xref: /openbmc/linux/fs/btrfs/compression.c (revision 77d84ff8)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44 
45 struct compressed_bio {
46 	/* number of bios pending for this compressed extent */
47 	atomic_t pending_bios;
48 
49 	/* the pages with the compressed data on them */
50 	struct page **compressed_pages;
51 
52 	/* inode that owns this data */
53 	struct inode *inode;
54 
55 	/* starting offset in the inode for our pages */
56 	u64 start;
57 
58 	/* number of bytes in the inode we're working on */
59 	unsigned long len;
60 
61 	/* number of bytes on disk */
62 	unsigned long compressed_len;
63 
64 	/* the compression algorithm for this bio */
65 	int compress_type;
66 
67 	/* number of compressed pages in the array */
68 	unsigned long nr_pages;
69 
70 	/* IO errors */
71 	int errors;
72 	int mirror_num;
73 
74 	/* for reads, this is the bio we are copying the data into */
75 	struct bio *orig_bio;
76 
77 	/*
78 	 * the start of a variable length array of checksums only
79 	 * used by reads
80 	 */
81 	u32 sums;
82 };
83 
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 				   u64 disk_start, struct bio_vec *bvec,
86 				   int vcnt, size_t srclen);
87 
88 static inline int compressed_bio_size(struct btrfs_root *root,
89 				      unsigned long disk_size)
90 {
91 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92 
93 	return sizeof(struct compressed_bio) +
94 		((disk_size + root->sectorsize - 1) / root->sectorsize) *
95 		csum_size;
96 }
97 
98 static struct bio *compressed_bio_alloc(struct block_device *bdev,
99 					u64 first_byte, gfp_t gfp_flags)
100 {
101 	int nr_vecs;
102 
103 	nr_vecs = bio_get_nr_vecs(bdev);
104 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
105 }
106 
107 static int check_compressed_csum(struct inode *inode,
108 				 struct compressed_bio *cb,
109 				 u64 disk_start)
110 {
111 	int ret;
112 	struct page *page;
113 	unsigned long i;
114 	char *kaddr;
115 	u32 csum;
116 	u32 *cb_sum = &cb->sums;
117 
118 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
119 		return 0;
120 
121 	for (i = 0; i < cb->nr_pages; i++) {
122 		page = cb->compressed_pages[i];
123 		csum = ~(u32)0;
124 
125 		kaddr = kmap_atomic(page);
126 		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
127 		btrfs_csum_final(csum, (char *)&csum);
128 		kunmap_atomic(kaddr);
129 
130 		if (csum != *cb_sum) {
131 			printk(KERN_INFO "btrfs csum failed ino %llu "
132 			       "extent %llu csum %u "
133 			       "wanted %u mirror %d\n",
134 			       btrfs_ino(inode), disk_start, csum, *cb_sum,
135 			       cb->mirror_num);
136 			ret = -EIO;
137 			goto fail;
138 		}
139 		cb_sum++;
140 
141 	}
142 	ret = 0;
143 fail:
144 	return ret;
145 }
146 
147 /* when we finish reading compressed pages from the disk, we
148  * decompress them and then run the bio end_io routines on the
149  * decompressed pages (in the inode address space).
150  *
151  * This allows the checksumming and other IO error handling routines
152  * to work normally
153  *
154  * The compressed pages are freed here, and it must be run
155  * in process context
156  */
157 static void end_compressed_bio_read(struct bio *bio, int err)
158 {
159 	struct compressed_bio *cb = bio->bi_private;
160 	struct inode *inode;
161 	struct page *page;
162 	unsigned long index;
163 	int ret;
164 
165 	if (err)
166 		cb->errors = 1;
167 
168 	/* if there are more bios still pending for this compressed
169 	 * extent, just exit
170 	 */
171 	if (!atomic_dec_and_test(&cb->pending_bios))
172 		goto out;
173 
174 	inode = cb->inode;
175 	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
176 	if (ret)
177 		goto csum_failed;
178 
179 	/* ok, we're the last bio for this extent, lets start
180 	 * the decompression.
