xref: /openbmc/linux/fs/btrfs/compression.c (revision 63dc02bd)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45 
46 struct compressed_bio {
47 	/* number of bios pending for this compressed extent */
48 	atomic_t pending_bios;
49 
50 	/* the pages with the compressed data on them */
51 	struct page **compressed_pages;
52 
53 	/* inode that owns this data */
54 	struct inode *inode;
55 
56 	/* starting offset in the inode for our pages */
57 	u64 start;
58 
59 	/* number of bytes in the inode we're working on */
60 	unsigned long len;
61 
62 	/* number of bytes on disk */
63 	unsigned long compressed_len;
64 
65 	/* the compression algorithm for this bio */
66 	int compress_type;
67 
68 	/* number of compressed pages in the array */
69 	unsigned long nr_pages;
70 
71 	/* IO errors */
72 	int errors;
73 	int mirror_num;
74 
75 	/* for reads, this is the bio we are copying the data into */
76 	struct bio *orig_bio;
77 
78 	/*
79 	 * the start of a variable length array of checksums only
80 	 * used by reads
81 	 */
82 	u32 sums;
83 };
84 
85 static inline int compressed_bio_size(struct btrfs_root *root,
86 				      unsigned long disk_size)
87 {
88 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
89 
90 	return sizeof(struct compressed_bio) +
91 		((disk_size + root->sectorsize - 1) / root->sectorsize) *
92 		csum_size;
93 }
94 
95 static struct bio *compressed_bio_alloc(struct block_device *bdev,
96 					u64 first_byte, gfp_t gfp_flags)
97 {
98 	int nr_vecs;
99 
100 	nr_vecs = bio_get_nr_vecs(bdev);
101 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
102 }
103 
104 static int check_compressed_csum(struct inode *inode,
105 				 struct compressed_bio *cb,
106 				 u64 disk_start)
107 {
108 	int ret;
109 	struct btrfs_root *root = BTRFS_I(inode)->root;
110 	struct page *page;
111 	unsigned long i;
112 	char *kaddr;
113 	u32 csum;
114 	u32 *cb_sum = &cb->sums;
115 
116 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
117 		return 0;
118 
119 	for (i = 0; i < cb->nr_pages; i++) {
120 		page = cb->compressed_pages[i];
121 		csum = ~(u32)0;
122 
123 		kaddr = kmap_atomic(page);
124 		csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
125 		btrfs_csum_final(csum, (char *)&csum);
126 		kunmap_atomic(kaddr);
127 
128 		if (csum != *cb_sum) {
129 			printk(KERN_INFO "btrfs csum failed ino %llu "
130 			       "extent %llu csum %u "
131 			       "wanted %u mirror %d\n",
132 			       (unsigned long long)btrfs_ino(inode),
133 			       (unsigned long long)disk_start,
134 			       csum, *cb_sum, cb->mirror_num);
135 			ret = -EIO;
136 			goto fail;
137 		}
138 		cb_sum++;
139 
140 	}
141 	ret = 0;
142 fail:
143 	return ret;
144 }
145 
146 /* when we finish reading compressed pages from the disk, we
147  * decompress them and then run the bio end_io routines on the
148  * decompressed pages (in the inode address space).
149  *
150  * This allows the checksumming and other IO error handling routines
151  * to work normally
152  *
153  * The compressed pages are freed here, and it must be run
154  * in process context
155  */
156 static void end_compressed_bio_read(struct bio *bio, int err)
157 {
158 	struct compressed_bio *cb = bio->bi_private;
159 	struct inode *inode;
160 	struct page *page;
161 	unsigned long index;
162 	int ret;
163 
164 	if (err)
165 		cb->errors = 1;
166 
167 	/* if there are more bios still pending for this compressed
168 	 * extent, just exit
169 	 */
170 	if (!atomic_dec_and_test(&cb->pending_bios))
171 		goto out;
172 
173 	inode = cb->inode;
174 	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
175 	if (ret)
176 		goto csum_failed;
177 
178 	/* ok, we're the last bio for this extent, lets start
179 	 * the decompression.
