1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 32 int zlib_compress_pages(struct list_head *ws, struct address_space *mapping, 33 u64 start, struct page **pages, unsigned long *out_pages, 34 unsigned long *total_in, unsigned long *total_out); 35 int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 36 int zlib_decompress(struct list_head *ws, unsigned char *data_in, 37 struct page *dest_page, unsigned long start_byte, size_t srclen, 38 size_t destlen); 39 struct list_head *zlib_alloc_workspace(unsigned int level); 40 void zlib_free_workspace(struct list_head *ws); 41 struct list_head *zlib_get_workspace(unsigned int level); 42 43 int lzo_compress_pages(struct list_head *ws, struct address_space *mapping, 44 u64 start, struct page **pages, unsigned long *out_pages, 45 unsigned long *total_in, unsigned long *total_out); 46 int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 47 int lzo_decompress(struct list_head *ws, unsigned char *data_in, 48 struct page *dest_page, unsigned long start_byte, size_t srclen, 49 size_t destlen); 50 struct list_head *lzo_alloc_workspace(unsigned int level); 51 void lzo_free_workspace(struct list_head *ws); 52 53 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping, 54 u64 start, struct page **pages, unsigned long *out_pages, 55 unsigned long *total_in, unsigned long *total_out); 56 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 57 int zstd_decompress(struct list_head *ws, unsigned char *data_in, 58 struct page *dest_page, unsigned long start_byte, size_t srclen, 59 size_t destlen); 60 void zstd_init_workspace_manager(void); 61 void zstd_cleanup_workspace_manager(void); 62 struct list_head *zstd_alloc_workspace(unsigned int level); 63 void zstd_free_workspace(struct list_head *ws); 64 struct list_head *zstd_get_workspace(unsigned int level); 65 void zstd_put_workspace(struct list_head *ws); 66 67 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 68 69 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 70 { 71 switch (type) { 72 case BTRFS_COMPRESS_ZLIB: 73 case BTRFS_COMPRESS_LZO: 74 case BTRFS_COMPRESS_ZSTD: 75 case BTRFS_COMPRESS_NONE: 76 return btrfs_compress_types[type]; 77 default: 78 break; 79 } 80 81 return NULL; 82 } 83 84 bool btrfs_compress_is_valid_type(const char *str, size_t len) 85 { 86 int i; 87 88 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 89 size_t comp_len = strlen(btrfs_compress_types[i]); 90 91 if (len < comp_len) 92 continue; 93 94 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 95 return true; 96 } 97 return false; 98 } 99 100 static int compression_compress_pages(int type, struct list_head *ws, 101 struct address_space *mapping, u64 start, struct page **pages, 102 unsigned long *out_pages, unsigned long *total_in, 103 unsigned long *total_out) 104 { 105 switch (type) { 106 case BTRFS_COMPRESS_ZLIB: 107 return zlib_compress_pages(ws, mapping, start, pages, 108 out_pages, total_in, total_out); 109 case BTRFS_COMPRESS_LZO: 110 return lzo_compress_pages(ws, mapping, start, pages, 111 out_pages, total_in, total_out); 112 case BTRFS_COMPRESS_ZSTD: 113 return zstd_compress_pages(ws, mapping, start, pages, 114 out_pages, total_in, total_out); 115 case BTRFS_COMPRESS_NONE: 116 default: 117 /* 118 * This can't happen, the type is validated several times 119 * before we get here. As a sane fallback, return what the 120 * callers will understand as 'no compression happened'. 121 */ 122 return -E2BIG; 123 } 124 } 125 126 static int compression_decompress_bio(int type, struct list_head *ws, 127 struct compressed_bio *cb) 128 { 129 switch (type) { 130 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 131 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 132 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 133 case BTRFS_COMPRESS_NONE: 134 default: 135 /* 136 * This can't happen, the type is validated several times 137 * before we get here. 138 */ 139 BUG(); 140 } 141 } 142 143 static int compression_decompress(int type, struct list_head *ws, 144 unsigned char *data_in, struct page *dest_page, 145 unsigned long start_byte, size_t srclen, size_t destlen) 146 { 147 switch (type) { 148 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 149 start_byte, srclen, destlen); 150 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 151 start_byte, srclen, destlen); 152 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 153 start_byte, srclen, destlen); 154 case BTRFS_COMPRESS_NONE: 155 default: 156 /* 157 * This can't happen, the type is validated several times 158 * before we get here. 159 */ 160 BUG(); 161 } 162 } 163 164 static int btrfs_decompress_bio(struct compressed_bio *cb); 165 166 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 167 unsigned long disk_size) 168 { 169 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 170 171 return sizeof(struct compressed_bio) + 172 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 173 } 174 175 static int check_compressed_csum(struct btrfs_inode *inode, 176 struct compressed_bio *cb, 177 u64 disk_start) 178 { 179 struct btrfs_fs_info *fs_info = inode->root->fs_info; 180 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 181 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 182 int ret; 183 struct page *page; 184 unsigned long i; 185 char *kaddr; 186 u8 csum[BTRFS_CSUM_SIZE]; 187 u8 *cb_sum = cb->sums; 188 189 if (inode->flags & BTRFS_INODE_NODATASUM) 190 return 0; 191 192 shash->tfm = fs_info->csum_shash; 193 194 for (i = 0; i < cb->nr_pages; i++) { 195 page = cb->compressed_pages[i]; 196 197 crypto_shash_init(shash); 198 kaddr = kmap_atomic(page); 199 crypto_shash_update(shash, kaddr, PAGE_SIZE); 200 kunmap_atomic(kaddr); 201 crypto_shash_final(shash, (u8 *)&csum); 202 203 if (memcmp(&csum, cb_sum, csum_size)) { 204 btrfs_print_data_csum_error(inode, disk_start, 205 csum, cb_sum, cb->mirror_num); 206 ret = -EIO; 207 goto fail; 208 } 209 cb_sum += csum_size; 210 211 } 212 ret = 0; 213 fail: 214 return ret; 215 } 216 217 /* when we finish reading compressed pages from the disk, we 218 * decompress them and then run the bio end_io routines on the 219 * decompressed pages (in the inode address space). 