xref: /openbmc/linux/fs/btrfs/compression.c (revision 64288aa9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/kthread.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sched/mm.h>
20 #include <linux/log2.h>
21 #include <crypto/hash.h>
22 #include "misc.h"
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "ordered-data.h"
29 #include "compression.h"
30 #include "extent_io.h"
31 #include "extent_map.h"
32 #include "subpage.h"
33 #include "zoned.h"
34 
35 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
36 
37 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
38 {
39 	switch (type) {
40 	case BTRFS_COMPRESS_ZLIB:
41 	case BTRFS_COMPRESS_LZO:
42 	case BTRFS_COMPRESS_ZSTD:
43 	case BTRFS_COMPRESS_NONE:
44 		return btrfs_compress_types[type];
45 	default:
46 		break;
47 	}
48 
49 	return NULL;
50 }
51 
52 bool btrfs_compress_is_valid_type(const char *str, size_t len)
53 {
54 	int i;
55 
56 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
57 		size_t comp_len = strlen(btrfs_compress_types[i]);
58 
59 		if (len < comp_len)
60 			continue;
61 
62 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
63 			return true;
64 	}
65 	return false;
66 }
67 
68 static int compression_compress_pages(int type, struct list_head *ws,
69                struct address_space *mapping, u64 start, struct page **pages,
70                unsigned long *out_pages, unsigned long *total_in,
71                unsigned long *total_out)
72 {
73 	switch (type) {
74 	case BTRFS_COMPRESS_ZLIB:
75 		return zlib_compress_pages(ws, mapping, start, pages,
76 				out_pages, total_in, total_out);
77 	case BTRFS_COMPRESS_LZO:
78 		return lzo_compress_pages(ws, mapping, start, pages,
79 				out_pages, total_in, total_out);
80 	case BTRFS_COMPRESS_ZSTD:
81 		return zstd_compress_pages(ws, mapping, start, pages,
82 				out_pages, total_in, total_out);
83 	case BTRFS_COMPRESS_NONE:
84 	default:
85 		/*
86 		 * This can happen when compression races with remount setting
87 		 * it to 'no compress', while caller doesn't call
88 		 * inode_need_compress() to check if we really need to
89 		 * compress.
90 		 *
91 		 * Not a big deal, just need to inform caller that we
92 		 * haven't allocated any pages yet.
93 		 */
94 		*out_pages = 0;
95 		return -E2BIG;
96 	}
97 }
98 
99 static int compression_decompress_bio(struct list_head *ws,
100 				      struct compressed_bio *cb)
101 {
102 	switch (cb->compress_type) {
103 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
104 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
105 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
106 	case BTRFS_COMPRESS_NONE:
107 	default:
108 		/*
109 		 * This can't happen, the type is validated several times
110 		 * before we get here.
111 		 */
112 		BUG();
113 	}
114 }
115 
116 static int compression_decompress(int type, struct list_head *ws,
117                unsigned char *data_in, struct page *dest_page,
118                unsigned long start_byte, size_t srclen, size_t destlen)
119 {
120 	switch (type) {
121 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
122 						start_byte, srclen, destlen);
123 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
124 						start_byte, srclen, destlen);
125 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
126 						start_byte, srclen, destlen);
127 	case BTRFS_COMPRESS_NONE:
128 	default:
129 		/*
130 		 * This can't happen, the type is validated several times
131 		 * before we get here.
132 		 */
133 		BUG();
134 	}
135 }
136 
137 static int btrfs_decompress_bio(struct compressed_bio *cb);
138 
139 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 				      unsigned long disk_size)
141 {
142 	return sizeof(struct compressed_bio) +
143 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
144 }
145 
146 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
147 				 u64 disk_start)
148 {
149 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
150 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
151 	const u32 csum_size = fs_info->csum_size;
152 	const u32 sectorsize = fs_info->sectorsize;
153 	struct page *page;
154 	unsigned int i;
155 	char *kaddr;
156 	u8 csum[BTRFS_CSUM_SIZE];
157 	struct compressed_bio *cb = bio->bi_private;
158 	u8 *cb_sum = cb->sums;
159 
160 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
161 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
162 		return 0;
163 
164 	shash->tfm = fs_info->csum_shash;
165 
166 	for (i = 0; i < cb->nr_pages; i++) {
167 		u32 pg_offset;
168 		u32 bytes_left = PAGE_SIZE;
169 		page = cb->compressed_pages[i];
170 
171 		/* Determine the remaining bytes inside the page first */
172 		if (i == cb->nr_pages - 1)
173 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
174 
175 		/* Hash through the page sector by sector */
176 		for (pg_offset = 0; pg_offset < bytes_left;
177 		     pg_offset += sectorsize) {
178 			kaddr = kmap_atomic(page);
179 			crypto_shash_digest(shash, kaddr + pg_offset,
180 					    sectorsize, csum);
181 			kunmap_atomic(kaddr);
182 
183 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
184 				btrfs_print_data_csum_error(inode, disk_start,
185 						csum, cb_sum, cb->mirror_num);
186 				if (btrfs_bio(bio)->device)
187 					btrfs_dev_stat_inc_and_print(
188 						btrfs_bio(bio)->device,
189 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
190 				return -EIO;
191 			}
192 			cb_sum += csum_size;
193 			disk_start += sectorsize;
194 		}
195 	}
196 	return 0;
197 }
198 
199 /*
200  * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
201  *
202  * Return true if there is no pending bio nor io.
203  * Return false otherwise.
204  */
205 static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
206 {
207 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
208 	unsigned int bi_size = 0;
209 	bool last_io = false;
210 	struct bio_vec *bvec;
211 	struct bvec_iter_all iter_all;
212 
213 	/*
214 	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
215 	 * Thus here we have to iterate through all segments to grab correct
216 	 * bio size.
217 	 */
218 	bio_for_each_segment_all(bvec, bio, iter_all)
219 		bi_size += bvec->bv_len;
220 
221 	if (bio->bi_status)
222 		cb->errors = 1;
223 
224 	ASSERT(bi_size && bi_size <= cb->compressed_len);
225 	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
226 					&cb->pending_sectors);
227 	/*
228 	 * Here we must wake up the possible error handler after all other
229 	 * operations on @cb finished, or we can race with
230 	 * finish_compressed_bio_*() which may free @cb.
231 	 */
232 	wake_up_var(cb);
233 
234 	return last_io;
235 }
236 
237 static void finish_compressed_bio_read(struct compressed_bio *cb, struct bio *bio)
238 {
239 	unsigned int index;
240 	struct page *page;
241 
242 	/* Release the compressed pages */
243 	for (index = 0; index < cb->nr_pages; index++) {
244 		page = cb->compressed_pages[index];
245 		page->mapping = NULL;
246 		put_page(page);
247 	}
248 
249 	/* Do io completion on the original bio */
250 	if (cb->errors) {
251 		bio_io_error(cb->orig_bio);
252 	} else {
253 		struct bio_vec *bvec;
254 		struct bvec_iter_all iter_all;
255 
256 		ASSERT(bio);
257 		ASSERT(!bio->bi_status);
258 		/*
259 		 * We have verified the checksum already, set page checked so
260 		 * the end_io handlers know about it
261 		 */
262 		ASSERT(!bio_flagged(bio, BIO_CLONED));
263 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
264 			u64 bvec_start = page_offset(bvec->bv_page) +
265 					 bvec->bv_offset;
266 
267 			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
268 					bvec->bv_page, bvec_start,
269 					bvec->bv_len);
270 		}
271 
272 		bio_endio(cb->orig_bio);
273 	}
274 
275 	/* Finally free the cb struct */
276 	kfree(cb->compressed_pages);
277 	kfree(cb);
278 }
279 
280 /* when we finish reading compressed pages from the disk, we
281  * decompress them and then run the bio end_io routines on the
282  * decompressed pages (in the inode address space).
