xref: /openbmc/linux/fs/btrfs/compression.c (revision 74a22e8f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
29 
30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31 
32 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33 {
34 	switch (type) {
35 	case BTRFS_COMPRESS_ZLIB:
36 	case BTRFS_COMPRESS_LZO:
37 	case BTRFS_COMPRESS_ZSTD:
38 	case BTRFS_COMPRESS_NONE:
39 		return btrfs_compress_types[type];
40 	}
41 
42 	return NULL;
43 }
44 
45 static int btrfs_decompress_bio(struct compressed_bio *cb);
46 
47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 				      unsigned long disk_size)
49 {
50 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51 
52 	return sizeof(struct compressed_bio) +
53 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 }
55 
56 static int check_compressed_csum(struct btrfs_inode *inode,
57 				 struct compressed_bio *cb,
58 				 u64 disk_start)
59 {
60 	int ret;
61 	struct page *page;
62 	unsigned long i;
63 	char *kaddr;
64 	u32 csum;
65 	u32 *cb_sum = &cb->sums;
66 
67 	if (inode->flags & BTRFS_INODE_NODATASUM)
68 		return 0;
69 
70 	for (i = 0; i < cb->nr_pages; i++) {
71 		page = cb->compressed_pages[i];
72 		csum = ~(u32)0;
73 
74 		kaddr = kmap_atomic(page);
75 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76 		btrfs_csum_final(csum, (u8 *)&csum);
77 		kunmap_atomic(kaddr);
78 
79 		if (csum != *cb_sum) {
80 			btrfs_print_data_csum_error(inode, disk_start, csum,
81 					*cb_sum, cb->mirror_num);
82 			ret = -EIO;
83 			goto fail;
84 		}
85 		cb_sum++;
86 
87 	}
88 	ret = 0;
89 fail:
90 	return ret;
91 }
92 
93 /* when we finish reading compressed pages from the disk, we
94  * decompress them and then run the bio end_io routines on the
95  * decompressed pages (in the inode address space).
96  *
97  * This allows the checksumming and other IO error handling routines
98  * to work normally
99  *
100  * The compressed pages are freed here, and it must be run
101  * in process context
102  */
103 static void end_compressed_bio_read(struct bio *bio)
104 {
105 	struct compressed_bio *cb = bio->bi_private;
106 	struct inode *inode;
107 	struct page *page;
108 	unsigned long index;
109 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110 	int ret = 0;
111 
112 	if (bio->bi_status)
113 		cb->errors = 1;
114 
115 	/* if there are more bios still pending for this compressed
116 	 * extent, just exit
117 	 */
118 	if (!refcount_dec_and_test(&cb->pending_bios))
119 		goto out;
120 
121 	/*
122 	 * Record the correct mirror_num in cb->orig_bio so that
123 	 * read-repair can work properly.
124 	 */
125 	ASSERT(btrfs_io_bio(cb->orig_bio));
126 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 	cb->mirror_num = mirror;
128 
129 	/*
130 	 * Some IO in this cb have failed, just skip checksum as there
131 	 * is no way it could be correct.
132 	 */
133 	if (cb->errors == 1)
134 		goto csum_failed;
135 
136 	inode = cb->inode;
137 	ret = check_compressed_csum(BTRFS_I(inode), cb,
138 				    (u64)bio->bi_iter.bi_sector << 9);
139 	if (ret)
140 		goto csum_failed;
141 
142 	/* ok, we're the last bio for this extent, lets start
143 	 * the decompression.
144 	 */
145 	ret = btrfs_decompress_bio(cb);
146 
147 csum_failed:
148 	if (ret)
149 		cb->errors = 1;
150 
151 	/* release the compressed pages */
152 	index = 0;
153 	for (index = 0; index < cb->nr_pages; index++) {
154 		page = cb->compressed_pages[index];
155 		page->mapping = NULL;
156 		put_page(page);
157 	}
158 
159 	/* do io completion on the original bio */
160 	if (cb->errors) {
161 		bio_io_error(cb->orig_bio);
162 	} else {
163 		struct bio_vec *bvec;
164 		struct bvec_iter_all iter_all;
165 
166 		/*
167 		 * we have verified the checksum already, set page
168 		 * checked so the end_io handlers know about it
169 		 */
170 		ASSERT(!bio_flagged(bio, BIO_CLONED));
171 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
172 			SetPageChecked(bvec->bv_page);
173 
174 		bio_endio(cb->orig_bio);
175 	}
176 
177 	/* finally free the cb struct */
178 	kfree(cb->compressed_pages);
179 	kfree(cb);
180 out:
181 	bio_put(bio);
182 }
183 
184 /*
185  * Clear the writeback bits on all of the file
186  * pages for a compressed write
187  */
188 static noinline void end_compressed_writeback(struct inode *inode,
189 					      const struct compressed_bio *cb)
190 {
191 	unsigned long index = cb->start >> PAGE_SHIFT;
192 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
193 	struct page *pages[16];
194 	unsigned long nr_pages = end_index - index + 1;
195 	int i;
196 	int ret;
197 
198 	if (cb->errors)
199 		mapping_set_error(inode->i_mapping, -EIO);
200 
201 	while (nr_pages > 0) {
202 		ret = find_get_pages_contig(inode->i_mapping, index,
203 				     min_t(unsigned long,
204 				     nr_pages, ARRAY_SIZE(pages)), pages);
205 		if (ret == 0) {
206 			nr_pages -= 1;
207 			index += 1;
208 			continue;
209 		}
210 		for (i = 0; i < ret; i++) {
211 			if (cb->errors)
212 				SetPageError(pages[i]);
213 			end_page_writeback(pages[i]);
214 			put_page(pages[i]);
215 		}
216 		nr_pages -= ret;
217 		index += ret;
218 	}
219 	/* the inode may be gone now */
220 }
221 
222 /*
223  * do the cleanup once all the compressed pages hit the disk.
224  * This will clear writeback on the file pages and free the compressed
225  * pages.
226  *
227  * This also calls the writeback end hooks for the file pages so that
228  * metadata and checksums can be updated in the file.
