xref: /openbmc/linux/fs/btrfs/compression.c (revision 7fe2f639)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45 
46 struct compressed_bio {
47 	/* number of bios pending for this compressed extent */
48 	atomic_t pending_bios;
49 
50 	/* the pages with the compressed data on them */
51 	struct page **compressed_pages;
52 
53 	/* inode that owns this data */
54 	struct inode *inode;
55 
56 	/* starting offset in the inode for our pages */
57 	u64 start;
58 
59 	/* number of bytes in the inode we're working on */
60 	unsigned long len;
61 
62 	/* number of bytes on disk */
63 	unsigned long compressed_len;
64 
65 	/* the compression algorithm for this bio */
66 	int compress_type;
67 
68 	/* number of compressed pages in the array */
69 	unsigned long nr_pages;
70 
71 	/* IO errors */
72 	int errors;
73 	int mirror_num;
74 
75 	/* for reads, this is the bio we are copying the data into */
76 	struct bio *orig_bio;
77 
78 	/*
79 	 * the start of a variable length array of checksums only
80 	 * used by reads
81 	 */
82 	u32 sums;
83 };
84 
85 static inline int compressed_bio_size(struct btrfs_root *root,
86 				      unsigned long disk_size)
87 {
88 	u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
89 	return sizeof(struct compressed_bio) +
90 		((disk_size + root->sectorsize - 1) / root->sectorsize) *
91 		csum_size;
92 }
93 
94 static struct bio *compressed_bio_alloc(struct block_device *bdev,
95 					u64 first_byte, gfp_t gfp_flags)
96 {
97 	int nr_vecs;
98 
99 	nr_vecs = bio_get_nr_vecs(bdev);
100 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
101 }
102 
103 static int check_compressed_csum(struct inode *inode,
104 				 struct compressed_bio *cb,
105 				 u64 disk_start)
106 {
107 	int ret;
108 	struct btrfs_root *root = BTRFS_I(inode)->root;
109 	struct page *page;
110 	unsigned long i;
111 	char *kaddr;
112 	u32 csum;
113 	u32 *cb_sum = &cb->sums;
114 
115 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
116 		return 0;
117 
118 	for (i = 0; i < cb->nr_pages; i++) {
119 		page = cb->compressed_pages[i];
120 		csum = ~(u32)0;
121 
122 		kaddr = kmap_atomic(page, KM_USER0);
123 		csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
124 		btrfs_csum_final(csum, (char *)&csum);
125 		kunmap_atomic(kaddr, KM_USER0);
126 
127 		if (csum != *cb_sum) {
128 			printk(KERN_INFO "btrfs csum failed ino %llu "
129 			       "extent %llu csum %u "
130 			       "wanted %u mirror %d\n",
131 			       (unsigned long long)btrfs_ino(inode),
132 			       (unsigned long long)disk_start,
133 			       csum, *cb_sum, cb->mirror_num);
134 			ret = -EIO;
135 			goto fail;
136 		}
137 		cb_sum++;
138 
139 	}
140 	ret = 0;
141 fail:
142 	return ret;
143 }
144 
145 /* when we finish reading compressed pages from the disk, we
146  * decompress them and then run the bio end_io routines on the
147  * decompressed pages (in the inode address space).
148  *
149  * This allows the checksumming and other IO error handling routines
150  * to work normally
151  *
152  * The compressed pages are freed here, and it must be run
153  * in process context
154  */
155 static void end_compressed_bio_read(struct bio *bio, int err)
156 {
157 	struct compressed_bio *cb = bio->bi_private;
158 	struct inode *inode;
159 	struct page *page;
160 	unsigned long index;
161 	int ret;
162 
163 	if (err)
164 		cb->errors = 1;
165 
166 	/* if there are more bios still pending for this compressed
167 	 * extent, just exit
168 	 */
169 	if (!atomic_dec_and_test(&cb->pending_bios))
170 		goto out;
171 
172 	inode = cb->inode;
173 	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
174 	if (ret)
175 		goto csum_failed;
176 
177 	/* ok, we're the last bio for this extent, lets start
178 	 * the decompression.