181 	 */
182 	ret = btrfs_decompress_biovec(cb->compress_type,
183 				      cb->compressed_pages,
184 				      cb->start,
185 				      cb->orig_bio->bi_io_vec,
186 				      cb->orig_bio->bi_vcnt,
187 				      cb->compressed_len);
188 csum_failed:
189 	if (ret)
190 		cb->errors = 1;
191 
192 	/* release the compressed pages */
193 	index = 0;
194 	for (index = 0; index < cb->nr_pages; index++) {
195 		page = cb->compressed_pages[index];
196 		page->mapping = NULL;
197 		page_cache_release(page);
198 	}
199 
200 	/* do io completion on the original bio */
201 	if (cb->errors) {
202 		bio_io_error(cb->orig_bio);
203 	} else {
204 		int bio_index = 0;
205 		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
206 
207 		/*
208 		 * we have verified the checksum already, set page
209 		 * checked so the end_io handlers know about it
210 		 */
211 		while (bio_index < cb->orig_bio->bi_vcnt) {
212 			SetPageChecked(bvec->bv_page);
213 			bvec++;
214 			bio_index++;
215 		}
216 		bio_endio(cb->orig_bio, 0);
217 	}
218 
219 	/* finally free the cb struct */
220 	kfree(cb->compressed_pages);
221 	kfree(cb);
222 out:
223 	bio_put(bio);
224 }
225 
226 /*
227  * Clear the writeback bits on all of the file
228  * pages for a compressed write
229  */
230 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
231 					      unsigned long ram_size)
232 {
233 	unsigned long index = start >> PAGE_CACHE_SHIFT;
234 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
235 	struct page *pages[16];
236 	unsigned long nr_pages = end_index - index + 1;
237 	int i;
238 	int ret;
239 
240 	while (nr_pages > 0) {
241 		ret = find_get_pages_contig(inode->i_mapping, index,
242 				     min_t(unsigned long,
243 				     nr_pages, ARRAY_SIZE(pages)), pages);
244 		if (ret == 0) {
245 			nr_pages -= 1;
246 			index += 1;
247 			continue;
248 		}
249 		for (i = 0; i < ret; i++) {
250 			end_page_writeback(pages[i]);
251 			page_cache_release(pages[i]);
252 		}
253 		nr_pages -= ret;
254 		index += ret;
255 	}
256 	/* the inode may be gone now */
257 }
258 
259 /*
260  * do the cleanup once all the compressed pages hit the disk.
261  * This will clear writeback on the file pages and free the compressed
262  * pages.
263  *
264  * This also calls the writeback end hooks for the file pages so that
265  * metadata and checksums can be updated in the file.
266  */
267 static void end_compressed_bio_write(struct bio *bio, int err)
268 {
269 	struct extent_io_tree *tree;
270 	struct compressed_bio *cb = bio->bi_private;
271 	struct inode *inode;
272 	struct page *page;
273 	unsigned long index;
274 
275 	if (err)
276 		cb->errors = 1;
277 
278 	/* if there are more bios still pending for this compressed
279 	 * extent, just exit
280 	 */
281 	if (!atomic_dec_and_test(&cb->pending_bios))
282 		goto out;
283 
284 	/* ok, we're the last bio for this extent, step one is to
285 	 * call back into the FS and do all the end_io operations
286 	 */
287 	inode = cb->inode;
288 	tree = &BTRFS_I(inode)->io_tree;
289 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
290 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
291 					 cb->start,
292 					 cb->start + cb->len - 1,
293 					 NULL, 1);
294 	cb->compressed_pages[0]->mapping = NULL;
295 
296 	end_compressed_writeback(inode, cb->start, cb->len);
297 	/* note, our inode could be gone now */
298 
299 	/*
300 	 * release the compressed pages, these came from alloc_page and
301 	 * are not attached to the inode at all
302 	 */
303 	index = 0;
304 	for (index = 0; index < cb->nr_pages; index++) {
305 		page = cb->compressed_pages[index];
306 		page->mapping = NULL;
307 		page_cache_release(page);
308 	}
309 
310 	/* finally free the cb struct */
311 	kfree(cb->compressed_pages);
312 	kfree(cb);
313 out:
314 	bio_put(bio);
315 }
316 
317 /*
318  * worker function to build and submit bios for previously compressed pages.