229  */
230 static void end_compressed_bio_write(struct bio *bio)
231 {
232 	struct compressed_bio *cb = bio->bi_private;
233 	struct inode *inode;
234 	struct page *page;
235 	unsigned long index;
236 
237 	if (bio->bi_status)
238 		cb->errors = 1;
239 
240 	/* if there are more bios still pending for this compressed
241 	 * extent, just exit
242 	 */
243 	if (!refcount_dec_and_test(&cb->pending_bios))
244 		goto out;
245 
246 	/* ok, we're the last bio for this extent, step one is to
247 	 * call back into the FS and do all the end_io operations
248 	 */
249 	inode = cb->inode;
250 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
251 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
252 			cb->start, cb->start + cb->len - 1,
253 			bio->bi_status == BLK_STS_OK);
254 	cb->compressed_pages[0]->mapping = NULL;
255 
256 	end_compressed_writeback(inode, cb);
257 	/* note, our inode could be gone now */
258 
259 	/*
260 	 * release the compressed pages, these came from alloc_page and
261 	 * are not attached to the inode at all
262 	 */
263 	index = 0;
264 	for (index = 0; index < cb->nr_pages; index++) {
265 		page = cb->compressed_pages[index];
266 		page->mapping = NULL;
267 		put_page(page);
268 	}
269 
270 	/* finally free the cb struct */
271 	kfree(cb->compressed_pages);
272 	kfree(cb);
273 out:
274 	bio_put(bio);
275 }
276 
277 /*
278  * worker function to build and submit bios for previously compressed pages.
279  * The corresponding pages in the inode should be marked for writeback
280  * and the compressed pages should have a reference on them for dropping
281  * when the IO is complete.
282  *
283  * This also checksums the file bytes and gets things ready for
284  * the end io hooks.
285  */
286 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
287 				 unsigned long len, u64 disk_start,
288 				 unsigned long compressed_len,
289 				 struct page **compressed_pages,
290 				 unsigned long nr_pages,
291 				 unsigned int write_flags)
292 {
293 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
294 	struct bio *bio = NULL;
295 	struct compressed_bio *cb;
296 	unsigned long bytes_left;
297 	int pg_index = 0;
298 	struct page *page;
299 	u64 first_byte = disk_start;
300 	struct block_device *bdev;
301 	blk_status_t ret;
302 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
303 
304 	WARN_ON(!PAGE_ALIGNED(start));
305 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
306 	if (!cb)
307 		return BLK_STS_RESOURCE;
308 	refcount_set(&cb->pending_bios, 0);
309 	cb->errors = 0;
310 	cb->inode = inode;
311 	cb->start = start;
312 	cb->len = len;
313 	cb->mirror_num = 0;
314 	cb->compressed_pages = compressed_pages;
315 	cb->compressed_len = compressed_len;
316 	cb->orig_bio = NULL;
317 	cb->nr_pages = nr_pages;
318 
319 	bdev = fs_info->fs_devices->latest_bdev;
320 
321 	bio = btrfs_bio_alloc(bdev, first_byte);
322 	bio->bi_opf = REQ_OP_WRITE | write_flags;
323 	bio->bi_private = cb;
324 	bio->bi_end_io = end_compressed_bio_write;
325 	refcount_set(&cb->pending_bios, 1);
326 
327 	/* create and submit bios for the compressed pages */
328 	bytes_left = compressed_len;
329 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
330 		int submit = 0;
331 
332 		page = compressed_pages[pg_index];
333 		page->mapping = inode->i_mapping;
334 		if (bio->bi_iter.bi_size)
335 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
336 							  0);
337 
338 		page->mapping = NULL;
339 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
340 		    PAGE_SIZE) {
341 			/*
342 			 * inc the count before we submit the bio so
343 			 * we know the end IO handler won't happen before
344 			 * we inc the count.  Otherwise, the cb might get
345 			 * freed before we're done setting it up
346 			 */
347 			refcount_inc(&cb->pending_bios);
348 			ret = btrfs_bio_wq_end_io(fs_info, bio,
349 						  BTRFS_WQ_ENDIO_DATA);
350 			BUG_ON(ret); /* -ENOMEM */
351 
352 			if (!skip_sum) {
353 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
354 				BUG_ON(ret); /* -ENOMEM */
355 			}
356 
357 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
358 			if (ret) {
359 				bio->bi_status = ret;
360 				bio_endio(bio);
361 			}
362 
363 			bio = btrfs_bio_alloc(bdev, first_byte);
364 			bio->bi_opf = REQ_OP_WRITE | write_flags;
365 			bio->bi_private = cb;
366 			bio->bi_end_io = end_compressed_bio_write;
367 			bio_add_page(bio, page, PAGE_SIZE, 0);
368 		}
369 		if (bytes_left < PAGE_SIZE) {
370 			btrfs_info(fs_info,
371 					"bytes left %lu compress len %lu nr %lu",
372 			       bytes_left, cb->compressed_len, cb->nr_pages);
373 		}
374 		bytes_left -= PAGE_SIZE;
375 		first_byte += PAGE_SIZE;
376 		cond_resched();
377 	}
378 
379 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
380 	BUG_ON(ret); /* -ENOMEM */
381 
382 	if (!skip_sum) {
383 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
384 		BUG_ON(ret); /* -ENOMEM */
385 	}
386 
387 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
388 	if (ret) {
389 		bio->bi_status = ret;
390 		bio_endio(bio);
391 	}
392 
393 	return 0;
394 }
395 
396 static u64 bio_end_offset(struct bio *bio)
397 {
398 	struct bio_vec *last = bio_last_bvec_all(bio);
399 
400 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
401 }
402 
403 static noinline int add_ra_bio_pages(struct inode *inode,
404 				     u64 compressed_end,
405 				     struct compressed_bio *cb)
406 {
407 	unsigned long end_index;
408 	unsigned long pg_index;
409 	u64 last_offset;
410 	u64 isize = i_size_read(inode);
411 	int ret;
412 	struct page *page;
413 	unsigned long nr_pages = 0;
414 	struct extent_map *em;
415 	struct address_space *mapping = inode->i_mapping;
416 	struct extent_map_tree *em_tree;
417 	struct extent_io_tree *tree;
418 	u64 end;
419 	int misses = 0;
420 
421 	last_offset = bio_end_offset(cb->orig_bio);
422 	em_tree = &BTRFS_I(inode)->extent_tree;
423 	tree = &BTRFS_I(inode)->io_tree;
424 
425 	if (isize == 0)
426 		return 0;
427 
428 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
429 
430 	while (last_offset < compressed_end) {
431 		pg_index = last_offset >> PAGE_SHIFT;
432 
433 		if (pg_index > end_index)
434 			break;
435 
436 		page = xa_load(&mapping->i_pages, pg_index);
437 		if (page && !xa_is_value(page)) {
438 			misses++;
439 			if (misses > 4)
440 				break;
441 			goto next;
442 		}
443 
444 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
445 								 ~__GFP_FS));
446 		if (!page)
447 			break;
448 
449 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
450 			put_page(page);
451 			goto next;
452 		}
453 
454 		end = last_offset + PAGE_SIZE - 1;
455 		/*
456 		 * at this point, we have a locked page in the page cache
457 		 * for these bytes in the file.  But, we have to make
458 		 * sure they map to this compressed extent on disk.