179 	 */
180 	ret = btrfs_decompress_biovec(cb->compress_type,
181 				      cb->compressed_pages,
182 				      cb->start,
183 				      cb->orig_bio->bi_io_vec,
184 				      cb->orig_bio->bi_vcnt,
185 				      cb->compressed_len);
186 csum_failed:
187 	if (ret)
188 		cb->errors = 1;
189 
190 	/* release the compressed pages */
191 	index = 0;
192 	for (index = 0; index < cb->nr_pages; index++) {
193 		page = cb->compressed_pages[index];
194 		page->mapping = NULL;
195 		page_cache_release(page);
196 	}
197 
198 	/* do io completion on the original bio */
199 	if (cb->errors) {
200 		bio_io_error(cb->orig_bio);
201 	} else {
202 		int bio_index = 0;
203 		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
204 
205 		/*
206 		 * we have verified the checksum already, set page
207 		 * checked so the end_io handlers know about it
208 		 */
209 		while (bio_index < cb->orig_bio->bi_vcnt) {
210 			SetPageChecked(bvec->bv_page);
211 			bvec++;
212 			bio_index++;
213 		}
214 		bio_endio(cb->orig_bio, 0);
215 	}
216 
217 	/* finally free the cb struct */
218 	kfree(cb->compressed_pages);
219 	kfree(cb);
220 out:
221 	bio_put(bio);
222 }
223 
224 /*
225  * Clear the writeback bits on all of the file
226  * pages for a compressed write
227  */
228 static noinline int end_compressed_writeback(struct inode *inode, u64 start,
229 					     unsigned long ram_size)
230 {
231 	unsigned long index = start >> PAGE_CACHE_SHIFT;
232 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
233 	struct page *pages[16];
234 	unsigned long nr_pages = end_index - index + 1;
235 	int i;
236 	int ret;
237 
238 	while (nr_pages > 0) {
239 		ret = find_get_pages_contig(inode->i_mapping, index,
240 				     min_t(unsigned long,
241 				     nr_pages, ARRAY_SIZE(pages)), pages);
242 		if (ret == 0) {
243 			nr_pages -= 1;
244 			index += 1;
245 			continue;
246 		}
247 		for (i = 0; i < ret; i++) {
248 			end_page_writeback(pages[i]);
249 			page_cache_release(pages[i]);
250 		}
251 		nr_pages -= ret;
252 		index += ret;
253 	}
254 	/* the inode may be gone now */
255 	return 0;
256 }
257 
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio, int err)
267 {
268 	struct extent_io_tree *tree;
269 	struct compressed_bio *cb = bio->bi_private;
270 	struct inode *inode;
271 	struct page *page;
272 	unsigned long index;
273 
274 	if (err)
275 		cb->errors = 1;
276 
277 	/* if there are more bios still pending for this compressed
278 	 * extent, just exit
279 	 */
280 	if (!atomic_dec_and_test(&cb->pending_bios))
281 		goto out;
282 
283 	/* ok, we're the last bio for this extent, step one is to
284 	 * call back into the FS and do all the end_io operations
285 	 */
286 	inode = cb->inode;
287 	tree = &BTRFS_I(inode)->io_tree;
288 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290 					 cb->start,
291 					 cb->start + cb->len - 1,
292 					 NULL, 1);
293 	cb->compressed_pages[0]->mapping = NULL;
294 
295 	end_compressed_writeback(inode, cb->start, cb->len);
296 	/* note, our inode could be gone now */
297 
298 	/*
299 	 * release the compressed pages, these came from alloc_page and
300 	 * are not attached to the inode at all
301 	 */
302 	index = 0;
303 	for (index = 0; index < cb->nr_pages; index++) {
304 		page = cb->compressed_pages[index];
305 		page->mapping = NULL;
306 		page_cache_release(page);
307 	}
308 
309 	/* finally free the cb struct */
310 	kfree(cb->compressed_pages);
311 	kfree(cb);
312 out:
313 	bio_put(bio);
314 }
315 
316 /*
317  * worker function to build and submit bios for previously compressed pages.
318  * The corresponding pages in the inode should be marked for writeback
319  * and the compressed pages should have a reference on them for dropping
320  * when the IO is complete.
321  *
322  * This also checksums the file bytes and gets things ready for
323  * the end io hooks.
