 unsigned long start_byte, size_t srclen, size_t destlen) 1189 { 1190 struct list_head *workspace; 1191 int ret; 1192 1193 workspace = get_workspace(type, 0); 1194 ret = compression_decompress(type, workspace, data_in, dest_page, 1195 start_byte, srclen, destlen); 1196 put_workspace(type, workspace); 1197 1198 return ret; 1199 } 1200 1201 void __init btrfs_init_compress(void) 1202 { 1203 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1204 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1205 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1206 zstd_init_workspace_manager(); 1207 } 1208 1209 void __cold btrfs_exit_compress(void) 1210 { 1211 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1212 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1213 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1214 zstd_cleanup_workspace_manager(); 1215 } 1216 1217 /* 1218 * Copy uncompressed data from working buffer to pages. 1219 * 1220 * buf_start is the byte offset we're of the start of our workspace buffer. 1221 * 1222 * total_out is the last byte of the buffer 1223 */ 1224 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1225 unsigned long total_out, u64 disk_start, 1226 struct bio *bio) 1227 { 1228 unsigned long buf_offset; 1229 unsigned long current_buf_start; 1230 unsigned long start_byte; 1231 unsigned long prev_start_byte; 1232 unsigned long working_bytes = total_out - buf_start; 1233 unsigned long bytes; 1234 char *kaddr; 1235 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1236 1237 /* 1238 * start byte is the first byte of the page we're currently 1239 * copying into relative to the start of the compressed data. 1240 */ 1241 start_byte = page_offset(bvec.bv_page) - disk_start; 1242 1243 /* we haven't yet hit data corresponding to this page */ 1244 if (total_out <= start_byte) 1245 return 1; 1246 1247 /* 1248 * the start of the data we care about is offset into 1249 * the middle of our working buffer 1250 */ 1251 if (total_out > start_byte && buf_start < start_byte) { 1252 buf_offset = start_byte - buf_start; 1253 working_bytes -= buf_offset; 1254 } else { 1255 buf_offset = 0; 1256 } 1257 current_buf_start = buf_start; 1258 1259 /* copy bytes from the working buffer into the pages */ 1260 while (working_bytes > 0) { 1261 bytes = min_t(unsigned long, bvec.bv_len, 1262 PAGE_SIZE - (buf_offset % PAGE_SIZE)); 1263 bytes = min(bytes, working_bytes); 1264 1265 kaddr = kmap_atomic(bvec.bv_page); 1266 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1267 kunmap_atomic(kaddr); 1268 flush_dcache_page(bvec.bv_page); 1269 1270 buf_offset += bytes; 1271 working_bytes -= bytes; 1272 current_buf_start += bytes; 1273 1274 /* check if we need to pick another page */ 1275 bio_advance(bio, bytes); 1276 if (!bio->bi_iter.bi_size) 1277 return 0; 1278 bvec = bio_iter_iovec(bio, bio->bi_iter); 1279 prev_start_byte = start_byte; 1280 start_byte = page_offset(bvec.bv_page) - disk_start; 1281 1282 /* 1283 * We need to make sure we're only adjusting 1284 * our offset into compression working buffer when 1285 * we're switching pages. Otherwise we can incorrectly 1286 * keep copying when we were actually done. 1287 */ 1288 if (start_byte != prev_start_byte) { 1289 /* 1290 * make sure our new page is covered by this 1291 * working buffer 1292 */ 1293 if (total_out <= start_byte) 1294 return 1; 1295 1296 /* 1297 * the next page in the biovec might not be adjacent 1298 * to the last page, but it might still be found 1299 * inside this working buffer. bump our offset pointer 1300 */ 1301 if (total_out > start_byte && 1302 current_buf_start < start_byte) { 1303 buf_offset = start_byte - buf_start; 1304 working_bytes = total_out - start_byte; 1305 current_buf_start = buf_start + buf_offset; 1306 } 1307 } 1308 } 1309 1310 return 1; 1311 } 1312 1313 /* 1314 * Shannon Entropy calculation 1315 * 1316 * Pure byte distribution analysis fails to determine compressibility of data. 1317 * Try calculating entropy to estimate the average minimum number of bits 1318 * needed to encode the sampled data. 1319 * 1320 * For convenience, return the percentage of needed bits, instead of amount of 1321 * bits directly. 