319  * The corresponding pages in the inode should be marked for writeback
320  * and the compressed pages should have a reference on them for dropping
321  * when the IO is complete.
322  *
323  * This also checksums the file bytes and gets things ready for
324  * the end io hooks.
325  */
326 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
327 				 unsigned long len, u64 disk_start,
328 				 unsigned long compressed_len,
329 				 struct page **compressed_pages,
330 				 unsigned long nr_pages)
331 {
332 	struct bio *bio = NULL;
333 	struct btrfs_root *root = BTRFS_I(inode)->root;
334 	struct compressed_bio *cb;
335 	unsigned long bytes_left;
336 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
337 	int pg_index = 0;
338 	struct page *page;
339 	u64 first_byte = disk_start;
340 	struct block_device *bdev;
341 	int ret;
342 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
343 
344 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
345 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
346 	if (!cb)
347 		return -ENOMEM;
348 	atomic_set(&cb->pending_bios, 0);
349 	cb->errors = 0;
350 	cb->inode = inode;
351 	cb->start = start;
352 	cb->len = len;
353 	cb->mirror_num = 0;
354 	cb->compressed_pages = compressed_pages;
355 	cb->compressed_len = compressed_len;
356 	cb->orig_bio = NULL;
357 	cb->nr_pages = nr_pages;
358 
359 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
360 
361 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
362 	if (!bio) {
363 		kfree(cb);
364 		return -ENOMEM;
365 	}
366 	bio->bi_private = cb;
367 	bio->bi_end_io = end_compressed_bio_write;
368 	atomic_inc(&cb->pending_bios);
369 
370 	/* create and submit bios for the compressed pages */
371 	bytes_left = compressed_len;
372 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
373 		page = compressed_pages[pg_index];
374 		page->mapping = inode->i_mapping;
375 		if (bio->bi_size)
376 			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
377 							   PAGE_CACHE_SIZE,
378 							   bio, 0);
379 		else
380 			ret = 0;
381 
382 		page->mapping = NULL;
383 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
384 		    PAGE_CACHE_SIZE) {
385 			bio_get(bio);
386 
387 			/*
388 			 * inc the count before we submit the bio so
389 			 * we know the end IO handler won't happen before
390 			 * we inc the count.  Otherwise, the cb might get
391 			 * freed before we're done setting it up
392 			 */
393 			atomic_inc(&cb->pending_bios);
394 			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
395 			BUG_ON(ret); /* -ENOMEM */
396 
397 			if (!skip_sum) {
398 				ret = btrfs_csum_one_bio(root, inode, bio,
399 							 start, 1);
400 				BUG_ON(ret); /* -ENOMEM */
401 			}
402 
403 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
404 			BUG_ON(ret); /* -ENOMEM */
405 
406 			bio_put(bio);
407 
408 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
409 			BUG_ON(!bio);
410 			bio->bi_private = cb;
411 			bio->bi_end_io = end_compressed_bio_write;
412 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
413 		}
414 		if (bytes_left < PAGE_CACHE_SIZE) {
415 			printk("bytes left %lu compress len %lu nr %lu\n",
416 			       bytes_left, cb->compressed_len, cb->nr_pages);
417 		}
418 		bytes_left -= PAGE_CACHE_SIZE;
419 		first_byte += PAGE_CACHE_SIZE;
420 		cond_resched();
421 	}
422 	bio_get(bio);
423 
424 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
425 	BUG_ON(ret); /* -ENOMEM */
426 
427 	if (!skip_sum) {