324  */
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326 				 unsigned long len, u64 disk_start,
327 				 unsigned long compressed_len,
328 				 struct page **compressed_pages,
329 				 unsigned long nr_pages)
330 {
331 	struct bio *bio = NULL;
332 	struct btrfs_root *root = BTRFS_I(inode)->root;
333 	struct compressed_bio *cb;
334 	unsigned long bytes_left;
335 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336 	int pg_index = 0;
337 	struct page *page;
338 	u64 first_byte = disk_start;
339 	struct block_device *bdev;
340 	int ret;
341 
342 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
343 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
344 	if (!cb)
345 		return -ENOMEM;
346 	atomic_set(&cb->pending_bios, 0);
347 	cb->errors = 0;
348 	cb->inode = inode;
349 	cb->start = start;
350 	cb->len = len;
351 	cb->mirror_num = 0;
352 	cb->compressed_pages = compressed_pages;
353 	cb->compressed_len = compressed_len;
354 	cb->orig_bio = NULL;
355 	cb->nr_pages = nr_pages;
356 
357 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
358 
359 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
360 	if(!bio) {
361 		kfree(cb);
362 		return -ENOMEM;
363 	}
364 	bio->bi_private = cb;
365 	bio->bi_end_io = end_compressed_bio_write;
366 	atomic_inc(&cb->pending_bios);
367 
368 	/* create and submit bios for the compressed pages */
369 	bytes_left = compressed_len;
370 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
371 		page = compressed_pages[pg_index];
372 		page->mapping = inode->i_mapping;
373 		if (bio->bi_size)
374 			ret = io_tree->ops->merge_bio_hook(page, 0,
375 							   PAGE_CACHE_SIZE,
376 							   bio, 0);
377 		else
378 			ret = 0;
379 
380 		page->mapping = NULL;
381 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
382 		    PAGE_CACHE_SIZE) {
383 			bio_get(bio);
384 
385 			/*
386 			 * inc the count before we submit the bio so
387 			 * we know the end IO handler won't happen before
388 			 * we inc the count.  Otherwise, the cb might get
389 			 * freed before we're done setting it up
390 			 */
391 			atomic_inc(&cb->pending_bios);
392 			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393 			BUG_ON(ret);
394 
395 			ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
396 			BUG_ON(ret);
397 
398 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
399 			BUG_ON(ret);
400 
401 			bio_put(bio);
402 
403 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
404 			bio->bi_private = cb;
405 			bio->bi_end_io = end_compressed_bio_write;
406 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
407 		}
408 		if (bytes_left < PAGE_CACHE_SIZE) {
409 			printk("bytes left %lu compress len %lu nr %lu\n",
410 			       bytes_left, cb->compressed_len, cb->nr_pages);
411 		}
412 		bytes_left -= PAGE_CACHE_SIZE;
413 		first_byte += PAGE_CACHE_SIZE;
414 		cond_resched();
415 	}
416 	bio_get(bio);
417 
418 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
419 	BUG_ON(ret);
420 
421 	ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
422 	BUG_ON(ret);
423 
424 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
425 	BUG_ON(ret);
426 
427 	bio_put(bio);
428 	return 0;
429 }
430 
431 static noinline int add_ra_bio_pages(struct inode *inode,
432 				     u64 compressed_end,
433 				     struct compressed_bio *cb)
434 {
435 	unsigned long end_index;
436 	unsigned long pg_index;
437 	u64 last_offset;
438 	u64 isize = i_size_read(inode);
439 	int ret;
440 	struct page *page;
441 	unsigned long nr_pages = 0;
442 	struct extent_map *em;
443 	struct address_space *mapping = inode->i_mapping;
444 	struct extent_map_tree *em_tree;
445 	struct extent_io_tree *tree;
446 	u64 end;
447 	int misses = 0;
448 
449 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
450 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
451 	em_tree = &BTRFS_I(inode)->extent_tree;
452 	tree = &BTRFS_I(inode)->io_tree;
453 
454 	if (isize == 0)
455 		return 0;
456 
457 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
458 
459 	while (last_offset < compressed_end) {
460 		pg_index = last_offset >> PAGE_CACHE_SHIFT;
461 
462 		if (pg_index > end_index)
463 			break;
464 
465 		rcu_read_lock();
466 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
467 		rcu_read_unlock();
468 		if (page) {
469 			misses++;
470 			if (misses > 4)
471 				break;
472 			goto next;
473 		}
474 
475 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
476 								~__GFP_FS);
477 		if (!page)
478 			break;
479 
480 		if (add_to_page_cache_lru(page, mapping, pg_index,
481 								GFP_NOFS)) {
482 			page_cache_release(page);
483 			goto next;
484 		}
485 
486 		end = last_offset + PAGE_CACHE_SIZE - 1;
487 		/*
488 		 * at this point, we have a locked page in the page cache
489 		 * for these bytes in the file.  But, we have to make
490 		 * sure they map to this compressed extent on disk.
