xref: /openbmc/linux/fs/btrfs/compression.c (revision 6a404910)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 #include "subpage.h"
32 #include "zoned.h"
33 
34 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
35 
36 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
37 {
38 	switch (type) {
39 	case BTRFS_COMPRESS_ZLIB:
40 	case BTRFS_COMPRESS_LZO:
41 	case BTRFS_COMPRESS_ZSTD:
42 	case BTRFS_COMPRESS_NONE:
43 		return btrfs_compress_types[type];
44 	default:
45 		break;
46 	}
47 
48 	return NULL;
49 }
50 
51 bool btrfs_compress_is_valid_type(const char *str, size_t len)
52 {
53 	int i;
54 
55 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
56 		size_t comp_len = strlen(btrfs_compress_types[i]);
57 
58 		if (len < comp_len)
59 			continue;
60 
61 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
62 			return true;
63 	}
64 	return false;
65 }
66 
67 static int compression_compress_pages(int type, struct list_head *ws,
68                struct address_space *mapping, u64 start, struct page **pages,
69                unsigned long *out_pages, unsigned long *total_in,
70                unsigned long *total_out)
71 {
72 	switch (type) {
73 	case BTRFS_COMPRESS_ZLIB:
74 		return zlib_compress_pages(ws, mapping, start, pages,
75 				out_pages, total_in, total_out);
76 	case BTRFS_COMPRESS_LZO:
77 		return lzo_compress_pages(ws, mapping, start, pages,
78 				out_pages, total_in, total_out);
79 	case BTRFS_COMPRESS_ZSTD:
80 		return zstd_compress_pages(ws, mapping, start, pages,
81 				out_pages, total_in, total_out);
82 	case BTRFS_COMPRESS_NONE:
83 	default:
84 		/*
85 		 * This can happen when compression races with remount setting
86 		 * it to 'no compress', while caller doesn't call
87 		 * inode_need_compress() to check if we really need to
88 		 * compress.
89 		 *
90 		 * Not a big deal, just need to inform caller that we
91 		 * haven't allocated any pages yet.
92 		 */
93 		*out_pages = 0;
94 		return -E2BIG;
95 	}
96 }
97 
98 static int compression_decompress_bio(int type, struct list_head *ws,
99 		struct compressed_bio *cb)
100 {
101 	switch (type) {
102 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
103 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
104 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
105 	case BTRFS_COMPRESS_NONE:
106 	default:
107 		/*
108 		 * This can't happen, the type is validated several times
109 		 * before we get here.
110 		 */
111 		BUG();
112 	}
113 }
114 
115 static int compression_decompress(int type, struct list_head *ws,
116                unsigned char *data_in, struct page *dest_page,
117                unsigned long start_byte, size_t srclen, size_t destlen)
118 {
119 	switch (type) {
120 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
121 						start_byte, srclen, destlen);
122 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
123 						start_byte, srclen, destlen);
124 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
125 						start_byte, srclen, destlen);
126 	case BTRFS_COMPRESS_NONE:
127 	default:
128 		/*
129 		 * This can't happen, the type is validated several times
130 		 * before we get here.
131 		 */
132 		BUG();
133 	}
134 }
135 
136 static int btrfs_decompress_bio(struct compressed_bio *cb);
137 
138 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
139 				      unsigned long disk_size)
140 {
141 	return sizeof(struct compressed_bio) +
142 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
143 }
144 
145 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
146 				 u64 disk_start)
147 {
148 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
149 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
150 	const u32 csum_size = fs_info->csum_size;
151 	const u32 sectorsize = fs_info->sectorsize;
152 	struct page *page;
153 	unsigned int i;
154 	char *kaddr;
155 	u8 csum[BTRFS_CSUM_SIZE];
156 	struct compressed_bio *cb = bio->bi_private;
157 	u8 *cb_sum = cb->sums;
158 
159 	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
160 		return 0;
161 
162 	shash->tfm = fs_info->csum_shash;
163 
164 	for (i = 0; i < cb->nr_pages; i++) {
165 		u32 pg_offset;
166 		u32 bytes_left = PAGE_SIZE;
167 		page = cb->compressed_pages[i];
168 
169 		/* Determine the remaining bytes inside the page first */
170 		if (i == cb->nr_pages - 1)
171 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
172 
173 		/* Hash through the page sector by sector */
174 		for (pg_offset = 0; pg_offset < bytes_left;
175 		     pg_offset += sectorsize) {
176 			kaddr = page_address(page);
177 			crypto_shash_digest(shash, kaddr + pg_offset,
178 					    sectorsize, csum);
179 
180 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
181 				btrfs_print_data_csum_error(inode, disk_start,
182 						csum, cb_sum, cb->mirror_num);
183 				if (btrfs_bio(bio)->device)
184 					btrfs_dev_stat_inc_and_print(
185 						btrfs_bio(bio)->device,
186 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
187 				return -EIO;
188 			}
189 			cb_sum += csum_size;
190 			disk_start += sectorsize;
191 		}
192 	}
193 	return 0;
194 }
195 
196 /* when we finish reading compressed pages from the disk, we
197  * decompress them and then run the bio end_io routines on the
198  * decompressed pages (in the inode address space).
199  *
200  * This allows the checksumming and other IO error handling routines
201  * to work normally
202  *
203  * The compressed pages are freed here, and it must be run
204  * in process context
205  */
206 static void end_compressed_bio_read(struct bio *bio)
207 {
208 	struct compressed_bio *cb = bio->bi_private;
209 	struct inode *inode;
210 	struct page *page;
211 	unsigned int index;
212 	unsigned int mirror = btrfs_bio(bio)->mirror_num;
213 	int ret = 0;
214 
215 	if (bio->bi_status)
216 		cb->errors = 1;
217 
218 	/* if there are more bios still pending for this compressed
219 	 * extent, just exit
220 	 */
221 	if (!refcount_dec_and_test(&cb->pending_bios))
222 		goto out;
223 
224 	/*
225 	 * Record the correct mirror_num in cb->orig_bio so that
226 	 * read-repair can work properly.
227 	 */
228 	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
229 	cb->mirror_num = mirror;
230 
231 	/*
232 	 * Some IO in this cb have failed, just skip checksum as there
233 	 * is no way it could be correct.
234 	 */
235 	if (cb->errors == 1)
236 		goto csum_failed;
237 
238 	inode = cb->inode;
239 	ret = check_compressed_csum(BTRFS_I(inode), bio,
240 				    bio->bi_iter.bi_sector << 9);
241 	if (ret)
242 		goto csum_failed;
243 
244 	/* ok, we're the last bio for this extent, lets start
245 	 * the decompression.