428 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
429 		BUG_ON(ret); /* -ENOMEM */
430 	}
431 
432 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
433 	BUG_ON(ret); /* -ENOMEM */
434 
435 	bio_put(bio);
436 	return 0;
437 }
438 
439 static noinline int add_ra_bio_pages(struct inode *inode,
440 				     u64 compressed_end,
441 				     struct compressed_bio *cb)
442 {
443 	unsigned long end_index;
444 	unsigned long pg_index;
445 	u64 last_offset;
446 	u64 isize = i_size_read(inode);
447 	int ret;
448 	struct page *page;
449 	unsigned long nr_pages = 0;
450 	struct extent_map *em;
451 	struct address_space *mapping = inode->i_mapping;
452 	struct extent_map_tree *em_tree;
453 	struct extent_io_tree *tree;
454 	u64 end;
455 	int misses = 0;
456 
457 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
458 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
459 	em_tree = &BTRFS_I(inode)->extent_tree;
460 	tree = &BTRFS_I(inode)->io_tree;
461 
462 	if (isize == 0)
463 		return 0;
464 
465 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
466 
467 	while (last_offset < compressed_end) {
468 		pg_index = last_offset >> PAGE_CACHE_SHIFT;
469 
470 		if (pg_index > end_index)
471 			break;
472 
473 		rcu_read_lock();
474 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
475 		rcu_read_unlock();
476 		if (page) {
477 			misses++;
478 			if (misses > 4)
479 				break;
480 			goto next;
481 		}
482 
483 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
484 								~__GFP_FS);
485 		if (!page)
486 			break;
487 
488 		if (add_to_page_cache_lru(page, mapping, pg_index,
489 								GFP_NOFS)) {
490 			page_cache_release(page);
491 			goto next;
492 		}
493 
494 		end = last_offset + PAGE_CACHE_SIZE - 1;
495 		/*
496 		 * at this point, we have a locked page in the page cache
497 		 * for these bytes in the file.  But, we have to make
498 		 * sure they map to this compressed extent on disk.
499 		 */
500 		set_page_extent_mapped(page);
501 		lock_extent(tree, last_offset, end);
502 		read_lock(&em_tree->lock);
503 		em = lookup_extent_mapping(em_tree, last_offset,
504 					   PAGE_CACHE_SIZE);
505 		read_unlock(&em_tree->lock);
506 
507 		if (!em || last_offset < em->start ||
508 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
509 		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
510 			free_extent_map(em);
511 			unlock_extent(tree, last_offset, end);
512 			unlock_page(page);
513 			page_cache_release(page);
514 			break;
515 		}
516 		free_extent_map(em);
517 
518 		if (page->index == end_index) {
519 			char *userpage;
520 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
521 
522 			if (zero_offset) {
523 				int zeros;
524 				zeros = PAGE_CACHE_SIZE - zero_offset;
525 				userpage = kmap_atomic(page);
526 				memset(userpage + zero_offset, 0, zeros);
527 				flush_dcache_page(page);
528 				kunmap_atomic(userpage);
529 			}
530 		}
531 
532 		ret = bio_add_page(cb->orig_bio, page,
533 				   PAGE_CACHE_SIZE, 0);
534 
535 		if (ret == PAGE_CACHE_SIZE) {
536 			nr_pages++;
537 			page_cache_release(page);
538 		} else {
539 			unlock_extent(tree, last_offset, end);
540 			unlock_page(page);
541 			page_cache_release(page);
542 			break;
543 		}
544 next:
545 		last_offset += PAGE_CACHE_SIZE;
546 	}
547 	return 0;
548 }
549 
550 /*
551  * for a compressed read, the bio we get passed has all the inode pages
552  * in it.  We don't actually do IO on those pages but allocate new ones
553  * to hold the compressed pages on disk.
