1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sort.h> 37 #include <linux/log2.h> 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "volumes.h" 43 #include "ordered-data.h" 44 #include "compression.h" 45 #include "extent_io.h" 46 #include "extent_map.h" 47 48 static int btrfs_decompress_bio(struct compressed_bio *cb); 49 50 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 51 unsigned long disk_size) 52 { 53 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 54 55 return sizeof(struct compressed_bio) + 56 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 57 } 58 59 static int check_compressed_csum(struct btrfs_inode *inode, 60 struct compressed_bio *cb, 61 u64 disk_start) 62 { 63 int ret; 64 struct page *page; 65 unsigned long i; 66 char *kaddr; 67 u32 csum; 68 u32 *cb_sum = &cb->sums; 69 70 if (inode->flags & BTRFS_INODE_NODATASUM) 71 return 0; 72 73 for (i = 0; i < cb->nr_pages; i++) { 74 page = cb->compressed_pages[i]; 75 csum = ~(u32)0; 76 77 kaddr = kmap_atomic(page); 78 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 79 btrfs_csum_final(csum, (u8 *)&csum); 80 kunmap_atomic(kaddr); 81 82 if (csum != *cb_sum) { 83 btrfs_print_data_csum_error(inode, disk_start, csum, 84 *cb_sum, cb->mirror_num); 85 ret = -EIO; 86 goto fail; 87 } 88 cb_sum++; 89 90 } 91 ret = 0; 92 fail: 93 return ret; 94 } 95 96 /* when we finish reading compressed pages from the disk, we 97 * decompress them and then run the bio end_io routines on the 98 * decompressed pages (in the inode address space). 99 * 100 * This allows the checksumming and other IO error handling routines 101 * to work normally 102 * 103 * The compressed pages are freed here, and it must be run 104 * in process context 105 */ 106 static void end_compressed_bio_read(struct bio *bio) 107 { 108 struct compressed_bio *cb = bio->bi_private; 109 struct inode *inode; 110 struct page *page; 111 unsigned long index; 112 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 113 int ret = 0; 114 115 if (bio->bi_status) 116 cb->errors = 1; 117 118 /* if there are more bios still pending for this compressed 119 * extent, just exit 120 */ 121 if (!refcount_dec_and_test(&cb->pending_bios)) 122 goto out; 123 124 /* 125 * Record the correct mirror_num in cb->orig_bio so that 126 * read-repair can work properly. 127 */ 128 ASSERT(btrfs_io_bio(cb->orig_bio)); 129 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 130 cb->mirror_num = mirror; 131 132 /* 133 * Some IO in this cb have failed, just skip checksum as there 134 * is no way it could be correct. 135 */ 136 if (cb->errors == 1) 137 goto csum_failed; 138 139 inode = cb->inode; 140 ret = check_compressed_csum(BTRFS_I(inode), cb, 141 (u64)bio->bi_iter.bi_sector << 9); 142 if (ret) 143 goto csum_failed; 144 145 /* ok, we're the last bio for this extent, lets start 146 * the decompression. 147 */ 148 ret = btrfs_decompress_bio(cb); 149 150 csum_failed: 151 if (ret) 152 cb->errors = 1; 153 154 /* release the compressed pages */ 155 index = 0; 156 for (index = 0; index < cb->nr_pages; index++) { 157 page = cb->compressed_pages[index]; 158 page->mapping = NULL; 159 put_page(page); 160 } 161 162 /* do io completion on the original bio */ 163 if (cb->errors) { 164 bio_io_error(cb->orig_bio); 165 } else { 166 int i; 167 struct bio_vec *bvec; 168 169 /* 170 * we have verified the checksum already, set page 171 * checked so the end_io handlers know about it 172 */ 173 ASSERT(!bio_flagged(bio, BIO_CLONED)); 174 bio_for_each_segment_all(bvec, cb->orig_bio, i) 175 SetPageChecked(bvec->bv_page); 176 177 bio_endio(cb->orig_bio); 178 } 179 180 /* finally free the cb struct */ 181 kfree(cb->compressed_pages); 182 kfree(cb); 183 out: 184 bio_put(bio); 185 } 186 187 /* 188 * Clear the writeback bits on all of the file 189 * pages for a compressed write 190 */ 191 static noinline void end_compressed_writeback(struct inode *inode, 192 const struct compressed_bio *cb) 193 { 194 unsigned long index = cb->start >> PAGE_SHIFT; 195 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 196 struct page *pages[16]; 197 unsigned long nr_pages = end_index - index + 1; 198 int i; 199 int ret; 200 201 if (cb->errors) 202 mapping_set_error(inode->i_mapping, -EIO); 203 204 while (nr_pages > 0) { 205 ret = find_get_pages_contig(inode->i_mapping, index, 206 min_t(unsigned long, 207 nr_pages, ARRAY_SIZE(pages)), pages); 208 if (ret == 0) { 209 nr_pages -= 1; 210 index += 1; 211 continue; 212 } 213 for (i = 0; i < ret; i++) { 214 if (cb->errors) 215 SetPageError(pages[i]); 216 end_page_writeback(pages[i]); 217 put_page(pages[i]); 218 } 219 nr_pages -= ret; 220 index += ret; 221 } 222 /* the inode may be gone now */ 223 } 224 225 /* 226 * do the cleanup once all the compressed pages hit the disk. 227 * This will clear writeback on the file pages and free the compressed 228 * pages. 