246 	 */
247 	ret = btrfs_decompress_bio(cb);
248 
249 csum_failed:
250 	if (ret)
251 		cb->errors = 1;
252 
253 	/* release the compressed pages */
254 	index = 0;
255 	for (index = 0; index < cb->nr_pages; index++) {
256 		page = cb->compressed_pages[index];
257 		page->mapping = NULL;
258 		put_page(page);
259 	}
260 
261 	/* do io completion on the original bio */
262 	if (cb->errors) {
263 		bio_io_error(cb->orig_bio);
264 	} else {
265 		struct bio_vec *bvec;
266 		struct bvec_iter_all iter_all;
267 
268 		/*
269 		 * we have verified the checksum already, set page
270 		 * checked so the end_io handlers know about it
271 		 */
272 		ASSERT(!bio_flagged(bio, BIO_CLONED));
273 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
274 			SetPageChecked(bvec->bv_page);
275 
276 		bio_endio(cb->orig_bio);
277 	}
278 
279 	/* finally free the cb struct */
280 	kfree(cb->compressed_pages);
281 	kfree(cb);
282 out:
283 	bio_put(bio);
284 }
285 
286 /*
287  * Clear the writeback bits on all of the file
288  * pages for a compressed write
289  */
290 static noinline void end_compressed_writeback(struct inode *inode,
291 					      const struct compressed_bio *cb)
292 {
293 	unsigned long index = cb->start >> PAGE_SHIFT;
294 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
295 	struct page *pages[16];
296 	unsigned long nr_pages = end_index - index + 1;
297 	int i;
298 	int ret;
299 
300 	if (cb->errors)
301 		mapping_set_error(inode->i_mapping, -EIO);
302 
303 	while (nr_pages > 0) {
304 		ret = find_get_pages_contig(inode->i_mapping, index,
305 				     min_t(unsigned long,
306 				     nr_pages, ARRAY_SIZE(pages)), pages);
307 		if (ret == 0) {
308 			nr_pages -= 1;
309 			index += 1;
310 			continue;
311 		}
312 		for (i = 0; i < ret; i++) {
313 			if (cb->errors)
314 				SetPageError(pages[i]);
315 			end_page_writeback(pages[i]);
316 			put_page(pages[i]);
317 		}
318 		nr_pages -= ret;
319 		index += ret;
320 	}
321 	/* the inode may be gone now */
322 }
323 
324 /*
325  * do the cleanup once all the compressed pages hit the disk.
326  * This will clear writeback on the file pages and free the compressed
327  * pages.
328  *
329  * This also calls the writeback end hooks for the file pages so that
330  * metadata and checksums can be updated in the file.
331  */
332 static void end_compressed_bio_write(struct bio *bio)
333 {
334 	struct compressed_bio *cb = bio->bi_private;
335 	struct inode *inode;
336 	struct page *page;
337 	unsigned int index;
338 
339 	if (bio->bi_status)
340 		cb->errors = 1;
341 
342 	/* if there are more bios still pending for this compressed
343 	 * extent, just exit
344 	 */
345 	if (!refcount_dec_and_test(&cb->pending_bios))
346 		goto out;
347 
348 	/* ok, we're the last bio for this extent, step one is to
349 	 * call back into the FS and do all the end_io operations
350 	 */
351 	inode = cb->inode;
352 	btrfs_record_physical_zoned(inode, cb->start, bio);
353 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
354 			cb->start, cb->start + cb->len - 1,
355 			!cb->errors);
356 
357 	end_compressed_writeback(inode, cb);
358 	/* note, our inode could be gone now */
359 
360 	/*
361 	 * release the compressed pages, these came from alloc_page and
362 	 * are not attached to the inode at all
363 	 */
364 	index = 0;
365 	for (index = 0; index < cb->nr_pages; index++) {
366 		page = cb->compressed_pages[index];
367 		page->mapping = NULL;
368 		put_page(page);
369 	}
370 
371 	/* finally free the cb struct */
372 	kfree(cb->compressed_pages);
373 	kfree(cb);
374 out:
375 	bio_put(bio);
376 }
377 
378 /*
379  * worker function to build and submit bios for previously compressed pages.
380  * The corresponding pages in the inode should be marked for writeback
381  * and the compressed pages should have a reference on them for dropping
382  * when the IO is complete.
383  *
384  * This also checksums the file bytes and gets things ready for
385  * the end io hooks.
386  */
387 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
388 				 unsigned int len, u64 disk_start,
389 				 unsigned int compressed_len,
390 				 struct page **compressed_pages,
391 				 unsigned int nr_pages,
392 				 unsigned int write_flags,
393 				 struct cgroup_subsys_state *blkcg_css)
394 {
395 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
396 	struct bio *bio = NULL;
397 	struct compressed_bio *cb;
398 	unsigned long bytes_left;
399 	int pg_index = 0;
400 	struct page *page;
401 	u64 first_byte = disk_start;
402 	blk_status_t ret;
403 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
404 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
405 	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
406 
407 	WARN_ON(!PAGE_ALIGNED(start));
408 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
409 	if (!cb)
410 		return BLK_STS_RESOURCE;
411 	refcount_set(&cb->pending_bios, 0);
412 	cb->errors = 0;
413 	cb->inode = &inode->vfs_inode;
414 	cb->start = start;
415 	cb->len = len;
416 	cb->mirror_num = 0;
417 	cb->compressed_pages = compressed_pages;
418 	cb->compressed_len = compressed_len;
419 	cb->orig_bio = NULL;
420 	cb->nr_pages = nr_pages;
421 
422 	bio = btrfs_bio_alloc(BIO_MAX_VECS);
423 	bio->bi_iter.bi_sector = first_byte >> SECTOR_SHIFT;
424 	bio->bi_opf = bio_op | write_flags;
425 	bio->bi_private = cb;
426 	bio->bi_end_io = end_compressed_bio_write;
427 
428 	if (use_append) {
429 		struct btrfs_device *device;
430 
431 		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
432 		if (IS_ERR(device)) {
433 			kfree(cb);
434 			bio_put(bio);
435 			return BLK_STS_NOTSUPP;
436 		}
437 
438 		bio_set_dev(bio, device->bdev);
439 	}
440 
441 	if (blkcg_css) {
442 		bio->bi_opf |= REQ_CGROUP_PUNT;
443 		kthread_associate_blkcg(blkcg_css);
444 	}
445 	refcount_set(&cb->pending_bios, 1);
446 
447 	/* create and submit bios for the compressed pages */
448 	bytes_left = compressed_len;
449 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
450 		int submit = 0;
451 		int len = 0;
452 
453 		page = compressed_pages[pg_index];
454 		page->mapping = inode->vfs_inode.i_mapping;
455 		if (bio->bi_iter.bi_size)
456 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
457 							  0);
458 
459 		/*
460 		 * Page can only be added to bio if the current bio fits in
461 		 * stripe.