554  *
555  * bio->bi_sector points to the compressed extent on disk
556  * bio->bi_io_vec points to all of the inode pages
557  * bio->bi_vcnt is a count of pages
558  *
559  * After the compressed pages are read, we copy the bytes into the
560  * bio we were passed and then call the bio end_io calls
561  */
562 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
563 				 int mirror_num, unsigned long bio_flags)
564 {
565 	struct extent_io_tree *tree;
566 	struct extent_map_tree *em_tree;
567 	struct compressed_bio *cb;
568 	struct btrfs_root *root = BTRFS_I(inode)->root;
569 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
570 	unsigned long compressed_len;
571 	unsigned long nr_pages;
572 	unsigned long pg_index;
573 	struct page *page;
574 	struct block_device *bdev;
575 	struct bio *comp_bio;
576 	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
577 	u64 em_len;
578 	u64 em_start;
579 	struct extent_map *em;
580 	int ret = -ENOMEM;
581 	int faili = 0;
582 	u32 *sums;
583 
584 	tree = &BTRFS_I(inode)->io_tree;
585 	em_tree = &BTRFS_I(inode)->extent_tree;
586 
587 	/* we need the actual starting offset of this extent in the file */
588 	read_lock(&em_tree->lock);
589 	em = lookup_extent_mapping(em_tree,
590 				   page_offset(bio->bi_io_vec->bv_page),
591 				   PAGE_CACHE_SIZE);
592 	read_unlock(&em_tree->lock);
593 	if (!em)
594 		return -EIO;
595 
596 	compressed_len = em->block_len;
597 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
598 	if (!cb)
599 		goto out;
600 
601 	atomic_set(&cb->pending_bios, 0);
602 	cb->errors = 0;
603 	cb->inode = inode;
604 	cb->mirror_num = mirror_num;
605 	sums = &cb->sums;
606 
607 	cb->start = em->orig_start;
608 	em_len = em->len;
609 	em_start = em->start;
610 
611 	free_extent_map(em);
612 	em = NULL;
613 
614 	cb->len = uncompressed_len;
615 	cb->compressed_len = compressed_len;
616 	cb->compress_type = extent_compress_type(bio_flags);
617 	cb->orig_bio = bio;
618 
619 	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
620 				 PAGE_CACHE_SIZE;
621 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
622 				       GFP_NOFS);
623 	if (!cb->compressed_pages)
624 		goto fail1;
625 
626 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
627 
628 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
629 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
630 							      __GFP_HIGHMEM);
631 		if (!cb->compressed_pages[pg_index]) {
632 			faili = pg_index - 1;
633 			ret = -ENOMEM;
634 			goto fail2;
635 		}
636 	}
637 	faili = nr_pages - 1;
638 	cb->nr_pages = nr_pages;
639 
640 	/* In the parent-locked case, we only locked the range we are
641 	 * interested in.  In all other cases, we can opportunistically
642 	 * cache decompressed data that goes beyond the requested range. */
643 	if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
644 		add_ra_bio_pages(inode, em_start + em_len, cb);
645 
646 	/* include any pages we added in add_ra-bio_pages */
647 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
648 	cb->len = uncompressed_len;
649 
650 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
651 	if (!comp_bio)
652 		goto fail2;
653 	comp_bio->bi_private = cb;
654 	comp_bio->bi_end_io = end_compressed_bio_read;
655 	atomic_inc(&cb->pending_bios);
656 
657 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
658 		page = cb->compressed_pages[pg_index];
659 		page->mapping = inode->i_mapping;
660 		page->index = em_start >> PAGE_CACHE_SHIFT;
661 
662 		if (comp_bio->bi_size)
663 			ret = tree->ops->merge_bio_hook(READ, page, 0,
664 							PAGE_CACHE_SIZE,
665 							comp_bio, 0);
666 		else
667 			ret = 0;
668 
669 		page->mapping = NULL;
670 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
671 		    PAGE_CACHE_SIZE) {
672 			bio_get(comp_bio);
673 
674 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
675 			BUG_ON(ret); /* -ENOMEM */
676 
677 			/*
678 			 * inc the count before we submit the bio so