180 	 */
181 	ret = btrfs_decompress_biovec(cb->compress_type,
182 				      cb->compressed_pages,
183 				      cb->start,
184 				      cb->orig_bio->bi_io_vec,
185 				      cb->orig_bio->bi_vcnt,
186 				      cb->compressed_len);
187 csum_failed:
188 	if (ret)
189 		cb->errors = 1;
190 
191 	/* release the compressed pages */
192 	index = 0;
193 	for (index = 0; index < cb->nr_pages; index++) {
194 		page = cb->compressed_pages[index];
195 		page->mapping = NULL;
196 		page_cache_release(page);
197 	}
198 
199 	/* do io completion on the original bio */
200 	if (cb->errors) {
201 		bio_io_error(cb->orig_bio);
202 	} else {
203 		int bio_index = 0;
204 		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
205 
206 		/*
207 		 * we have verified the checksum already, set page
208 		 * checked so the end_io handlers know about it
209 		 */
210 		while (bio_index < cb->orig_bio->bi_vcnt) {
211 			SetPageChecked(bvec->bv_page);
212 			bvec++;
213 			bio_index++;
214 		}
215 		bio_endio(cb->orig_bio, 0);
216 	}
217 
218 	/* finally free the cb struct */
219 	kfree(cb->compressed_pages);
220 	kfree(cb);
221 out:
222 	bio_put(bio);
223 }
224 
225 /*
226  * Clear the writeback bits on all of the file
227  * pages for a compressed write
228  */
229 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
230 					      unsigned long ram_size)
231 {
232 	unsigned long index = start >> PAGE_CACHE_SHIFT;
233 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
234 	struct page *pages[16];
235 	unsigned long nr_pages = end_index - index + 1;
236 	int i;
237 	int ret;
238 
239 	while (nr_pages > 0) {
240 		ret = find_get_pages_contig(inode->i_mapping, index,
241 				     min_t(unsigned long,
242 				     nr_pages, ARRAY_SIZE(pages)), pages);
243 		if (ret == 0) {
244 			nr_pages -= 1;
245 			index += 1;
246 			continue;
247 		}
248 		for (i = 0; i < ret; i++) {
249 			end_page_writeback(pages[i]);
250 			page_cache_release(pages[i]);
251 		}
252 		nr_pages -= ret;
253 		index += ret;
254 	}
255 	/* the inode may be gone now */
256 }
257 
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio, int err)
267 {
268 	struct extent_io_tree *tree;
269 	struct compressed_bio *cb = bio->bi_private;
270 	struct inode *inode;
271 	struct page *page;
272 	unsigned long index;
273 
274 	if (err)
275 		cb->errors = 1;
276 
277 	/* if there are more bios still pending for this compressed
278 	 * extent, just exit
279 	 */
280 	if (!atomic_dec_and_test(&cb->pending_bios))
281 		goto out;
282 
283 	/* ok, we're the last bio for this extent, step one is to
284 	 * call back into the FS and do all the end_io operations
285 	 */
286 	inode = cb->inode;
287 	tree = &BTRFS_I(inode)->io_tree;
288 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290 					 cb->start,
291 					 cb->start + cb->len - 1,
292 					 NULL, 1);
293 	cb->compressed_pages[0]->mapping = NULL;
294 
295 	end_compressed_writeback(inode, cb->start, cb->len);
296 	/* note, our inode could be gone now */
297 
298 	/*
299 	 * release the compressed pages, these came from alloc_page and
300 	 * are not attached to the inode at all
301 	 */
302 	index = 0;
303 	for (index = 0; index < cb->nr_pages; index++) {
304 		page = cb->compressed_pages[index];
305 		page->mapping = NULL;
306 		page_cache_release(page);
307 	}
308 
309 	/* finally free the cb struct */
310 	kfree(cb->compressed_pages);
311 	kfree(cb);
312 out:
313 	bio_put(bio);
314 }
315 
316 /*
317  * worker function to build and submit bios for previously compressed pages.
318  * The corresponding pages in the inode should be marked for writeback
319  * and the compressed pages should have a reference on them for dropping
320  * when the IO is complete.
321  *
322  * This also checksums the file bytes and gets things ready for
323  * the end io hooks.