462 		 */
463 		if (!submit) {
464 			if (pg_index == 0 && use_append)
465 				len = bio_add_zone_append_page(bio, page,
466 							       PAGE_SIZE, 0);
467 			else
468 				len = bio_add_page(bio, page, PAGE_SIZE, 0);
469 		}
470 
471 		page->mapping = NULL;
472 		if (submit || len < PAGE_SIZE) {
473 			/*
474 			 * inc the count before we submit the bio so
475 			 * we know the end IO handler won't happen before
476 			 * we inc the count.  Otherwise, the cb might get
477 			 * freed before we're done setting it up
478 			 */
479 			refcount_inc(&cb->pending_bios);
480 			ret = btrfs_bio_wq_end_io(fs_info, bio,
481 						  BTRFS_WQ_ENDIO_DATA);
482 			BUG_ON(ret); /* -ENOMEM */
483 
484 			if (!skip_sum) {
485 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
486 				BUG_ON(ret); /* -ENOMEM */
487 			}
488 
489 			ret = btrfs_map_bio(fs_info, bio, 0);
490 			if (ret) {
491 				bio->bi_status = ret;
492 				bio_endio(bio);
493 			}
494 
495 			bio = btrfs_bio_alloc(BIO_MAX_VECS);
496 			bio->bi_iter.bi_sector = first_byte >> SECTOR_SHIFT;
497 			bio->bi_opf = bio_op | write_flags;
498 			bio->bi_private = cb;
499 			bio->bi_end_io = end_compressed_bio_write;
500 			if (blkcg_css)
501 				bio->bi_opf |= REQ_CGROUP_PUNT;
502 			/*
503 			 * Use bio_add_page() to ensure the bio has at least one
504 			 * page.
505 			 */
506 			bio_add_page(bio, page, PAGE_SIZE, 0);
507 		}
508 		if (bytes_left < PAGE_SIZE) {
509 			btrfs_info(fs_info,
510 					"bytes left %lu compress len %u nr %u",
511 			       bytes_left, cb->compressed_len, cb->nr_pages);
512 		}
513 		bytes_left -= PAGE_SIZE;
514 		first_byte += PAGE_SIZE;
515 		cond_resched();
516 	}
517 
518 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
519 	BUG_ON(ret); /* -ENOMEM */
520 
521 	if (!skip_sum) {
522 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
523 		BUG_ON(ret); /* -ENOMEM */
524 	}
525 
526 	ret = btrfs_map_bio(fs_info, bio, 0);
527 	if (ret) {
528 		bio->bi_status = ret;
529 		bio_endio(bio);
530 	}
531 
532 	if (blkcg_css)
533 		kthread_associate_blkcg(NULL);
534 
535 	return 0;
536 }
537 
538 static u64 bio_end_offset(struct bio *bio)
539 {
540 	struct bio_vec *last = bio_last_bvec_all(bio);
541 
542 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
543 }
544 
545 /*
546  * Add extra pages in the same compressed file extent so that we don't need to
547  * re-read the same extent again and again.
548  *
549  * NOTE: this won't work well for subpage, as for subpage read, we lock the
550  * full page then submit bio for each compressed/regular extents.
551  *
552  * This means, if we have several sectors in the same page points to the same
553  * on-disk compressed data, we will re-read the same extent many times and
554  * this function can only help for the next page.
555  */
556 static noinline int add_ra_bio_pages(struct inode *inode,
557 				     u64 compressed_end,
558 				     struct compressed_bio *cb)
559 {
560 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
561 	unsigned long end_index;
562 	u64 cur = bio_end_offset(cb->orig_bio);
563 	u64 isize = i_size_read(inode);
564 	int ret;
565 	struct page *page;
566 	struct extent_map *em;
567 	struct address_space *mapping = inode->i_mapping;
568 	struct extent_map_tree *em_tree;
569 	struct extent_io_tree *tree;
570 	int sectors_missed = 0;
571 
572 	em_tree = &BTRFS_I(inode)->extent_tree;
573 	tree = &BTRFS_I(inode)->io_tree;
574 
575 	if (isize == 0)
576 		return 0;
577 
578 	/*
579 	 * For current subpage support, we only support 64K page size,
580 	 * which means maximum compressed extent size (128K) is just 2x page
581 	 * size.
582 	 * This makes readahead less effective, so here disable readahead for
583 	 * subpage for now, until full compressed write is supported.
584 	 */
585 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
586 		return 0;
587 
588 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
589 
590 	while (cur < compressed_end) {
591 		u64 page_end;
592 		u64 pg_index = cur >> PAGE_SHIFT;
593 		u32 add_size;
594 
595 		if (pg_index > end_index)
596 			break;
597 
598 		page = xa_load(&mapping->i_pages, pg_index);
599 		if (page && !xa_is_value(page)) {
600 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
601 					  fs_info->sectorsize_bits;
602 
603 			/* Beyond threshold, no need to continue */
604 			if (sectors_missed > 4)
605 				break;
606 
607 			/*
608 			 * Jump to next page start as we already have page for
609 			 * current offset.
610 			 */
611 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
612 			continue;
613 		}
614 
615 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
616 								 ~__GFP_FS));
617 		if (!page)
618 			break;
619 
620 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
621 			put_page(page);
622 			/* There is already a page, skip to page end */
623 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
624 			continue;
625 		}
626 
627 		ret = set_page_extent_mapped(page);
628 		if (ret < 0) {
629 			unlock_page(page);
630 			put_page(page);
631 			break;
632 		}
633 
634 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
635 		lock_extent(tree, cur, page_end);
636 		read_lock(&em_tree->lock);
637 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
638 		read_unlock(&em_tree->lock);
639 
640 		/*
641 		 * At this point, we have a locked page in the page cache for
642 		 * these bytes in the file.  But, we have to make sure they map
643 		 * to this compressed extent on disk.
644 		 */
645 		if (!em || cur < em->start ||
646 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
647 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
648 			free_extent_map(em);
649 			unlock_extent(tree, cur, page_end);
650 			unlock_page(page);
651 			put_page(page);
652 			break;
653 		}
654 		free_extent_map(em);
655 
656 		if (page->index == end_index) {
657 			size_t zero_offset = offset_in_page(isize);
658 
659 			if (zero_offset) {
660 				int zeros;
661 				zeros = PAGE_SIZE - zero_offset;
662 				memzero_page(page, zero_offset, zeros);
663 				flush_dcache_page(page);
664 			}
665 		}
666 
667 		add_size = min(em->start + em->len, page_end + 1) - cur;
668 		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
669 		if (ret != add_size) {
670 			unlock_extent(tree, cur, page_end);
671 			unlock_page(page);
672 			put_page(page);
673 			break;
674 		}
675 		/*
676 		 * If it's subpage, we also need to increase its
677 		 * subpage::readers number, as at endio we will decrease
678 		 * subpage::readers and to unlock the page.
679 		 */
680 		if (fs_info->sectorsize < PAGE_SIZE)
681 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
682 		put_page(page);
683 		cur += add_size;
684 	}
685 	return 0;
686 }
687 
688 /*
689  * for a compressed read, the bio we get passed has all the inode pages
690  * in it.  We don't actually do IO on those pages but allocate new ones
691  * to hold the compressed pages on disk.