679 			 * we know the end IO handler won't happen before
680 			 * we inc the count.  Otherwise, the cb might get
681 			 * freed before we're done setting it up
682 			 */
683 			atomic_inc(&cb->pending_bios);
684 
685 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
686 				ret = btrfs_lookup_bio_sums(root, inode,
687 							comp_bio, sums);
688 				BUG_ON(ret); /* -ENOMEM */
689 			}
690 			sums += (comp_bio->bi_size + root->sectorsize - 1) /
691 				root->sectorsize;
692 
693 			ret = btrfs_map_bio(root, READ, comp_bio,
694 					    mirror_num, 0);
695 			if (ret)
696 				bio_endio(comp_bio, ret);
697 
698 			bio_put(comp_bio);
699 
700 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
701 							GFP_NOFS);
702 			BUG_ON(!comp_bio);
703 			comp_bio->bi_private = cb;
704 			comp_bio->bi_end_io = end_compressed_bio_read;
705 
706 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
707 		}
708 		cur_disk_byte += PAGE_CACHE_SIZE;
709 	}
710 	bio_get(comp_bio);
711 
712 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
713 	BUG_ON(ret); /* -ENOMEM */
714 
715 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
716 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
717 		BUG_ON(ret); /* -ENOMEM */
718 	}
719 
720 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
721 	if (ret)
722 		bio_endio(comp_bio, ret);
723 
724 	bio_put(comp_bio);
725 	return 0;
726 
727 fail2:
728 	while (faili >= 0) {
729 		__free_page(cb->compressed_pages[faili]);
730 		faili--;
731 	}
732 
733 	kfree(cb->compressed_pages);
734 fail1:
735 	kfree(cb);
736 out:
737 	free_extent_map(em);
738 	return ret;
739 }
740 
741 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
742 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
743 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
744 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
745 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
746 
747 static struct btrfs_compress_op *btrfs_compress_op[] = {
748 	&btrfs_zlib_compress,
749 	&btrfs_lzo_compress,
750 };
751 
752 void __init btrfs_init_compress(void)
753 {
754 	int i;
755 
756 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
757 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
758 		spin_lock_init(&comp_workspace_lock[i]);
759 		atomic_set(&comp_alloc_workspace[i], 0);
760 		init_waitqueue_head(&comp_workspace_wait[i]);
761 	}
762 }
763 
764 /*
765  * this finds an available workspace or allocates a new one
766  * ERR_PTR is returned if things go bad.
767  */
768 static struct list_head *find_workspace(int type)
769 {
770 	struct list_head *workspace;
771 	int cpus = num_online_cpus();
772 	int idx = type - 1;
773 
774 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
775 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
776 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
777 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
778 	int *num_workspace			= &comp_num_workspace[idx];
779 again:
780 	spin_lock(workspace_lock);
781 	if (!list_empty(idle_workspace)) {
782 		workspace = idle_workspace->next;
783 		list_del(workspace);
784 		(*num_workspace)--;
785 		spin_unlock(workspace_lock);
786 		return workspace;
787 
788 	}
789 	if (atomic_read(alloc_workspace) > cpus) {
790 		DEFINE_WAIT(wait);
791 
792 		spin_unlock(workspace_lock);
793 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
794 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
795 			schedule();
796 		finish_wait(workspace_wait, &wait);
797 		goto again;
798 	}
799 	atomic_inc(alloc_workspace);
800 	spin_unlock(workspace_lock);
801 
802 	workspace = btrfs_compress_op[idx]->alloc_workspace();
803 	if (IS_ERR(workspace)) {
804 		atomic_dec(alloc_workspace);
805 		wake_up(workspace_wait);
806 	}
807 	return workspace;
808 }
809 
810 /*
811  * put a workspace struct back on the list or free it if we have enough
812  * idle ones sitting around
813  */
814 static void free_workspace(int type, struct list_head *workspace)