283  *
284  * This allows the checksumming and other IO error handling routines
285  * to work normally
286  *
287  * The compressed pages are freed here, and it must be run
288  * in process context
289  */
290 static void end_compressed_bio_read(struct bio *bio)
291 {
292 	struct compressed_bio *cb = bio->bi_private;
293 	struct inode *inode;
294 	unsigned int mirror = btrfs_bio(bio)->mirror_num;
295 	int ret = 0;
296 
297 	if (!dec_and_test_compressed_bio(cb, bio))
298 		goto out;
299 
300 	/*
301 	 * Record the correct mirror_num in cb->orig_bio so that
302 	 * read-repair can work properly.
303 	 */
304 	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
305 	cb->mirror_num = mirror;
306 
307 	/*
308 	 * Some IO in this cb have failed, just skip checksum as there
309 	 * is no way it could be correct.
310 	 */
311 	if (cb->errors == 1)
312 		goto csum_failed;
313 
314 	inode = cb->inode;
315 	ret = check_compressed_csum(BTRFS_I(inode), bio,
316 				    bio->bi_iter.bi_sector << 9);
317 	if (ret)
318 		goto csum_failed;
319 
320 	/* ok, we're the last bio for this extent, lets start
321 	 * the decompression.
322 	 */
323 	ret = btrfs_decompress_bio(cb);
324 
325 csum_failed:
326 	if (ret)
327 		cb->errors = 1;
328 	finish_compressed_bio_read(cb, bio);
329 out:
330 	bio_put(bio);
331 }
332 
333 /*
334  * Clear the writeback bits on all of the file
335  * pages for a compressed write
336  */
337 static noinline void end_compressed_writeback(struct inode *inode,
338 					      const struct compressed_bio *cb)
339 {
340 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
341 	unsigned long index = cb->start >> PAGE_SHIFT;
342 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
343 	struct page *pages[16];
344 	unsigned long nr_pages = end_index - index + 1;
345 	int i;
346 	int ret;
347 
348 	if (cb->errors)
349 		mapping_set_error(inode->i_mapping, -EIO);
350 
351 	while (nr_pages > 0) {
352 		ret = find_get_pages_contig(inode->i_mapping, index,
353 				     min_t(unsigned long,
354 				     nr_pages, ARRAY_SIZE(pages)), pages);
355 		if (ret == 0) {
356 			nr_pages -= 1;
357 			index += 1;
358 			continue;
359 		}
360 		for (i = 0; i < ret; i++) {
361 			if (cb->errors)
362 				SetPageError(pages[i]);
363 			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
364 							 cb->start, cb->len);
365 			put_page(pages[i]);
366 		}
367 		nr_pages -= ret;
368 		index += ret;
369 	}
370 	/* the inode may be gone now */
371 }
372 
373 static void finish_compressed_bio_write(struct compressed_bio *cb)
374 {
375 	struct inode *inode = cb->inode;
376 	unsigned int index;
377 
378 	/*
379 	 * Ok, we're the last bio for this extent, step one is to call back
380 	 * into the FS and do all the end_io operations.
381 	 */
382 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
383 			cb->start, cb->start + cb->len - 1,
384 			!cb->errors);
385 
386 	end_compressed_writeback(inode, cb);
387 	/* Note, our inode could be gone now */
388 
389 	/*
390 	 * Release the compressed pages, these came from alloc_page and
391 	 * are not attached to the inode at all
392 	 */
393 	for (index = 0; index < cb->nr_pages; index++) {
394 		struct page *page = cb->compressed_pages[index];
395 
396 		page->mapping = NULL;
397 		put_page(page);
398 	}
399 
400 	/* Finally free the cb struct */
401 	kfree(cb->compressed_pages);
402 	kfree(cb);
403 }
404 
405 /*
406  * Do the cleanup once all the compressed pages hit the disk.  This will clear
407  * writeback on the file pages and free the compressed pages.
408  *
409  * This also calls the writeback end hooks for the file pages so that metadata
410  * and checksums can be updated in the file.
411  */
412 static void end_compressed_bio_write(struct bio *bio)
413 {
414 	struct compressed_bio *cb = bio->bi_private;
415 
416 	if (!dec_and_test_compressed_bio(cb, bio))
417 		goto out;
418 
419 	btrfs_record_physical_zoned(cb->inode, cb->start, bio);
420 
421 	finish_compressed_bio_write(cb);
422 out:
423 	bio_put(bio);
424 }
425 
426 static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
427 					  struct compressed_bio *cb,
428 					  struct bio *bio, int mirror_num)
429 {
430 	blk_status_t ret;
431 
432 	ASSERT(bio->bi_iter.bi_size);
433 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
434 	if (ret)
435 		return ret;
436 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
437 	return ret;
438 }
439 
440 /*
441  * Allocate a compressed_bio, which will be used to read/write on-disk
442  * (aka, compressed) * data.
443  *
444  * @cb:                 The compressed_bio structure, which records all the needed
445  *                      information to bind the compressed data to the uncompressed
446  *                      page cache.
447  * @disk_byten:         The logical bytenr where the compressed data will be read
448  *                      from or written to.
449  * @endio_func:         The endio function to call after the IO for compressed data
450  *                      is finished.
451  * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
452  *                      Let the caller know to only fill the bio up to the stripe
453  *                      boundary.
454  */
455 
456 
457 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
458 					unsigned int opf, bio_end_io_t endio_func,
459 					u64 *next_stripe_start)
460 {
461 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
462 	struct btrfs_io_geometry geom;
463 	struct extent_map *em;
464 	struct bio *bio;
465 	int ret;
466 
467 	bio = btrfs_bio_alloc(BIO_MAX_VECS);
468 
469 	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
470 	bio->bi_opf = opf;
471 	bio->bi_private = cb;
472 	bio->bi_end_io = endio_func;
473 
474 	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
475 	if (IS_ERR(em)) {
476 		bio_put(bio);
477 		return ERR_CAST(em);
478 	}
479 
480 	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
481 		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
482 
483 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
484 	free_extent_map(em);
485 	if (ret < 0) {
486 		bio_put(bio);
487 		return ERR_PTR(ret);
488 	}
489 	*next_stripe_start = disk_bytenr + geom.len;
490 
491 	return bio;
492 }
493 
494 /*
495  * worker function to build and submit bios for previously compressed pages.
496  * The corresponding pages in the inode should be marked for writeback
497  * and the compressed pages should have a reference on them for dropping
498  * when the IO is complete.
499  *
500  * This also checksums the file bytes and gets things ready for
501  * the end io hooks.