1322 * 1323 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1324 * and can be compressible with high probability 1325 * 1326 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1327 * 1328 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1329 */ 1330 #define ENTROPY_LVL_ACEPTABLE (65) 1331 #define ENTROPY_LVL_HIGH (80) 1332 1333 /* 1334 * For increasead precision in shannon_entropy calculation, 1335 * let's do pow(n, M) to save more digits after comma: 1336 * 1337 * - maximum int bit length is 64 1338 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1339 * - 13 * 4 = 52 < 64 -> M = 4 1340 * 1341 * So use pow(n, 4). 1342 */ 1343 static inline u32 ilog2_w(u64 n) 1344 { 1345 return ilog2(n * n * n * n); 1346 } 1347 1348 static u32 shannon_entropy(struct heuristic_ws *ws) 1349 { 1350 const u32 entropy_max = 8 * ilog2_w(2); 1351 u32 entropy_sum = 0; 1352 u32 p, p_base, sz_base; 1353 u32 i; 1354 1355 sz_base = ilog2_w(ws->sample_size); 1356 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1357 p = ws->bucket[i].count; 1358 p_base = ilog2_w(p); 1359 entropy_sum += p * (sz_base - p_base); 1360 } 1361 1362 entropy_sum /= ws->sample_size; 1363 return entropy_sum * 100 / entropy_max; 1364 } 1365 1366 #define RADIX_BASE 4U 1367 #define COUNTERS_SIZE (1U << RADIX_BASE) 1368 1369 static u8 get4bits(u64 num, int shift) { 1370 u8 low4bits; 1371 1372 num >>= shift; 1373 /* Reverse order */ 1374 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1375 return low4bits; 1376 } 1377 1378 /* 1379 * Use 4 bits as radix base 1380 * Use 16 u32 counters for calculating new position in buf array 1381 * 1382 * @array - array that will be sorted 1383 * @array_buf - buffer array to store sorting results 1384 * must be equal in size to @array 1385 * @num - array size 1386 */ 1387 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1388 int num) 1389 { 1390 u64 max_num; 1391 u64 buf_num; 1392 u32 counters[COUNTERS_SIZE]; 1393 u32 new_addr; 1394 u32 addr; 1395 int bitlen; 1396 int shift; 1397 int i; 1398 1399 /* 1400 * Try avoid useless loop iterations for small numbers stored in big 1401 * counters. Example: 48 33 4 ... in 64bit array 1402 */ 1403 max_num = array[0].count; 1404 for (i = 1; i < num; i++) { 1405 buf_num = array[i].count; 1406 if (buf_num > max_num) 1407 max_num = buf_num; 1408 } 1409 1410 buf_num = ilog2(max_num); 1411 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1412 1413 shift = 0; 1414 while (shift < bitlen) { 1415 memset(counters, 0, sizeof(counters)); 1416 1417 for (i = 0; i < num; i++) { 1418 buf_num = array[i].count; 1419 addr = get4bits(buf_num, shift); 1420 counters[addr]++; 1421 } 1422 1423 for (i = 1; i < COUNTERS_SIZE; i++) 1424 counters[i] += counters[i - 1]; 1425 1426 for (i = num - 1; i >= 0; i--) { 1427 buf_num = array[i].count; 1428 addr = get4bits(buf_num, shift); 1429 counters[addr]--; 1430 new_addr = counters[addr]; 1431 array_buf[new_addr] = array[i]; 1432 } 1433 1434 shift += RADIX_BASE; 1435 1436 /* 1437 * Normal radix expects to move data from a temporary array, to 1438 * the main one. But that requires some CPU time. Avoid that 1439 * by doing another sort iteration to original array instead of 1440 * memcpy() 1441 */ 1442 memset(counters, 0, sizeof(counters)); 1443 1444 for (i = 0; i < num; i ++) { 1445 buf_num = array_buf[i].count; 1446 addr = get4bits(buf_num, shift); 1447 