220 * 221 * This allows the checksumming and other IO error handling routines 222 * to work normally 223 * 224 * The compressed pages are freed here, and it must be run 225 * in process context 226 */ 227 static void end_compressed_bio_read(struct bio *bio) 228 { 229 struct compressed_bio *cb = bio->bi_private; 230 struct inode *inode; 231 struct page *page; 232 unsigned long index; 233 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 234 int ret = 0; 235 236 if (bio->bi_status) 237 cb->errors = 1; 238 239 /* if there are more bios still pending for this compressed 240 * extent, just exit 241 */ 242 if (!refcount_dec_and_test(&cb->pending_bios)) 243 goto out; 244 245 /* 246 * Record the correct mirror_num in cb->orig_bio so that 247 * read-repair can work properly. 248 */ 249 ASSERT(btrfs_io_bio(cb->orig_bio)); 250 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 251 cb->mirror_num = mirror; 252 253 /* 254 * Some IO in this cb have failed, just skip checksum as there 255 * is no way it could be correct. 256 */ 257 if (cb->errors == 1) 258 goto csum_failed; 259 260 inode = cb->inode; 261 ret = check_compressed_csum(BTRFS_I(inode), cb, 262 (u64)bio->bi_iter.bi_sector << 9); 263 if (ret) 264 goto csum_failed; 265 266 /* ok, we're the last bio for this extent, lets start 267 * the decompression. 268 */ 269 ret = btrfs_decompress_bio(cb); 270 271 csum_failed: 272 if (ret) 273 cb->errors = 1; 274 275 /* release the compressed pages */ 276 index = 0; 277 for (index = 0; index < cb->nr_pages; index++) { 278 page = cb->compressed_pages[index]; 279 page->mapping = NULL; 280 put_page(page); 281 } 282 283 /* do io completion on the original bio */ 284 if (cb->errors) { 285 bio_io_error(cb->orig_bio); 286 } else { 287 struct bio_vec *bvec; 288 struct bvec_iter_all iter_all; 289 290 /* 291 * we have verified the checksum already, set page 292 * checked so the end_io handlers know about it 293 */ 294 ASSERT(!bio_flagged(bio, BIO_CLONED)); 295 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 296 SetPageChecked(bvec->bv_page); 297 298 bio_endio(cb->orig_bio); 299 } 300 301 /* finally free the cb struct */ 302 kfree(cb->compressed_pages); 303 kfree(cb); 304 out: 305 bio_put(bio); 306 } 307 308 /* 309 * Clear the writeback bits on all of the file 310 * pages for a compressed write 311 */ 312 static noinline void end_compressed_writeback(struct inode *inode, 313 const struct compressed_bio *cb) 314 { 315 unsigned long index = cb->start >> PAGE_SHIFT; 316 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 317 struct page *pages[16]; 318 unsigned long nr_pages = end_index - index + 1; 319 int i; 320 int ret; 321 322 if (cb->errors) 323 mapping_set_error(inode->i_mapping, -EIO); 324 325 while (nr_pages > 0) { 326 ret = find_get_pages_contig(inode->i_mapping, index, 327 min_t(unsigned long, 328 nr_pages, ARRAY_SIZE(pages)), pages); 329 if (ret == 0) { 330 nr_pages -= 1; 331 index += 1; 332 continue; 333 } 334 for (i = 0; i < ret; i++) { 335 if (cb->errors) 336 SetPageError(pages[i]); 337 end_page_writeback(pages[i]); 338 put_page(pages[i]); 339 } 340 nr_pages -= ret; 341 index += ret; 342 } 343 /* the inode may be gone now */ 344 } 345 346 /* 347 * do the cleanup once all the compressed pages hit the disk. 348 * This will clear writeback on the file pages and free the compressed 349 * pages. 350 * 351 * This also calls the writeback end hooks for the file pages so that 352 * metadata and checksums can be updated in the file. 353 */ 354 static void end_compressed_bio_write(struct bio *bio) 355 { 356 struct compressed_bio *cb = bio->bi_private; 357 struct inode *inode; 358 struct page *page; 359 unsigned long index; 360 361 if (bio->bi_status) 362 cb->errors = 1; 363 364 /* if there are more bios still pending for this compressed 365 * extent, just exit 366 */ 367 if (!refcount_dec_and_test(&cb->pending_bios)) 368 goto out; 369 370 /* ok, we're the last bio for this extent, step one is to 371 * call back into the FS and do all the end_io operations 372 */ 373 inode = cb->inode; 374 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 375 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 376 cb->start, cb->start + cb->len - 1, 377 bio->bi_status == BLK_STS_OK); 378 cb->compressed_pages[0]->mapping = NULL; 379 380 end_compressed_writeback(inode, cb); 381 /* note, our inode could be gone now */ 382 383 /* 384 * release the compressed pages, these came from alloc_page and 385 * are not attached to the inode at all 386 */ 387 index = 0; 388 for (index = 0; index < cb->nr_pages; index++) { 389 page = cb->compressed_pages[index]; 390 page->mapping = NULL; 391 put_page(page); 392 } 393 394 /* finally free the cb struct */ 395 kfree(cb->compressed_pages); 396 kfree(cb); 397 out: 398 bio_put(bio); 399 } 400 401 /* 402 * worker function to build and submit bios for previously compressed pages. 403 * The corresponding pages in the inode should be marked for writeback 404 * and the compressed pages should have a reference on them for dropping 405 * when the IO is complete. 406 * 407 * This also checksums the file bytes and gets things ready for 408 * the end io hooks. 409 */ 410 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 411 unsigned long len, u64 disk_start, 412 unsigned long compressed_len, 413 struct page **compressed_pages, 414 unsigned long nr_pages, 415 unsigned int write_flags, 416 struct cgroup_subsys_state *blkcg_css) 417 { 418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 419 struct bio *bio = NULL; 420 struct compressed_bio *cb; 421 unsigned long bytes_left; 422 int pg_index = 0; 423 struct page *page; 424 u64 first_byte = disk_start; 425 blk_status_t ret; 426 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 427 428 WARN_ON(!PAGE_ALIGNED(start)); 429 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 430 if (!cb) 431 return BLK_STS_RESOURCE; 432 refcount_set(&cb->pending_bios, 0); 433 cb->errors = 0; 434 cb->inode = inode; 435 cb->start = start; 436 cb->len = len; 437 cb->mirror_num = 0; 438 cb->compressed_pages = compressed_pages; 439 cb->compressed_len = compressed_len; 440 cb->orig_bio = NULL; 441 cb->nr_pages = nr_pages; 442 443 bio = btrfs_bio_alloc(first_byte); 444 bio->bi_opf = REQ_OP_WRITE | write_flags; 445 bio->bi_private = cb; 446 bio->bi_end_io = end_compressed_bio_write; 