502  */
503 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
504 				 unsigned int len, u64 disk_start,
505 				 unsigned int compressed_len,
506 				 struct page **compressed_pages,
507 				 unsigned int nr_pages,
508 				 unsigned int write_flags,
509 				 struct cgroup_subsys_state *blkcg_css)
510 {
511 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
512 	struct bio *bio = NULL;
513 	struct compressed_bio *cb;
514 	u64 cur_disk_bytenr = disk_start;
515 	u64 next_stripe_start;
516 	blk_status_t ret;
517 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
518 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
519 	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
520 
521 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
522 	       IS_ALIGNED(len, fs_info->sectorsize));
523 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
524 	if (!cb)
525 		return BLK_STS_RESOURCE;
526 	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
527 	cb->errors = 0;
528 	cb->inode = &inode->vfs_inode;
529 	cb->start = start;
530 	cb->len = len;
531 	cb->mirror_num = 0;
532 	cb->compressed_pages = compressed_pages;
533 	cb->compressed_len = compressed_len;
534 	cb->orig_bio = NULL;
535 	cb->nr_pages = nr_pages;
536 
537 	while (cur_disk_bytenr < disk_start + compressed_len) {
538 		u64 offset = cur_disk_bytenr - disk_start;
539 		unsigned int index = offset >> PAGE_SHIFT;
540 		unsigned int real_size;
541 		unsigned int added;
542 		struct page *page = compressed_pages[index];
543 		bool submit = false;
544 
545 		/* Allocate new bio if submitted or not yet allocated */
546 		if (!bio) {
547 			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
548 				bio_op | write_flags, end_compressed_bio_write,
549 				&next_stripe_start);
550 			if (IS_ERR(bio)) {
551 				ret = errno_to_blk_status(PTR_ERR(bio));
552 				bio = NULL;
553 				goto finish_cb;
554 			}
555 		}
556 		/*
557 		 * We should never reach next_stripe_start start as we will
558 		 * submit comp_bio when reach the boundary immediately.
559 		 */
560 		ASSERT(cur_disk_bytenr != next_stripe_start);
561 
562 		/*
563 		 * We have various limits on the real read size:
564 		 * - stripe boundary
565 		 * - page boundary
566 		 * - compressed length boundary
567 		 */
568 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
569 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
570 		real_size = min_t(u64, real_size, compressed_len - offset);
571 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
572 
573 		if (use_append)
574 			added = bio_add_zone_append_page(bio, page, real_size,
575 					offset_in_page(offset));
576 		else
577 			added = bio_add_page(bio, page, real_size,
578 					offset_in_page(offset));
579 		/* Reached zoned boundary */
580 		if (added == 0)
581 			submit = true;
582 
583 		cur_disk_bytenr += added;
584 		/* Reached stripe boundary */
585 		if (cur_disk_bytenr == next_stripe_start)
586 			submit = true;
587 
588 		/* Finished the range */
589 		if (cur_disk_bytenr == disk_start + compressed_len)
590 			submit = true;
591 
592 		if (submit) {
593 			if (!skip_sum) {
594 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
595 				if (ret)
596 					goto finish_cb;
597 			}
598 
599 			ret = submit_compressed_bio(fs_info, cb, bio, 0);
600 			if (ret)
601 				goto finish_cb;
602 			bio = NULL;
603 		}
604 		cond_resched();
605 	}
606 	if (blkcg_css)
607 		kthread_associate_blkcg(NULL);
608 
609 	return 0;
610 
611 finish_cb:
612 	if (bio) {
613 		bio->bi_status = ret;
614 		bio_endio(bio);
615 	}
616 	/* Last byte of @cb is submitted, endio will free @cb */
617 	if (cur_disk_bytenr == disk_start + compressed_len)
618 		return ret;
619 
620 	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
621 			   (disk_start + compressed_len - cur_disk_bytenr) >>
622 			   fs_info->sectorsize_bits);
623 	/*
624 	 * Even with previous bio ended, we should still have io not yet
625 	 * submitted, thus need to finish manually.
626 	 */
627 	ASSERT(refcount_read(&cb->pending_sectors));
628 	/* Now we are the only one referring @cb, can finish it safely. */
629 	finish_compressed_bio_write(cb);
630 	return ret;
631 }
632 
633 static u64 bio_end_offset(struct bio *bio)
634 {
635 	struct bio_vec *last = bio_last_bvec_all(bio);
636 
637 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
638 }
639 
640 /*
641  * Add extra pages in the same compressed file extent so that we don't need to
642  * re-read the same extent again and again.
643  *
644  * NOTE: this won't work well for subpage, as for subpage read, we lock the
645  * full page then submit bio for each compressed/regular extents.
646  *
647  * This means, if we have several sectors in the same page points to the same
648  * on-disk compressed data, we will re-read the same extent many times and
649  * this function can only help for the next page.
650  */
651 static noinline int add_ra_bio_pages(struct inode *inode,
652 				     u64 compressed_end,
653 				     struct compressed_bio *cb)
654 {
655 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
656 	unsigned long end_index;
657 	u64 cur = bio_end_offset(cb->orig_bio);
658 	u64 isize = i_size_read(inode);
659 	int ret;
660 	struct page *page;
661 	struct extent_map *em;
662 	struct address_space *mapping = inode->i_mapping;
663 	struct extent_map_tree *em_tree;
664 	struct extent_io_tree *tree;
665 	int sectors_missed = 0;
666 
667 	em_tree = &BTRFS_I(inode)->extent_tree;
668 	tree = &BTRFS_I(inode)->io_tree;
669 
670 	if (isize == 0)
671 		return 0;
672 
673 	/*
674 	 * For current subpage support, we only support 64K page size,
675 	 * which means maximum compressed extent size (128K) is just 2x page
676 	 * size.
677 	 * This makes readahead less effective, so here disable readahead for
678 	 * subpage for now, until full compressed write is supported.
679 	 */
680 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
681 		return 0;
682 
683 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
684 
685 	while (cur < compressed_end) {
686 		u64 page_end;
687 		u64 pg_index = cur >> PAGE_SHIFT;
688 		u32 add_size;
689 
690 		if (pg_index > end_index)
691 			break;
692 
693 		page = xa_load(&mapping->i_pages, pg_index);
694 		if (page && !xa_is_value(page)) {
695 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
696 					  fs_info->sectorsize_bits;
697 
698 			/* Beyond threshold, no need to continue */
699 			if (sectors_missed > 4)
700 				break;
701 
702 			/*
703 			 * Jump to next page start as we already have page for
704 			 * current offset.
705 			 */
706 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
707 			continue;
708 		}
709 
710 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
711 								 ~__GFP_FS));
712 		if (!page)
713 			break;
714 
715 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
716 			put_page(page);
717 			/* There is already a page, skip to page end */
718 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
719 			continue;
720 		}
721 
722 		ret = set_page_extent_mapped(page);
723 		if (ret < 0) {
724 			unlock_page(page);
725 			put_page(page);
726 			break;
727 		}
728 
729 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
730 		lock_extent(tree, cur, page_end);
731 		read_lock(&em_tree->lock);
732 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
733 		read_unlock(&em_tree->lock);
734 
735 		/*
736 		 * At this point, we have a locked page in the page cache for
737 		 * these bytes in the file.  But, we have to make sure they map
738 		 * to this compressed extent on disk.