692  *
693  * bio->bi_iter.bi_sector points to the compressed extent on disk
694  * bio->bi_io_vec points to all of the inode pages
695  *
696  * After the compressed pages are read, we copy the bytes into the
697  * bio we were passed and then call the bio end_io calls
698  */
699 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
700 				 int mirror_num, unsigned long bio_flags)
701 {
702 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
703 	struct extent_map_tree *em_tree;
704 	struct compressed_bio *cb;
705 	unsigned int compressed_len;
706 	unsigned int nr_pages;
707 	unsigned int pg_index;
708 	struct page *page;
709 	struct bio *comp_bio;
710 	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
711 	u64 file_offset;
712 	u64 em_len;
713 	u64 em_start;
714 	struct extent_map *em;
715 	blk_status_t ret = BLK_STS_RESOURCE;
716 	int faili = 0;
717 	u8 *sums;
718 
719 	em_tree = &BTRFS_I(inode)->extent_tree;
720 
721 	file_offset = bio_first_bvec_all(bio)->bv_offset +
722 		      page_offset(bio_first_page_all(bio));
723 
724 	/* we need the actual starting offset of this extent in the file */
725 	read_lock(&em_tree->lock);
726 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
727 	read_unlock(&em_tree->lock);
728 	if (!em)
729 		return BLK_STS_IOERR;
730 
731 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
732 	compressed_len = em->block_len;
733 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
734 	if (!cb)
735 		goto out;
736 
737 	refcount_set(&cb->pending_bios, 0);
738 	cb->errors = 0;
739 	cb->inode = inode;
740 	cb->mirror_num = mirror_num;
741 	sums = cb->sums;
742 
743 	cb->start = em->orig_start;
744 	em_len = em->len;
745 	em_start = em->start;
746 
747 	free_extent_map(em);
748 	em = NULL;
749 
750 	cb->len = bio->bi_iter.bi_size;
751 	cb->compressed_len = compressed_len;
752 	cb->compress_type = extent_compress_type(bio_flags);
753 	cb->orig_bio = bio;
754 
755 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
756 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
757 				       GFP_NOFS);
758 	if (!cb->compressed_pages)
759 		goto fail1;
760 
761 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
762 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
763 		if (!cb->compressed_pages[pg_index]) {
764 			faili = pg_index - 1;
765 			ret = BLK_STS_RESOURCE;
766 			goto fail2;
767 		}
768 	}
769 	faili = nr_pages - 1;
770 	cb->nr_pages = nr_pages;
771 
772 	add_ra_bio_pages(inode, em_start + em_len, cb);
773 
774 	/* include any pages we added in add_ra-bio_pages */
775 	cb->len = bio->bi_iter.bi_size;
776 
777 	comp_bio = btrfs_bio_alloc(BIO_MAX_VECS);
778 	comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
779 	comp_bio->bi_opf = REQ_OP_READ;
780 	comp_bio->bi_private = cb;
781 	comp_bio->bi_end_io = end_compressed_bio_read;
782 	refcount_set(&cb->pending_bios, 1);
783 
784 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
785 		u32 pg_len = PAGE_SIZE;
786 		int submit = 0;
787 
788 		/*
789 		 * To handle subpage case, we need to make sure the bio only
790 		 * covers the range we need.
791 		 *
792 		 * If we're at the last page, truncate the length to only cover
793 		 * the remaining part.
794 		 */
795 		if (pg_index == nr_pages - 1)
796 			pg_len = min_t(u32, PAGE_SIZE,
797 					compressed_len - pg_index * PAGE_SIZE);
798 
799 		page = cb->compressed_pages[pg_index];
800 		page->mapping = inode->i_mapping;
801 		page->index = em_start >> PAGE_SHIFT;
802 
803 		if (comp_bio->bi_iter.bi_size)
804 			submit = btrfs_bio_fits_in_stripe(page, pg_len,
805 							  comp_bio, 0);
806 
807 		page->mapping = NULL;
808 		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
809 			unsigned int nr_sectors;
810 
811 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
812 						  BTRFS_WQ_ENDIO_DATA);
813 			BUG_ON(ret); /* -ENOMEM */
814 
815 			/*
816 			 * inc the count before we submit the bio so
817 			 * we know the end IO handler won't happen before
818 			 * we inc the count.  Otherwise, the cb might get
819 			 * freed before we're done setting it up
820 			 */
821 			refcount_inc(&cb->pending_bios);
822 
823 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
824 			BUG_ON(ret); /* -ENOMEM */
825 
826 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
827 						  fs_info->sectorsize);
828 			sums += fs_info->csum_size * nr_sectors;
829 
830 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
831 			if (ret) {
832 				comp_bio->bi_status = ret;
833 				bio_endio(comp_bio);
834 			}
835 
836 			comp_bio = btrfs_bio_alloc(BIO_MAX_VECS);
837 			comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
838 			comp_bio->bi_opf = REQ_OP_READ;
839 			comp_bio->bi_private = cb;
840 			comp_bio->bi_end_io = end_compressed_bio_read;
841 
842 			bio_add_page(comp_bio, page, pg_len, 0);
843 		}
844 		cur_disk_byte += pg_len;
845 	}
846 
847 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
848 	BUG_ON(ret); /* -ENOMEM */
849 
850 	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
851 	BUG_ON(ret); /* -ENOMEM */
852 
853 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
854 	if (ret) {
855 		comp_bio->bi_status = ret;
856 		bio_endio(comp_bio);
857 	}
858 
859 	return 0;
860 
861 fail2:
862 	while (faili >= 0) {
863 		__free_page(cb->compressed_pages[faili]);
864 		faili--;
865 	}
866 
867 	kfree(cb->compressed_pages);
868 fail1:
869 	kfree(cb);
870 out:
871 	free_extent_map(em);
872 	return ret;
873 }
874 
875 /*
876  * Heuristic uses systematic sampling to collect data from the input data
877  * range, the logic can be tuned by the following constants:
878  *
879  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
880  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
881  */
882 #define SAMPLING_READ_SIZE	(16)
883 #define SAMPLING_INTERVAL	(256)
884 
885 /*
886  * For statistical analysis of the input data we consider bytes that form a
887  * Galois Field of 256 objects. Each object has an attribute count, ie. how
888  * many times the object appeared in the sample.
889  */
890 #define BUCKET_SIZE		(256)
891 
892 /*
893  * The size of the sample is based on a statistical sampling rule of thumb.
894  * The common way is to perform sampling tests as long as the number of
895  * elements in each cell is at least 5.
896  *
897  * Instead of 5, we choose 32 to obtain more accurate results.
898  * If the data contain the maximum number of symbols, which is 256, we obtain a
899  * sample size bound by 8192.
900  *
901  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
902  * from up to 512 locations.