324  */
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326 				 unsigned long len, u64 disk_start,
327 				 unsigned long compressed_len,
328 				 struct page **compressed_pages,
329 				 unsigned long nr_pages)
330 {
331 	struct bio *bio = NULL;
332 	struct btrfs_root *root = BTRFS_I(inode)->root;
333 	struct compressed_bio *cb;
334 	unsigned long bytes_left;
335 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336 	int pg_index = 0;
337 	struct page *page;
338 	u64 first_byte = disk_start;
339 	struct block_device *bdev;
340 	int ret;
341 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
342 
343 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
344 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
345 	if (!cb)
346 		return -ENOMEM;
347 	atomic_set(&cb->pending_bios, 0);
348 	cb->errors = 0;
349 	cb->inode = inode;
350 	cb->start = start;
351 	cb->len = len;
352 	cb->mirror_num = 0;
353 	cb->compressed_pages = compressed_pages;
354 	cb->compressed_len = compressed_len;
355 	cb->orig_bio = NULL;
356 	cb->nr_pages = nr_pages;
357 
358 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
359 
360 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
361 	if(!bio) {
362 		kfree(cb);
363 		return -ENOMEM;
364 	}
365 	bio->bi_private = cb;
366 	bio->bi_end_io = end_compressed_bio_write;
367 	atomic_inc(&cb->pending_bios);
368 
369 	/* create and submit bios for the compressed pages */
370 	bytes_left = compressed_len;
371 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
372 		page = compressed_pages[pg_index];
373 		page->mapping = inode->i_mapping;
374 		if (bio->bi_size)
375 			ret = io_tree->ops->merge_bio_hook(page, 0,
376 							   PAGE_CACHE_SIZE,
377 							   bio, 0);
378 		else
379 			ret = 0;
380 
381 		page->mapping = NULL;
382 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
383 		    PAGE_CACHE_SIZE) {
384 			bio_get(bio);
385 
386 			/*
387 			 * inc the count before we submit the bio so
388 			 * we know the end IO handler won't happen before
389 			 * we inc the count.  Otherwise, the cb might get
390 			 * freed before we're done setting it up
391 			 */
392 			atomic_inc(&cb->pending_bios);
393 			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
394 			BUG_ON(ret); /* -ENOMEM */
395 
396 			if (!skip_sum) {
397 				ret = btrfs_csum_one_bio(root, inode, bio,
398 							 start, 1);
399 				BUG_ON(ret); /* -ENOMEM */
400 			}
401 
402 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
403 			BUG_ON(ret); /* -ENOMEM */
404 
405 			bio_put(bio);
406 
407 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
408 			BUG_ON(!bio);
409 			bio->bi_private = cb;
410 			bio->bi_end_io = end_compressed_bio_write;
411 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
412 		}
413 		if (bytes_left < PAGE_CACHE_SIZE) {
414 			printk("bytes left %lu compress len %lu nr %lu\n",
415 			       bytes_left, cb->compressed_len, cb->nr_pages);
416 		}
417 		bytes_left -= PAGE_CACHE_SIZE;
418 		first_byte += PAGE_CACHE_SIZE;
419 		cond_resched();
420 	}
421 	bio_get(bio);
422 
423 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
424 	BUG_ON(ret); /* -ENOMEM */
425 
426 	if (!skip_sum) {
427 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
428 		BUG_ON(ret); /* -ENOMEM */
429 	}
430 
431 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
432 	BUG_ON(ret); /* -ENOMEM */
433 
434 	bio_put(bio);
435 	return 0;
436 }
437 
438 static noinline int add_ra_bio_pages(struct inode *inode,
439 				     u64 compressed_end,
440 				     struct compressed_bio *cb)
441 {
442 	unsigned long end_index;
443 	unsigned long pg_index;
444 	u64 last_offset;
445 	u64 isize = i_size_read(inode);
446 	int ret;
447 	struct page *page;
448 	unsigned long nr_pages = 0;
449 	struct extent_map *em;
450 	struct address_space *mapping = inode->i_mapping;
451 	struct extent_map_tree *em_tree;
452 	struct extent_io_tree *tree;
453 	u64 end;
454 	int misses = 0;
455 
456 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
457 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
458 	em_tree = &BTRFS_I(inode)->extent_tree;
459 	tree = &BTRFS_I(inode)->io_tree;
460 
461 	if (isize == 0)
462 		return 0;
463 
464 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
465 
466 	while (last_offset < compressed_end) {
467 		pg_index = last_offset >> PAGE_CACHE_SHIFT;
468 
469 		if (pg_index > end_index)
470 			break;
471 
472 		rcu_read_lock();
473 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
474 		rcu_read_unlock();
475 		if (page) {
476 			misses++;
477 			if (misses > 4)
478 				break;
479 			goto next;
480 		}
481 
482 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
483 								~__GFP_FS);
484 		if (!page)
485 			break;
486 
487 		if (add_to_page_cache_lru(page, mapping, pg_index,
488 								GFP_NOFS)) {
489 			page_cache_release(page);
490 			goto next;
491 		}
492 
493 		end = last_offset + PAGE_CACHE_SIZE - 1;
494 		/*
495 		 * at this point, we have a locked page in the page cache
496 		 * for these bytes in the file.  But, we have to make
497 		 * sure they map to this compressed extent on disk.