491 		 */
492 		set_page_extent_mapped(page);
493 		lock_extent(tree, last_offset, end, GFP_NOFS);
494 		read_lock(&em_tree->lock);
495 		em = lookup_extent_mapping(em_tree, last_offset,
496 					   PAGE_CACHE_SIZE);
497 		read_unlock(&em_tree->lock);
498 
499 		if (!em || last_offset < em->start ||
500 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
501 		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
502 			free_extent_map(em);
503 			unlock_extent(tree, last_offset, end, GFP_NOFS);
504 			unlock_page(page);
505 			page_cache_release(page);
506 			break;
507 		}
508 		free_extent_map(em);
509 
510 		if (page->index == end_index) {
511 			char *userpage;
512 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
513 
514 			if (zero_offset) {
515 				int zeros;
516 				zeros = PAGE_CACHE_SIZE - zero_offset;
517 				userpage = kmap_atomic(page, KM_USER0);
518 				memset(userpage + zero_offset, 0, zeros);
519 				flush_dcache_page(page);
520 				kunmap_atomic(userpage, KM_USER0);
521 			}
522 		}
523 
524 		ret = bio_add_page(cb->orig_bio, page,
525 				   PAGE_CACHE_SIZE, 0);
526 
527 		if (ret == PAGE_CACHE_SIZE) {
528 			nr_pages++;
529 			page_cache_release(page);
530 		} else {
531 			unlock_extent(tree, last_offset, end, GFP_NOFS);
532 			unlock_page(page);
533 			page_cache_release(page);
534 			break;
535 		}
536 next:
537 		last_offset += PAGE_CACHE_SIZE;
538 	}
539 	return 0;
540 }
541 
542 /*
543  * for a compressed read, the bio we get passed has all the inode pages
544  * in it.  We don't actually do IO on those pages but allocate new ones
545  * to hold the compressed pages on disk.
546  *
547  * bio->bi_sector points to the compressed extent on disk
548  * bio->bi_io_vec points to all of the inode pages
549  * bio->bi_vcnt is a count of pages
550  *
551  * After the compressed pages are read, we copy the bytes into the
552  * bio we were passed and then call the bio end_io calls
553  */
554 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
555 				 int mirror_num, unsigned long bio_flags)
556 {
557 	struct extent_io_tree *tree;
558 	struct extent_map_tree *em_tree;
559 	struct compressed_bio *cb;
560 	struct btrfs_root *root = BTRFS_I(inode)->root;
561 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
562 	unsigned long compressed_len;
563 	unsigned long nr_pages;
564 	unsigned long pg_index;
565 	struct page *page;
566 	struct block_device *bdev;
567 	struct bio *comp_bio;
568 	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
569 	u64 em_len;
570 	u64 em_start;
571 	struct extent_map *em;
572 	int ret = -ENOMEM;
573 	u32 *sums;
574 
575 	tree = &BTRFS_I(inode)->io_tree;
576 	em_tree = &BTRFS_I(inode)->extent_tree;
577 
578 	/* we need the actual starting offset of this extent in the file */
579 	read_lock(&em_tree->lock);
580 	em = lookup_extent_mapping(em_tree,
581 				   page_offset(bio->bi_io_vec->bv_page),
582 				   PAGE_CACHE_SIZE);
583 	read_unlock(&em_tree->lock);
584 
585 	compressed_len = em->block_len;
586 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
587 	if (!cb)
588 		goto out;
589 
590 	atomic_set(&cb->pending_bios, 0);
591 	cb->errors = 0;
592 	cb->inode = inode;
593 	cb->mirror_num = mirror_num;
594 	sums = &cb->sums;
595 
596 	cb->start = em->orig_start;
597 	em_len = em->len;
598 	em_start = em->start;
599 
600 	free_extent_map(em);
601 	em = NULL;
602 
603 	cb->len = uncompressed_len;
604 	cb->compressed_len = compressed_len;
605 	cb->compress_type = extent_compress_type(bio_flags);
606 	cb->orig_bio = bio;
607 
608 	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
609 				 PAGE_CACHE_SIZE;
610 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
611 				       GFP_NOFS);
612 	if (!cb->compressed_pages)
613 		goto fail1;
614 