739 		 */
740 		if (!em || cur < em->start ||
741 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
742 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
743 			free_extent_map(em);
744 			unlock_extent(tree, cur, page_end);
745 			unlock_page(page);
746 			put_page(page);
747 			break;
748 		}
749 		free_extent_map(em);
750 
751 		if (page->index == end_index) {
752 			size_t zero_offset = offset_in_page(isize);
753 
754 			if (zero_offset) {
755 				int zeros;
756 				zeros = PAGE_SIZE - zero_offset;
757 				memzero_page(page, zero_offset, zeros);
758 				flush_dcache_page(page);
759 			}
760 		}
761 
762 		add_size = min(em->start + em->len, page_end + 1) - cur;
763 		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
764 		if (ret != add_size) {
765 			unlock_extent(tree, cur, page_end);
766 			unlock_page(page);
767 			put_page(page);
768 			break;
769 		}
770 		/*
771 		 * If it's subpage, we also need to increase its
772 		 * subpage::readers number, as at endio we will decrease
773 		 * subpage::readers and to unlock the page.
774 		 */
775 		if (fs_info->sectorsize < PAGE_SIZE)
776 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
777 		put_page(page);
778 		cur += add_size;
779 	}
780 	return 0;
781 }
782 
783 /*
784  * for a compressed read, the bio we get passed has all the inode pages
785  * in it.  We don't actually do IO on those pages but allocate new ones
786  * to hold the compressed pages on disk.
787  *
788  * bio->bi_iter.bi_sector points to the compressed extent on disk
789  * bio->bi_io_vec points to all of the inode pages
790  *
791  * After the compressed pages are read, we copy the bytes into the
792  * bio we were passed and then call the bio end_io calls
793  */
794 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
795 				 int mirror_num, unsigned long bio_flags)
796 {
797 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
798 	struct extent_map_tree *em_tree;
799 	struct compressed_bio *cb;
800 	unsigned int compressed_len;
801 	unsigned int nr_pages;
802 	unsigned int pg_index;
803 	struct bio *comp_bio = NULL;
804 	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
805 	u64 cur_disk_byte = disk_bytenr;
806 	u64 next_stripe_start;
807 	u64 file_offset;
808 	u64 em_len;
809 	u64 em_start;
810 	struct extent_map *em;
811 	blk_status_t ret = BLK_STS_RESOURCE;
812 	int faili = 0;
813 	u8 *sums;
814 
815 	em_tree = &BTRFS_I(inode)->extent_tree;
816 
817 	file_offset = bio_first_bvec_all(bio)->bv_offset +
818 		      page_offset(bio_first_page_all(bio));
819 
820 	/* we need the actual starting offset of this extent in the file */
821 	read_lock(&em_tree->lock);
822 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
823 	read_unlock(&em_tree->lock);
824 	if (!em)
825 		return BLK_STS_IOERR;
826 
827 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
828 	compressed_len = em->block_len;
829 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
830 	if (!cb)
831 		goto out;
832 
833 	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
834 	cb->errors = 0;
835 	cb->inode = inode;
836 	cb->mirror_num = mirror_num;
837 	sums = cb->sums;
838 
839 	cb->start = em->orig_start;
840 	em_len = em->len;
841 	em_start = em->start;
842 
843 	free_extent_map(em);
844 	em = NULL;
845 
846 	cb->len = bio->bi_iter.bi_size;
847 	cb->compressed_len = compressed_len;
848 	cb->compress_type = extent_compress_type(bio_flags);
849 	cb->orig_bio = bio;
850 
851 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
852 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
853 				       GFP_NOFS);
854 	if (!cb->compressed_pages)
855 		goto fail1;
856 
857 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
858 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
859 		if (!cb->compressed_pages[pg_index]) {
860 			faili = pg_index - 1;
861 			ret = BLK_STS_RESOURCE;
862 			goto fail2;
863 		}
864 	}
865 	faili = nr_pages - 1;
866 	cb->nr_pages = nr_pages;
867 
868 	add_ra_bio_pages(inode, em_start + em_len, cb);
869 
870 	/* include any pages we added in add_ra-bio_pages */
871 	cb->len = bio->bi_iter.bi_size;
872 
873 	while (cur_disk_byte < disk_bytenr + compressed_len) {
874 		u64 offset = cur_disk_byte - disk_bytenr;
875 		unsigned int index = offset >> PAGE_SHIFT;
876 		unsigned int real_size;
877 		unsigned int added;
878 		struct page *page = cb->compressed_pages[index];
879 		bool submit = false;
880 
881 		/* Allocate new bio if submitted or not yet allocated */
882 		if (!comp_bio) {
883 			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
884 					REQ_OP_READ, end_compressed_bio_read,
885 					&next_stripe_start);
886 			if (IS_ERR(comp_bio)) {
887 				ret = errno_to_blk_status(PTR_ERR(comp_bio));
888 				comp_bio = NULL;
889 				goto finish_cb;
890 			}
891 		}
892 		/*
893 		 * We should never reach next_stripe_start start as we will
894 		 * submit comp_bio when reach the boundary immediately.
895 		 */
896 		ASSERT(cur_disk_byte != next_stripe_start);
897 		/*
898 		 * We have various limit on the real read size:
899 		 * - stripe boundary
900 		 * - page boundary
901 		 * - compressed length boundary
902 		 */
903 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
904 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
905 		real_size = min_t(u64, real_size, compressed_len - offset);
906 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
907 
908 		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
909 		/*
910 		 * Maximum compressed extent is smaller than bio size limit,
911 		 * thus bio_add_page() should always success.
912 		 */
913 		ASSERT(added == real_size);
914 		cur_disk_byte += added;
915 
916 		/* Reached stripe boundary, need to submit */
917 		if (cur_disk_byte == next_stripe_start)
918 			submit = true;
919 
920 		/* Has finished the range, need to submit */
921 		if (cur_disk_byte == disk_bytenr + compressed_len)
922 			submit = true;
923 
924 		if (submit) {
925 			unsigned int nr_sectors;
926 
927 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
928 			if (ret)
929 				goto finish_cb;
930 
931 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
932 						  fs_info->sectorsize);
933 			sums += fs_info->csum_size * nr_sectors;
934 
935 			ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
936 			if (ret)
937 				goto finish_cb;
938 			comp_bio = NULL;
939 		}
940 	}
941 	return 0;
942 
943 fail2:
944 	while (faili >= 0) {
945 		__free_page(cb->compressed_pages[faili]);
946 		faili--;
947 	}
948 
949 	kfree(cb->compressed_pages);
950 fail1:
951 	kfree(cb);
952 out:
953 	free_extent_map(em);
954 	return ret;
955 finish_cb:
956 	if (comp_bio) {
957 		comp_bio->bi_status = ret;
958 		bio_endio(comp_bio);
959 	}
960 	/* All bytes of @cb is submitted, endio will free @cb */
961 	if (cur_disk_byte == disk_bytenr + compressed_len)
962 		return ret;
963 
964 	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
965 			   (disk_bytenr + compressed_len - cur_disk_byte) >>
966 			   fs_info->sectorsize_bits);
967 	/*
968 	 * Even with previous bio ended, we should still have io not yet
969 	 * submitted, thus need to finish @cb manually.