counters[addr]++; 1448 } 1449 1450 for (i = 1; i < COUNTERS_SIZE; i++) 1451 counters[i] += counters[i - 1]; 1452 1453 for (i = num - 1; i >= 0; i--) { 1454 buf_num = array_buf[i].count; 1455 addr = get4bits(buf_num, shift); 1456 counters[addr]--; 1457 new_addr = counters[addr]; 1458 array[new_addr] = array_buf[i]; 1459 } 1460 1461 shift += RADIX_BASE; 1462 } 1463 } 1464 1465 /* 1466 * Size of the core byte set - how many bytes cover 90% of the sample 1467 * 1468 * There are several types of structured binary data that use nearly all byte 1469 * values. The distribution can be uniform and counts in all buckets will be 1470 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1471 * 1472 * Other possibility is normal (Gaussian) distribution, where the data could 1473 * be potentially compressible, but we have to take a few more steps to decide 1474 * how much. 1475 * 1476 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1477 * compression algo can easy fix that 1478 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1479 * probability is not compressible 1480 */ 1481 #define BYTE_CORE_SET_LOW (64) 1482 #define BYTE_CORE_SET_HIGH (200) 1483 1484 static int byte_core_set_size(struct heuristic_ws *ws) 1485 { 1486 u32 i; 1487 u32 coreset_sum = 0; 1488 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1489 struct bucket_item *bucket = ws->bucket; 1490 1491 /* Sort in reverse order */ 1492 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1493 1494 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1495 coreset_sum += bucket[i].count; 1496 1497 if (coreset_sum > core_set_threshold) 1498 return i; 1499 1500 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1501 coreset_sum += bucket[i].count; 1502 if (coreset_sum > core_set_threshold) 1503 break; 1504 } 1505 1506 return i; 1507 } 1508 1509 /* 1510 * Count byte values in buckets. 1511 * This heuristic can detect textual data (configs, xml, json, html, etc). 1512 * Because in most text-like data byte set is restricted to limited number of 1513 * possible characters, and that restriction in most cases makes data easy to 1514 * compress. 1515 * 1516 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1517 * less - compressible 1518 * more - need additional analysis 1519 */ 1520 #define BYTE_SET_THRESHOLD (64) 1521 1522 static u32 byte_set_size(const struct heuristic_ws *ws) 1523 { 1524 u32 i; 1525 u32 byte_set_size = 0; 1526 1527 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1528 if (ws->bucket[i].count > 0) 1529 byte_set_size++; 1530 } 1531 1532 /* 1533 * Continue collecting count of byte values in buckets. If the byte 1534 * set size is bigger then the threshold, it's pointless to continue, 1535 * the detection technique would fail for this type of data. 1536 */ 1537 for (; i < BUCKET_SIZE; i++) { 1538 if (ws->bucket[i].count > 0) { 1539 byte_set_size++; 1540 if (byte_set_size > BYTE_SET_THRESHOLD) 1541 return byte_set_size; 1542 } 1543 } 1544 1545 return byte_set_size; 1546 } 1547 1548 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1549 { 1550 const u32 half_of_sample = ws->sample_size / 2; 1551 const u8 *data = ws->sample; 1552 1553 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1554 } 1555 1556 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1557 struct heuristic_ws *ws) 1558 { 1559 struct page *page; 1560 u64 index, index_end; 1561 u32 i, curr_sample_pos; 1562 u8 *in_data; 1563 1564 /* 1565 * Compression handles the input data by chunks of 128KiB 1566 * (defined by BTRFS_MAX_UNCOMPRESSED) 1567 * 1568 * We do the same for the heuristic and loop over the whole range. 