459 		 */
460 		set_page_extent_mapped(page);
461 		lock_extent(tree, last_offset, end);
462 		read_lock(&em_tree->lock);
463 		em = lookup_extent_mapping(em_tree, last_offset,
464 					   PAGE_SIZE);
465 		read_unlock(&em_tree->lock);
466 
467 		if (!em || last_offset < em->start ||
468 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
469 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
470 			free_extent_map(em);
471 			unlock_extent(tree, last_offset, end);
472 			unlock_page(page);
473 			put_page(page);
474 			break;
475 		}
476 		free_extent_map(em);
477 
478 		if (page->index == end_index) {
479 			char *userpage;
480 			size_t zero_offset = offset_in_page(isize);
481 
482 			if (zero_offset) {
483 				int zeros;
484 				zeros = PAGE_SIZE - zero_offset;
485 				userpage = kmap_atomic(page);
486 				memset(userpage + zero_offset, 0, zeros);
487 				flush_dcache_page(page);
488 				kunmap_atomic(userpage);
489 			}
490 		}
491 
492 		ret = bio_add_page(cb->orig_bio, page,
493 				   PAGE_SIZE, 0);
494 
495 		if (ret == PAGE_SIZE) {
496 			nr_pages++;
497 			put_page(page);
498 		} else {
499 			unlock_extent(tree, last_offset, end);
500 			unlock_page(page);
501 			put_page(page);
502 			break;
503 		}
504 next:
505 		last_offset += PAGE_SIZE;
506 	}
507 	return 0;
508 }
509 
510 /*
511  * for a compressed read, the bio we get passed has all the inode pages
512  * in it.  We don't actually do IO on those pages but allocate new ones
513  * to hold the compressed pages on disk.
514  *
515  * bio->bi_iter.bi_sector points to the compressed extent on disk
516  * bio->bi_io_vec points to all of the inode pages
517  *
518  * After the compressed pages are read, we copy the bytes into the
519  * bio we were passed and then call the bio end_io calls
520  */
521 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
522 				 int mirror_num, unsigned long bio_flags)
523 {
524 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
525 	struct extent_map_tree *em_tree;
526 	struct compressed_bio *cb;
527 	unsigned long compressed_len;
528 	unsigned long nr_pages;
529 	unsigned long pg_index;
530 	struct page *page;
531 	struct block_device *bdev;
532 	struct bio *comp_bio;
533 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
534 	u64 em_len;
535 	u64 em_start;
536 	struct extent_map *em;
537 	blk_status_t ret = BLK_STS_RESOURCE;
538 	int faili = 0;
539 	u32 *sums;
540 
541 	em_tree = &BTRFS_I(inode)->extent_tree;
542 
543 	/* we need the actual starting offset of this extent in the file */
544 	read_lock(&em_tree->lock);
545 	em = lookup_extent_mapping(em_tree,
546 				   page_offset(bio_first_page_all(bio)),
547 				   PAGE_SIZE);
548 	read_unlock(&em_tree->lock);
549 	if (!em)
550 		return BLK_STS_IOERR;
551 
552 	compressed_len = em->block_len;
553 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
554 	if (!cb)
555 		goto out;
556 
557 	refcount_set(&cb->pending_bios, 0);
558 	cb->errors = 0;
559 	cb->inode = inode;
560 	cb->mirror_num = mirror_num;
561 	sums = &cb->sums;
562 
563 	cb->start = em->orig_start;
564 	em_len = em->len;
565 	em_start = em->start;
566 
567 	free_extent_map(em);
568 	em = NULL;
569 
570 	cb->len = bio->bi_iter.bi_size;
571 	cb->compressed_len = compressed_len;
572 	cb->compress_type = extent_compress_type(bio_flags);
573 	cb->orig_bio = bio;
574 
575 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
576 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
577 				       GFP_NOFS);
578 	if (!cb->compressed_pages)
579 		goto fail1;
580 
581 	bdev = fs_info->fs_devices->latest_bdev;
582 
583 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
584 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
585 							      __GFP_HIGHMEM);
586 		if (!cb->compressed_pages[pg_index]) {
587 			faili = pg_index - 1;
588 			ret = BLK_STS_RESOURCE;
589 			goto fail2;
590 		}
591 	}
592 	faili = nr_pages - 1;
593 	cb->nr_pages = nr_pages;
594 
595 	add_ra_bio_pages(inode, em_start + em_len, cb);
596 
597 	/* include any pages we added in add_ra-bio_pages */
598 	cb->len = bio->bi_iter.bi_size;
599 
600 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
601 	comp_bio->bi_opf = REQ_OP_READ;
602 	comp_bio->bi_private = cb;
603 	comp_bio->bi_end_io = end_compressed_bio_read;
604 	refcount_set(&cb->pending_bios, 1);
605 
606 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
607 		int submit = 0;
608 
609 		page = cb->compressed_pages[pg_index];
610 		page->mapping = inode->i_mapping;
611 		page->index = em_start >> PAGE_SHIFT;
612 
613 		if (comp_bio->bi_iter.bi_size)
614 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
615 							  comp_bio, 0);
616 
617 		page->mapping = NULL;
618 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
619 		    PAGE_SIZE) {
620 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
621 						  BTRFS_WQ_ENDIO_DATA);
622 			BUG_ON(ret); /* -ENOMEM */
623 
624 			/*
625 			 * inc the count before we submit the bio so
626 			 * we know the end IO handler won't happen before
627 			 * we inc the count.  Otherwise, the cb might get
628 			 * freed before we're done setting it up
629 			 */
630 			refcount_inc(&cb->pending_bios);
631 
632 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
633 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
634 							    sums);
635 				BUG_ON(ret); /* -ENOMEM */
636 			}
637 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
638 					     fs_info->sectorsize);
639 
640 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
641 			if (ret) {
642 				comp_bio->bi_status = ret;
643 				bio_endio(comp_bio);
644 			}
645 
646 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
647 			comp_bio->bi_opf = REQ_OP_READ;
648 			comp_bio->bi_private = cb;