815 {
816 	int idx = type - 1;
817 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
818 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
819 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
820 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
821 	int *num_workspace			= &comp_num_workspace[idx];
822 
823 	spin_lock(workspace_lock);
824 	if (*num_workspace < num_online_cpus()) {
825 		list_add_tail(workspace, idle_workspace);
826 		(*num_workspace)++;
827 		spin_unlock(workspace_lock);
828 		goto wake;
829 	}
830 	spin_unlock(workspace_lock);
831 
832 	btrfs_compress_op[idx]->free_workspace(workspace);
833 	atomic_dec(alloc_workspace);
834 wake:
835 	smp_mb();
836 	if (waitqueue_active(workspace_wait))
837 		wake_up(workspace_wait);
838 }
839 
840 /*
841  * cleanup function for module exit
842  */
843 static void free_workspaces(void)
844 {
845 	struct list_head *workspace;
846 	int i;
847 
848 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
849 		while (!list_empty(&comp_idle_workspace[i])) {
850 			workspace = comp_idle_workspace[i].next;
851 			list_del(workspace);
852 			btrfs_compress_op[i]->free_workspace(workspace);
853 			atomic_dec(&comp_alloc_workspace[i]);
854 		}
855 	}
856 }
857 
858 /*
859  * given an address space and start/len, compress the bytes.
860  *
861  * pages are allocated to hold the compressed result and stored
862  * in 'pages'
863  *
864  * out_pages is used to return the number of pages allocated.  There
865  * may be pages allocated even if we return an error
866  *
867  * total_in is used to return the number of bytes actually read.  It
868  * may be smaller then len if we had to exit early because we
869  * ran out of room in the pages array or because we cross the
870  * max_out threshold.
871  *
872  * total_out is used to return the total number of compressed bytes
873  *
874  * max_out tells us the max number of bytes that we're allowed to
875  * stuff into pages
876  */
877 int btrfs_compress_pages(int type, struct address_space *mapping,
878 			 u64 start, unsigned long len,
879 			 struct page **pages,
880 			 unsigned long nr_dest_pages,
881 			 unsigned long *out_pages,
882 			 unsigned long *total_in,
883 			 unsigned long *total_out,
884 			 unsigned long max_out)
885 {
886 	struct list_head *workspace;
887 	int ret;
888 
889 	workspace = find_workspace(type);
890 	if (IS_ERR(workspace))
891 		return -1;
892 
893 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
894 						      start, len, pages,
895 						      nr_dest_pages, out_pages,
896 						      total_in, total_out,
897 						      max_out);
898 	free_workspace(type, workspace);
899 	return ret;
900 }
901 
902 /*
903  * pages_in is an array of pages with compressed data.
904  *
905  * disk_start is the starting logical offset of this array in the file
906  *
907  * bvec is a bio_vec of pages from the file that we want to decompress into
908  *
909  * vcnt is the count of pages in the biovec
910  *
911  * srclen is the number of bytes in pages_in
912  *
913  * The basic idea is that we have a bio that was created by readpages.
914  * The pages in the bio are for the uncompressed data, and they may not
915  * be contiguous.  They all correspond to the range of bytes covered by
916  * the compressed extent.
917  */
918 static int btrfs_decompress_biovec(int type, struct page **pages_in,
919 				   u64 disk_start, struct bio_vec *bvec,
920 				   int vcnt, size_t srclen)
921 {
922 	struct list_head *workspace;
923 	int ret;
924 
925 	workspace = find_workspace(type);
926 	if (IS_ERR(workspace))
927 		return -ENOMEM;
928 
929 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
930 							 disk_start,
931 							 bvec, vcnt, srclen);
932 	free_workspace(type, workspace);
933 	return ret;
934 }
935 
936 /*
937  * a less complex decompression routine.  Our compressed data fits in a
938  * single page, and we want to read a single page out of it.