229 * 230 * This also calls the writeback end hooks for the file pages so that 231 * metadata and checksums can be updated in the file. 232 */ 233 static void end_compressed_bio_write(struct bio *bio) 234 { 235 struct extent_io_tree *tree; 236 struct compressed_bio *cb = bio->bi_private; 237 struct inode *inode; 238 struct page *page; 239 unsigned long index; 240 241 if (bio->bi_status) 242 cb->errors = 1; 243 244 /* if there are more bios still pending for this compressed 245 * extent, just exit 246 */ 247 if (!refcount_dec_and_test(&cb->pending_bios)) 248 goto out; 249 250 /* ok, we're the last bio for this extent, step one is to 251 * call back into the FS and do all the end_io operations 252 */ 253 inode = cb->inode; 254 tree = &BTRFS_I(inode)->io_tree; 255 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 256 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 257 cb->start, 258 cb->start + cb->len - 1, 259 NULL, 260 bio->bi_status ? 261 BLK_STS_OK : BLK_STS_NOTSUPP); 262 cb->compressed_pages[0]->mapping = NULL; 263 264 end_compressed_writeback(inode, cb); 265 /* note, our inode could be gone now */ 266 267 /* 268 * release the compressed pages, these came from alloc_page and 269 * are not attached to the inode at all 270 */ 271 index = 0; 272 for (index = 0; index < cb->nr_pages; index++) { 273 page = cb->compressed_pages[index]; 274 page->mapping = NULL; 275 put_page(page); 276 } 277 278 /* finally free the cb struct */ 279 kfree(cb->compressed_pages); 280 kfree(cb); 281 out: 282 bio_put(bio); 283 } 284 285 /* 286 * worker function to build and submit bios for previously compressed pages. 287 * The corresponding pages in the inode should be marked for writeback 288 * and the compressed pages should have a reference on them for dropping 289 * when the IO is complete. 290 * 291 * This also checksums the file bytes and gets things ready for 292 * the end io hooks. 293 */ 294 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 295 unsigned long len, u64 disk_start, 296 unsigned long compressed_len, 297 struct page **compressed_pages, 298 unsigned long nr_pages) 299 { 300 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 301 struct bio *bio = NULL; 302 struct compressed_bio *cb; 303 unsigned long bytes_left; 304 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 305 int pg_index = 0; 306 struct page *page; 307 u64 first_byte = disk_start; 308 struct block_device *bdev; 309 blk_status_t ret; 310 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 311 312 WARN_ON(start & ((u64)PAGE_SIZE - 1)); 313 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 314 if (!cb) 315 return BLK_STS_RESOURCE; 316 refcount_set(&cb->pending_bios, 0); 317 cb->errors = 0; 318 cb->inode = inode; 319 cb->start = start; 320 cb->len = len; 321 cb->mirror_num = 0; 322 cb->compressed_pages = compressed_pages; 323 cb->compressed_len = compressed_len; 324 cb->orig_bio = NULL; 325 cb->nr_pages = nr_pages; 326 327 bdev = fs_info->fs_devices->latest_bdev; 328 329 bio = btrfs_bio_alloc(bdev, first_byte); 330 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 331 bio->bi_private = cb; 332 bio->bi_end_io = end_compressed_bio_write; 333 refcount_set(&cb->pending_bios, 1); 334 335 /* create and submit bios for the compressed pages */ 336 bytes_left = compressed_len; 337 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 338 int submit = 0; 339 340 page = compressed_pages[pg_index]; 341 page->mapping = inode->i_mapping; 342 if (bio->bi_iter.bi_size) 343 submit = io_tree->ops->merge_bio_hook(page, 0, 344 PAGE_SIZE, 345 bio, 0); 346 347 page->mapping = NULL; 348 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 349 PAGE_SIZE) { 350 bio_get(bio); 351 352 /* 353 * inc the count before we submit the bio so 354 * we know the end IO handler won't happen before 355 * we inc the count. Otherwise, the cb might get 356 * freed before we're done setting it up 357 */ 358 refcount_inc(&cb->pending_bios); 359 ret = btrfs_bio_wq_end_io(fs_info, bio, 360 BTRFS_WQ_ENDIO_DATA); 361 BUG_ON(ret); /* -ENOMEM */ 362 363 if (!skip_sum) { 364 ret = btrfs_csum_one_bio(inode, bio, start, 1); 365 BUG_ON(ret); /* -ENOMEM */ 366 } 367 368 ret = btrfs_map_bio(fs_info, bio, 0, 1); 369 if (ret) { 370 bio->bi_status = ret; 371 bio_endio(bio); 372 } 373 374 bio_put(bio); 375 376 bio = btrfs_bio_alloc(bdev, first_byte); 377 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 378 bio->bi_private = cb; 379 bio->bi_end_io = end_compressed_bio_write; 380 bio_add_page(bio, page, PAGE_SIZE, 0); 381 } 382 if (bytes_left < PAGE_SIZE) { 383 btrfs_info(fs_info, 384 "bytes left %lu compress len %lu nr %lu", 385 bytes_left, cb->compressed_len, cb->nr_pages); 386 } 387 bytes_left -= PAGE_SIZE; 388 first_byte += PAGE_SIZE; 389 cond_resched(); 390 } 391 bio_get(bio); 392 393 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 394 BUG_ON(ret); /* -ENOMEM */ 395 396 if (!skip_sum) { 397 ret = btrfs_csum_one_bio(inode, bio, start, 1); 398 BUG_ON(ret); /* -ENOMEM */ 399 } 400 401 ret = btrfs_map_bio(fs_info, bio, 0, 1); 402 if (ret) { 403 bio->bi_status = ret; 404 bio_endio(bio); 405 } 406 407 bio_put(bio); 408 return 0; 409 } 410 411 static u64 bio_end_offset(struct bio *bio) 412 { 413 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1]; 414 415 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 416 } 417 418 static noinline int add_ra_bio_pages(struct inode *inode, 419 u64 compressed_end, 420 struct compressed_bio *cb) 421 { 422 unsigned long end_index; 423 unsigned long pg_index; 424 u64 last_offset; 425 u64 isize = i_size_read(inode); 426 int ret; 427 struct page *page; 428 unsigned long nr_pages = 0; 429 struct extent_map *em; 430 struct address_space *mapping = inode->i_mapping; 431 struct