615 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
616 
617 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
618 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
619 							      __GFP_HIGHMEM);
620 		if (!cb->compressed_pages[pg_index])
621 			goto fail2;
622 	}
623 	cb->nr_pages = nr_pages;
624 
625 	add_ra_bio_pages(inode, em_start + em_len, cb);
626 
627 	/* include any pages we added in add_ra-bio_pages */
628 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
629 	cb->len = uncompressed_len;
630 
631 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
632 	if (!comp_bio)
633 		goto fail2;
634 	comp_bio->bi_private = cb;
635 	comp_bio->bi_end_io = end_compressed_bio_read;
636 	atomic_inc(&cb->pending_bios);
637 
638 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
639 		page = cb->compressed_pages[pg_index];
640 		page->mapping = inode->i_mapping;
641 		page->index = em_start >> PAGE_CACHE_SHIFT;
642 
643 		if (comp_bio->bi_size)
644 			ret = tree->ops->merge_bio_hook(page, 0,
645 							PAGE_CACHE_SIZE,
646 							comp_bio, 0);
647 		else
648 			ret = 0;
649 
650 		page->mapping = NULL;
651 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
652 		    PAGE_CACHE_SIZE) {
653 			bio_get(comp_bio);
654 
655 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
656 			BUG_ON(ret);
657 
658 			/*
659 			 * inc the count before we submit the bio so
660 			 * we know the end IO handler won't happen before
661 			 * we inc the count.  Otherwise, the cb might get
662 			 * freed before we're done setting it up
663 			 */
664 			atomic_inc(&cb->pending_bios);
665 
666 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
667 				ret = btrfs_lookup_bio_sums(root, inode,
668 							comp_bio, sums);
669 				BUG_ON(ret);
670 			}
671 			sums += (comp_bio->bi_size + root->sectorsize - 1) /
672 				root->sectorsize;
673 
674 			ret = btrfs_map_bio(root, READ, comp_bio,
675 					    mirror_num, 0);
676 			BUG_ON(ret);
677 
678 			bio_put(comp_bio);
679 
680 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
681 							GFP_NOFS);
682 			comp_bio->bi_private = cb;
683 			comp_bio->bi_end_io = end_compressed_bio_read;
684 
685 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
686 		}
687 		cur_disk_byte += PAGE_CACHE_SIZE;
688 	}
689 	bio_get(comp_bio);
690 
691 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
692 	BUG_ON(ret);
693 
694 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
695 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
696 		BUG_ON(ret);
697 	}
698 
699 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
700 	BUG_ON(ret);
701 
702 	bio_put(comp_bio);
703 	return 0;
704 
705 fail2:
706 	for (pg_index = 0; pg_index < nr_pages; pg_index++)
707 		free_page((unsigned long)cb->compressed_pages[pg_index]);
708 
709 	kfree(cb->compressed_pages);
710 fail1:
711 	kfree(cb);
712 out:
713 	free_extent_map(em);
714 	return ret;
715 }
716 
717 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
718 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
719 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
720 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
721 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
722 
723 struct btrfs_compress_op *btrfs_compress_op[] = {
724 	&btrfs_zlib_compress,
725 	&btrfs_lzo_compress,
726 };
727 
728 int __init btrfs_init_compress(void)
729 {
730 	int i;
731 
732 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
733 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
734 		spin_lock_init(&comp_workspace_lock[i]);
735 		atomic_set(&comp_alloc_workspace[i], 0);
736 		init_waitqueue_head(&comp_workspace_wait[i]);
737 	}
738 	return 0;
739 }
740 
741 /*
742  * this finds an available workspace or allocates a new one
743  * ERR_PTR is returned if things go bad.