649 			comp_bio->bi_end_io = end_compressed_bio_read;
650 
651 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
652 		}
653 		cur_disk_byte += PAGE_SIZE;
654 	}
655 
656 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
657 	BUG_ON(ret); /* -ENOMEM */
658 
659 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
660 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
661 		BUG_ON(ret); /* -ENOMEM */
662 	}
663 
664 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
665 	if (ret) {
666 		comp_bio->bi_status = ret;
667 		bio_endio(comp_bio);
668 	}
669 
670 	return 0;
671 
672 fail2:
673 	while (faili >= 0) {
674 		__free_page(cb->compressed_pages[faili]);
675 		faili--;
676 	}
677 
678 	kfree(cb->compressed_pages);
679 fail1:
680 	kfree(cb);
681 out:
682 	free_extent_map(em);
683 	return ret;
684 }
685 
686 /*
687  * Heuristic uses systematic sampling to collect data from the input data
688  * range, the logic can be tuned by the following constants:
689  *
690  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
691  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
692  */
693 #define SAMPLING_READ_SIZE	(16)
694 #define SAMPLING_INTERVAL	(256)
695 
696 /*
697  * For statistical analysis of the input data we consider bytes that form a
698  * Galois Field of 256 objects. Each object has an attribute count, ie. how
699  * many times the object appeared in the sample.
700  */
701 #define BUCKET_SIZE		(256)
702 
703 /*
704  * The size of the sample is based on a statistical sampling rule of thumb.
705  * The common way is to perform sampling tests as long as the number of
706  * elements in each cell is at least 5.
707  *
708  * Instead of 5, we choose 32 to obtain more accurate results.
709  * If the data contain the maximum number of symbols, which is 256, we obtain a
710  * sample size bound by 8192.
711  *
712  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
713  * from up to 512 locations.
714  */
715 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
716 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
717 
718 struct bucket_item {
719 	u32 count;
720 };
721 
722 struct heuristic_ws {
723 	/* Partial copy of input data */
724 	u8 *sample;
725 	u32 sample_size;
726 	/* Buckets store counters for each byte value */
727 	struct bucket_item *bucket;
728 	/* Sorting buffer */
729 	struct bucket_item *bucket_b;
730 	struct list_head list;
731 };
732 
733 static struct workspace_manager heuristic_wsm;
734 
735 static void heuristic_init_workspace_manager(void)
736 {
737 	btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
738 }
739 
740 static void heuristic_cleanup_workspace_manager(void)
741 {
742 	btrfs_cleanup_workspace_manager(&heuristic_wsm);
743 }
744 
745 static struct list_head *heuristic_get_workspace(unsigned int level)
746 {
747 	return btrfs_get_workspace(&heuristic_wsm, level);
748 }
749 
750 static void heuristic_put_workspace(struct list_head *ws)
751 {
752 	btrfs_put_workspace(&heuristic_wsm, ws);
753 }
754 
755 static void free_heuristic_ws(struct list_head *ws)
756 {
757 	struct heuristic_ws *workspace;
758 
759 	workspace = list_entry(ws, struct heuristic_ws, list);
760 
761 	kvfree(workspace->sample);
762 	kfree(workspace->bucket);
763 	kfree(workspace->bucket_b);
764 	kfree(workspace);
765 }
766 
767 static struct list_head *alloc_heuristic_ws(unsigned int level)
768 {
769 	struct heuristic_ws *ws;
770 
771 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
772 	if (!ws)
773 		return ERR_PTR(-ENOMEM);
774 
775 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
776 	if (!ws->sample)
777 		goto fail;
778 
779 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
780 	if (!ws->bucket)
781 		goto fail;
782 
783 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
784 	if (!ws->bucket_b)
785 		goto fail;
786 
787 	INIT_LIST_HEAD(&ws->list);
788 	return &ws->list;
789 fail:
790 	free_heuristic_ws(&ws->list);
791 	return ERR_PTR(-ENOMEM);
792 }
793 
794 const struct btrfs_compress_op btrfs_heuristic_compress = {
795 	.init_workspace_manager = heuristic_init_workspace_manager,
796 	.cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
797 	.get_workspace = heuristic_get_workspace,
798 	.put_workspace = heuristic_put_workspace,
799 	.alloc_workspace = alloc_heuristic_ws,
800 	.free_workspace = free_heuristic_ws,
801 };
802 
803 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
804 	/* The heuristic is represented as compression type 0 */
805 	&btrfs_heuristic_compress,
806 	&btrfs_zlib_compress,
807 	&btrfs_lzo_compress,
808 	&btrfs_zstd_compress,
809 };
810 
811 void btrfs_init_workspace_manager(struct workspace_manager *wsm,
812 				  const struct btrfs_compress_op *ops)
813 {
814 	struct list_head *workspace;
815 
816 	wsm->ops = ops;
817 
818 	INIT_LIST_HEAD(&wsm->idle_ws);
819 	spin_lock_init(&wsm->ws_lock);
820 	atomic_set(&wsm->total_ws, 0);
821 	init_waitqueue_head(&wsm->ws_wait);
822 
823 	/*
824 	 * Preallocate one workspace for each compression type so we can
825 	 * guarantee forward progress in the worst case
826 	 */
827 	workspace = wsm->ops->alloc_workspace(0);
828 	if (IS_ERR(workspace)) {
829 		pr_warn(
830 	"BTRFS: cannot preallocate compression workspace, will try later\n");
831 	} else {
832 		atomic_set(&wsm->total_ws, 1);
833 		wsm->free_ws = 1;
834 		list_add(workspace, &wsm->idle_ws);
835 	}
836 }
837 
838 void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
839 {
840 	struct list_head *ws;
841 
842 	while (!list_empty(&wsman->idle_ws)) {
843 		ws = wsman->idle_ws.next;
844 		list_del(ws);
845 		wsman->ops->free_workspace(ws);
846 		atomic_dec(&wsman->total_ws);
847 	}
848 }
849 
850 /*
851  * This finds an available workspace or allocates a new one.