447 448 if (blkcg_css) { 449 bio->bi_opf |= REQ_CGROUP_PUNT; 450 kthread_associate_blkcg(blkcg_css); 451 } 452 refcount_set(&cb->pending_bios, 1); 453 454 /* create and submit bios for the compressed pages */ 455 bytes_left = compressed_len; 456 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 457 int submit = 0; 458 459 page = compressed_pages[pg_index]; 460 page->mapping = inode->i_mapping; 461 if (bio->bi_iter.bi_size) 462 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 463 0); 464 465 page->mapping = NULL; 466 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 467 PAGE_SIZE) { 468 /* 469 * inc the count before we submit the bio so 470 * we know the end IO handler won't happen before 471 * we inc the count. Otherwise, the cb might get 472 * freed before we're done setting it up 473 */ 474 refcount_inc(&cb->pending_bios); 475 ret = btrfs_bio_wq_end_io(fs_info, bio, 476 BTRFS_WQ_ENDIO_DATA); 477 BUG_ON(ret); /* -ENOMEM */ 478 479 if (!skip_sum) { 480 ret = btrfs_csum_one_bio(inode, bio, start, 1); 481 BUG_ON(ret); /* -ENOMEM */ 482 } 483 484 ret = btrfs_map_bio(fs_info, bio, 0); 485 if (ret) { 486 bio->bi_status = ret; 487 bio_endio(bio); 488 } 489 490 bio = btrfs_bio_alloc(first_byte); 491 bio->bi_opf = REQ_OP_WRITE | write_flags; 492 bio->bi_private = cb; 493 bio->bi_end_io = end_compressed_bio_write; 494 if (blkcg_css) 495 bio->bi_opf |= REQ_CGROUP_PUNT; 496 bio_add_page(bio, page, PAGE_SIZE, 0); 497 } 498 if (bytes_left < PAGE_SIZE) { 499 btrfs_info(fs_info, 500 "bytes left %lu compress len %lu nr %lu", 501 bytes_left, cb->compressed_len, cb->nr_pages); 502 } 503 bytes_left -= PAGE_SIZE; 504 first_byte += PAGE_SIZE; 505 cond_resched(); 506 } 507 508 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 509 BUG_ON(ret); /* -ENOMEM */ 510 511 if (!skip_sum) { 512 ret = btrfs_csum_one_bio(inode, bio, start, 1); 513 BUG_ON(ret); /* -ENOMEM */ 514 } 515 516 ret = btrfs_map_bio(fs_info, bio, 0); 517 if (ret) { 518 bio->bi_status = ret; 519 bio_endio(bio); 520 } 521 522 if (blkcg_css) 523 kthread_associate_blkcg(NULL); 524 525 return 0; 526 } 527 528 static u64 bio_end_offset(struct bio *bio) 529 { 530 struct bio_vec *last = bio_last_bvec_all(bio); 531 532 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 533 } 534 535 static noinline int add_ra_bio_pages(struct inode *inode, 536 u64 compressed_end, 537 struct compressed_bio *cb) 538 { 539 unsigned long end_index; 540 unsigned long pg_index; 541 u64 last_offset; 542 u64 isize = i_size_read(inode); 543 int ret; 544 struct page *page; 545 unsigned long nr_pages = 0; 546 struct extent_map *em; 547 struct address_space *mapping = inode->i_mapping; 548 struct extent_map_tree *em_tree; 549 struct extent_io_tree *tree; 550 u64 end; 551 int misses = 0; 552 553 last_offset = bio_end_offset(cb->orig_bio); 554 em_tree = &BTRFS_I(inode)->extent_tree; 555 tree = &BTRFS_I(inode)->io_tree; 556 557 if (isize == 0) 558 return 0; 559 560 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 561 562 while (last_offset < compressed_end) { 563 pg_index = last_offset >> PAGE_SHIFT; 564 565 if (pg_index > end_index) 566 break; 567 568 page = xa_load(&mapping->i_pages, pg_index); 569 if (page && !xa_is_value(page)) { 570 misses++; 571 if (misses > 4) 572 break; 573 goto next; 574 } 575 576 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 577 ~__GFP_FS)); 578 if (!page) 579 break; 580 581 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 582 put_page(page); 583 goto next; 584 } 585 586 end = last_offset + PAGE_SIZE - 1; 587 /* 588 * at this point, we have a locked page in the page cache 589 * for these bytes in the file. But, we have to make 590 * sure they map to this compressed extent on disk. 591 */ 592 set_page_extent_mapped(page); 593 lock_extent(tree, last_offset, end); 594 read_lock(&em_tree->lock); 595 em = lookup_extent_mapping(em_tree, last_offset, 596 PAGE_SIZE); 597 read_unlock(&em_tree->lock); 598 599 if (!em || last_offset < em->start || 600 (last_offset + PAGE_SIZE > extent_map_end(em)) || 601 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 602 free_extent_map(em); 603 unlock_extent(tree, last_offset, end); 604 unlock_page(page); 605 put_page(page); 606 break; 607 } 608 free_extent_map(em); 609 610 if (page->index == end_index) { 611 char *userpage; 612 size_t zero_offset = offset_in_page(isize); 613 614 if (zero_offset) { 615 int zeros; 616 zeros = PAGE_SIZE - zero_offset; 617 userpage = kmap_atomic(page); 618 memset(userpage + zero_offset, 0, zeros); 619 flush_dcache_page(page); 620 kunmap_atomic(userpage); 621 } 622 } 623 624 ret = bio_add_page(cb->orig_bio, page, 625 PAGE_SIZE, 0); 626 627 if (ret == PAGE_SIZE) { 628 nr_pages++; 629 put_page(page); 630 } else { 631 unlock_extent(tree, last_offset, end); 632 unlock_page(page); 633 put_page(page); 634 break; 635 } 636 next: 637 last_offset += PAGE_SIZE; 638 } 639 return 0; 640 } 641 642 /* 643 * for a compressed read, the bio we get passed has all the inode pages 644 * in it. We don't actually do IO on those pages but allocate new ones 645 * to hold the compressed pages on disk. 646 * 647 * bio->bi_iter.bi_sector points to the compressed extent on disk 648 * bio->bi_io_vec points to all of the inode pages 649 * 650 * After the compressed pages are read, we copy the bytes into the 651 * bio we were passed and then call the bio end_io calls 652 */ 653 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 654 int mirror_num, unsigned long bio_flags) 655 { 656 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 657 struct extent_map_tree *em_tree; 658 struct compressed_bio *cb; 659 unsigned long compressed_len; 660 unsigned long nr_pages; 661 unsigned long pg_index; 662 struct page *page; 663 struct bio *comp_bio; 664 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 665 u64 em_len; 666 u64 em_start; 667 struct extent_map *em; 668 blk_status_t ret = BLK_STS_RESOURCE; 669 int faili = 0; 670 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 671 u8 *sums; 672 673 em_tree = &BTRFS_I(inode)->extent_tree; 674 675 /* we need the actual starting offset of this extent in the file */ 676 read_lock(&em_tree->lock); 677 em = lookup_extent_mapping(em_tree, 678 page_offset(bio_first_page_all(bio)), 