744  */
745 static struct list_head *find_workspace(int type)
746 {
747 	struct list_head *workspace;
748 	int cpus = num_online_cpus();
749 	int idx = type - 1;
750 
751 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
752 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
753 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
754 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
755 	int *num_workspace			= &comp_num_workspace[idx];
756 again:
757 	spin_lock(workspace_lock);
758 	if (!list_empty(idle_workspace)) {
759 		workspace = idle_workspace->next;
760 		list_del(workspace);
761 		(*num_workspace)--;
762 		spin_unlock(workspace_lock);
763 		return workspace;
764 
765 	}
766 	if (atomic_read(alloc_workspace) > cpus) {
767 		DEFINE_WAIT(wait);
768 
769 		spin_unlock(workspace_lock);
770 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
771 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
772 			schedule();
773 		finish_wait(workspace_wait, &wait);
774 		goto again;
775 	}
776 	atomic_inc(alloc_workspace);
777 	spin_unlock(workspace_lock);
778 
779 	workspace = btrfs_compress_op[idx]->alloc_workspace();
780 	if (IS_ERR(workspace)) {
781 		atomic_dec(alloc_workspace);
782 		wake_up(workspace_wait);
783 	}
784 	return workspace;
785 }
786 
787 /*
788  * put a workspace struct back on the list or free it if we have enough
789  * idle ones sitting around
790  */
791 static void free_workspace(int type, struct list_head *workspace)
792 {
793 	int idx = type - 1;
794 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
795 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
796 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
797 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
798 	int *num_workspace			= &comp_num_workspace[idx];
799 
800 	spin_lock(workspace_lock);
801 	if (*num_workspace < num_online_cpus()) {
802 		list_add_tail(workspace, idle_workspace);
803 		(*num_workspace)++;
804 		spin_unlock(workspace_lock);
805 		goto wake;
806 	}
807 	spin_unlock(workspace_lock);
808 
809 	btrfs_compress_op[idx]->free_workspace(workspace);
810 	atomic_dec(alloc_workspace);
811 wake:
812 	if (waitqueue_active(workspace_wait))
813 		wake_up(workspace_wait);
814 }
815 
816 /*
817  * cleanup function for module exit
818  */
819 static void free_workspaces(void)
820 {
821 	struct list_head *workspace;
822 	int i;
823 
824 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
825 		while (!list_empty(&comp_idle_workspace[i])) {
826 			workspace = comp_idle_workspace[i].next;
827 			list_del(workspace);
828 			btrfs_compress_op[i]->free_workspace(workspace);
829 			atomic_dec(&comp_alloc_workspace[i]);
830 		}
831 	}
832 }
833 
834 /*
835  * given an address space and start/len, compress the bytes.
836  *
837  * pages are allocated to hold the compressed result and stored
838  * in 'pages'
839  *
840  * out_pages is used to return the number of pages allocated.  There
841  * may be pages allocated even if we return an error
842  *
843  * total_in is used to return the number of bytes actually read.  It
844  * may be smaller then len if we had to exit early because we
845  * ran out of room in the pages array or because we cross the
846  * max_out threshold.
847  *
848  * total_out is used to return the total number of compressed bytes
849  *
850  * max_out tells us the max number of bytes that we're allowed to
851  * stuff into pages
852  */
853 int btrfs_compress_pages(int type, struct address_space *mapping,
854 			 u64 start, unsigned long len,
855 			 struct page **pages,
856 			 unsigned long nr_dest_pages,
857 			 unsigned long *out_pages,
858 			 unsigned long *total_in,
859 			 unsigned long *total_out,
860 			 unsigned long max_out)
861 {
862 	struct list_head *workspace;
863 	int ret;
864 
865 	workspace = find_workspace(type);
866 	if (IS_ERR(workspace))
867 		return -1;
868 
869 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
870 						      start, len, pages,
871 						      nr_dest_pages, out_pages,
872 						      total_in, total_out,
873 						      max_out);
874 	free_workspace(type, workspace);
875 	return ret;
876 }
877 
878 /*
879  * pages_in is an array of pages with compressed data.
880  *
881  * disk_start is the starting logical offset of this array in the file
882  *
883  * bvec is a bio_vec of pages from the file that we want to decompress into
884  *
885  * vcnt is the count of pages in the biovec
886  *
887  * srclen is the number of bytes in pages_in
888  *
889  * The basic idea is that we have a bio that was created by readpages.
890  * The pages in the bio are for the uncompressed data, and they may not
891  * be contiguous.  They all correspond to the range of bytes covered by
892  * the compressed extent.