852  * If it's not possible to allocate a new one, waits until there's one.
853  * Preallocation makes a forward progress guarantees and we do not return
854  * errors.
855  */
856 struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
857 				      unsigned int level)
858 {
859 	struct list_head *workspace;
860 	int cpus = num_online_cpus();
861 	unsigned nofs_flag;
862 	struct list_head *idle_ws;
863 	spinlock_t *ws_lock;
864 	atomic_t *total_ws;
865 	wait_queue_head_t *ws_wait;
866 	int *free_ws;
867 
868 	idle_ws	 = &wsm->idle_ws;
869 	ws_lock	 = &wsm->ws_lock;
870 	total_ws = &wsm->total_ws;
871 	ws_wait	 = &wsm->ws_wait;
872 	free_ws	 = &wsm->free_ws;
873 
874 again:
875 	spin_lock(ws_lock);
876 	if (!list_empty(idle_ws)) {
877 		workspace = idle_ws->next;
878 		list_del(workspace);
879 		(*free_ws)--;
880 		spin_unlock(ws_lock);
881 		return workspace;
882 
883 	}
884 	if (atomic_read(total_ws) > cpus) {
885 		DEFINE_WAIT(wait);
886 
887 		spin_unlock(ws_lock);
888 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
889 		if (atomic_read(total_ws) > cpus && !*free_ws)
890 			schedule();
891 		finish_wait(ws_wait, &wait);
892 		goto again;
893 	}
894 	atomic_inc(total_ws);
895 	spin_unlock(ws_lock);
896 
897 	/*
898 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
899 	 * to turn it off here because we might get called from the restricted
900 	 * context of btrfs_compress_bio/btrfs_compress_pages
901 	 */
902 	nofs_flag = memalloc_nofs_save();
903 	workspace = wsm->ops->alloc_workspace(level);
904 	memalloc_nofs_restore(nofs_flag);
905 
906 	if (IS_ERR(workspace)) {
907 		atomic_dec(total_ws);
908 		wake_up(ws_wait);
909 
910 		/*
911 		 * Do not return the error but go back to waiting. There's a
912 		 * workspace preallocated for each type and the compression
913 		 * time is bounded so we get to a workspace eventually. This
914 		 * makes our caller's life easier.
915 		 *
916 		 * To prevent silent and low-probability deadlocks (when the
917 		 * initial preallocation fails), check if there are any
918 		 * workspaces at all.
919 		 */
920 		if (atomic_read(total_ws) == 0) {
921 			static DEFINE_RATELIMIT_STATE(_rs,
922 					/* once per minute */ 60 * HZ,
923 					/* no burst */ 1);
924 
925 			if (__ratelimit(&_rs)) {
926 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
927 			}
928 		}
929 		goto again;
930 	}
931 	return workspace;
932 }
933 
934 static struct list_head *get_workspace(int type, int level)
935 {
936 	return btrfs_compress_op[type]->get_workspace(level);
937 }
938 
939 /*
940  * put a workspace struct back on the list or free it if we have enough
941  * idle ones sitting around
942  */
943 void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
944 {
945 	struct list_head *idle_ws;
946 	spinlock_t *ws_lock;
947 	atomic_t *total_ws;
948 	wait_queue_head_t *ws_wait;
949 	int *free_ws;
950 
951 	idle_ws	 = &wsm->idle_ws;
952 	ws_lock	 = &wsm->ws_lock;
953 	total_ws = &wsm->total_ws;
954 	ws_wait	 = &wsm->ws_wait;
955 	free_ws	 = &wsm->free_ws;
956 
957 	spin_lock(ws_lock);
958 	if (*free_ws <= num_online_cpus()) {
959 		list_add(ws, idle_ws);
960 		(*free_ws)++;
961 		spin_unlock(ws_lock);
962 		goto wake;
963 	}
964 	spin_unlock(ws_lock);
965 
966 	wsm->ops->free_workspace(ws);
967 	atomic_dec(total_ws);
968 wake:
969 	cond_wake_up(ws_wait);
970 }
971 
972 static void put_workspace(int type, struct list_head *ws)
973 {
974 	return btrfs_compress_op[type]->put_workspace(ws);
975 }
976 
977 /*
978  * Given an address space and start and length, compress the bytes into @pages
979  * that are allocated on demand.
980  *
981  * @type_level is encoded algorithm and level, where level 0 means whatever
982  * default the algorithm chooses and is opaque here;
983  * - compression algo are 0-3
984  * - the level are bits 4-7
985  *
986  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
987  * and returns number of actually allocated pages
988  *
989  * @total_in is used to return the number of bytes actually read.  It
990  * may be smaller than the input length if we had to exit early because we
991  * ran out of room in the pages array or because we cross the
992  * max_out threshold.