679 PAGE_SIZE); 680 read_unlock(&em_tree->lock); 681 if (!em) 682 return BLK_STS_IOERR; 683 684 compressed_len = em->block_len; 685 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 686 if (!cb) 687 goto out; 688 689 refcount_set(&cb->pending_bios, 0); 690 cb->errors = 0; 691 cb->inode = inode; 692 cb->mirror_num = mirror_num; 693 sums = cb->sums; 694 695 cb->start = em->orig_start; 696 em_len = em->len; 697 em_start = em->start; 698 699 free_extent_map(em); 700 em = NULL; 701 702 cb->len = bio->bi_iter.bi_size; 703 cb->compressed_len = compressed_len; 704 cb->compress_type = extent_compress_type(bio_flags); 705 cb->orig_bio = bio; 706 707 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 708 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 709 GFP_NOFS); 710 if (!cb->compressed_pages) 711 goto fail1; 712 713 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 714 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 715 __GFP_HIGHMEM); 716 if (!cb->compressed_pages[pg_index]) { 717 faili = pg_index - 1; 718 ret = BLK_STS_RESOURCE; 719 goto fail2; 720 } 721 } 722 faili = nr_pages - 1; 723 cb->nr_pages = nr_pages; 724 725 add_ra_bio_pages(inode, em_start + em_len, cb); 726 727 /* include any pages we added in add_ra-bio_pages */ 728 cb->len = bio->bi_iter.bi_size; 729 730 comp_bio = btrfs_bio_alloc(cur_disk_byte); 731 comp_bio->bi_opf = REQ_OP_READ; 732 comp_bio->bi_private = cb; 733 comp_bio->bi_end_io = end_compressed_bio_read; 734 refcount_set(&cb->pending_bios, 1); 735 736 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 737 int submit = 0; 738 739 page = cb->compressed_pages[pg_index]; 740 page->mapping = inode->i_mapping; 741 page->index = em_start >> PAGE_SHIFT; 742 743 if (comp_bio->bi_iter.bi_size) 744 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, 745 comp_bio, 0); 746 747 page->mapping = NULL; 748 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 749 PAGE_SIZE) { 750 unsigned int nr_sectors; 751 752 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 753 BTRFS_WQ_ENDIO_DATA); 754 BUG_ON(ret); /* -ENOMEM */ 755 756 /* 757 * inc the count before we submit the bio so 758 * we know the end IO handler won't happen before 759 * we inc the count. Otherwise, the cb might get 760 * freed before we're done setting it up 761 */ 762 refcount_inc(&cb->pending_bios); 763 764 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 765 ret = btrfs_lookup_bio_sums(inode, comp_bio, 766 sums); 767 BUG_ON(ret); /* -ENOMEM */ 768 } 769 770 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 771 fs_info->sectorsize); 772 sums += csum_size * nr_sectors; 773 774 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 775 if (ret) { 776 comp_bio->bi_status = ret; 777 bio_endio(comp_bio); 778 } 779 780 comp_bio = btrfs_bio_alloc(cur_disk_byte); 781 comp_bio->bi_opf = REQ_OP_READ; 782 comp_bio->bi_private = cb; 783 comp_bio->bi_end_io = end_compressed_bio_read; 784 785 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 786 } 787 cur_disk_byte += PAGE_SIZE; 788 } 789 790 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 791 BUG_ON(ret); /* -ENOMEM */ 792 793 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 794 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 795 BUG_ON(ret); /* -ENOMEM */ 796 } 797 798 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 799 if (ret) { 800 comp_bio->bi_status = ret; 801 bio_endio(comp_bio); 802 } 803 804 return 0; 805 806 fail2: 807 while (faili >= 0) { 808 __free_page(cb->compressed_pages[faili]); 809 faili--; 810 } 811 812 kfree(cb->compressed_pages); 813 fail1: 814 kfree(cb); 815 out: 816 free_extent_map(em); 817 return ret; 818 } 819 820 /* 821 * Heuristic uses systematic sampling to collect data from the input data 822 * range, the logic can be tuned by the following constants: 823 * 824 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 825 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 826 */ 827 #define SAMPLING_READ_SIZE (16) 828 #define SAMPLING_INTERVAL (256) 829 830 /* 831 * For statistical analysis of the input data we consider bytes that form a 832 * Galois Field of 256 objects. Each object has an attribute count, ie. how 833 * many times the object appeared in the sample. 834 */ 835 #define BUCKET_SIZE (256) 836 837 /* 838 * The size of the sample is based on a statistical sampling rule of thumb. 839 * The common way is to perform sampling tests as long as the number of 840 * elements in each cell is at least 5. 841 * 842 * Instead of 5, we choose 32 to obtain more accurate results. 843 * If the data contain the maximum number of symbols, which is 256, we obtain a 844 * sample size bound by 8192. 845 * 846 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 847 * from up to 512 locations. 848 */ 849 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 850 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 851 852 struct bucket_item { 853 u32 count; 854 }; 855 856 struct heuristic_ws { 857 /* Partial copy of input data */ 858 u8 *sample; 859 u32 sample_size; 860 /* Buckets store counters for each byte value */ 861 struct bucket_item *bucket; 862 /* Sorting buffer */ 863 struct bucket_item *bucket_b; 864 struct list_head list; 865 }; 866 867 static struct workspace_manager heuristic_wsm; 868 869 static void free_heuristic_ws(struct list_head *ws) 870 { 871 struct heuristic_ws *workspace; 872 873 workspace = list_entry(ws, struct heuristic_ws, list); 874 875 kvfree(workspace->sample); 876 kfree(workspace->bucket); 877 kfree(workspace->bucket_b); 878 kfree(workspace); 879 } 880 881 static struct list_head *alloc_heuristic_ws(unsigned int level) 882 { 883 struct heuristic_ws *ws; 884 885 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 886 if (!ws) 887 return ERR_PTR(-ENOMEM); 888 889 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 890 if (!ws->sample) 891 goto fail; 892 893 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 894 if (!ws->bucket) 895 goto fail; 896 897 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 898 if (!ws->bucket_b) 899 goto fail; 900 901 INIT_LIST_HEAD(&ws->list); 902 return &ws->list; 903 fail: 904 free_heuristic_ws(&ws->list); 905 return ERR_PTR(-ENOMEM); 906 } 907 908 const struct