903  */
904 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
905 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
906 
907 struct bucket_item {
908 	u32 count;
909 };
910 
911 struct heuristic_ws {
912 	/* Partial copy of input data */
913 	u8 *sample;
914 	u32 sample_size;
915 	/* Buckets store counters for each byte value */
916 	struct bucket_item *bucket;
917 	/* Sorting buffer */
918 	struct bucket_item *bucket_b;
919 	struct list_head list;
920 };
921 
922 static struct workspace_manager heuristic_wsm;
923 
924 static void free_heuristic_ws(struct list_head *ws)
925 {
926 	struct heuristic_ws *workspace;
927 
928 	workspace = list_entry(ws, struct heuristic_ws, list);
929 
930 	kvfree(workspace->sample);
931 	kfree(workspace->bucket);
932 	kfree(workspace->bucket_b);
933 	kfree(workspace);
934 }
935 
936 static struct list_head *alloc_heuristic_ws(unsigned int level)
937 {
938 	struct heuristic_ws *ws;
939 
940 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
941 	if (!ws)
942 		return ERR_PTR(-ENOMEM);
943 
944 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
945 	if (!ws->sample)
946 		goto fail;
947 
948 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
949 	if (!ws->bucket)
950 		goto fail;
951 
952 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
953 	if (!ws->bucket_b)
954 		goto fail;
955 
956 	INIT_LIST_HEAD(&ws->list);
957 	return &ws->list;
958 fail:
959 	free_heuristic_ws(&ws->list);
960 	return ERR_PTR(-ENOMEM);
961 }
962 
963 const struct btrfs_compress_op btrfs_heuristic_compress = {
964 	.workspace_manager = &heuristic_wsm,
965 };
966 
967 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
968 	/* The heuristic is represented as compression type 0 */
969 	&btrfs_heuristic_compress,
970 	&btrfs_zlib_compress,
971 	&btrfs_lzo_compress,
972 	&btrfs_zstd_compress,
973 };
974 
975 static struct list_head *alloc_workspace(int type, unsigned int level)
976 {
977 	switch (type) {
978 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
979 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
980 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
981 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
982 	default:
983 		/*
984 		 * This can't happen, the type is validated several times
985 		 * before we get here.
986 		 */
987 		BUG();
988 	}
989 }
990 
991 static void free_workspace(int type, struct list_head *ws)
992 {
993 	switch (type) {
994 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
995 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
996 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
997 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
998 	default:
999 		/*
1000 		 * This can't happen, the type is validated several times
1001 		 * before we get here.
1002 		 */
1003 		BUG();
1004 	}
1005 }
1006 
1007 static void btrfs_init_workspace_manager(int type)
1008 {
1009 	struct workspace_manager *wsm;
1010 	struct list_head *workspace;
1011 
1012 	wsm = btrfs_compress_op[type]->workspace_manager;
1013 	INIT_LIST_HEAD(&wsm->idle_ws);
1014 	spin_lock_init(&wsm->ws_lock);
1015 	atomic_set(&wsm->total_ws, 0);
1016 	init_waitqueue_head(&wsm->ws_wait);
1017 
1018 	/*
1019 	 * Preallocate one workspace for each compression type so we can
1020 	 * guarantee forward progress in the worst case
1021 	 */
1022 	workspace = alloc_workspace(type, 0);
1023 	if (IS_ERR(workspace)) {
1024 		pr_warn(
1025 	"BTRFS: cannot preallocate compression workspace, will try later\n");
1026 	} else {
1027 		atomic_set(&wsm->total_ws, 1);
1028 		wsm->free_ws = 1;
1029 		list_add(workspace, &wsm->idle_ws);
1030 	}
1031 }
1032 
1033 static void btrfs_cleanup_workspace_manager(int type)
1034 {
1035 	struct workspace_manager *wsman;
1036 	struct list_head *ws;
1037 
1038 	wsman = btrfs_compress_op[type]->workspace_manager;
1039 	while (!list_empty(&wsman->idle_ws)) {
1040 		ws = wsman->idle_ws.next;
1041 		list_del(ws);
1042 		free_workspace(type, ws);
1043 		atomic_dec(&wsman->total_ws);
1044 	}
1045 }
1046 
1047 /*
1048  * This finds an available workspace or allocates a new one.
1049  * If it's not possible to allocate a new one, waits until there's one.
1050  * Preallocation makes a forward progress guarantees and we do not return
1051  * errors.
1052  */
1053 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1054 {
1055 	struct workspace_manager *wsm;
1056 	struct list_head *workspace;
1057 	int cpus = num_online_cpus();
1058 	unsigned nofs_flag;
1059 	struct list_head *idle_ws;
1060 	spinlock_t *ws_lock;
1061 	atomic_t *total_ws;
1062 	wait_queue_head_t *ws_wait;
1063 	int *free_ws;
1064 
1065 	wsm = btrfs_compress_op[type]->workspace_manager;
1066 	idle_ws	 = &wsm->idle_ws;
1067 	ws_lock	 = &wsm->ws_lock;
1068 	total_ws = &wsm->total_ws;
1069 	ws_wait	 = &wsm->ws_wait;
1070 	free_ws	 = &wsm->free_ws;
1071 
1072 again:
1073 	spin_lock(ws_lock);
1074 	if (!list_empty(idle_ws)) {
1075 		workspace = idle_ws->next;
1076 		list_del(workspace);
1077 		(*free_ws)--;
1078 		spin_unlock(ws_lock);
1079 		return workspace;
1080 
1081 	}
1082 	if (atomic_read(total_ws) > cpus) {
1083 		DEFINE_WAIT(wait);
1084 
1085 		spin_unlock(ws_lock);
1086 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1087 		if (atomic_read(total_ws) > cpus && !*free_ws)
1088 			schedule();
1089 		finish_wait(ws_wait, &wait);
1090 		goto again;
1091 	}
1092 	atomic_inc(total_ws);
1093 	spin_unlock(ws_lock);
1094 
1095 	/*
1096 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1097 	 * to turn it off here because we might get called from the restricted
1098 	 * context of btrfs_compress_bio/btrfs_compress_pages
1099 	 */
1100 	nofs_flag = memalloc_nofs_save();
1101 	workspace = alloc_workspace(type, level);
1102 	memalloc_nofs_restore(nofs_flag);
1103 
1104 	if (IS_ERR(workspace)) {
1105 		atomic_dec(total_ws);
1106 		wake_up(ws_wait);
1107 
1108 		/*
1109 		 * Do not return the error but go back to waiting. There's a
1110 		 * workspace preallocated for each type and the compression
1111 		 * time is bounded so we get to a workspace eventually. This
1112 		 * makes our caller's life easier.
1113 		 *
1114 		 * To prevent silent and low-probability deadlocks (when the
1115 		 * initial preallocation fails), check if there are any
1116 		 * workspaces at all.
1117 		 */
1118 		if (atomic_read(total_ws) == 0) {
1119 			static DEFINE_RATELIMIT_STATE(_rs,
1120 					/* once per minute */ 60 * HZ,
1121 					/* no burst */ 1);
1122 
1123 			if (__ratelimit(&_rs)) {
1124 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1125 			}
1126 		}
1127 		goto again;
1128 	}
1129 	return workspace;
1130 }
1131 
1132 static struct list_head *get_workspace(int type, int level)
1133 {
1134 	switch (type) {
1135 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1136 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1137 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1138 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1139 	default:
1140 		/*
1141 		 * This can't happen, the type is validated several times
1142 		 * before we get here.