498 		 */
499 		set_page_extent_mapped(page);
500 		lock_extent(tree, last_offset, end);
501 		read_lock(&em_tree->lock);
502 		em = lookup_extent_mapping(em_tree, last_offset,
503 					   PAGE_CACHE_SIZE);
504 		read_unlock(&em_tree->lock);
505 
506 		if (!em || last_offset < em->start ||
507 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
508 		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
509 			free_extent_map(em);
510 			unlock_extent(tree, last_offset, end);
511 			unlock_page(page);
512 			page_cache_release(page);
513 			break;
514 		}
515 		free_extent_map(em);
516 
517 		if (page->index == end_index) {
518 			char *userpage;
519 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
520 
521 			if (zero_offset) {
522 				int zeros;
523 				zeros = PAGE_CACHE_SIZE - zero_offset;
524 				userpage = kmap_atomic(page);
525 				memset(userpage + zero_offset, 0, zeros);
526 				flush_dcache_page(page);
527 				kunmap_atomic(userpage);
528 			}
529 		}
530 
531 		ret = bio_add_page(cb->orig_bio, page,
532 				   PAGE_CACHE_SIZE, 0);
533 
534 		if (ret == PAGE_CACHE_SIZE) {
535 			nr_pages++;
536 			page_cache_release(page);
537 		} else {
538 			unlock_extent(tree, last_offset, end);
539 			unlock_page(page);
540 			page_cache_release(page);
541 			break;
542 		}
543 next:
544 		last_offset += PAGE_CACHE_SIZE;
545 	}
546 	return 0;
547 }
548 
549 /*
550  * for a compressed read, the bio we get passed has all the inode pages
551  * in it.  We don't actually do IO on those pages but allocate new ones
552  * to hold the compressed pages on disk.
553  *
554  * bio->bi_sector points to the compressed extent on disk
555  * bio->bi_io_vec points to all of the inode pages
556  * bio->bi_vcnt is a count of pages
557  *
558  * After the compressed pages are read, we copy the bytes into the
559  * bio we were passed and then call the bio end_io calls
560  */
561 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
562 				 int mirror_num, unsigned long bio_flags)
563 {
564 	struct extent_io_tree *tree;
565 	struct extent_map_tree *em_tree;
566 	struct compressed_bio *cb;
567 	struct btrfs_root *root = BTRFS_I(inode)->root;
568 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
569 	unsigned long compressed_len;
570 	unsigned long nr_pages;
571 	unsigned long pg_index;
572 	struct page *page;
573 	struct block_device *bdev;
574 	struct bio *comp_bio;
575 	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
576 	u64 em_len;
577 	u64 em_start;
578 	struct extent_map *em;
579 	int ret = -ENOMEM;
580 	u32 *sums;
581 
582 	tree = &BTRFS_I(inode)->io_tree;
583 	em_tree = &BTRFS_I(inode)->extent_tree;
584 
585 	/* we need the actual starting offset of this extent in the file */
586 	read_lock(&em_tree->lock);
587 	em = lookup_extent_mapping(em_tree,
588 				   page_offset(bio->bi_io_vec->bv_page),
589 				   PAGE_CACHE_SIZE);
590 	read_unlock(&em_tree->lock);
591 	if (!em)
592 		return -EIO;
593 
594 	compressed_len = em->block_len;
595 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
596 	if (!cb)
597 		goto out;
598 
599 	atomic_set(&cb->pending_bios, 0);
600 	cb->errors = 0;
601 	cb->inode = inode;
602 	cb->mirror_num = mirror_num;
603 	sums = &cb->sums;
604 
605 	cb->start = em->orig_start;
606 	em_len = em->len;
607 	em_start = em->start;
608 
609 	free_extent_map(em);
610 	em = NULL;
611 
612 	cb->len = uncompressed_len;
613 	cb->compressed_len = compressed_len;
614 	cb->compress_type = extent_compress_type(bio_flags);
615 	cb->orig_bio = bio;
616 
617 	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
618 				 PAGE_CACHE_SIZE;
619 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
620 				       GFP_NOFS);
621 	if (!cb->compressed_pages)
622 		goto fail1;
623 
624 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
625 