btrfs_compress_op btrfs_heuristic_compress = { 909 .workspace_manager = &heuristic_wsm, 910 }; 911 912 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 913 /* The heuristic is represented as compression type 0 */ 914 &btrfs_heuristic_compress, 915 &btrfs_zlib_compress, 916 &btrfs_lzo_compress, 917 &btrfs_zstd_compress, 918 }; 919 920 static struct list_head *alloc_workspace(int type, unsigned int level) 921 { 922 switch (type) { 923 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 924 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 925 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 926 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 927 default: 928 /* 929 * This can't happen, the type is validated several times 930 * before we get here. 931 */ 932 BUG(); 933 } 934 } 935 936 static void free_workspace(int type, struct list_head *ws) 937 { 938 switch (type) { 939 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 940 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 941 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 942 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 943 default: 944 /* 945 * This can't happen, the type is validated several times 946 * before we get here. 947 */ 948 BUG(); 949 } 950 } 951 952 static void btrfs_init_workspace_manager(int type) 953 { 954 struct workspace_manager *wsm; 955 struct list_head *workspace; 956 957 wsm = btrfs_compress_op[type]->workspace_manager; 958 INIT_LIST_HEAD(&wsm->idle_ws); 959 spin_lock_init(&wsm->ws_lock); 960 atomic_set(&wsm->total_ws, 0); 961 init_waitqueue_head(&wsm->ws_wait); 962 963 /* 964 * Preallocate one workspace for each compression type so we can 965 * guarantee forward progress in the worst case 966 */ 967 workspace = alloc_workspace(type, 0); 968 if (IS_ERR(workspace)) { 969 pr_warn( 970 "BTRFS: cannot preallocate compression workspace, will try later\n"); 971 } else { 972 atomic_set(&wsm->total_ws, 1); 973 wsm->free_ws = 1; 974 list_add(workspace, &wsm->idle_ws); 975 } 976 } 977 978 static void btrfs_cleanup_workspace_manager(int type) 979 { 980 struct workspace_manager *wsman; 981 struct list_head *ws; 982 983 wsman = btrfs_compress_op[type]->workspace_manager; 984 while (!list_empty(&wsman->idle_ws)) { 985 ws = wsman->idle_ws.next; 986 list_del(ws); 987 free_workspace(type, ws); 988 atomic_dec(&wsman->total_ws); 989 } 990 } 991 992 /* 993 * This finds an available workspace or allocates a new one. 994 * If it's not possible to allocate a new one, waits until there's one. 995 * Preallocation makes a forward progress guarantees and we do not return 996 * errors. 997 */ 998 struct list_head *btrfs_get_workspace(int type, unsigned int level) 999 { 1000 struct workspace_manager *wsm; 1001 struct list_head *workspace; 1002 int cpus = num_online_cpus(); 1003 unsigned nofs_flag; 1004 struct list_head *idle_ws; 1005 spinlock_t *ws_lock; 1006 atomic_t *total_ws; 1007 wait_queue_head_t *ws_wait; 1008 int *free_ws; 1009 1010 wsm = btrfs_compress_op[type]->workspace_manager; 1011 idle_ws = &wsm->idle_ws; 1012 ws_lock = &wsm->ws_lock; 1013 total_ws = &wsm->total_ws; 1014 ws_wait = &wsm->ws_wait; 1015 free_ws = &wsm->free_ws; 1016 1017 again: 1018 spin_lock(ws_lock); 1019 if (!list_empty(idle_ws)) { 1020 workspace = idle_ws->next; 1021 list_del(workspace); 1022 (*free_ws)--; 1023 spin_unlock(ws_lock); 1024 return workspace; 1025 1026 } 1027 if (atomic_read(total_ws) > cpus) { 1028 DEFINE_WAIT(wait); 1029 1030 spin_unlock(ws_lock); 1031 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1032 if (atomic_read(total_ws) > cpus && !*free_ws) 1033 schedule(); 1034 finish_wait(ws_wait, &wait); 1035 goto again; 1036 } 1037 atomic_inc(total_ws); 1038 spin_unlock(ws_lock); 1039 1040 /* 1041 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1042 * to turn it off here because we might get called from the restricted 1043 * context of btrfs_compress_bio/btrfs_compress_pages 1044 */ 1045 nofs_flag = memalloc_nofs_save(); 1046 workspace = alloc_workspace(type, level); 1047 memalloc_nofs_restore(nofs_flag); 1048 1049 if (IS_ERR(workspace)) { 1050 atomic_dec(total_ws); 1051 wake_up(ws_wait); 1052 1053 /* 1054 * Do not return the error but go back to waiting. There's a 1055 * workspace preallocated for each type and the compression 1056 * time is bounded so we get to a workspace eventually. This 1057 * makes our caller's life easier. 1058 * 1059 * To prevent silent and low-probability deadlocks (when the 1060 * initial preallocation fails), check if there are any 1061 * workspaces at all. 1062 */ 1063 if (atomic_read(total_ws) == 0) { 1064 static DEFINE_RATELIMIT_STATE(_rs, 1065 /* once per minute */ 60 * HZ, 1066 /* no burst */ 1); 1067 1068 if (__ratelimit(&_rs)) { 1069 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1070 } 1071 } 1072 goto again; 1073 } 1074 return workspace; 1075 } 1076 1077 static struct list_head *get_workspace(int type, int level) 1078 { 1079 switch (type) { 1080 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1081 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1082 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1083 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1084 default: 1085 /* 1086 * This can't happen, the type is validated several times 1087 * before we get here. 1088 */ 1089 BUG(); 1090 } 1091 } 1092 1093 /* 1094 * put a workspace struct back on the list or free it if we have enough 1095 * idle ones sitting around 1096 */ 1097 void btrfs_put_workspace(int type, struct list_head *ws) 1098 { 1099 struct workspace_manager *wsm; 1100 struct list_head *idle_ws; 1101 spinlock_t *ws_lock; 1102 atomic_t *total_ws; 1103 wait_queue_head_t *ws_wait; 1104 int *free_ws; 1105 1106 wsm = btrfs_compress_op[type]->workspace_manager; 1107 idle_ws = &wsm->idle_ws; 1108 ws_lock = &wsm->ws_lock; 1109 total_ws = &wsm->total_ws; 1110 ws_wait = &wsm->ws_wait; 1111 free_ws = &wsm->free_ws; 1112 1113 spin_lock(ws_lock); 1114 if (*free_ws <= num_online_cpus()) { 1115 list_add(ws, idle_ws); 1116 (*free_ws)++; 1117 spin_unlock(ws_lock); 1118 goto wake; 1119 } 1120 spin_unlock(ws_lock); 1121 1122 free_workspace(type, ws); 1123 atomic_dec(total_ws); 1124 wake: 1125 cond_wake_up(ws_wait); 1126 } 1127 1128 static void put_workspace(int type, struct list_head *ws) 1129 { 1130 switch (type) { 1131 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1132 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1133 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1134 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1135 default: 1136 /* 1137 * This can't happen, the type is validated several times 1138 * before we get here. 1139 */ 1140 BUG(); 1141 } 1142 } 1143 1144 /* 1145 * Given an address space and start and length, compress the bytes into @pages 1146 * that are allocated on demand. 