993  *
994  * @total_out is an in/out parameter, must be set to the input length and will
995  * be also used to return the total number of compressed bytes
996  *
997  * @max_out tells us the max number of bytes that we're allowed to
998  * stuff into pages
999  */
1000 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1001 			 u64 start, struct page **pages,
1002 			 unsigned long *out_pages,
1003 			 unsigned long *total_in,
1004 			 unsigned long *total_out)
1005 {
1006 	int type = btrfs_compress_type(type_level);
1007 	int level = btrfs_compress_level(type_level);
1008 	struct list_head *workspace;
1009 	int ret;
1010 
1011 	workspace = get_workspace(type, level);
1012 	ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1013 						      start, pages,
1014 						      out_pages,
1015 						      total_in, total_out);
1016 	put_workspace(type, workspace);
1017 	return ret;
1018 }
1019 
1020 /*
1021  * pages_in is an array of pages with compressed data.
1022  *
1023  * disk_start is the starting logical offset of this array in the file
1024  *
1025  * orig_bio contains the pages from the file that we want to decompress into
1026  *
1027  * srclen is the number of bytes in pages_in
1028  *
1029  * The basic idea is that we have a bio that was created by readpages.
1030  * The pages in the bio are for the uncompressed data, and they may not
1031  * be contiguous.  They all correspond to the range of bytes covered by
1032  * the compressed extent.
1033  */
1034 static int btrfs_decompress_bio(struct compressed_bio *cb)
1035 {
1036 	struct list_head *workspace;
1037 	int ret;
1038 	int type = cb->compress_type;
1039 
1040 	workspace = get_workspace(type, 0);
1041 	ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1042 	put_workspace(type, workspace);
1043 
1044 	return ret;
1045 }
1046 
1047 /*
1048  * a less complex decompression routine.  Our compressed data fits in a
1049  * single page, and we want to read a single page out of it.
1050  * start_byte tells us the offset into the compressed data we're interested in
1051  */
1052 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1053 		     unsigned long start_byte, size_t srclen, size_t destlen)
1054 {
1055 	struct list_head *workspace;
1056 	int ret;
1057 
1058 	workspace = get_workspace(type, 0);
1059 	ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1060 						  dest_page, start_byte,
1061 						  srclen, destlen);
1062 	put_workspace(type, workspace);
1063 
1064 	return ret;
1065 }
1066 
1067 void __init btrfs_init_compress(void)
1068 {
1069 	int i;
1070 
1071 	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1072 		btrfs_compress_op[i]->init_workspace_manager();
1073 }
1074 
1075 void __cold btrfs_exit_compress(void)
1076 {
1077 	int i;
1078 
1079 	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1080 		btrfs_compress_op[i]->cleanup_workspace_manager();
1081 }
1082 
1083 /*
1084  * Copy uncompressed data from working buffer to pages.
1085  *
1086  * buf_start is the byte offset we're of the start of our workspace buffer.
1087  *
1088  * total_out is the last byte of the buffer
1089  */
1090 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1091 			      unsigned long total_out, u64 disk_start,
1092 			      struct bio *bio)
1093 {
1094 	unsigned long buf_offset;
1095 	unsigned long current_buf_start;
1096 	unsigned long start_byte;
1097 	unsigned long prev_start_byte;
1098 	unsigned long working_bytes = total_out - buf_start;
1099 	unsigned long bytes;
1100 	char *kaddr;
1101 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1102 
1103 	/*
1104 	 * start byte is the first byte of the page we're currently
1105 	 * copying into relative to the start of the compressed data.
1106 	 */
1107 	start_byte = page_offset(bvec.bv_page) - disk_start;
1108 
1109 	/* we haven't yet hit data corresponding to this page */
1110 	if (total_out <= start_byte)
1111 		return 1;
1112 
1113 	/*
1114 	 * the start of the data we care about is offset into
1115 	 * the middle of our working buffer
1116 	 */
1117 	if (total_out > start_byte && buf_start < start_byte) {
1118 		buf_offset = start_byte - buf_start;
1119 		working_bytes -= buf_offset;
1120 	} else {
1121 		buf_offset = 0;
1122 	}
1123 	current_buf_start = buf_start;
1124 
1125 	/* copy bytes from the working buffer into the pages */
1126 	while (working_bytes > 0) {
1127 		bytes = min_t(unsigned long, bvec.bv_len,
1128 				PAGE_SIZE - buf_offset);
1129 		bytes = min(bytes, working_bytes);
1130 
1131 		kaddr = kmap_atomic(bvec.bv_page);
1132 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1133 		kunmap_atomic(kaddr);
1134 		flush_dcache_page(bvec.bv_page);
1135 
1136 		buf_offset += bytes;
1137 		working_bytes -= bytes;
1138 		current_buf_start += bytes;
1139 
1140 		/* check if we need to pick another page */
1141 		bio_advance(bio, bytes);
1142 		if (!bio->bi_iter.bi_size)
1143 			return 0;
1144 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1145 		prev_start_byte = start_byte;
1146 		start_byte = page_offset(bvec.bv_page) - disk_start;
1147 
1148 		/*
1149 		 * We need to make sure we're only adjusting
1150 		 * our offset into compression working buffer when
1151 		 * we're switching pages.  Otherwise we can incorrectly
1152 		 * keep copying when we were actually done.
1153 		 */
1154 		if (start_byte != prev_start_byte) {
1155 			/*
1156 			 * make sure our new page is covered by this
1157 			 * working buffer
1158 			 */
1159 			if (total_out <= start_byte)
1160 				return 1;
1161 
1162 			/*
1163 			 * the next page in the biovec might not be adjacent
1164 			 * to the last page, but it might still be found
1165 			 * inside this working buffer. bump our offset pointer
1166 			 */
1167 			if (total_out > start_byte &&
1168 			    current_buf_start < start_byte) {
1169 				buf_offset = start_byte - buf_start;
1170 				working_bytes = total_out - start_byte;
1171 				current_buf_start = buf_start + buf_offset;
1172 			}
1173 		}
1174 	}
1175 
1176 	return 1;
1177 }
1178 
1179 /*
1180  * Shannon Entropy calculation
1181  *
1182  * Pure byte distribution analysis fails to determine compressibility of data.
1183  * Try calculating entropy to estimate the average minimum number of bits
1184  * needed to encode the sampled data.
1185  *
1186  * For convenience, return the percentage of needed bits, instead of amount of
1187  * bits directly.