970 	 */
971 	ASSERT(refcount_read(&cb->pending_sectors));
972 	/* Now we are the only one referring @cb, can finish it safely. */
973 	finish_compressed_bio_read(cb, NULL);
974 	return ret;
975 }
976 
977 /*
978  * Heuristic uses systematic sampling to collect data from the input data
979  * range, the logic can be tuned by the following constants:
980  *
981  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
982  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
983  */
984 #define SAMPLING_READ_SIZE	(16)
985 #define SAMPLING_INTERVAL	(256)
986 
987 /*
988  * For statistical analysis of the input data we consider bytes that form a
989  * Galois Field of 256 objects. Each object has an attribute count, ie. how
990  * many times the object appeared in the sample.
991  */
992 #define BUCKET_SIZE		(256)
993 
994 /*
995  * The size of the sample is based on a statistical sampling rule of thumb.
996  * The common way is to perform sampling tests as long as the number of
997  * elements in each cell is at least 5.
998  *
999  * Instead of 5, we choose 32 to obtain more accurate results.
1000  * If the data contain the maximum number of symbols, which is 256, we obtain a
1001  * sample size bound by 8192.
1002  *
1003  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
1004  * from up to 512 locations.
1005  */
1006 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
1007 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
1008 
1009 struct bucket_item {
1010 	u32 count;
1011 };
1012 
1013 struct heuristic_ws {
1014 	/* Partial copy of input data */
1015 	u8 *sample;
1016 	u32 sample_size;
1017 	/* Buckets store counters for each byte value */
1018 	struct bucket_item *bucket;
1019 	/* Sorting buffer */
1020 	struct bucket_item *bucket_b;
1021 	struct list_head list;
1022 };
1023 
1024 static struct workspace_manager heuristic_wsm;
1025 
1026 static void free_heuristic_ws(struct list_head *ws)
1027 {
1028 	struct heuristic_ws *workspace;
1029 
1030 	workspace = list_entry(ws, struct heuristic_ws, list);
1031 
1032 	kvfree(workspace->sample);
1033 	kfree(workspace->bucket);
1034 	kfree(workspace->bucket_b);
1035 	kfree(workspace);
1036 }
1037 
1038 static struct list_head *alloc_heuristic_ws(unsigned int level)
1039 {
1040 	struct heuristic_ws *ws;
1041 
1042 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
1043 	if (!ws)
1044 		return ERR_PTR(-ENOMEM);
1045 
1046 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
1047 	if (!ws->sample)
1048 		goto fail;
1049 
1050 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
1051 	if (!ws->bucket)
1052 		goto fail;
1053 
1054 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
1055 	if (!ws->bucket_b)
1056 		goto fail;
1057 
1058 	INIT_LIST_HEAD(&ws->list);
1059 	return &ws->list;
1060 fail:
1061 	free_heuristic_ws(&ws->list);
1062 	return ERR_PTR(-ENOMEM);
1063 }
1064 
1065 const struct btrfs_compress_op btrfs_heuristic_compress = {
1066 	.workspace_manager = &heuristic_wsm,
1067 };
1068 
1069 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1070 	/* The heuristic is represented as compression type 0 */
1071 	&btrfs_heuristic_compress,
1072 	&btrfs_zlib_compress,
1073 	&btrfs_lzo_compress,
1074 	&btrfs_zstd_compress,
1075 };
1076 
1077 static struct list_head *alloc_workspace(int type, unsigned int level)
1078 {
1079 	switch (type) {
1080 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
1081 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
1082 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
1083 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
1084 	default:
1085 		/*
1086 		 * This can't happen, the type is validated several times
1087 		 * before we get here.
1088 		 */
1089 		BUG();
1090 	}
1091 }
1092 
1093 static void free_workspace(int type, struct list_head *ws)
1094 {
1095 	switch (type) {
1096 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
1097 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
1098 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
1099 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
1100 	default:
1101 		/*
1102 		 * This can't happen, the type is validated several times
1103 		 * before we get here.
1104 		 */
1105 		BUG();
1106 	}
1107 }
1108 
1109 static void btrfs_init_workspace_manager(int type)
1110 {
1111 	struct workspace_manager *wsm;
1112 	struct list_head *workspace;
1113 
1114 	wsm = btrfs_compress_op[type]->workspace_manager;
1115 	INIT_LIST_HEAD(&wsm->idle_ws);
1116 	spin_lock_init(&wsm->ws_lock);
1117 	atomic_set(&wsm->total_ws, 0);
1118 	init_waitqueue_head(&wsm->ws_wait);
1119 
1120 	/*
1121 	 * Preallocate one workspace for each compression type so we can
1122 	 * guarantee forward progress in the worst case
1123 	 */
1124 	workspace = alloc_workspace(type, 0);
1125 	if (IS_ERR(workspace)) {
1126 		pr_warn(
1127 	"BTRFS: cannot preallocate compression workspace, will try later\n");
1128 	} else {
1129 		atomic_set(&wsm->total_ws, 1);
1130 		wsm->free_ws = 1;
1131 		list_add(workspace, &wsm->idle_ws);
1132 	}
1133 }
1134 
1135 static void btrfs_cleanup_workspace_manager(int type)
1136 {
1137 	struct workspace_manager *wsman;
1138 	struct list_head *ws;
1139 
1140 	wsman = btrfs_compress_op[type]->workspace_manager;
1141 	while (!list_empty(&wsman->idle_ws)) {
1142 		ws = wsman->idle_ws.next;
1143 		list_del(ws);
1144 		free_workspace(type, ws);
1145 		atomic_dec(&wsman->total_ws);
1146 	}
1147 }
1148 
1149 /*
1150  * This finds an available workspace or allocates a new one.
1151  * If it's not possible to allocate a new one, waits until there's one.
1152  * Preallocation makes a forward progress guarantees and we do not return
1153  * errors.
1154  */
1155 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1156 {
1157 	struct workspace_manager *wsm;
1158 	struct list_head *workspace;
1159 	int cpus = num_online_cpus();
1160 	unsigned nofs_flag;
1161 	struct list_head *idle_ws;
1162 	spinlock_t *ws_lock;
1163 	atomic_t *total_ws;
1164 	wait_queue_head_t *ws_wait;
1165 	int *free_ws;
1166 
1167 	wsm = btrfs_compress_op[type]->workspace_manager;
1168 	idle_ws	 = &wsm->idle_ws;
1169 	ws_lock	 = &wsm->ws_lock;
1170 	total_ws = &wsm->total_ws;
1171 	ws_wait	 = &wsm->ws_wait;
1172 	free_ws	 = &wsm->free_ws;
1173 
1174 again:
1175 	spin_lock(ws_lock);
1176 	if (!list_empty(idle_ws)) {
1177 		workspace = idle_ws->next;
1178 		list_del(workspace);
1179 		(*free_ws)--;
1180 		spin_unlock(ws_lock);
1181 		return workspace;
1182 
1183 	}
1184 	if (atomic_read(total_ws) > cpus) {
1185 		DEFINE_WAIT(wait);
1186 
1187 		spin_unlock(ws_lock);
1188 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1189 		if (atomic_read(total_ws) > cpus && !*free_ws)
1190 			schedule();
1191 		finish_wait(ws_wait, &wait);
1192 		goto again;
1193 	}
1194 	atomic_inc(total_ws);
1195 	spin_unlock(ws_lock);
1196 
1197 	/*
1198 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1199 	 * to turn it off here because we might get called from the restricted
1200 	 * context of btrfs_compress_bio/btrfs_compress_pages
1201 	 */
1202 	nofs_flag = memalloc_nofs_save();
1203 	workspace = alloc_workspace(type, level);
1204 	memalloc_nofs_restore(nofs_flag);
1205 
1206 	if (IS_ERR(workspace)) {
1207 		atomic_dec(total_ws);
1208 		wake_up(ws_wait);
1209 
1210 		/*
1211 		 * Do not return the error but go back to waiting. There's a
1212 		 * workspace preallocated for each type and the compression
1213 		 * time is bounded so we get to a workspace eventually. This
1214 		 * makes our caller's life easier.