extent_map_tree *em_tree; 432 struct extent_io_tree *tree; 433 u64 end; 434 int misses = 0; 435 436 last_offset = bio_end_offset(cb->orig_bio); 437 em_tree = &BTRFS_I(inode)->extent_tree; 438 tree = &BTRFS_I(inode)->io_tree; 439 440 if (isize == 0) 441 return 0; 442 443 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 444 445 while (last_offset < compressed_end) { 446 pg_index = last_offset >> PAGE_SHIFT; 447 448 if (pg_index > end_index) 449 break; 450 451 rcu_read_lock(); 452 page = radix_tree_lookup(&mapping->page_tree, pg_index); 453 rcu_read_unlock(); 454 if (page && !radix_tree_exceptional_entry(page)) { 455 misses++; 456 if (misses > 4) 457 break; 458 goto next; 459 } 460 461 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 462 ~__GFP_FS)); 463 if (!page) 464 break; 465 466 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 467 put_page(page); 468 goto next; 469 } 470 471 end = last_offset + PAGE_SIZE - 1; 472 /* 473 * at this point, we have a locked page in the page cache 474 * for these bytes in the file. But, we have to make 475 * sure they map to this compressed extent on disk. 476 */ 477 set_page_extent_mapped(page); 478 lock_extent(tree, last_offset, end); 479 read_lock(&em_tree->lock); 480 em = lookup_extent_mapping(em_tree, last_offset, 481 PAGE_SIZE); 482 read_unlock(&em_tree->lock); 483 484 if (!em || last_offset < em->start || 485 (last_offset + PAGE_SIZE > extent_map_end(em)) || 486 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 487 free_extent_map(em); 488 unlock_extent(tree, last_offset, end); 489 unlock_page(page); 490 put_page(page); 491 break; 492 } 493 free_extent_map(em); 494 495 if (page->index == end_index) { 496 char *userpage; 497 size_t zero_offset = isize & (PAGE_SIZE - 1); 498 499 if (zero_offset) { 500 int zeros; 501 zeros = PAGE_SIZE - zero_offset; 502 userpage = kmap_atomic(page); 503 memset(userpage + zero_offset, 0, zeros); 504 flush_dcache_page(page); 505 kunmap_atomic(userpage); 506 } 507 } 508 509 ret = bio_add_page(cb->orig_bio, page, 510 PAGE_SIZE, 0); 511 512 if (ret == PAGE_SIZE) { 513 nr_pages++; 514 put_page(page); 515 } else { 516 unlock_extent(tree, last_offset, end); 517 unlock_page(page); 518 put_page(page); 519 break; 520 } 521 next: 522 last_offset += PAGE_SIZE; 523 } 524 return 0; 525 } 526 527 /* 528 * for a compressed read, the bio we get passed has all the inode pages 529 * in it. We don't actually do IO on those pages but allocate new ones 530 * to hold the compressed pages on disk. 531 * 532 * bio->bi_iter.bi_sector points to the compressed extent on disk 533 * bio->bi_io_vec points to all of the inode pages 534 * 535 * After the compressed pages are read, we copy the bytes into the 536 * bio we were passed and then call the bio end_io calls 537 */ 538 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 539 int mirror_num, unsigned long bio_flags) 540 { 541 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 542 struct extent_io_tree *tree; 543 struct extent_map_tree *em_tree; 544 struct compressed_bio *cb; 545 unsigned long compressed_len; 546 unsigned long nr_pages; 547 unsigned long pg_index; 548 struct page *page; 549 struct block_device *bdev; 550 struct bio *comp_bio; 551 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 552 u64 em_len; 553 u64 em_start; 554 struct extent_map *em; 555 blk_status_t ret = BLK_STS_RESOURCE; 556 int faili = 0; 557 u32 *sums; 558 559 tree = &BTRFS_I(inode)->io_tree; 560 em_tree = &BTRFS_I(inode)->extent_tree; 561 562 /* we need the actual starting offset of this extent in the file */ 563 read_lock(&em_tree->lock); 564 em = lookup_extent_mapping(em_tree, 565 page_offset(bio->bi_io_vec->bv_page), 566 PAGE_SIZE); 567 read_unlock(&em_tree->lock); 568 if (!em) 569 return BLK_STS_IOERR; 570 571 compressed_len = em->block_len; 572 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 573 if (!cb) 574 goto out; 575 576 refcount_set(&cb->pending_bios, 0); 577 cb->errors = 0; 578 cb->inode = inode; 579 cb->mirror_num = mirror_num; 580 sums = &cb->sums; 581 582 cb->start = em->orig_start; 583 em_len = em->len; 584 em_start = em->start; 585 586 free_extent_map(em); 587 em = NULL; 588 589 cb->len = bio->bi_iter.bi_size; 590 cb->compressed_len = compressed_len; 591 cb->compress_type = extent_compress_type(bio_flags); 592 cb->orig_bio = bio; 593 594 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 595 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 596 GFP_NOFS); 597 if (!cb->compressed_pages) 598 goto fail1; 599 600 bdev = fs_info->fs_devices->latest_bdev; 601 602 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 603 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 604 __GFP_HIGHMEM); 605 if (!cb->compressed_pages[pg_index]) { 606 faili = pg_index - 1; 607 ret = BLK_STS_RESOURCE; 608 goto fail2; 609 } 610 } 611 faili = nr_pages - 1; 612 cb->nr_pages = nr_pages; 613 614 add_ra_bio_pages(inode, em_start + em_len, cb); 615 616 /* include any pages we added in add_ra-bio_pages */ 617 cb->len = bio->bi_iter.bi_size; 618 619 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 620 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0); 621 comp_bio->bi_private = cb; 622 comp_bio->bi_end_io = end_compressed_bio_read; 623 refcount_set(&cb->pending_bios, 1); 624 625 