1147 * 1148 * @type_level is encoded algorithm and level, where level 0 means whatever 1149 * default the algorithm chooses and is opaque here; 1150 * - compression algo are 0-3 1151 * - the level are bits 4-7 1152 * 1153 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1154 * and returns number of actually allocated pages 1155 * 1156 * @total_in is used to return the number of bytes actually read. It 1157 * may be smaller than the input length if we had to exit early because we 1158 * ran out of room in the pages array or because we cross the 1159 * max_out threshold. 1160 * 1161 * @total_out is an in/out parameter, must be set to the input length and will 1162 * be also used to return the total number of compressed bytes 1163 * 1164 * @max_out tells us the max number of bytes that we're allowed to 1165 * stuff into pages 1166 */ 1167 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1168 u64 start, struct page **pages, 1169 unsigned long *out_pages, 1170 unsigned long *total_in, 1171 unsigned long *total_out) 1172 { 1173 int type = btrfs_compress_type(type_level); 1174 int level = btrfs_compress_level(type_level); 1175 struct list_head *workspace; 1176 int ret; 1177 1178 level = btrfs_compress_set_level(type, level); 1179 workspace = get_workspace(type, level); 1180 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1181 out_pages, total_in, total_out); 1182 put_workspace(type, workspace); 1183 return ret; 1184 } 1185 1186 /* 1187 * pages_in is an array of pages with compressed data. 1188 * 1189 * disk_start is the starting logical offset of this array in the file 1190 * 1191 * orig_bio contains the pages from the file that we want to decompress into 1192 * 1193 * srclen is the number of bytes in pages_in 1194 * 1195 * The basic idea is that we have a bio that was created by readpages. 1196 * The pages in the bio are for the uncompressed data, and they may not 1197 * be contiguous. They all correspond to the range of bytes covered by 1198 * the compressed extent. 1199 */ 1200 static int btrfs_decompress_bio(struct compressed_bio *cb) 1201 { 1202 struct list_head *workspace; 1203 int ret; 1204 int type = cb->compress_type; 1205 1206 workspace = get_workspace(type, 0); 1207 ret = compression_decompress_bio(type, workspace, cb); 1208 put_workspace(type, workspace); 1209 1210 return ret; 1211 } 1212 1213 /* 1214 * a less complex decompression routine. Our compressed data fits in a 1215 * single page, and we want to read a single page out of it. 1216 * start_byte tells us the offset into the compressed data we're interested in 1217 */ 1218 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1219 unsigned long start_byte, size_t srclen, size_t destlen) 1220 { 1221 struct list_head *workspace; 1222 int ret; 1223 1224 workspace = get_workspace(type, 0); 1225 ret = compression_decompress(type, workspace, data_in, dest_page, 1226 start_byte, srclen, destlen); 1227 put_workspace(type, workspace); 1228 1229 return ret; 1230 } 1231 1232 void __init btrfs_init_compress(void) 1233 { 1234 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1235 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1236 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1237 zstd_init_workspace_manager(); 1238 } 1239 1240 void __cold btrfs_exit_compress(void) 1241 { 1242 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1243 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1244 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1245 zstd_cleanup_workspace_manager(); 1246 } 1247 1248 /* 1249 * Copy uncompressed data from working buffer to pages. 1250 * 1251 * buf_start is the byte offset we're of the start of our workspace buffer. 1252 * 1253 * total_out is the last byte of the buffer 1254 */ 1255 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1256 unsigned long total_out, u64 disk_start, 1257 struct bio *bio) 1258 { 1259 unsigned long buf_offset; 1260 unsigned long current_buf_start; 1261 unsigned long start_byte; 1262 unsigned long prev_start_byte; 1263 unsigned long working_bytes = total_out - buf_start; 1264 unsigned long bytes; 1265 char *kaddr; 1266 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1267 1268 /* 1269 * start byte is the first byte of the page we're currently 1270 * copying into relative to the start of the compressed data. 1271 */ 1272 start_byte = page_offset(bvec.bv_page) - disk_start; 1273 1274 /* we haven't yet hit data corresponding to this page */ 1275 if (total_out <= start_byte) 1276 return 1; 1277 1278 /* 1279 * the start of the data we care about is offset into 1280 * the middle of our working buffer 1281 */ 1282 if (total_out > start_byte && buf_start < start_byte) { 1283 buf_offset = start_byte - buf_start; 1284 working_bytes -= buf_offset; 1285 } else { 1286 buf_offset = 0; 1287 } 1288 current_buf_start = buf_start; 1289 1290 /* copy bytes from the working buffer into the pages */ 1291 while (working_bytes > 0) { 1292 bytes = min_t(unsigned long, bvec.bv_len, 1293 PAGE_SIZE - buf_offset); 1294 bytes = min(bytes, working_bytes); 1295 1296 kaddr = kmap_atomic(bvec.bv_page); 1297 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1298 kunmap_atomic(kaddr); 1299 flush_dcache_page(bvec.bv_page); 1300 1301 buf_offset += bytes; 1302 working_bytes -= bytes; 1303 current_buf_start += bytes; 1304 1305 /* check if we need to pick another page */ 1306 bio_advance(bio, bytes); 1307 if (!bio->bi_iter.bi_size) 1308 return 0; 1309 bvec = bio_iter_iovec(bio, bio->bi_iter); 1310 prev_start_byte = start_byte; 1311 start_byte = page_offset(bvec.bv_page) - disk_start; 1312 1313 /* 1314 * We need to make sure we're only adjusting 1315 * our