1215 		 *
1216 		 * To prevent silent and low-probability deadlocks (when the
1217 		 * initial preallocation fails), check if there are any
1218 		 * workspaces at all.
1219 		 */
1220 		if (atomic_read(total_ws) == 0) {
1221 			static DEFINE_RATELIMIT_STATE(_rs,
1222 					/* once per minute */ 60 * HZ,
1223 					/* no burst */ 1);
1224 
1225 			if (__ratelimit(&_rs)) {
1226 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1227 			}
1228 		}
1229 		goto again;
1230 	}
1231 	return workspace;
1232 }
1233 
1234 static struct list_head *get_workspace(int type, int level)
1235 {
1236 	switch (type) {
1237 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1238 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1239 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1240 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1241 	default:
1242 		/*
1243 		 * This can't happen, the type is validated several times
1244 		 * before we get here.
1245 		 */
1246 		BUG();
1247 	}
1248 }
1249 
1250 /*
1251  * put a workspace struct back on the list or free it if we have enough
1252  * idle ones sitting around
1253  */
1254 void btrfs_put_workspace(int type, struct list_head *ws)
1255 {
1256 	struct workspace_manager *wsm;
1257 	struct list_head *idle_ws;
1258 	spinlock_t *ws_lock;
1259 	atomic_t *total_ws;
1260 	wait_queue_head_t *ws_wait;
1261 	int *free_ws;
1262 
1263 	wsm = btrfs_compress_op[type]->workspace_manager;
1264 	idle_ws	 = &wsm->idle_ws;
1265 	ws_lock	 = &wsm->ws_lock;
1266 	total_ws = &wsm->total_ws;
1267 	ws_wait	 = &wsm->ws_wait;
1268 	free_ws	 = &wsm->free_ws;
1269 
1270 	spin_lock(ws_lock);
1271 	if (*free_ws <= num_online_cpus()) {
1272 		list_add(ws, idle_ws);
1273 		(*free_ws)++;
1274 		spin_unlock(ws_lock);
1275 		goto wake;
1276 	}
1277 	spin_unlock(ws_lock);
1278 
1279 	free_workspace(type, ws);
1280 	atomic_dec(total_ws);
1281 wake:
1282 	cond_wake_up(ws_wait);
1283 }
1284 
1285 static void put_workspace(int type, struct list_head *ws)
1286 {
1287 	switch (type) {
1288 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1289 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1290 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1291 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1292 	default:
1293 		/*
1294 		 * This can't happen, the type is validated several times
1295 		 * before we get here.
1296 		 */
1297 		BUG();
1298 	}
1299 }
1300 
1301 /*
1302  * Adjust @level according to the limits of the compression algorithm or
1303  * fallback to default
1304  */
1305 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1306 {
1307 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1308 
1309 	if (level == 0)
1310 		level = ops->default_level;
1311 	else
1312 		level = min(level, ops->max_level);
1313 
1314 	return level;
1315 }
1316 
1317 /*
1318  * Given an address space and start and length, compress the bytes into @pages
1319  * that are allocated on demand.
1320  *
1321  * @type_level is encoded algorithm and level, where level 0 means whatever
1322  * default the algorithm chooses and is opaque here;
1323  * - compression algo are 0-3
1324  * - the level are bits 4-7
1325  *
1326  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1327  * and returns number of actually allocated pages
1328  *
1329  * @total_in is used to return the number of bytes actually read.  It
1330  * may be smaller than the input length if we had to exit early because we
1331  * ran out of room in the pages array or because we cross the
1332  * max_out threshold.
1333  *
1334  * @total_out is an in/out parameter, must be set to the input length and will
1335  * be also used to return the total number of compressed bytes
1336  */
1337 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1338 			 u64 start, struct page **pages,
1339 			 unsigned long *out_pages,
1340 			 unsigned long *total_in,
1341 			 unsigned long *total_out)
1342 {
1343 	int type = btrfs_compress_type(type_level);
1344 	int level = btrfs_compress_level(type_level);
1345 	struct list_head *workspace;
1346 	int ret;
1347 
1348 	level = btrfs_compress_set_level(type, level);
1349 	workspace = get_workspace(type, level);
1350 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1351 					 out_pages, total_in, total_out);
1352 	put_workspace(type, workspace);
1353 	return ret;
1354 }
1355 
1356 static int btrfs_decompress_bio(struct compressed_bio *cb)
1357 {
1358 	struct list_head *workspace;
1359 	int ret;
1360 	int type = cb->compress_type;
1361 
1362 	workspace = get_workspace(type, 0);
1363 	ret = compression_decompress_bio(workspace, cb);
1364 	put_workspace(type, workspace);
1365 
1366 	return ret;
1367 }
1368 
1369 /*
1370  * a less complex decompression routine.  Our compressed data fits in a
1371  * single page, and we want to read a single page out of it.
1372  * start_byte tells us the offset into the compressed data we're interested in
1373  */
1374 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1375 		     unsigned long start_byte, size_t srclen, size_t destlen)
1376 {
1377 	struct list_head *workspace;
1378 	int ret;
1379 
1380 	workspace = get_workspace(type, 0);
1381 	ret = compression_decompress(type, workspace, data_in, dest_page,
1382 				     start_byte, srclen, destlen);
1383 	put_workspace(type, workspace);
1384 
1385 	return ret;
1386 }
1387 
1388 void __init btrfs_init_compress(void)
1389 {
1390 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1391 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1392 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1393 	zstd_init_workspace_manager();
1394 }
1395 
1396 void __cold btrfs_exit_compress(void)
1397 {
1398 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1399 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1400 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1401 	zstd_cleanup_workspace_manager();
1402 }
1403 
1404 /*
1405  * Copy decompressed data from working buffer to pages.
1406  *
1407  * @buf:		The decompressed data buffer
1408  * @buf_len:		The decompressed data length
1409  * @decompressed:	Number of bytes that are already decompressed inside the
1410  * 			compressed extent
1411  * @cb:			The compressed extent descriptor
1412  * @orig_bio:		The original bio that the caller wants to read for
1413  *
1414  * An easier to understand graph is like below:
1415  *
1416  * 		|<- orig_bio ->|     |<- orig_bio->|
1417  * 	|<-------      full decompressed extent      ----->|
1418  * 	|<-----------    @cb range   ---->|
1419  * 	|			|<-- @buf_len -->|
1420  * 	|<--- @decompressed --->|
1421  *
1422  * Note that, @cb can be a subpage of the full decompressed extent, but
1423  * @cb->start always has the same as the orig_file_offset value of the full
1424  * decompressed extent.
1425  *
1426  * When reading compressed extent, we have to read the full compressed extent,
1427  * while @orig_bio may only want part of the range.