626 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
627 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
628 							      __GFP_HIGHMEM);
629 		if (!cb->compressed_pages[pg_index])
630 			goto fail2;
631 	}
632 	cb->nr_pages = nr_pages;
633 
634 	add_ra_bio_pages(inode, em_start + em_len, cb);
635 
636 	/* include any pages we added in add_ra-bio_pages */
637 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
638 	cb->len = uncompressed_len;
639 
640 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
641 	if (!comp_bio)
642 		goto fail2;
643 	comp_bio->bi_private = cb;
644 	comp_bio->bi_end_io = end_compressed_bio_read;
645 	atomic_inc(&cb->pending_bios);
646 
647 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
648 		page = cb->compressed_pages[pg_index];
649 		page->mapping = inode->i_mapping;
650 		page->index = em_start >> PAGE_CACHE_SHIFT;
651 
652 		if (comp_bio->bi_size)
653 			ret = tree->ops->merge_bio_hook(page, 0,
654 							PAGE_CACHE_SIZE,
655 							comp_bio, 0);
656 		else
657 			ret = 0;
658 
659 		page->mapping = NULL;
660 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
661 		    PAGE_CACHE_SIZE) {
662 			bio_get(comp_bio);
663 
664 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
665 			BUG_ON(ret); /* -ENOMEM */
666 
667 			/*
668 			 * inc the count before we submit the bio so
669 			 * we know the end IO handler won't happen before
670 			 * we inc the count.  Otherwise, the cb might get
671 			 * freed before we're done setting it up
672 			 */
673 			atomic_inc(&cb->pending_bios);
674 
675 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
676 				ret = btrfs_lookup_bio_sums(root, inode,
677 							comp_bio, sums);
678 				BUG_ON(ret); /* -ENOMEM */
679 			}
680 			sums += (comp_bio->bi_size + root->sectorsize - 1) /
681 				root->sectorsize;
682 
683 			ret = btrfs_map_bio(root, READ, comp_bio,
684 					    mirror_num, 0);
685 			BUG_ON(ret); /* -ENOMEM */
686 
687 			bio_put(comp_bio);
688 
689 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
690 							GFP_NOFS);
691 			BUG_ON(!comp_bio);
692 			comp_bio->bi_private = cb;
693 			comp_bio->bi_end_io = end_compressed_bio_read;
694 
695 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
696 		}
697 		cur_disk_byte += PAGE_CACHE_SIZE;
698 	}
699 	bio_get(comp_bio);
700 
701 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
702 	BUG_ON(ret); /* -ENOMEM */
703 
704 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
705 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
706 		BUG_ON(ret); /* -ENOMEM */
707 	}
708 
709 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
710 	BUG_ON(ret); /* -ENOMEM */
711 
712 	bio_put(comp_bio);
713 	return 0;
714 
715 fail2:
716 	for (pg_index = 0; pg_index < nr_pages; pg_index++)
717 		free_page((unsigned long)cb->compressed_pages[pg_index]);
718 
719 	kfree(cb->compressed_pages);
720 fail1:
721 	kfree(cb);
722 out:
723 	free_extent_map(em);
724 	return ret;
725 }
726 
727 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
728 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
729 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
730 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
731 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
732 
733 struct btrfs_compress_op *btrfs_compress_op[] = {
734 	&btrfs_zlib_compress,
735 	&btrfs_lzo_compress,
736 };
737 
738 void __init btrfs_init_compress(void)
739 {
740 	int i;
741 
742 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
743 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
744 		spin_lock_init(&comp_workspace_lock[i]);
745 		atomic_set(&comp_alloc_workspace[i], 0);
746 		init_waitqueue_head(&comp_workspace_wait[i]);
747 	}
748 }
749 
750 /*
751  * this finds an available workspace or allocates a new one
752  * ERR_PTR is returned if things go bad.