1143 		 */
1144 		BUG();
1145 	}
1146 }
1147 
1148 /*
1149  * put a workspace struct back on the list or free it if we have enough
1150  * idle ones sitting around
1151  */
1152 void btrfs_put_workspace(int type, struct list_head *ws)
1153 {
1154 	struct workspace_manager *wsm;
1155 	struct list_head *idle_ws;
1156 	spinlock_t *ws_lock;
1157 	atomic_t *total_ws;
1158 	wait_queue_head_t *ws_wait;
1159 	int *free_ws;
1160 
1161 	wsm = btrfs_compress_op[type]->workspace_manager;
1162 	idle_ws	 = &wsm->idle_ws;
1163 	ws_lock	 = &wsm->ws_lock;
1164 	total_ws = &wsm->total_ws;
1165 	ws_wait	 = &wsm->ws_wait;
1166 	free_ws	 = &wsm->free_ws;
1167 
1168 	spin_lock(ws_lock);
1169 	if (*free_ws <= num_online_cpus()) {
1170 		list_add(ws, idle_ws);
1171 		(*free_ws)++;
1172 		spin_unlock(ws_lock);
1173 		goto wake;
1174 	}
1175 	spin_unlock(ws_lock);
1176 
1177 	free_workspace(type, ws);
1178 	atomic_dec(total_ws);
1179 wake:
1180 	cond_wake_up(ws_wait);
1181 }
1182 
1183 static void put_workspace(int type, struct list_head *ws)
1184 {
1185 	switch (type) {
1186 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1187 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1188 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1189 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1190 	default:
1191 		/*
1192 		 * This can't happen, the type is validated several times
1193 		 * before we get here.
1194 		 */
1195 		BUG();
1196 	}
1197 }
1198 
1199 /*
1200  * Adjust @level according to the limits of the compression algorithm or
1201  * fallback to default
1202  */
1203 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1204 {
1205 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1206 
1207 	if (level == 0)
1208 		level = ops->default_level;
1209 	else
1210 		level = min(level, ops->max_level);
1211 
1212 	return level;
1213 }
1214 
1215 /*
1216  * Given an address space and start and length, compress the bytes into @pages
1217  * that are allocated on demand.
1218  *
1219  * @type_level is encoded algorithm and level, where level 0 means whatever
1220  * default the algorithm chooses and is opaque here;
1221  * - compression algo are 0-3
1222  * - the level are bits 4-7
1223  *
1224  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1225  * and returns number of actually allocated pages
1226  *
1227  * @total_in is used to return the number of bytes actually read.  It
1228  * may be smaller than the input length if we had to exit early because we
1229  * ran out of room in the pages array or because we cross the
1230  * max_out threshold.
1231  *
1232  * @total_out is an in/out parameter, must be set to the input length and will
1233  * be also used to return the total number of compressed bytes
1234  */
1235 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1236 			 u64 start, struct page **pages,
1237 			 unsigned long *out_pages,
1238 			 unsigned long *total_in,
1239 			 unsigned long *total_out)
1240 {
1241 	int type = btrfs_compress_type(type_level);
1242 	int level = btrfs_compress_level(type_level);
1243 	struct list_head *workspace;
1244 	int ret;
1245 
1246 	level = btrfs_compress_set_level(type, level);
1247 	workspace = get_workspace(type, level);
1248 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1249 					 out_pages, total_in, total_out);
1250 	put_workspace(type, workspace);
1251 	return ret;
1252 }
1253 
1254 static int btrfs_decompress_bio(struct compressed_bio *cb)
1255 {
1256 	struct list_head *workspace;
1257 	int ret;
1258 	int type = cb->compress_type;
1259 
1260 	workspace = get_workspace(type, 0);
1261 	ret = compression_decompress_bio(type, workspace, cb);
1262 	put_workspace(type, workspace);
1263 
1264 	return ret;
1265 }
1266 
1267 /*
1268  * a less complex decompression routine.  Our compressed data fits in a
1269  * single page, and we want to read a single page out of it.
1270  * start_byte tells us the offset into the compressed data we're interested in
1271  */
1272 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1273 		     unsigned long start_byte, size_t srclen, size_t destlen)
1274 {
1275 	struct list_head *workspace;
1276 	int ret;
1277 
1278 	workspace = get_workspace(type, 0);
1279 	ret = compression_decompress(type, workspace, data_in, dest_page,
1280 				     start_byte, srclen, destlen);
1281 	put_workspace(type, workspace);
1282 
1283 	return ret;
1284 }
1285 
1286 void __init btrfs_init_compress(void)
1287 {
1288 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1289 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1290 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1291 	zstd_init_workspace_manager();
1292 }
1293 
1294 void __cold btrfs_exit_compress(void)
1295 {
1296 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1297 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1298 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1299 	zstd_cleanup_workspace_manager();
1300 }
1301 
1302 /*
1303  * Copy decompressed data from working buffer to pages.
1304  *
1305  * @buf:		The decompressed data buffer
1306  * @buf_len:		The decompressed data length
1307  * @decompressed:	Number of bytes that are already decompressed inside the
1308  * 			compressed extent
1309  * @cb:			The compressed extent descriptor
1310  * @orig_bio:		The original bio that the caller wants to read for
1311  *
1312  * An easier to understand graph is like below:
1313  *
1314  * 		|<- orig_bio ->|     |<- orig_bio->|
1315  * 	|<-------      full decompressed extent      ----->|
1316  * 	|<-----------    @cb range   ---->|
1317  * 	|			|<-- @buf_len -->|
1318  * 	|<--- @decompressed --->|
1319  *
1320  * Note that, @cb can be a subpage of the full decompressed extent, but
1321  * @cb->start always has the same as the orig_file_offset value of the full
1322  * decompressed extent.
1323  *
1324  * When reading compressed extent, we have to read the full compressed extent,
1325  * while @orig_bio may only want part of the range.
1326  * Thus this function will ensure only data covered by @orig_bio will be copied
1327  * to.
1328  *
1329  * Return 0 if we have copied all needed contents for @orig_bio.
1330  * Return >0 if we need continue decompress.
1331  */
1332 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1333 			      struct compressed_bio *cb, u32 decompressed)
1334 {
1335 	struct bio *orig_bio = cb->orig_bio;
1336 	/* Offset inside the full decompressed extent */
1337 	u32 cur_offset;
1338 
1339 	cur_offset = decompressed;
1340 	/* The main loop to do the copy */
1341 	while (cur_offset < decompressed + buf_len) {
1342 		struct bio_vec bvec;
1343 		size_t copy_len;
1344 		u32 copy_start;
1345 		/* Offset inside the full decompressed extent */
1346 		u32 bvec_offset;
1347 
1348 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1349 		/*
1350 		 * cb->start may underflow, but subtracting that value can still
1351 		 * give us correct offset inside the full decompressed extent.