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 626 int submit = 0; 627 628 page = cb->compressed_pages[pg_index]; 629 page->mapping = inode->i_mapping; 630 page->index = em_start >> PAGE_SHIFT; 631 632 if (comp_bio->bi_iter.bi_size) 633 submit = tree->ops->merge_bio_hook(page, 0, 634 PAGE_SIZE, 635 comp_bio, 0); 636 637 page->mapping = NULL; 638 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 639 PAGE_SIZE) { 640 bio_get(comp_bio); 641 642 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 643 BTRFS_WQ_ENDIO_DATA); 644 BUG_ON(ret); /* -ENOMEM */ 645 646 /* 647 * inc the count before we submit the bio so 648 * we know the end IO handler won't happen before 649 * we inc the count. Otherwise, the cb might get 650 * freed before we're done setting it up 651 */ 652 refcount_inc(&cb->pending_bios); 653 654 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 655 ret = btrfs_lookup_bio_sums(inode, comp_bio, 656 sums); 657 BUG_ON(ret); /* -ENOMEM */ 658 } 659 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 660 fs_info->sectorsize); 661 662 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 663 if (ret) { 664 comp_bio->bi_status = ret; 665 bio_endio(comp_bio); 666 } 667 668 bio_put(comp_bio); 669 670 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 671 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0); 672 comp_bio->bi_private = cb; 673 comp_bio->bi_end_io = end_compressed_bio_read; 674 675 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 676 } 677 cur_disk_byte += PAGE_SIZE; 678 } 679 bio_get(comp_bio); 680 681 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 682 BUG_ON(ret); /* -ENOMEM */ 683 684 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 685 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 686 BUG_ON(ret); /* -ENOMEM */ 687 } 688 689 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 690 if (ret) { 691 comp_bio->bi_status = ret; 692 bio_endio(comp_bio); 693 } 694 695 bio_put(comp_bio); 696 return 0; 697 698 fail2: 699 while (faili >= 0) { 700 __free_page(cb->compressed_pages[faili]); 701 faili--; 702 } 703 704 kfree(cb->compressed_pages); 705 fail1: 706 kfree(cb); 707 out: 708 free_extent_map(em); 709 return ret; 710 } 711 712 /* 713 * Heuristic uses systematic sampling to collect data from the input data 714 * range, the logic can be tuned by the following constants: 715 * 716 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 717 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 718 */ 719 #define SAMPLING_READ_SIZE (16) 720 #define SAMPLING_INTERVAL (256) 721 722 /* 723 * For statistical analysis of the input data we consider bytes that form a 724 * Galois Field of 256 objects. Each object has an attribute count, ie. how 725 * many times the object appeared in the sample. 726 */ 727 #define BUCKET_SIZE (256) 728 729 /* 730 * The size of the sample is based on a statistical sampling rule of thumb. 731 * The common way is to perform sampling tests as long as the number of 732 * elements in each cell is at least 5. 733 * 734 * Instead of 5, we choose 32 to obtain more accurate results. 735 * If the data contain the maximum number of symbols, which is 256, we obtain a 736 * sample size bound by 8192. 737 * 738 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 739 * from up to 512 locations. 740 */ 741 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 742 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 743 744 struct bucket_item { 745 u32 count; 746 }; 747 748 struct heuristic_ws { 749 /* Partial copy of input data */ 750 u8 *sample; 751 u32 sample_size; 752 /* Buckets store counters for each byte value */ 753 struct bucket_item *bucket; 754 struct list_head list; 755 }; 756 757 static void free_heuristic_ws(struct list_head *ws) 758 { 759 struct heuristic_ws *workspace; 760 761 workspace = list_entry(ws, struct heuristic_ws, list); 762 763 kvfree(workspace->sample); 764 kfree(workspace->bucket); 765 kfree(workspace); 766 } 767 768 static struct list_head *alloc_heuristic_ws(void) 769 { 770 struct heuristic_ws *ws; 771 772 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 773 if (!ws) 774 return ERR_PTR(-ENOMEM); 775 776 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 777 if (!ws->sample) 778 goto fail; 779 780 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 781 if (!ws->bucket) 782 goto fail; 783 784 INIT_LIST_HEAD(&ws->list); 785 return &ws->list; 786 fail: 787 free_heuristic_ws(&ws->list); 788 return ERR_PTR(-ENOMEM); 789 } 790 791 struct workspaces_list { 792 struct list_head idle_ws; 793 spinlock_t ws_lock; 794 /* Number of free workspaces */ 795 int free_ws; 796 /* Total number of allocated workspaces */ 797 atomic_t total_ws; 798 /* Waiters for a free workspace */ 799 wait_queue_head_t ws_wait; 800 }; 801 802 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 803 804 static struct workspaces_list btrfs_heuristic_ws; 805 806 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 807 &btrfs_zlib_compress, 808 &btrfs_lzo_compress, 809 &btrfs_zstd_compress, 810 }; 811 812 void __init btrfs_init_compress(void) 813 { 814 struct list_head *workspace; 815 int i; 816 817 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws); 818 spin_lock_init(&btrfs_heuristic_ws.ws_lock); 819 atomic_set(&btrfs_heuristic_ws.total_ws, 0); 