1188  *
1189  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1190  *			    and can be compressible with high probability
1191  *
1192  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1193  *
1194  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1195  */
1196 #define ENTROPY_LVL_ACEPTABLE		(65)
1197 #define ENTROPY_LVL_HIGH		(80)
1198 
1199 /*
1200  * For increasead precision in shannon_entropy calculation,
1201  * let's do pow(n, M) to save more digits after comma:
1202  *
1203  * - maximum int bit length is 64
1204  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1205  * - 13 * 4 = 52 < 64		-> M = 4
1206  *
1207  * So use pow(n, 4).
1208  */
1209 static inline u32 ilog2_w(u64 n)
1210 {
1211 	return ilog2(n * n * n * n);
1212 }
1213 
1214 static u32 shannon_entropy(struct heuristic_ws *ws)
1215 {
1216 	const u32 entropy_max = 8 * ilog2_w(2);
1217 	u32 entropy_sum = 0;
1218 	u32 p, p_base, sz_base;
1219 	u32 i;
1220 
1221 	sz_base = ilog2_w(ws->sample_size);
1222 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1223 		p = ws->bucket[i].count;
1224 		p_base = ilog2_w(p);
1225 		entropy_sum += p * (sz_base - p_base);
1226 	}
1227 
1228 	entropy_sum /= ws->sample_size;
1229 	return entropy_sum * 100 / entropy_max;
1230 }
1231 
1232 #define RADIX_BASE		4U
1233 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1234 
1235 static u8 get4bits(u64 num, int shift) {
1236 	u8 low4bits;
1237 
1238 	num >>= shift;
1239 	/* Reverse order */
1240 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1241 	return low4bits;
1242 }
1243 
1244 /*
1245  * Use 4 bits as radix base
1246  * Use 16 u32 counters for calculating new position in buf array
1247  *
1248  * @array     - array that will be sorted
1249  * @array_buf - buffer array to store sorting results
1250  *              must be equal in size to @array
1251  * @num       - array size
1252  */
1253 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1254 		       int num)
1255 {
1256 	u64 max_num;
1257 	u64 buf_num;
1258 	u32 counters[COUNTERS_SIZE];
1259 	u32 new_addr;
1260 	u32 addr;
1261 	int bitlen;
1262 	int shift;
1263 	int i;
1264 
1265 	/*
1266 	 * Try avoid useless loop iterations for small numbers stored in big
1267 	 * counters.  Example: 48 33 4 ... in 64bit array
1268 	 */
1269 	max_num = array[0].count;
1270 	for (i = 1; i < num; i++) {
1271 		buf_num = array[i].count;
1272 		if (buf_num > max_num)
1273 			max_num = buf_num;
1274 	}
1275 
1276 	buf_num = ilog2(max_num);
1277 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1278 
1279 	shift = 0;
1280 	while (shift < bitlen) {
1281 		memset(counters, 0, sizeof(counters));
1282 
1283 		for (i = 0; i < num; i++) {
1284 			buf_num = array[i].count;
1285 			addr = get4bits(buf_num, shift);
1286 			counters[addr]++;
1287 		}
1288 
1289 		for (i = 1; i < COUNTERS_SIZE; i++)
1290 			counters[i] += counters[i - 1];
1291 
1292 		for (i = num - 1; i >= 0; i--) {
1293 			buf_num = array[i].count;
1294 			addr = get4bits(buf_num, shift);
1295 			counters[addr]--;
1296 			new_addr = counters[addr];
1297 			array_buf[new_addr] = array[i];
1298 		}
1299 
1300 		shift += RADIX_BASE;
1301 
1302 		/*
1303 		 * Normal radix expects to move data from a temporary array, to
1304 		 * the main one.  But that requires some CPU time. Avoid that
1305 		 * by doing another sort iteration to original array instead of
1306 		 * memcpy()
1307 		 */
1308 		memset(counters, 0, sizeof(counters));
1309 
1310 		for (i = 0; i < num; i ++) {
1311 			buf_num = array_buf[i].count;
1312 			addr = get4bits(buf_num, shift);
1313 			counters[addr]++;
1314 		}
1315 
1316 		for (i = 1; i < COUNTERS_SIZE; i++)
1317 			counters[i] += counters[i - 1];
1318 
1319 		for (i = num - 1; i >= 0; i--) {
1320 			buf_num = array_buf[i].count;
1321 			addr = get4bits(buf_num, shift);
1322 			counters[addr]--;
1323 			new_addr = counters[addr];
1324 			array[new_addr] = array_buf[i];
1325 		}
1326 
1327 		shift += RADIX_BASE;
1328 	}
1329 }
1330 
1331 /*
1332  * Size of the core byte set - how many bytes cover 90% of the sample
1333  *
1334  * There are several types of structured binary data that use nearly all byte
1335  * values. The distribution can be uniform and counts in all buckets will be
1336  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1337  *
1338  * Other possibility is normal (Gaussian) distribution, where the data could
1339  * be potentially compressible, but we have to take a few more steps to decide
1340  * how much.
1341  *
1342  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1343  *                       compression algo can easy fix that
1344  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1345  *                       probability is not compressible
1346  */
1347 #define BYTE_CORE_SET_LOW		(64)
1348 #define BYTE_CORE_SET_HIGH		(200)
1349 
1350 static int byte_core_set_size(struct heuristic_ws *ws)
1351 {
1352 	u32 i;
1353 	u32 coreset_sum = 0;
1354 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1355 	struct bucket_item *bucket = ws->bucket;
1356 
1357 	/* Sort in reverse order */
1358 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1359 
1360 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1361 		coreset_sum += bucket[i].count;
1362 
1363 	if (coreset_sum > core_set_threshold)
1364 		return i;
1365 
1366 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1367 		coreset_sum += bucket[i].count;
1368 		if (coreset_sum > core_set_threshold)
1369 			break;
1370 	}
1371 
1372 	return i;
1373 }
1374 
1375 /*
1376  * Count byte values in buckets.
1377  * This heuristic can detect textual data (configs, xml, json, html, etc).
1378  * Because in most text-like data byte set is restricted to limited number of
1379  * possible characters, and that restriction in most cases makes data easy to
1380  * compress.