1352 		 */
1353 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1354 
1355 		/* Haven't reached the bvec range, exit */
1356 		if (decompressed + buf_len <= bvec_offset)
1357 			return 1;
1358 
1359 		copy_start = max(cur_offset, bvec_offset);
1360 		copy_len = min(bvec_offset + bvec.bv_len,
1361 			       decompressed + buf_len) - copy_start;
1362 		ASSERT(copy_len);
1363 
1364 		/*
1365 		 * Extra range check to ensure we didn't go beyond
1366 		 * @buf + @buf_len.
1367 		 */
1368 		ASSERT(copy_start - decompressed < buf_len);
1369 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1370 			       buf + copy_start - decompressed, copy_len);
1371 		flush_dcache_page(bvec.bv_page);
1372 		cur_offset += copy_len;
1373 
1374 		bio_advance(orig_bio, copy_len);
1375 		/* Finished the bio */
1376 		if (!orig_bio->bi_iter.bi_size)
1377 			return 0;
1378 	}
1379 	return 1;
1380 }
1381 
1382 /*
1383  * Shannon Entropy calculation
1384  *
1385  * Pure byte distribution analysis fails to determine compressibility of data.
1386  * Try calculating entropy to estimate the average minimum number of bits
1387  * needed to encode the sampled data.
1388  *
1389  * For convenience, return the percentage of needed bits, instead of amount of
1390  * bits directly.
1391  *
1392  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1393  *			    and can be compressible with high probability
1394  *
1395  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1396  *
1397  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1398  */
1399 #define ENTROPY_LVL_ACEPTABLE		(65)
1400 #define ENTROPY_LVL_HIGH		(80)
1401 
1402 /*
1403  * For increasead precision in shannon_entropy calculation,
1404  * let's do pow(n, M) to save more digits after comma:
1405  *
1406  * - maximum int bit length is 64
1407  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1408  * - 13 * 4 = 52 < 64		-> M = 4
1409  *
1410  * So use pow(n, 4).
1411  */
1412 static inline u32 ilog2_w(u64 n)
1413 {
1414 	return ilog2(n * n * n * n);
1415 }
1416 
1417 static u32 shannon_entropy(struct heuristic_ws *ws)
1418 {
1419 	const u32 entropy_max = 8 * ilog2_w(2);
1420 	u32 entropy_sum = 0;
1421 	u32 p, p_base, sz_base;
1422 	u32 i;
1423 
1424 	sz_base = ilog2_w(ws->sample_size);
1425 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1426 		p = ws->bucket[i].count;
1427 		p_base = ilog2_w(p);
1428 		entropy_sum += p * (sz_base - p_base);
1429 	}
1430 
1431 	entropy_sum /= ws->sample_size;
1432 	return entropy_sum * 100 / entropy_max;
1433 }
1434 
1435 #define RADIX_BASE		4U
1436 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1437 
1438 static u8 get4bits(u64 num, int shift) {
1439 	u8 low4bits;
1440 
1441 	num >>= shift;
1442 	/* Reverse order */
1443 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1444 	return low4bits;
1445 }
1446 
1447 /*
1448  * Use 4 bits as radix base
1449  * Use 16 u32 counters for calculating new position in buf array
1450  *
1451  * @array     - array that will be sorted
1452  * @array_buf - buffer array to store sorting results
1453  *              must be equal in size to @array
1454  * @num       - array size
1455  */
1456 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1457 		       int num)
1458 {
1459 	u64 max_num;
1460 	u64 buf_num;
1461 	u32 counters[COUNTERS_SIZE];
1462 	u32 new_addr;
1463 	u32 addr;
1464 	int bitlen;
1465 	int shift;
1466 	int i;
1467 
1468 	/*
1469 	 * Try avoid useless loop iterations for small numbers stored in big
1470 	 * counters.  Example: 48 33 4 ... in 64bit array
1471 	 */
1472 	max_num = array[0].count;
1473 	for (i = 1; i < num; i++) {
1474 		buf_num = array[i].count;
1475 		if (buf_num > max_num)
1476 			max_num = buf_num;
1477 	}
1478 
1479 	buf_num = ilog2(max_num);
1480 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1481 
1482 	shift = 0;
1483 	while (shift < bitlen) {
1484 		memset(counters, 0, sizeof(counters));
1485 
1486 		for (i = 0; i < num; i++) {
1487 			buf_num = array[i].count;
1488 			addr = get4bits(buf_num, shift);
1489 			counters[addr]++;
1490 		}
1491 
1492 		for (i = 1; i < COUNTERS_SIZE; i++)
1493 			counters[i] += counters[i - 1];
1494 
1495 		for (i = num - 1; i >= 0; i--) {
1496 			buf_num = array[i].count;
1497 			addr = get4bits(buf_num, shift);
1498 			counters[addr]--;
1499 			new_addr = counters[addr];
1500 			array_buf[new_addr] = array[i];
1501 		}
1502 
1503 		shift += RADIX_BASE;
1504 
1505 		/*
1506 		 * Normal radix expects to move data from a temporary array, to
1507 		 * the main one.  But that requires some CPU time. Avoid that
1508 		 * by doing another sort iteration to original array instead of
1509 		 * memcpy()
1510 		 */
1511 		memset(counters, 0, sizeof(counters));
1512 
1513 		for (i = 0; i < num; i ++) {
1514 			buf_num = array_buf[i].count;
1515 			addr = get4bits(buf_num, shift);
1516 			counters[addr]++;
1517 		}
1518 
1519 		for (i = 1; i < COUNTERS_SIZE; i++)
1520 			counters[i] += counters[i - 1];
1521 
1522 		for (i = num - 1; i >= 0; i--) {
1523 			buf_num = array_buf[i].count;
1524 			addr = get4bits(buf_num, shift);
1525 			counters[addr]--;
1526 			new_addr = counters[addr];
1527 			array[new_addr] = array_buf[i];
1528 		}
1529 
1530 		shift += RADIX_BASE;
1531 	}
1532 }
1533 
1534 /*
1535  * Size of the core byte set - how many bytes cover 90% of the sample
1536  *
1537  * There are several types of structured binary data that use nearly all byte
1538  * values. The distribution can be uniform and counts in all buckets will be
1539  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1540  *
1541  * Other possibility is normal (Gaussian) distribution, where the data could
1542  * be potentially compressible, but we have to take a few more steps to decide
1543  * how much.