820 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait); 821 822 workspace = alloc_heuristic_ws(); 823 if (IS_ERR(workspace)) { 824 pr_warn( 825 "BTRFS: cannot preallocate heuristic workspace, will try later\n"); 826 } else { 827 atomic_set(&btrfs_heuristic_ws.total_ws, 1); 828 btrfs_heuristic_ws.free_ws = 1; 829 list_add(workspace, &btrfs_heuristic_ws.idle_ws); 830 } 831 832 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 833 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 834 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 835 atomic_set(&btrfs_comp_ws[i].total_ws, 0); 836 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 837 838 /* 839 * Preallocate one workspace for each compression type so 840 * we can guarantee forward progress in the worst case 841 */ 842 workspace = btrfs_compress_op[i]->alloc_workspace(); 843 if (IS_ERR(workspace)) { 844 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n"); 845 } else { 846 atomic_set(&btrfs_comp_ws[i].total_ws, 1); 847 btrfs_comp_ws[i].free_ws = 1; 848 list_add(workspace, &btrfs_comp_ws[i].idle_ws); 849 } 850 } 851 } 852 853 /* 854 * This finds an available workspace or allocates a new one. 855 * If it's not possible to allocate a new one, waits until there's one. 856 * Preallocation makes a forward progress guarantees and we do not return 857 * errors. 858 */ 859 static struct list_head *__find_workspace(int type, bool heuristic) 860 { 861 struct list_head *workspace; 862 int cpus = num_online_cpus(); 863 int idx = type - 1; 864 unsigned nofs_flag; 865 struct list_head *idle_ws; 866 spinlock_t *ws_lock; 867 atomic_t *total_ws; 868 wait_queue_head_t *ws_wait; 869 int *free_ws; 870 871 if (heuristic) { 872 idle_ws = &btrfs_heuristic_ws.idle_ws; 873 ws_lock = &btrfs_heuristic_ws.ws_lock; 874 total_ws = &btrfs_heuristic_ws.total_ws; 875 ws_wait = &btrfs_heuristic_ws.ws_wait; 876 free_ws = &btrfs_heuristic_ws.free_ws; 877 } else { 878 idle_ws = &btrfs_comp_ws[idx].idle_ws; 879 ws_lock = &btrfs_comp_ws[idx].ws_lock; 880 total_ws = &btrfs_comp_ws[idx].total_ws; 881 ws_wait = &btrfs_comp_ws[idx].ws_wait; 882 free_ws = &btrfs_comp_ws[idx].free_ws; 883 } 884 885 again: 886 spin_lock(ws_lock); 887 if (!list_empty(idle_ws)) { 888 workspace = idle_ws->next; 889 list_del(workspace); 890 (*free_ws)--; 891 spin_unlock(ws_lock); 892 return workspace; 893 894 } 895 if (atomic_read(total_ws) > cpus) { 896 DEFINE_WAIT(wait); 897 898 spin_unlock(ws_lock); 899 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 900 if (atomic_read(total_ws) > cpus && !*free_ws) 901 schedule(); 902 finish_wait(ws_wait, &wait); 903 goto again; 904 } 905 atomic_inc(total_ws); 906 spin_unlock(ws_lock); 907 908 /* 909 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 910 * to turn it off here because we might get called from the restricted 911 * context of btrfs_compress_bio/btrfs_compress_pages 912 */ 913 nofs_flag = memalloc_nofs_save(); 914 if (heuristic) 915 workspace = alloc_heuristic_ws(); 916 else 917 workspace = btrfs_compress_op[idx]->alloc_workspace(); 918 memalloc_nofs_restore(nofs_flag); 919 920 if (IS_ERR(workspace)) { 921 atomic_dec(total_ws); 922 wake_up(ws_wait); 923 924 /* 925 * Do not return the error but go back to waiting. There's a 926 * workspace preallocated for each type and the compression 927 * time is bounded so we get to a workspace eventually. This 928 * makes our caller's life easier. 929 * 930 * To prevent silent and low-probability deadlocks (when the 931 * initial preallocation fails), check if there are any 932 * workspaces at all. 933 */ 934 if (atomic_read(total_ws) == 0) { 935 static DEFINE_RATELIMIT_STATE(_rs, 936 /* once per minute */ 60 * HZ, 937 /* no burst */ 1); 938 939 if (__ratelimit(&_rs)) { 940 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 941 } 942 } 943 goto again; 944 } 945 return workspace; 946 } 947 948 static struct list_head *find_workspace(int type) 949 { 950 return __find_workspace(type, false); 951 } 952 953 /* 954 * put a workspace struct back on the list or free it if we have enough 955 * idle ones sitting around 956 */ 957 static void __free_workspace(int type, struct list_head *workspace, 958 bool heuristic) 959 { 960 int idx = type - 1; 961 struct list_head *idle_ws; 962 spinlock_t *ws_lock; 963 atomic_t *total_ws; 964 wait_queue_head_t *ws_wait; 965 int *free_ws; 966 967 if (heuristic) { 968 idle_ws = &btrfs_heuristic_ws.idle_ws; 969 ws_lock = &btrfs_heuristic_ws.ws_lock; 970 total_ws = &btrfs_heuristic_ws.total_ws; 971 ws_wait = &btrfs_heuristic_ws.ws_wait; 972 free_ws = &btrfs_heuristic_ws.free_ws; 973 } else { 974 idle_ws = &btrfs_comp_ws[idx].idle_ws; 975 ws_lock = &btrfs_comp_ws[idx].ws_lock; 976 total_ws = &btrfs_comp_ws[idx].total_ws; 977 ws_wait = &btrfs_comp_ws[idx].ws_wait; 978 free_ws = &btrfs_comp_ws[idx].free_ws; 979 } 980 981 spin_lock(ws_lock); 982 if (*free_ws <= num_online_cpus()) { 983 list_add(workspace, idle_ws); 984 (*free_ws)++; 985 spin_unlock(ws_lock); 986 goto wake; 987 } 988 spin_unlock(ws_lock); 989 990 if (heuristic) 991 free_heuristic_ws(workspace); 992 else 993 btrfs_compress_op[idx]->free_workspace(workspace); 994 atomic_dec(total_ws); 995 wake: 996 /* 997 * Make sure counter is updated before we wake up waiters. 