1428  * Thus this function will ensure only data covered by @orig_bio will be copied
1429  * to.
1430  *
1431  * Return 0 if we have copied all needed contents for @orig_bio.
1432  * Return >0 if we need continue decompress.
1433  */
1434 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1435 			      struct compressed_bio *cb, u32 decompressed)
1436 {
1437 	struct bio *orig_bio = cb->orig_bio;
1438 	/* Offset inside the full decompressed extent */
1439 	u32 cur_offset;
1440 
1441 	cur_offset = decompressed;
1442 	/* The main loop to do the copy */
1443 	while (cur_offset < decompressed + buf_len) {
1444 		struct bio_vec bvec;
1445 		size_t copy_len;
1446 		u32 copy_start;
1447 		/* Offset inside the full decompressed extent */
1448 		u32 bvec_offset;
1449 
1450 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1451 		/*
1452 		 * cb->start may underflow, but subtracting that value can still
1453 		 * give us correct offset inside the full decompressed extent.
1454 		 */
1455 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1456 
1457 		/* Haven't reached the bvec range, exit */
1458 		if (decompressed + buf_len <= bvec_offset)
1459 			return 1;
1460 
1461 		copy_start = max(cur_offset, bvec_offset);
1462 		copy_len = min(bvec_offset + bvec.bv_len,
1463 			       decompressed + buf_len) - copy_start;
1464 		ASSERT(copy_len);
1465 
1466 		/*
1467 		 * Extra range check to ensure we didn't go beyond
1468 		 * @buf + @buf_len.
1469 		 */
1470 		ASSERT(copy_start - decompressed < buf_len);
1471 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1472 			       buf + copy_start - decompressed, copy_len);
1473 		flush_dcache_page(bvec.bv_page);
1474 		cur_offset += copy_len;
1475 
1476 		bio_advance(orig_bio, copy_len);
1477 		/* Finished the bio */
1478 		if (!orig_bio->bi_iter.bi_size)
1479 			return 0;
1480 	}
1481 	return 1;
1482 }
1483 
1484 /*
1485  * Shannon Entropy calculation
1486  *
1487  * Pure byte distribution analysis fails to determine compressibility of data.
1488  * Try calculating entropy to estimate the average minimum number of bits
1489  * needed to encode the sampled data.
1490  *
1491  * For convenience, return the percentage of needed bits, instead of amount of
1492  * bits directly.
1493  *
1494  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1495  *			    and can be compressible with high probability
1496  *
1497  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1498  *
1499  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1500  */
1501 #define ENTROPY_LVL_ACEPTABLE		(65)
1502 #define ENTROPY_LVL_HIGH		(80)
1503 
1504 /*
1505  * For increasead precision in shannon_entropy calculation,
1506  * let's do pow(n, M) to save more digits after comma:
1507  *
1508  * - maximum int bit length is 64
1509  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1510  * - 13 * 4 = 52 < 64		-> M = 4
1511  *
1512  * So use pow(n, 4).
1513  */
1514 static inline u32 ilog2_w(u64 n)
1515 {
1516 	return ilog2(n * n * n * n);
1517 }
1518 
1519 static u32 shannon_entropy(struct heuristic_ws *ws)
1520 {
1521 	const u32 entropy_max = 8 * ilog2_w(2);
1522 	u32 entropy_sum = 0;
1523 	u32 p, p_base, sz_base;
1524 	u32 i;
1525 
1526 	sz_base = ilog2_w(ws->sample_size);
1527 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1528 		p = ws->bucket[i].count;
1529 		p_base = ilog2_w(p);
1530 		entropy_sum += p * (sz_base - p_base);
1531 	}
1532 
1533 	entropy_sum /= ws->sample_size;
1534 	return entropy_sum * 100 / entropy_max;
1535 }
1536 
1537 #define RADIX_BASE		4U
1538 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1539 
1540 static u8 get4bits(u64 num, int shift) {
1541 	u8 low4bits;
1542 
1543 	num >>= shift;
1544 	/* Reverse order */
1545 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1546 	return low4bits;
1547 }
1548 
1549 /*
1550  * Use 4 bits as radix base
1551  * Use 16 u32 counters for calculating new position in buf array
1552  *
1553  * @array     - array that will be sorted
1554  * @array_buf - buffer array to store sorting results
1555  *              must be equal in size to @array
1556  * @num       - array size
1557  */
1558 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1559 		       int num)
1560 {
1561 	u64 max_num;
1562 	u64 buf_num;
1563 	u32 counters[COUNTERS_SIZE];
1564 	u32 new_addr;
1565 	u32 addr;
1566 	int bitlen;
1567 	int shift;
1568 	int i;
1569 
1570 	/*
1571 	 * Try avoid useless loop iterations for small numbers stored in big
1572 	 * counters.  Example: 48 33 4 ... in 64bit array
1573 	 */
1574 	max_num = array[0].count;
1575 	for (i = 1; i < num; i++) {
1576 		buf_num = array[i].count;
1577 		if (buf_num > max_num)
1578 			max_num = buf_num;
1579 	}
1580 
1581 	buf_num = ilog2(max_num);
1582 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1583 
1584 	shift = 0;
1585 	while (shift < bitlen) {
1586 		memset(counters, 0, sizeof(counters));
1587 
1588 		for (i = 0; i < num; i++) {
1589 			buf_num = array[i].count;
1590 			addr = get4bits(buf_num, shift);
1591 			counters[addr]++;
1592 		}
1593 
1594 		for (i = 1; i < COUNTERS_SIZE; i++)
1595 			counters[i] += counters[i - 1];
1596 
1597 		for (i = num - 1; i >= 0; i--) {
1598 			buf_num = array[i].count;
1599 			addr = get4bits(buf_num, shift);
1600 			counters[addr]--;
1601 			new_addr = counters[addr];
1602 			array_buf[new_addr] = array[i];
1603 		}
1604 
1605 		shift += RADIX_BASE;
1606 
1607 		/*
1608 		 * Normal radix expects to move data from a temporary array, to
1609 		 * the main one.  But that requires some CPU time. Avoid that
1610 		 * by doing another sort iteration to original array instead of
1611 		 * memcpy()
1612 		 */
1613 		memset(counters, 0, sizeof(counters));
1614 
1615 		for (i = 0; i < num; i ++) {
1616 			buf_num = array_buf[i].count;
1617 			addr = get4bits(buf_num, shift);
1618 			counters[addr]++;
1619 		}
1620 
1621 		for (i = 1; i < COUNTERS_SIZE; i++)
1622 			counters[i] += counters[i - 1];
1623 
1624 		for (i = num - 1; i >= 0; i--) {
1625 			buf_num = array_buf[i].count;
1626 			addr = get4bits(buf_num, shift);
1627 			counters[addr]--;
1628 			new_addr = counters[addr];
1629 			array[new_addr] = array_buf[i];
1630 		}
1631 
1632 		shift += RADIX_BASE;
1633 	}
1634 }
1635 
1636 /*
1637  * Size of the core byte set - how many bytes cover 90% of the sample
1638  *
1639  * There are several types of structured binary data that use nearly all byte
1640  * values. The distribution can be uniform and counts in all buckets will be
1641  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1642  *
1643  * Other possibility is normal (Gaussian) distribution, where the data could
1644  * be potentially compressible, but we have to take a few more steps to decide
1645  * how much.