893  */
894 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
895 			    struct bio_vec *bvec, int vcnt, size_t srclen)
896 {
897 	struct list_head *workspace;
898 	int ret;
899 
900 	workspace = find_workspace(type);
901 	if (IS_ERR(workspace))
902 		return -ENOMEM;
903 
904 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
905 							 disk_start,
906 							 bvec, vcnt, srclen);
907 	free_workspace(type, workspace);
908 	return ret;
909 }
910 
911 /*
912  * a less complex decompression routine.  Our compressed data fits in a
913  * single page, and we want to read a single page out of it.
914  * start_byte tells us the offset into the compressed data we're interested in
915  */
916 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
917 		     unsigned long start_byte, size_t srclen, size_t destlen)
918 {
919 	struct list_head *workspace;
920 	int ret;
921 
922 	workspace = find_workspace(type);
923 	if (IS_ERR(workspace))
924 		return -ENOMEM;
925 
926 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
927 						  dest_page, start_byte,
928 						  srclen, destlen);
929 
930 	free_workspace(type, workspace);
931 	return ret;
932 }
933 
934 void btrfs_exit_compress(void)
935 {
936 	free_workspaces();
937 }
938 
939 /*
940  * Copy uncompressed data from working buffer to pages.
941  *
942  * buf_start is the byte offset we're of the start of our workspace buffer.
943  *
944  * total_out is the last byte of the buffer
945  */
946 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
947 			      unsigned long total_out, u64 disk_start,
948 			      struct bio_vec *bvec, int vcnt,
949 			      unsigned long *pg_index,
950 			      unsigned long *pg_offset)
951 {
952 	unsigned long buf_offset;
953 	unsigned long current_buf_start;
954 	unsigned long start_byte;
955 	unsigned long working_bytes = total_out - buf_start;
956 	unsigned long bytes;
957 	char *kaddr;
958 	struct page *page_out = bvec[*pg_index].bv_page;
959 
960 	/*
961 	 * start byte is the first byte of the page we're currently
962 	 * copying into relative to the start of the compressed data.
963 	 */
964 	start_byte = page_offset(page_out) - disk_start;
965 
966 	/* we haven't yet hit data corresponding to this page */
967 	if (total_out <= start_byte)
968 		return 1;
969 
970 	/*
971 	 * the start of the data we care about is offset into
972 	 * the middle of our working buffer
973 	 */
974 	if (total_out > start_byte && buf_start < start_byte) {
975 		buf_offset = start_byte - buf_start;
976 		working_bytes -= buf_offset;
977 	} else {
978 		buf_offset = 0;
979 	}
980 	current_buf_start = buf_start;
981 
982 	/* copy bytes from the working buffer into the pages */
983 	while (working_bytes > 0) {
984 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
985 			    PAGE_CACHE_SIZE - buf_offset);
986 		bytes = min(bytes, working_bytes);
987 		kaddr = kmap_atomic(page_out, KM_USER0);
988 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
989 		kunmap_atomic(kaddr, KM_USER0);
990 		flush_dcache_page(page_out);
991 
992 		*pg_offset += bytes;
993 		buf_offset += bytes;
994 		working_bytes -= bytes;
995 		current_buf_start += bytes;
996 
997 		/* check if we need to pick another page */
998 		if (*pg_offset == PAGE_CACHE_SIZE) {
999 			(*pg_index)++;
1000 			if (*pg_index >= vcnt)
1001 				return 0;
1002 
1003 			page_out = bvec[*pg_index].bv_page;
1004 			*pg_offset = 0;
1005 			start_byte = page_offset(page_out) - disk_start;
1006 
1007 			/*
1008 			 * make sure our new page is covered by this
1009 			 * working buffer
1010 			 */
1011 			if (total_out <= start_byte)
1012 				return 1;
1013 
1014 			/*
1015 			 * the next page in the biovec might not be adjacent
1016 			 * to the last page, but it might still be found
1017 			 * inside this working buffer. bump our offset pointer
1018 			 */
1019 			if (total_out > start_byte &&
1020 			    current_buf_start < start_byte) {
1021 				buf_offset = start_byte - buf_start;
1022 				working_bytes = total_out - start_byte;
1023 				current_buf_start = buf_start + buf_offset;
1024 			}
1025 		}
1026 	}
1027 
1028 	return 1;
1029 }
1030