998 */ 999 smp_mb(); 1000 if (waitqueue_active(ws_wait)) 1001 wake_up(ws_wait); 1002 } 1003 1004 static void free_workspace(int type, struct list_head *ws) 1005 { 1006 return __free_workspace(type, ws, false); 1007 } 1008 1009 /* 1010 * cleanup function for module exit 1011 */ 1012 static void free_workspaces(void) 1013 { 1014 struct list_head *workspace; 1015 int i; 1016 1017 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) { 1018 workspace = btrfs_heuristic_ws.idle_ws.next; 1019 list_del(workspace); 1020 free_heuristic_ws(workspace); 1021 atomic_dec(&btrfs_heuristic_ws.total_ws); 1022 } 1023 1024 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 1025 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 1026 workspace = btrfs_comp_ws[i].idle_ws.next; 1027 list_del(workspace); 1028 btrfs_compress_op[i]->free_workspace(workspace); 1029 atomic_dec(&btrfs_comp_ws[i].total_ws); 1030 } 1031 } 1032 } 1033 1034 /* 1035 * Given an address space and start and length, compress the bytes into @pages 1036 * that are allocated on demand. 1037 * 1038 * @type_level is encoded algorithm and level, where level 0 means whatever 1039 * default the algorithm chooses and is opaque here; 1040 * - compression algo are 0-3 1041 * - the level are bits 4-7 1042 * 1043 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1044 * and returns number of actually allocated pages 1045 * 1046 * @total_in is used to return the number of bytes actually read. It 1047 * may be smaller than the input length if we had to exit early because we 1048 * ran out of room in the pages array or because we cross the 1049 * max_out threshold. 1050 * 1051 * @total_out is an in/out parameter, must be set to the input length and will 1052 * be also used to return the total number of compressed bytes 1053 * 1054 * @max_out tells us the max number of bytes that we're allowed to 1055 * stuff into pages 1056 */ 1057 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1058 u64 start, struct page **pages, 1059 unsigned long *out_pages, 1060 unsigned long *total_in, 1061 unsigned long *total_out) 1062 { 1063 struct list_head *workspace; 1064 int ret; 1065 int type = type_level & 0xF; 1066 1067 workspace = find_workspace(type); 1068 1069 btrfs_compress_op[type - 1]->set_level(workspace, type_level); 1070 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 1071 start, pages, 1072 out_pages, 1073 total_in, total_out); 1074 free_workspace(type, workspace); 1075 return ret; 1076 } 1077 1078 /* 1079 * pages_in is an array of pages with compressed data. 1080 * 1081 * disk_start is the starting logical offset of this array in the file 1082 * 1083 * orig_bio contains the pages from the file that we want to decompress into 1084 * 1085 * srclen is the number of bytes in pages_in 1086 * 1087 * The basic idea is that we have a bio that was created by readpages. 1088 * The pages in the bio are for the uncompressed data, and they may not 1089 * be contiguous. They all correspond to the range of bytes covered by 1090 * the compressed extent. 1091 */ 1092 static int btrfs_decompress_bio(struct compressed_bio *cb) 1093 { 1094 struct list_head *workspace; 1095 int ret; 1096 int type = cb->compress_type; 1097 1098 workspace = find_workspace(type); 1099 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb); 1100 free_workspace(type, workspace); 1101 1102 return ret; 1103 } 1104 1105 /* 1106 * a less complex decompression routine. Our compressed data fits in a 1107 * single page, and we want to read a single page out of it. 1108 * start_byte tells us the offset into the compressed data we're interested in 1109 */ 1110 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1111 unsigned long start_byte, size_t srclen, size_t destlen) 1112 { 1113 struct list_head *workspace; 1114 int ret; 1115 1116 workspace = find_workspace(type); 1117 1118 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 1119 dest_page, start_byte, 1120 srclen, destlen); 1121 1122 free_workspace(type, workspace); 1123 return ret; 1124 } 1125 1126 void btrfs_exit_compress(void) 1127 { 1128 free_workspaces(); 1129 } 1130 1131 /* 1132 * Copy uncompressed data from working buffer to pages. 1133 * 1134 * buf_start is the byte offset we're of the start of our workspace buffer. 1135 * 1136 * total_out is the last byte of the buffer 1137 */ 1138 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1139 unsigned long total_out, u64 disk_start, 1140 struct bio *bio) 1141 { 1142 unsigned long buf_offset; 1143 unsigned long current_buf_start; 1144 unsigned long start_byte; 1145 unsigned long prev_start_byte; 1146 unsigned long working_bytes = total_out - buf_start; 1147 unsigned long bytes; 1148 char *kaddr; 1149 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1150 1151 /* 1152 * start byte is the first byte of the page we're currently 1153 * copying into relative to the start of the compressed data. 1154 */ 1155 start_byte = page_offset(bvec.bv_page) - disk_start; 1156 1157 /* we haven't yet hit data corresponding to this page */ 1158 if (total_out <= start_byte) 1159 return 1; 1160 1161 /* 1162 * the start of the data we care about is offset into 1163 * the middle of our working buffer 1164 */ 1165 if (total_out > start_byte && buf_start < start_byte) { 1166 buf_offset = start_byte - buf_start; 1167 working_bytes -= buf_offset; 1168 } else { 