753  */
754 static struct list_head *find_workspace(int type)
755 {
756 	struct list_head *workspace;
757 	int cpus = num_online_cpus();
758 	int idx = type - 1;
759 
760 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
761 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
762 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
763 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
764 	int *num_workspace			= &comp_num_workspace[idx];
765 again:
766 	spin_lock(workspace_lock);
767 	if (!list_empty(idle_workspace)) {
768 		workspace = idle_workspace->next;
769 		list_del(workspace);
770 		(*num_workspace)--;
771 		spin_unlock(workspace_lock);
772 		return workspace;
773 
774 	}
775 	if (atomic_read(alloc_workspace) > cpus) {
776 		DEFINE_WAIT(wait);
777 
778 		spin_unlock(workspace_lock);
779 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
780 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
781 			schedule();
782 		finish_wait(workspace_wait, &wait);
783 		goto again;
784 	}
785 	atomic_inc(alloc_workspace);
786 	spin_unlock(workspace_lock);
787 
788 	workspace = btrfs_compress_op[idx]->alloc_workspace();
789 	if (IS_ERR(workspace)) {
790 		atomic_dec(alloc_workspace);
791 		wake_up(workspace_wait);
792 	}
793 	return workspace;
794 }
795 
796 /*
797  * put a workspace struct back on the list or free it if we have enough
798  * idle ones sitting around
799  */
800 static void free_workspace(int type, struct list_head *workspace)
801 {
802 	int idx = type - 1;
803 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
804 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
805 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
806 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
807 	int *num_workspace			= &comp_num_workspace[idx];
808 
809 	spin_lock(workspace_lock);
810 	if (*num_workspace < num_online_cpus()) {
811 		list_add_tail(workspace, idle_workspace);
812 		(*num_workspace)++;
813 		spin_unlock(workspace_lock);
814 		goto wake;
815 	}
816 	spin_unlock(workspace_lock);
817 
818 	btrfs_compress_op[idx]->free_workspace(workspace);
819 	atomic_dec(alloc_workspace);
820 wake:
821 	if (waitqueue_active(workspace_wait))
822 		wake_up(workspace_wait);
823 }
824 
825 /*
826  * cleanup function for module exit
827  */
828 static void free_workspaces(void)
829 {
830 	struct list_head *workspace;
831 	int i;
832 
833 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
834 		while (!list_empty(&comp_idle_workspace[i])) {
835 			workspace = comp_idle_workspace[i].next;
836 			list_del(workspace);
837 			btrfs_compress_op[i]->free_workspace(workspace);
838 			atomic_dec(&comp_alloc_workspace[i]);
839 		}
840 	}
841 }
842 
843 /*
844  * given an address space and start/len, compress the bytes.
845  *
846  * pages are allocated to hold the compressed result and stored
847  * in 'pages'
848  *
849  * out_pages is used to return the number of pages allocated.  There
850  * may be pages allocated even if we return an error
851  *
852  * total_in is used to return the number of bytes actually read.  It
853  * may be smaller then len if we had to exit early because we
854  * ran out of room in the pages array or because we cross the
855  * max_out threshold.
856  *
857  * total_out is used to return the total number of compressed bytes
858  *
859  * max_out tells us the max number of bytes that we're allowed to
860  * stuff into pages
861  */
862 int btrfs_compress_pages(int type, struct address_space *mapping,
863 			 u64 start, unsigned long len,
864 			 struct page **pages,
865 			 unsigned long nr_dest_pages,
866 			 unsigned long *out_pages,
867 			 unsigned long *total_in,
868 			 unsigned long *total_out,
869 			 unsigned long max_out)
870 {
871 	struct list_head *workspace;
872 	int ret;
873 
874 	workspace = find_workspace(type);
875 	if (IS_ERR(workspace))
876 		return -1;
877 
878 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
879 						      start, len, pages,
880 						      nr_dest_pages, out_pages,
881 						      total_in, total_out,
882 						      max_out);
883 	free_workspace(type, workspace);
884 	return ret;
885 }
886 
887 /*
888  * pages_in is an array of pages with compressed data.
889  *
890  * disk_start is the starting logical offset of this array in the file
891  *
892  * bvec is a bio_vec of pages from the file that we want to decompress into
893  *
894  * vcnt is the count of pages in the biovec
895  *
896  * srclen is the number of bytes in pages_in
897  *
898  * The basic idea is that we have a bio that was created by readpages.
899  * The pages in the bio are for the uncompressed data, and they may not
900  * be contiguous.  They all correspond to the range of bytes covered by
901  * the compressed extent.