1569 * 1570 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1571 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1572 */ 1573 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1574 end = start + BTRFS_MAX_UNCOMPRESSED; 1575 1576 index = start >> PAGE_SHIFT; 1577 index_end = end >> PAGE_SHIFT; 1578 1579 /* Don't miss unaligned end */ 1580 if (!IS_ALIGNED(end, PAGE_SIZE)) 1581 index_end++; 1582 1583 curr_sample_pos = 0; 1584 while (index < index_end) { 1585 page = find_get_page(inode->i_mapping, index); 1586 in_data = kmap(page); 1587 /* Handle case where the start is not aligned to PAGE_SIZE */ 1588 i = start % PAGE_SIZE; 1589 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1590 /* Don't sample any garbage from the last page */ 1591 if (start > end - SAMPLING_READ_SIZE) 1592 break; 1593 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1594 SAMPLING_READ_SIZE); 1595 i += SAMPLING_INTERVAL; 1596 start += SAMPLING_INTERVAL; 1597 curr_sample_pos += SAMPLING_READ_SIZE; 1598 } 1599 kunmap(page); 1600 put_page(page); 1601 1602 index++; 1603 } 1604 1605 ws->sample_size = curr_sample_pos; 1606 } 1607 1608 /* 1609 * Compression heuristic. 1610 * 1611 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1612 * quickly (compared to direct compression) detect data characteristics 1613 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1614 * data. 1615 * 1616 * The following types of analysis can be performed: 1617 * - detect mostly zero data 1618 * - detect data with low "byte set" size (text, etc) 1619 * - detect data with low/high "core byte" set 1620 * 1621 * Return non-zero if the compression should be done, 0 otherwise. 1622 */ 1623 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1624 { 1625 struct list_head *ws_list = get_workspace(0, 0); 1626 struct heuristic_ws *ws; 1627 u32 i; 1628 u8 byte; 1629 int ret = 0; 1630 1631 ws = list_entry(ws_list, struct heuristic_ws, list); 1632 1633 heuristic_collect_sample(inode, start, end, ws); 1634 1635 if (sample_repeated_patterns(ws)) { 1636 ret = 1; 1637 goto out; 1638 } 1639 1640 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1641 1642 for (i = 0; i < ws->sample_size; i++) { 1643 byte = ws->sample[i]; 1644 ws->bucket[byte].count++; 1645 } 1646 1647 i = byte_set_size(ws); 1648 if (i < BYTE_SET_THRESHOLD) { 1649 ret = 2; 1650 goto out; 1651 } 1652 1653 i = byte_core_set_size(ws); 1654 if (i <= BYTE_CORE_SET_LOW) { 1655 ret = 3; 1656 goto out; 1657 } 1658 1659 if (i >= BYTE_CORE_SET_HIGH) { 1660 ret = 0; 1661 goto out; 1662 } 1663 1664 i = shannon_entropy(ws); 1665 if (i <= ENTROPY_LVL_ACEPTABLE) { 1666 ret = 4; 1667 goto out; 1668 } 1669 1670 /* 1671 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1672 * needed to give green light to compression. 1673 * 1674 * For now just assume that compression at that level is not worth the 1675 * resources because: 1676 * 1677 * 1. it is possible to defrag the data later 1678 * 1679 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1680 * values, every bucket has counter at level ~54. The heuristic would 1681 * be confused. This can happen when data have some internal repeated 1682 * patterns like "abbacbbc...". This can be detected by analyzing 1683 * pairs of bytes, which is too costly. 1684 */ 1685 if (i < ENTROPY_LVL_HIGH) { 1686 ret = 5; 1687 goto out; 1688 } else { 1689 ret = 0; 1690 goto out; 1691 } 1692 1693 out: 1694 put_workspace(0, ws_list); 1695 return ret; 1696 } 1697 1698 /* 1699 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1700 * level, unrecognized string will set the default level 1701 */ 1702 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1703 { 1704 unsigned int level = 0; 1705 int ret; 1706 1707 if (!type) 1708 return 0; 1709 1710 if (str[0] == ':') { 1711 ret = kstrtouint(str + 1, 10, &level); 1712 if (ret) 1713 level = 0; 1714 } 1715 1716 level = btrfs_compress_set_level(type, level); 1717 1718 return level; 1719 } 1720