1169 buf_offset = 0; 1170 } 1171 current_buf_start = buf_start; 1172 1173 /* copy bytes from the working buffer into the pages */ 1174 while (working_bytes > 0) { 1175 bytes = min_t(unsigned long, bvec.bv_len, 1176 PAGE_SIZE - buf_offset); 1177 bytes = min(bytes, working_bytes); 1178 1179 kaddr = kmap_atomic(bvec.bv_page); 1180 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1181 kunmap_atomic(kaddr); 1182 flush_dcache_page(bvec.bv_page); 1183 1184 buf_offset += bytes; 1185 working_bytes -= bytes; 1186 current_buf_start += bytes; 1187 1188 /* check if we need to pick another page */ 1189 bio_advance(bio, bytes); 1190 if (!bio->bi_iter.bi_size) 1191 return 0; 1192 bvec = bio_iter_iovec(bio, bio->bi_iter); 1193 prev_start_byte = start_byte; 1194 start_byte = page_offset(bvec.bv_page) - disk_start; 1195 1196 /* 1197 * We need to make sure we're only adjusting 1198 * our offset into compression working buffer when 1199 * we're switching pages. Otherwise we can incorrectly 1200 * keep copying when we were actually done. 1201 */ 1202 if (start_byte != prev_start_byte) { 1203 /* 1204 * make sure our new page is covered by this 1205 * working buffer 1206 */ 1207 if (total_out <= start_byte) 1208 return 1; 1209 1210 /* 1211 * the next page in the biovec might not be adjacent 1212 * to the last page, but it might still be found 1213 * inside this working buffer. bump our offset pointer 1214 */ 1215 if (total_out > start_byte && 1216 current_buf_start < start_byte) { 1217 buf_offset = start_byte - buf_start; 1218 working_bytes = total_out - start_byte; 1219 current_buf_start = buf_start + buf_offset; 1220 } 1221 } 1222 } 1223 1224 return 1; 1225 } 1226 1227 /* 1228 * Shannon Entropy calculation 1229 * 1230 * Pure byte distribution analysis fails to determine compressiability of data. 1231 * Try calculating entropy to estimate the average minimum number of bits 1232 * needed to encode the sampled data. 1233 * 1234 * For convenience, return the percentage of needed bits, instead of amount of 1235 * bits directly. 1236 * 1237 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1238 * and can be compressible with high probability 1239 * 1240 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1241 * 1242 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1243 */ 1244 #define ENTROPY_LVL_ACEPTABLE (65) 1245 #define ENTROPY_LVL_HIGH (80) 1246 1247 /* 1248 * For increasead precision in shannon_entropy calculation, 1249 * let's do pow(n, M) to save more digits after comma: 1250 * 1251 * - maximum int bit length is 64 1252 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1253 * - 13 * 4 = 52 < 64 -> M = 4 1254 * 1255 * So use pow(n, 4). 1256 */ 1257 static inline u32 ilog2_w(u64 n) 1258 { 1259 return ilog2(n * n * n * n); 1260 } 1261 1262 static u32 shannon_entropy(struct heuristic_ws *ws) 1263 { 1264 const u32 entropy_max = 8 * ilog2_w(2); 1265 u32 entropy_sum = 0; 1266 u32 p, p_base, sz_base; 1267 u32 i; 1268 1269 sz_base = ilog2_w(ws->sample_size); 1270 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1271 p = ws->bucket[i].count; 1272 p_base = ilog2_w(p); 1273 entropy_sum += p * (sz_base - p_base); 1274 } 1275 1276 entropy_sum /= ws->sample_size; 1277 return entropy_sum * 100 / entropy_max; 1278 } 1279 1280 /* Compare buckets by size, ascending */ 1281 static int bucket_comp_rev(const void *lv, const void *rv) 1282 { 1283 const struct bucket_item *l = (const struct bucket_item *)lv; 1284 const struct bucket_item *r = (const struct bucket_item *)rv; 1285 1286 return r->count - l->count; 1287 } 1288 1289 /* 1290 * Size of the core byte set - how many bytes cover 90% of the sample 1291 * 1292 * There are several types of structured binary data that use nearly all byte 1293 * values. The distribution can be uniform and counts in all buckets will be 1294 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1295 * 1296 * Other possibility is normal (Gaussian) distribution, where the data could 1297 * be potentially compressible, but we have to take a few more steps to decide 1298 * how much. 1299 * 1300 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1301 * compression algo can easy fix that 1302 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1303 * probability is not compressible 1304 */ 1305 #define BYTE_CORE_SET_LOW (64) 1306 #define BYTE_CORE_SET_HIGH (200) 1307 1308 static int byte_core_set_size(struct heuristic_ws *ws) 1309 { 1310 u32 i; 1311 u32 coreset_sum = 0; 1312 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1313 struct bucket_item *bucket = ws->bucket; 1314 1315 /* Sort in reverse order */ 1316 sort(bucket, BUCKET_SIZE, sizeof(*bucket), &bucket_comp_rev, NULL); 1317 1318 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1319 coreset_sum += bucket[i].count; 1320 1321 if (coreset_sum > core_set_threshold) 1322 return i; 1323 1324 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1325 coreset_sum += bucket[i].count; 1326 if (coreset_sum > core_set_threshold) 1327 break; 1328 } 1329 1330 return i; 1331 } 1332 1333 /* 1334 * Count byte values in buckets. 1335 * This heuristic can detect textual data (configs, xml, json, html, etc). 1336 * Because in most text-like data byte set is restricted to limited number of 1337 * possible characters, and that restriction in most cases makes data easy to 1338 * compress. 