1544  *
1545  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1546  *                       compression algo can easy fix that
1547  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1548  *                       probability is not compressible
1549  */
1550 #define BYTE_CORE_SET_LOW		(64)
1551 #define BYTE_CORE_SET_HIGH		(200)
1552 
1553 static int byte_core_set_size(struct heuristic_ws *ws)
1554 {
1555 	u32 i;
1556 	u32 coreset_sum = 0;
1557 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1558 	struct bucket_item *bucket = ws->bucket;
1559 
1560 	/* Sort in reverse order */
1561 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1562 
1563 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1564 		coreset_sum += bucket[i].count;
1565 
1566 	if (coreset_sum > core_set_threshold)
1567 		return i;
1568 
1569 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1570 		coreset_sum += bucket[i].count;
1571 		if (coreset_sum > core_set_threshold)
1572 			break;
1573 	}
1574 
1575 	return i;
1576 }
1577 
1578 /*
1579  * Count byte values in buckets.
1580  * This heuristic can detect textual data (configs, xml, json, html, etc).
1581  * Because in most text-like data byte set is restricted to limited number of
1582  * possible characters, and that restriction in most cases makes data easy to
1583  * compress.
1584  *
1585  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1586  *	less - compressible
1587  *	more - need additional analysis
1588  */
1589 #define BYTE_SET_THRESHOLD		(64)
1590 
1591 static u32 byte_set_size(const struct heuristic_ws *ws)
1592 {
1593 	u32 i;
1594 	u32 byte_set_size = 0;
1595 
1596 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1597 		if (ws->bucket[i].count > 0)
1598 			byte_set_size++;
1599 	}
1600 
1601 	/*
1602 	 * Continue collecting count of byte values in buckets.  If the byte
1603 	 * set size is bigger then the threshold, it's pointless to continue,
1604 	 * the detection technique would fail for this type of data.
1605 	 */
1606 	for (; i < BUCKET_SIZE; i++) {
1607 		if (ws->bucket[i].count > 0) {
1608 			byte_set_size++;
1609 			if (byte_set_size > BYTE_SET_THRESHOLD)
1610 				return byte_set_size;
1611 		}
1612 	}
1613 
1614 	return byte_set_size;
1615 }
1616 
1617 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1618 {
1619 	const u32 half_of_sample = ws->sample_size / 2;
1620 	const u8 *data = ws->sample;
1621 
1622 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1623 }
1624 
1625 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1626 				     struct heuristic_ws *ws)
1627 {
1628 	struct page *page;
1629 	u64 index, index_end;
1630 	u32 i, curr_sample_pos;
1631 	u8 *in_data;
1632 
1633 	/*
1634 	 * Compression handles the input data by chunks of 128KiB
1635 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1636 	 *
1637 	 * We do the same for the heuristic and loop over the whole range.
1638 	 *
1639 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1640 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1641 	 */
1642 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1643 		end = start + BTRFS_MAX_UNCOMPRESSED;
1644 
1645 	index = start >> PAGE_SHIFT;
1646 	index_end = end >> PAGE_SHIFT;
1647 
1648 	/* Don't miss unaligned end */
1649 	if (!IS_ALIGNED(end, PAGE_SIZE))
1650 		index_end++;
1651 
1652 	curr_sample_pos = 0;
1653 	while (index < index_end) {
1654 		page = find_get_page(inode->i_mapping, index);
1655 		in_data = kmap_local_page(page);
1656 		/* Handle case where the start is not aligned to PAGE_SIZE */
1657 		i = start % PAGE_SIZE;
1658 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1659 			/* Don't sample any garbage from the last page */
1660 			if (start > end - SAMPLING_READ_SIZE)
1661 				break;
1662 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1663 					SAMPLING_READ_SIZE);
1664 			i += SAMPLING_INTERVAL;
1665 			start += SAMPLING_INTERVAL;
1666 			curr_sample_pos += SAMPLING_READ_SIZE;
1667 		}
1668 		kunmap_local(in_data);
1669 		put_page(page);
1670 
1671 		index++;
1672 	}
1673 
1674 	ws->sample_size = curr_sample_pos;
1675 }
1676 
1677 /*
1678  * Compression heuristic.
1679  *
1680  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1681  * quickly (compared to direct compression) detect data characteristics
1682  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1683  * data.
1684  *
1685  * The following types of analysis can be performed:
1686  * - detect mostly zero data
1687  * - detect data with low "byte set" size (text, etc)
1688  * - detect data with low/high "core byte" set
1689  *
1690  * Return non-zero if the compression should be done, 0 otherwise.
1691  */
1692 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1693 {
1694 	struct list_head *ws_list = get_workspace(0, 0);
1695 	struct heuristic_ws *ws;
1696 	u32 i;
1697 	u8 byte;
1698 	int ret = 0;
1699 
1700 	ws = list_entry(ws_list, struct heuristic_ws, list);
1701 
1702 	heuristic_collect_sample(inode, start, end, ws);
1703 
1704 	if (sample_repeated_patterns(ws)) {
1705 		ret = 1;
1706 		goto out;
1707 	}
1708 
1709 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1710 
1711 	for (i = 0; i < ws->sample_size; i++) {
1712 		byte = ws->sample[i];
1713 		ws->bucket[byte].count++;
1714 	}
1715 
1716 	i = byte_set_size(ws);
1717 	if (i < BYTE_SET_THRESHOLD) {
1718 		ret = 2;
1719 		goto out;
1720 	}
1721 
1722 	i = byte_core_set_size(ws);
1723 	if (i <= BYTE_CORE_SET_LOW) {
1724 		ret = 3;
1725 		goto out;
1726 	}
1727 
1728 	if (i >= BYTE_CORE_SET_HIGH) {
1729 		ret = 0;
1730 		goto out;
1731 	}
1732 
1733 	i = shannon_entropy(ws);
1734 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1735 		ret = 4;
1736 		goto out;
1737 	}
1738 
1739 	/*
1740 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1741 	 * needed to give green light to compression.
1742 	 *
1743 	 * For now just assume that compression at that level is not worth the
1744 	 * resources because:
1745 	 *
1746 	 * 1. it is possible to defrag the data later
1747 	 *
1748 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1749 	 * values, every bucket has counter at level ~54. The heuristic would
1750 	 * be confused. This can happen when data have some internal repeated
1751 	 * patterns like "abbacbbc...". This can be detected by analyzing
1752 	 * pairs of bytes, which is too costly.
1753 	 */
1754 	if (i < ENTROPY_LVL_HIGH) {
1755 		ret = 5;
1756 		goto out;
1757 	} else {
1758 		ret = 0;
1759 		goto out;
1760 	}
1761 
1762 out:
1763 	put_workspace(0, ws_list);
1764 	return ret;
1765 }
1766 
1767 /*
1768  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1769  * level, unrecognized string will set the default level
1770  */
1771 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1772 {
1773 	unsigned int level = 0;
1774 	int ret;
1775 
1776 	if (!type)
1777 		return 0;
1778 
1779 	if (str[0] == ':') {
1780 		ret = kstrtouint(str + 1, 10, &level);
1781 		if (ret)
1782 			level = 0;
1783 	}
1784 
1785 	level = btrfs_compress_set_level(type, level);
1786 
1787 	return level;
1788 }
1789