offset into compression working buffer when 1316 * we're switching pages. Otherwise we can incorrectly 1317 * keep copying when we were actually done. 1318 */ 1319 if (start_byte != prev_start_byte) { 1320 /* 1321 * make sure our new page is covered by this 1322 * working buffer 1323 */ 1324 if (total_out <= start_byte) 1325 return 1; 1326 1327 /* 1328 * the next page in the biovec might not be adjacent 1329 * to the last page, but it might still be found 1330 * inside this working buffer. bump our offset pointer 1331 */ 1332 if (total_out > start_byte && 1333 current_buf_start < start_byte) { 1334 buf_offset = start_byte - buf_start; 1335 working_bytes = total_out - start_byte; 1336 current_buf_start = buf_start + buf_offset; 1337 } 1338 } 1339 } 1340 1341 return 1; 1342 } 1343 1344 /* 1345 * Shannon Entropy calculation 1346 * 1347 * Pure byte distribution analysis fails to determine compressibility of data. 1348 * Try calculating entropy to estimate the average minimum number of bits 1349 * needed to encode the sampled data. 1350 * 1351 * For convenience, return the percentage of needed bits, instead of amount of 1352 * bits directly. 1353 * 1354 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1355 * and can be compressible with high probability 1356 * 1357 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1358 * 1359 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1360 */ 1361 #define ENTROPY_LVL_ACEPTABLE (65) 1362 #define ENTROPY_LVL_HIGH (80) 1363 1364 /* 1365 * For increasead precision in shannon_entropy calculation, 1366 * let's do pow(n, M) to save more digits after comma: 1367 * 1368 * - maximum int bit length is 64 1369 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1370 * - 13 * 4 = 52 < 64 -> M = 4 1371 * 1372 * So use pow(n, 4). 1373 */ 1374 static inline u32 ilog2_w(u64 n) 1375 { 1376 return ilog2(n * n * n * n); 1377 } 1378 1379 static u32 shannon_entropy(struct heuristic_ws *ws) 1380 { 1381 const u32 entropy_max = 8 * ilog2_w(2); 1382 u32 entropy_sum = 0; 1383 u32 p, p_base, sz_base; 1384 u32 i; 1385 1386 sz_base = ilog2_w(ws->sample_size); 1387 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1388 p = ws->bucket[i].count; 1389 p_base = ilog2_w(p); 1390 entropy_sum += p * (sz_base - p_base); 1391 } 1392 1393 entropy_sum /= ws->sample_size; 1394 return entropy_sum * 100 / entropy_max; 1395 } 1396 1397 #define RADIX_BASE 4U 1398 #define COUNTERS_SIZE (1U << RADIX_BASE) 1399 1400 static u8 get4bits(u64 num, int shift) { 1401 u8 low4bits; 1402 1403 num >>= shift; 1404 /* Reverse order */ 1405 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1406 return low4bits; 1407 } 1408 1409 /* 1410 * Use 4 bits as radix base 1411 * Use 16 u32 counters for calculating new position in buf array 1412 * 1413 * @array - array that will be sorted 1414 * @array_buf - buffer array to store sorting results 1415 * must be equal in size to @array 1416 * @num - array size 1417 */ 1418 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1419 int num) 1420 { 1421 u64 max_num; 1422 u64 buf_num; 1423 u32 counters[COUNTERS_SIZE]; 1424 u32 new_addr; 1425 u32 addr; 1426 int bitlen; 1427 int shift; 1428 int i; 1429 1430 /* 1431 * Try avoid useless loop iterations for small numbers stored in big 1432 * counters. Example: 48 33 4 ... in 64bit array 1433 */ 1434 max_num = array[0].count; 1435 for (i = 1; i < num; i++) { 1436 buf_num = array[i].count; 1437 if (buf_num > max_num) 1438 max_num = buf_num; 1439 } 1440 1441 buf_num = ilog2(max_num); 1442 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1443 1444 shift = 0; 1445 while (shift < bitlen) { 1446 memset(counters, 0, sizeof(counters)); 1447 1448 for (i = 0; i < num; i++) { 1449 buf_num = array[i].count; 1450 addr = get4bits(buf_num, shift); 1451 counters[addr]++; 1452 } 1453 1454 for (i = 1; i < COUNTERS_SIZE; i++) 1455 counters[i] += counters[i - 1]; 1456 1457 for (i = num - 1; i >= 0; i--) { 1458 buf_num = array[i].count; 1459 addr = get4bits(buf_num, shift); 1460 counters[addr]--; 1461 new_addr = counters[addr]; 1462 array_buf[new_addr] = array[i]; 1463 } 1464 1465 shift += RADIX_BASE; 1466 1467 /* 1468 * Normal radix expects to move data from a temporary array, to 1469 * the main one. But that requires some CPU time. Avoid that 1470 * by doing another sort iteration to original array instead of 1471 * memcpy() 1472 */ 1473 memset(counters, 0, sizeof(counters)); 1474 1475 for (i = 0; i < num; i ++) { 1476 buf_num = array_buf[i].count; 1477 addr = get4bits(buf_num, shift); 1478 counters[addr]++; 1479 } 1480 1481 for (i = 1; i < COUNTERS_SIZE; i++) 1482 counters[i] += counters[i - 1]; 1483 1484 for (i = num - 1; i >= 0; i--) { 1485 buf_num = array_buf[i].count; 1486 addr = get4bits(buf_num, shift); 1487 counters[addr]--; 1488 new_addr = counters[addr]; 1489 array[new_addr] = array_buf[i]; 1490 } 1491 1492 shift += RADIX_BASE; 1493 } 1494 } 1495 1496 /* 1497 * Size of the core byte set - how many bytes cover 90% of the sample 1498 * 1499 * There are several types of structured binary data that use nearly all byte 1500 * values. The distribution can be uniform and counts in all buckets will be 1501 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1502 * 1503 * Other possibility is normal (Gaussian) distribution, where the data could 1504 * be potentially compressible, but we have to take a few more steps to decide 1505 * how much. 1506 * 1507 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1508 * compression algo can easy fix that 1509 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1510 * probability is not compressible 1511 */ 1512 #define BYTE_CORE_SET_LOW (64) 1513 #define BYTE_CORE_SET_HIGH (200) 1514 1515 static int byte_core_set_size(struct heuristic_ws *ws) 1516 { 1517 u32 i; 1518 u32 coreset_sum = 0; 1519 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1520 struct bucket_item *bucket = ws->bucket; 1521 1522 /* Sort in reverse order */ 1523 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1524 1525 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1526 coreset_sum += bucket[i].count; 1527 1528 if (coreset_sum > core_set_threshold) 1529 return i; 1530 1531 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1532 coreset_sum += bucket[i].count; 1533 if (coreset_sum > core_set_threshold) 1534 break; 1535 } 1536 1537 return i; 1538 } 1539 1540 /* 1541 * Count byte values in buckets. 