1339 * 1340 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1341 * less - compressible 1342 * more - need additional analysis 1343 */ 1344 #define BYTE_SET_THRESHOLD (64) 1345 1346 static u32 byte_set_size(const struct heuristic_ws *ws) 1347 { 1348 u32 i; 1349 u32 byte_set_size = 0; 1350 1351 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1352 if (ws->bucket[i].count > 0) 1353 byte_set_size++; 1354 } 1355 1356 /* 1357 * Continue collecting count of byte values in buckets. If the byte 1358 * set size is bigger then the threshold, it's pointless to continue, 1359 * the detection technique would fail for this type of data. 1360 */ 1361 for (; i < BUCKET_SIZE; i++) { 1362 if (ws->bucket[i].count > 0) { 1363 byte_set_size++; 1364 if (byte_set_size > BYTE_SET_THRESHOLD) 1365 return byte_set_size; 1366 } 1367 } 1368 1369 return byte_set_size; 1370 } 1371 1372 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1373 { 1374 const u32 half_of_sample = ws->sample_size / 2; 1375 const u8 *data = ws->sample; 1376 1377 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1378 } 1379 1380 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1381 struct heuristic_ws *ws) 1382 { 1383 struct page *page; 1384 u64 index, index_end; 1385 u32 i, curr_sample_pos; 1386 u8 *in_data; 1387 1388 /* 1389 * Compression handles the input data by chunks of 128KiB 1390 * (defined by BTRFS_MAX_UNCOMPRESSED) 1391 * 1392 * We do the same for the heuristic and loop over the whole range. 1393 * 1394 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1395 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1396 */ 1397 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1398 end = start + BTRFS_MAX_UNCOMPRESSED; 1399 1400 index = start >> PAGE_SHIFT; 1401 index_end = end >> PAGE_SHIFT; 1402 1403 /* Don't miss unaligned end */ 1404 if (!IS_ALIGNED(end, PAGE_SIZE)) 1405 index_end++; 1406 1407 curr_sample_pos = 0; 1408 while (index < index_end) { 1409 page = find_get_page(inode->i_mapping, index); 1410 in_data = kmap(page); 1411 /* Handle case where the start is not aligned to PAGE_SIZE */ 1412 i = start % PAGE_SIZE; 1413 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1414 /* Don't sample any garbage from the last page */ 1415 if (start > end - SAMPLING_READ_SIZE) 1416 break; 1417 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1418 SAMPLING_READ_SIZE); 1419 i += SAMPLING_INTERVAL; 1420 start += SAMPLING_INTERVAL; 1421 curr_sample_pos += SAMPLING_READ_SIZE; 1422 } 1423 kunmap(page); 1424 put_page(page); 1425 1426 index++; 1427 } 1428 1429 ws->sample_size = curr_sample_pos; 1430 } 1431 1432 /* 1433 * Compression heuristic. 1434 * 1435 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1436 * quickly (compared to direct compression) detect data characteristics 1437 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1438 * data. 1439 * 1440 * The following types of analysis can be performed: 1441 * - detect mostly zero data 1442 * - detect data with low "byte set" size (text, etc) 1443 * - detect data with low/high "core byte" set 1444 * 1445 * Return non-zero if the compression should be done, 0 otherwise. 1446 */ 1447 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1448 { 1449 struct list_head *ws_list = __find_workspace(0, true); 1450 struct heuristic_ws *ws; 1451 u32 i; 1452 u8 byte; 1453 int ret = 0; 1454 1455 ws = list_entry(ws_list, struct heuristic_ws, list); 1456 1457 heuristic_collect_sample(inode, start, end, ws); 1458 1459 if (sample_repeated_patterns(ws)) { 1460 ret = 1; 1461 goto out; 1462 } 1463 1464 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1465 1466 for (i = 0; i < ws->sample_size; i++) { 1467 byte = ws->sample[i]; 1468 ws->bucket[byte].count++; 1469 } 1470 1471 i = byte_set_size(ws); 1472 if (i < BYTE_SET_THRESHOLD) { 1473 ret = 2; 1474 goto out; 1475 } 1476 1477 i = byte_core_set_size(ws); 1478 if (i <= BYTE_CORE_SET_LOW) { 1479 ret = 3; 1480 goto out; 1481 } 1482 1483 if (i >= BYTE_CORE_SET_HIGH) { 1484 ret = 0; 1485 goto out; 1486 } 1487 1488 i = shannon_entropy(ws); 1489 if (i <= ENTROPY_LVL_ACEPTABLE) { 1490 ret = 4; 1491 goto out; 1492 } 1493 1494 /* 1495 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1496 * needed to give green light to compression. 1497 * 1498 * For now just assume that compression at that level is not worth the 1499 * resources because: 1500 * 1501 * 1. it is possible to defrag the data later 1502 * 1503 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1504 * values, every bucket has counter at level ~54. The heuristic would 1505 * be confused. This can happen when data have some internal repeated 1506 * patterns like "abbacbbc...". This can be detected by analyzing 1507 * pairs of bytes, which is too costly. 1508 */ 1509 if (i < ENTROPY_LVL_HIGH) { 1510 ret = 5; 1511 goto out; 1512 } else { 1513 ret = 0; 1514 goto out; 1515 } 1516 1517 out: 1518 __free_workspace(0, ws_list, true); 1519 return ret; 1520 } 1521 1522 unsigned int btrfs_compress_str2level(const char *str) 1523 { 1524 if (strncmp(str, "zlib", 4) != 0) 1525 return 0; 1526 1527 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */ 1528 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0) 1529 return str[5] - '0'; 1530 1531 return 0; 1532 } 1533