939  * start_byte tells us the offset into the compressed data we're interested in
940  */
941 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
942 		     unsigned long start_byte, size_t srclen, size_t destlen)
943 {
944 	struct list_head *workspace;
945 	int ret;
946 
947 	workspace = find_workspace(type);
948 	if (IS_ERR(workspace))
949 		return -ENOMEM;
950 
951 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
952 						  dest_page, start_byte,
953 						  srclen, destlen);
954 
955 	free_workspace(type, workspace);
956 	return ret;
957 }
958 
959 void btrfs_exit_compress(void)
960 {
961 	free_workspaces();
962 }
963 
964 /*
965  * Copy uncompressed data from working buffer to pages.
966  *
967  * buf_start is the byte offset we're of the start of our workspace buffer.
968  *
969  * total_out is the last byte of the buffer
970  */
971 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
972 			      unsigned long total_out, u64 disk_start,
973 			      struct bio_vec *bvec, int vcnt,
974 			      unsigned long *pg_index,
975 			      unsigned long *pg_offset)
976 {
977 	unsigned long buf_offset;
978 	unsigned long current_buf_start;
979 	unsigned long start_byte;
980 	unsigned long working_bytes = total_out - buf_start;
981 	unsigned long bytes;
982 	char *kaddr;
983 	struct page *page_out = bvec[*pg_index].bv_page;
984 
985 	/*
986 	 * start byte is the first byte of the page we're currently
987 	 * copying into relative to the start of the compressed data.
988 	 */
989 	start_byte = page_offset(page_out) - disk_start;
990 
991 	/* we haven't yet hit data corresponding to this page */
992 	if (total_out <= start_byte)
993 		return 1;
994 
995 	/*
996 	 * the start of the data we care about is offset into
997 	 * the middle of our working buffer
998 	 */
999 	if (total_out > start_byte && buf_start < start_byte) {
1000 		buf_offset = start_byte - buf_start;
1001 		working_bytes -= buf_offset;
1002 	} else {
1003 		buf_offset = 0;
1004 	}
1005 	current_buf_start = buf_start;
1006 
1007 	/* copy bytes from the working buffer into the pages */
1008 	while (working_bytes > 0) {
1009 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1010 			    PAGE_CACHE_SIZE - buf_offset);
1011 		bytes = min(bytes, working_bytes);
1012 		kaddr = kmap_atomic(page_out);
1013 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1014 		kunmap_atomic(kaddr);
1015 		flush_dcache_page(page_out);
1016 
1017 		*pg_offset += bytes;
1018 		buf_offset += bytes;
1019 		working_bytes -= bytes;
1020 		current_buf_start += bytes;
1021 
1022 		/* check if we need to pick another page */
1023 		if (*pg_offset == PAGE_CACHE_SIZE) {
1024 			(*pg_index)++;
1025 			if (*pg_index >= vcnt)
1026 				return 0;
1027 
1028 			page_out = bvec[*pg_index].bv_page;
1029 			*pg_offset = 0;
1030 			start_byte = page_offset(page_out) - disk_start;
1031 
1032 			/*
1033 			 * make sure our new page is covered by this
1034 			 * working buffer
1035 			 */
1036 			if (total_out <= start_byte)
1037 				return 1;
1038 
1039 			/*
1040 			 * the next page in the biovec might not be adjacent
1041 			 * to the last page, but it might still be found
1042 			 * inside this working buffer. bump our offset pointer
1043 			 */
1044 			if (total_out > start_byte &&
1045 			    current_buf_start < start_byte) {
1046 				buf_offset = start_byte - buf_start;
1047 				working_bytes = total_out - start_byte;
1048 				current_buf_start = buf_start + buf_offset;
1049 			}
1050 		}
1051 	}
1052 
1053 	return 1;
1054 }
1055