1542 * This heuristic can detect textual data (configs, xml, json, html, etc). 1543 * Because in most text-like data byte set is restricted to limited number of 1544 * possible characters, and that restriction in most cases makes data easy to 1545 * compress. 1546 * 1547 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1548 * less - compressible 1549 * more - need additional analysis 1550 */ 1551 #define BYTE_SET_THRESHOLD (64) 1552 1553 static u32 byte_set_size(const struct heuristic_ws *ws) 1554 { 1555 u32 i; 1556 u32 byte_set_size = 0; 1557 1558 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1559 if (ws->bucket[i].count > 0) 1560 byte_set_size++; 1561 } 1562 1563 /* 1564 * Continue collecting count of byte values in buckets. If the byte 1565 * set size is bigger then the threshold, it's pointless to continue, 1566 * the detection technique would fail for this type of data. 1567 */ 1568 for (; i < BUCKET_SIZE; i++) { 1569 if (ws->bucket[i].count > 0) { 1570 byte_set_size++; 1571 if (byte_set_size > BYTE_SET_THRESHOLD) 1572 return byte_set_size; 1573 } 1574 } 1575 1576 return byte_set_size; 1577 } 1578 1579 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1580 { 1581 const u32 half_of_sample = ws->sample_size / 2; 1582 const u8 *data = ws->sample; 1583 1584 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1585 } 1586 1587 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1588 struct heuristic_ws *ws) 1589 { 1590 struct page *page; 1591 u64 index, index_end; 1592 u32 i, curr_sample_pos; 1593 u8 *in_data; 1594 1595 /* 1596 * Compression handles the input data by chunks of 128KiB 1597 * (defined by BTRFS_MAX_UNCOMPRESSED) 1598 * 1599 * We do the same for the heuristic and loop over the whole range. 1600 * 1601 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1602 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1603 */ 1604 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1605 end = start + BTRFS_MAX_UNCOMPRESSED; 1606 1607 index = start >> PAGE_SHIFT; 1608 index_end = end >> PAGE_SHIFT; 1609 1610 /* Don't miss unaligned end */ 1611 if (!IS_ALIGNED(end, PAGE_SIZE)) 1612 index_end++; 1613 1614 curr_sample_pos = 0; 1615 while (index < index_end) { 1616 page = find_get_page(inode->i_mapping, index); 1617 in_data = kmap(page); 1618 /* Handle case where the start is not aligned to PAGE_SIZE */ 1619 i = start % PAGE_SIZE; 1620 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1621 /* Don't sample any garbage from the last page */ 1622 if (start > end - SAMPLING_READ_SIZE) 1623 break; 1624 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1625 SAMPLING_READ_SIZE); 1626 i += SAMPLING_INTERVAL; 1627 start += SAMPLING_INTERVAL; 1628 curr_sample_pos += SAMPLING_READ_SIZE; 1629 } 1630 kunmap(page); 1631 put_page(page); 1632 1633 index++; 1634 } 1635 1636 ws->sample_size = curr_sample_pos; 1637 } 1638 1639 /* 1640 * Compression heuristic. 1641 * 1642 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1643 * quickly (compared to direct compression) detect data characteristics 1644 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1645 * data. 1646 * 1647 * The following types of analysis can be performed: 1648 * - detect mostly zero data 1649 * - detect data with low "byte set" size (text, etc) 1650 * - detect data with low/high "core byte" set 1651 * 1652 * Return non-zero if the compression should be done, 0 otherwise. 1653 */ 1654 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1655 { 1656 struct list_head *ws_list = get_workspace(0, 0); 1657 struct heuristic_ws *ws; 1658 u32 i; 1659 u8 byte; 1660 int ret = 0; 1661 1662 ws = list_entry(ws_list, struct heuristic_ws, list); 1663 1664 heuristic_collect_sample(inode, start, end, ws); 1665 1666 if (sample_repeated_patterns(ws)) { 1667 ret = 1; 1668 goto out; 1669 } 1670 1671 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1672 1673 for (i = 0; i < ws->sample_size; i++) { 1674 byte = ws->sample[i]; 1675 ws->bucket[byte].count++; 1676 } 1677 1678 i = byte_set_size(ws); 1679 if (i < BYTE_SET_THRESHOLD) { 1680 ret = 2; 1681 goto out; 1682 } 1683 1684 i = byte_core_set_size(ws); 1685 if (i <= BYTE_CORE_SET_LOW) { 1686 ret = 3; 1687 goto out; 1688 } 1689 1690 if (i >= BYTE_CORE_SET_HIGH) { 1691 ret = 0; 1692 goto out; 1693 } 1694 1695 i = shannon_entropy(ws); 1696 if (i <= ENTROPY_LVL_ACEPTABLE) { 1697 ret = 4; 1698 goto out; 1699 } 1700 1701 /* 1702 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1703 * needed to give green light to compression. 1704 * 1705 * For now just assume that compression at that level is not worth the 1706 * resources because: 1707 * 1708 * 1. it is possible to defrag the data later 1709 * 1710 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1711 * values, every bucket has counter at level ~54. The heuristic would 1712 * be confused. This can happen when data have some internal repeated 1713 * patterns like "abbacbbc...". This can be detected by analyzing 1714 * pairs of bytes, which is too costly. 1715 */ 1716 if (i < ENTROPY_LVL_HIGH) { 1717 ret = 5; 1718 goto out; 1719 } else { 1720 ret = 0; 1721 goto out; 1722 } 1723 1724 out: 1725 put_workspace(0, ws_list); 1726 return ret; 1727 } 1728 1729 /* 1730 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1731 * level, unrecognized string will set the default level 1732 */ 1733 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1734 { 1735 unsigned int level = 0; 1736 int ret; 1737 1738 if (!type) 1739 return 0; 1740 1741 if (str[0] == ':') { 1742 ret = kstrtouint(str + 1, 10, &level); 1743 if (ret) 1744 level = 0; 1745 } 1746 1747 level = btrfs_compress_set_level(type, level); 1748 1749 return level; 1750 } 1751 1752 /* 1753 * Adjust @level according to the limits of the compression algorithm or 1754 * fallback to default 1755 */ 1756 unsigned int btrfs_compress_set_level(int type, unsigned level) 1757 { 1758 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1759 1760 if (level == 0) 1761 level = ops->default_level; 1762 else 1763 level = min(level, ops->max_level); 1764 1765 return level; 1766 } 1767