1381  *
1382  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1383  *	less - compressible
1384  *	more - need additional analysis
1385  */
1386 #define BYTE_SET_THRESHOLD		(64)
1387 
1388 static u32 byte_set_size(const struct heuristic_ws *ws)
1389 {
1390 	u32 i;
1391 	u32 byte_set_size = 0;
1392 
1393 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1394 		if (ws->bucket[i].count > 0)
1395 			byte_set_size++;
1396 	}
1397 
1398 	/*
1399 	 * Continue collecting count of byte values in buckets.  If the byte
1400 	 * set size is bigger then the threshold, it's pointless to continue,
1401 	 * the detection technique would fail for this type of data.
1402 	 */
1403 	for (; i < BUCKET_SIZE; i++) {
1404 		if (ws->bucket[i].count > 0) {
1405 			byte_set_size++;
1406 			if (byte_set_size > BYTE_SET_THRESHOLD)
1407 				return byte_set_size;
1408 		}
1409 	}
1410 
1411 	return byte_set_size;
1412 }
1413 
1414 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1415 {
1416 	const u32 half_of_sample = ws->sample_size / 2;
1417 	const u8 *data = ws->sample;
1418 
1419 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1420 }
1421 
1422 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1423 				     struct heuristic_ws *ws)
1424 {
1425 	struct page *page;
1426 	u64 index, index_end;
1427 	u32 i, curr_sample_pos;
1428 	u8 *in_data;
1429 
1430 	/*
1431 	 * Compression handles the input data by chunks of 128KiB
1432 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1433 	 *
1434 	 * We do the same for the heuristic and loop over the whole range.
1435 	 *
1436 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1437 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1438 	 */
1439 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1440 		end = start + BTRFS_MAX_UNCOMPRESSED;
1441 
1442 	index = start >> PAGE_SHIFT;
1443 	index_end = end >> PAGE_SHIFT;
1444 
1445 	/* Don't miss unaligned end */
1446 	if (!IS_ALIGNED(end, PAGE_SIZE))
1447 		index_end++;
1448 
1449 	curr_sample_pos = 0;
1450 	while (index < index_end) {
1451 		page = find_get_page(inode->i_mapping, index);
1452 		in_data = kmap(page);
1453 		/* Handle case where the start is not aligned to PAGE_SIZE */
1454 		i = start % PAGE_SIZE;
1455 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1456 			/* Don't sample any garbage from the last page */
1457 			if (start > end - SAMPLING_READ_SIZE)
1458 				break;
1459 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1460 					SAMPLING_READ_SIZE);
1461 			i += SAMPLING_INTERVAL;
1462 			start += SAMPLING_INTERVAL;
1463 			curr_sample_pos += SAMPLING_READ_SIZE;
1464 		}
1465 		kunmap(page);
1466 		put_page(page);
1467 
1468 		index++;
1469 	}
1470 
1471 	ws->sample_size = curr_sample_pos;
1472 }
1473 
1474 /*
1475  * Compression heuristic.
1476  *
1477  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1478  * quickly (compared to direct compression) detect data characteristics
1479  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1480  * data.
1481  *
1482  * The following types of analysis can be performed:
1483  * - detect mostly zero data
1484  * - detect data with low "byte set" size (text, etc)
1485  * - detect data with low/high "core byte" set
1486  *
1487  * Return non-zero if the compression should be done, 0 otherwise.
1488  */
1489 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1490 {
1491 	struct list_head *ws_list = get_workspace(0, 0);
1492 	struct heuristic_ws *ws;
1493 	u32 i;
1494 	u8 byte;
1495 	int ret = 0;
1496 
1497 	ws = list_entry(ws_list, struct heuristic_ws, list);
1498 
1499 	heuristic_collect_sample(inode, start, end, ws);
1500 
1501 	if (sample_repeated_patterns(ws)) {
1502 		ret = 1;
1503 		goto out;
1504 	}
1505 
1506 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1507 
1508 	for (i = 0; i < ws->sample_size; i++) {
1509 		byte = ws->sample[i];
1510 		ws->bucket[byte].count++;
1511 	}
1512 
1513 	i = byte_set_size(ws);
1514 	if (i < BYTE_SET_THRESHOLD) {
1515 		ret = 2;
1516 		goto out;
1517 	}
1518 
1519 	i = byte_core_set_size(ws);
1520 	if (i <= BYTE_CORE_SET_LOW) {
1521 		ret = 3;
1522 		goto out;
1523 	}
1524 
1525 	if (i >= BYTE_CORE_SET_HIGH) {
1526 		ret = 0;
1527 		goto out;
1528 	}
1529 
1530 	i = shannon_entropy(ws);
1531 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1532 		ret = 4;
1533 		goto out;
1534 	}
1535 
1536 	/*
1537 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1538 	 * needed to give green light to compression.
1539 	 *
1540 	 * For now just assume that compression at that level is not worth the
1541 	 * resources because:
1542 	 *
1543 	 * 1. it is possible to defrag the data later
1544 	 *
1545 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1546 	 * values, every bucket has counter at level ~54. The heuristic would
1547 	 * be confused. This can happen when data have some internal repeated
1548 	 * patterns like "abbacbbc...". This can be detected by analyzing
1549 	 * pairs of bytes, which is too costly.
1550 	 */
1551 	if (i < ENTROPY_LVL_HIGH) {
1552 		ret = 5;
1553 		goto out;
1554 	} else {
1555 		ret = 0;
1556 		goto out;
1557 	}
1558 
1559 out:
1560 	put_workspace(0, ws_list);
1561 	return ret;
1562 }
1563 
1564 /*
1565  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1566  * level, unrecognized string will set the default level
1567  */
1568 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1569 {
1570 	unsigned int level = 0;
1571 	int ret;
1572 
1573 	if (!type)
1574 		return 0;
1575 
1576 	if (str[0] == ':') {
1577 		ret = kstrtouint(str + 1, 10, &level);
1578 		if (ret)
1579 			level = 0;
1580 	}
1581 
1582 	level = btrfs_compress_op[type]->set_level(level);
1583 
1584 	return level;
1585 }
1586