902  */
903 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
904 			    struct bio_vec *bvec, int vcnt, size_t srclen)
905 {
906 	struct list_head *workspace;
907 	int ret;
908 
909 	workspace = find_workspace(type);
910 	if (IS_ERR(workspace))
911 		return -ENOMEM;
912 
913 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
914 							 disk_start,
915 							 bvec, vcnt, srclen);
916 	free_workspace(type, workspace);
917 	return ret;
918 }
919 
920 /*
921  * a less complex decompression routine.  Our compressed data fits in a
922  * single page, and we want to read a single page out of it.
923  * start_byte tells us the offset into the compressed data we're interested in
924  */
925 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
926 		     unsigned long start_byte, size_t srclen, size_t destlen)
927 {
928 	struct list_head *workspace;
929 	int ret;
930 
931 	workspace = find_workspace(type);
932 	if (IS_ERR(workspace))
933 		return -ENOMEM;
934 
935 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
936 						  dest_page, start_byte,
937 						  srclen, destlen);
938 
939 	free_workspace(type, workspace);
940 	return ret;
941 }
942 
943 void btrfs_exit_compress(void)
944 {
945 	free_workspaces();
946 }
947 
948 /*
949  * Copy uncompressed data from working buffer to pages.
950  *
951  * buf_start is the byte offset we're of the start of our workspace buffer.
952  *
953  * total_out is the last byte of the buffer
954  */
955 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
956 			      unsigned long total_out, u64 disk_start,
957 			      struct bio_vec *bvec, int vcnt,
958 			      unsigned long *pg_index,
959 			      unsigned long *pg_offset)
960 {
961 	unsigned long buf_offset;
962 	unsigned long current_buf_start;
963 	unsigned long start_byte;
964 	unsigned long working_bytes = total_out - buf_start;
965 	unsigned long bytes;
966 	char *kaddr;
967 	struct page *page_out = bvec[*pg_index].bv_page;
968 
969 	/*
970 	 * start byte is the first byte of the page we're currently
971 	 * copying into relative to the start of the compressed data.
972 	 */
973 	start_byte = page_offset(page_out) - disk_start;
974 
975 	/* we haven't yet hit data corresponding to this page */
976 	if (total_out <= start_byte)
977 		return 1;
978 
979 	/*
980 	 * the start of the data we care about is offset into
981 	 * the middle of our working buffer
982 	 */
983 	if (total_out > start_byte && buf_start < start_byte) {
984 		buf_offset = start_byte - buf_start;
985 		working_bytes -= buf_offset;
986 	} else {
987 		buf_offset = 0;
988 	}
989 	current_buf_start = buf_start;
990 
991 	/* copy bytes from the working buffer into the pages */
992 	while (working_bytes > 0) {
993 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
994 			    PAGE_CACHE_SIZE - buf_offset);
995 		bytes = min(bytes, working_bytes);
996 		kaddr = kmap_atomic(page_out);
997 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
998 		kunmap_atomic(kaddr);
999 		flush_dcache_page(page_out);
1000 
1001 		*pg_offset += bytes;
1002 		buf_offset += bytes;
1003 		working_bytes -= bytes;
1004 		current_buf_start += bytes;
1005 
1006 		/* check if we need to pick another page */
1007 		if (*pg_offset == PAGE_CACHE_SIZE) {
1008 			(*pg_index)++;
1009 			if (*pg_index >= vcnt)
1010 				return 0;
1011 
1012 			page_out = bvec[*pg_index].bv_page;
1013 			*pg_offset = 0;
1014 			start_byte = page_offset(page_out) - disk_start;
1015 
1016 			/*
1017 			 * make sure our new page is covered by this
1018 			 * working buffer
1019 			 */
1020 			if (total_out <= start_byte)
1021 				return 1;
1022 
1023 			/*
1024 			 * the next page in the biovec might not be adjacent
1025 			 * to the last page, but it might still be found
1026 			 * inside this working buffer. bump our offset pointer
1027 			 */
1028 			if (total_out > start_byte &&
1029 			    current_buf_start < start_byte) {
1030 				buf_offset = start_byte - buf_start;
1031 				working_bytes = total_out - start_byte;
1032 				current_buf_start = buf_start + buf_offset;
1033 			}
1034 		}
1035 	}
1036 
1037 	return 1;
1038 }
1039