1646  *
1647  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1648  *                       compression algo can easy fix that
1649  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1650  *                       probability is not compressible
1651  */
1652 #define BYTE_CORE_SET_LOW		(64)
1653 #define BYTE_CORE_SET_HIGH		(200)
1654 
1655 static int byte_core_set_size(struct heuristic_ws *ws)
1656 {
1657 	u32 i;
1658 	u32 coreset_sum = 0;
1659 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1660 	struct bucket_item *bucket = ws->bucket;
1661 
1662 	/* Sort in reverse order */
1663 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1664 
1665 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1666 		coreset_sum += bucket[i].count;
1667 
1668 	if (coreset_sum > core_set_threshold)
1669 		return i;
1670 
1671 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1672 		coreset_sum += bucket[i].count;
1673 		if (coreset_sum > core_set_threshold)
1674 			break;
1675 	}
1676 
1677 	return i;
1678 }
1679 
1680 /*
1681  * Count byte values in buckets.
1682  * This heuristic can detect textual data (configs, xml, json, html, etc).
1683  * Because in most text-like data byte set is restricted to limited number of
1684  * possible characters, and that restriction in most cases makes data easy to
1685  * compress.
1686  *
1687  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1688  *	less - compressible
1689  *	more - need additional analysis
1690  */
1691 #define BYTE_SET_THRESHOLD		(64)
1692 
1693 static u32 byte_set_size(const struct heuristic_ws *ws)
1694 {
1695 	u32 i;
1696 	u32 byte_set_size = 0;
1697 
1698 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1699 		if (ws->bucket[i].count > 0)
1700 			byte_set_size++;
1701 	}
1702 
1703 	/*
1704 	 * Continue collecting count of byte values in buckets.  If the byte
1705 	 * set size is bigger then the threshold, it's pointless to continue,
1706 	 * the detection technique would fail for this type of data.
1707 	 */
1708 	for (; i < BUCKET_SIZE; i++) {
1709 		if (ws->bucket[i].count > 0) {
1710 			byte_set_size++;
1711 			if (byte_set_size > BYTE_SET_THRESHOLD)
1712 				return byte_set_size;
1713 		}
1714 	}
1715 
1716 	return byte_set_size;
1717 }
1718 
1719 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1720 {
1721 	const u32 half_of_sample = ws->sample_size / 2;
1722 	const u8 *data = ws->sample;
1723 
1724 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1725 }
1726 
1727 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1728 				     struct heuristic_ws *ws)
1729 {
1730 	struct page *page;
1731 	u64 index, index_end;
1732 	u32 i, curr_sample_pos;
1733 	u8 *in_data;
1734 
1735 	/*
1736 	 * Compression handles the input data by chunks of 128KiB
1737 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1738 	 *
1739 	 * We do the same for the heuristic and loop over the whole range.
1740 	 *
1741 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1742 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1743 	 */
1744 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1745 		end = start + BTRFS_MAX_UNCOMPRESSED;
1746 
1747 	index = start >> PAGE_SHIFT;
1748 	index_end = end >> PAGE_SHIFT;
1749 
1750 	/* Don't miss unaligned end */
1751 	if (!IS_ALIGNED(end, PAGE_SIZE))
1752 		index_end++;
1753 
1754 	curr_sample_pos = 0;
1755 	while (index < index_end) {
1756 		page = find_get_page(inode->i_mapping, index);
1757 		in_data = kmap_local_page(page);
1758 		/* Handle case where the start is not aligned to PAGE_SIZE */
1759 		i = start % PAGE_SIZE;
1760 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1761 			/* Don't sample any garbage from the last page */
1762 			if (start > end - SAMPLING_READ_SIZE)
1763 				break;
1764 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1765 					SAMPLING_READ_SIZE);
1766 			i += SAMPLING_INTERVAL;
1767 			start += SAMPLING_INTERVAL;
1768 			curr_sample_pos += SAMPLING_READ_SIZE;
1769 		}
1770 		kunmap_local(in_data);
1771 		put_page(page);
1772 
1773 		index++;
1774 	}
1775 
1776 	ws->sample_size = curr_sample_pos;
1777 }
1778 
1779 /*
1780  * Compression heuristic.
1781  *
1782  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1783  * quickly (compared to direct compression) detect data characteristics
1784  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1785  * data.
1786  *
1787  * The following types of analysis can be performed:
1788  * - detect mostly zero data
1789  * - detect data with low "byte set" size (text, etc)
1790  * - detect data with low/high "core byte" set
1791  *
1792  * Return non-zero if the compression should be done, 0 otherwise.
1793  */
1794 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1795 {
1796 	struct list_head *ws_list = get_workspace(0, 0);
1797 	struct heuristic_ws *ws;
1798 	u32 i;
1799 	u8 byte;
1800 	int ret = 0;
1801 
1802 	ws = list_entry(ws_list, struct heuristic_ws, list);
1803 
1804 	heuristic_collect_sample(inode, start, end, ws);
1805 
1806 	if (sample_repeated_patterns(ws)) {
1807 		ret = 1;
1808 		goto out;
1809 	}
1810 
1811 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1812 
1813 	for (i = 0; i < ws->sample_size; i++) {
1814 		byte = ws->sample[i];
1815 		ws->bucket[byte].count++;
1816 	}
1817 
1818 	i = byte_set_size(ws);
1819 	if (i < BYTE_SET_THRESHOLD) {
1820 		ret = 2;
1821 		goto out;
1822 	}
1823 
1824 	i = byte_core_set_size(ws);
1825 	if (i <= BYTE_CORE_SET_LOW) {
1826 		ret = 3;
1827 		goto out;
1828 	}
1829 
1830 	if (i >= BYTE_CORE_SET_HIGH) {
1831 		ret = 0;
1832 		goto out;
1833 	}
1834 
1835 	i = shannon_entropy(ws);
1836 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1837 		ret = 4;
1838 		goto out;
1839 	}
1840 
1841 	/*
1842 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1843 	 * needed to give green light to compression.
1844 	 *
1845 	 * For now just assume that compression at that level is not worth the
1846 	 * resources because:
1847 	 *
1848 	 * 1. it is possible to defrag the data later
1849 	 *
1850 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1851 	 * values, every bucket has counter at level ~54. The heuristic would
1852 	 * be confused. This can happen when data have some internal repeated
1853 	 * patterns like "abbacbbc...". This can be detected by analyzing
1854 	 * pairs of bytes, which is too costly.
1855 	 */
1856 	if (i < ENTROPY_LVL_HIGH) {
1857 		ret = 5;
1858 		goto out;
1859 	} else {
1860 		ret = 0;
1861 		goto out;
1862 	}
1863 
1864 out:
1865 	put_workspace(0, ws_list);
1866 	return ret;
1867 }
1868 
1869 /*
1870  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1871  * level, unrecognized string will set the default level
1872  */
1873 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1874 {
1875 	unsigned int level = 0;
1876 	int ret;
1877 
1878 	if (!type)
1879 		return 0;
1880 
1881 	if (str[0] == ':') {
1882 		ret = kstrtouint(str + 1, 10, &level);
1883 		if (ret)
1884 			level = 0;
1885 	}
1886 
1887 	level = btrfs_compress_set_level(type, level);
1888 
1889 	return level;
1890 }
1891