1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "volumes.h" 25 #include "ordered-data.h" 26 #include "compression.h" 27 #include "extent_io.h" 28 #include "extent_map.h" 29 30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 31 32 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 33 { 34 switch (type) { 35 case BTRFS_COMPRESS_ZLIB: 36 case BTRFS_COMPRESS_LZO: 37 case BTRFS_COMPRESS_ZSTD: 38 case BTRFS_COMPRESS_NONE: 39 return btrfs_compress_types[type]; 40 } 41 42 return NULL; 43 } 44 45 static int btrfs_decompress_bio(struct compressed_bio *cb); 46 47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 48 unsigned long disk_size) 49 { 50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 51 52 return sizeof(struct compressed_bio) + 53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 54 } 55 56 static int check_compressed_csum(struct btrfs_inode *inode, 57 struct compressed_bio *cb, 58 u64 disk_start) 59 { 60 int ret; 61 struct page *page; 62 unsigned long i; 63 char *kaddr; 64 u32 csum; 65 u32 *cb_sum = &cb->sums; 66 67 if (inode->flags & BTRFS_INODE_NODATASUM) 68 return 0; 69 70 for (i = 0; i < cb->nr_pages; i++) { 71 page = cb->compressed_pages[i]; 72 csum = ~(u32)0; 73 74 kaddr = kmap_atomic(page); 75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 76 btrfs_csum_final(csum, (u8 *)&csum); 77 kunmap_atomic(kaddr); 78 79 if (csum != *cb_sum) { 80 btrfs_print_data_csum_error(inode, disk_start, csum, 81 *cb_sum, cb->mirror_num); 82 ret = -EIO; 83 goto fail; 84 } 85 cb_sum++; 86 87 } 88 ret = 0; 89 fail: 90 return ret; 91 } 92 93 /* when we finish reading compressed pages from the disk, we 94 * decompress them and then run the bio end_io routines on the 95 * decompressed pages (in the inode address space). 96 * 97 * This allows the checksumming and other IO error handling routines 98 * to work normally 99 * 100 * The compressed pages are freed here, and it must be run 101 * in process context 102 */ 103 static void end_compressed_bio_read(struct bio *bio) 104 { 105 struct compressed_bio *cb = bio->bi_private; 106 struct inode *inode; 107 struct page *page; 108 unsigned long index; 109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 110 int ret = 0; 111 112 if (bio->bi_status) 113 cb->errors = 1; 114 115 /* if there are more bios still pending for this compressed 116 * extent, just exit 117 */ 118 if (!refcount_dec_and_test(&cb->pending_bios)) 119 goto out; 120 121 /* 122 * Record the correct mirror_num in cb->orig_bio so that 123 * read-repair can work properly. 124 */ 125 ASSERT(btrfs_io_bio(cb->orig_bio)); 126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 127 cb->mirror_num = mirror; 128 129 /* 130 * Some IO in this cb have failed, just skip checksum as there 131 * is no way it could be correct. 132 */ 133 if (cb->errors == 1) 134 goto csum_failed; 135 136 inode = cb->inode; 137 ret = check_compressed_csum(BTRFS_I(inode), cb, 138 (u64)bio->bi_iter.bi_sector << 9); 139 if (ret) 140 goto csum_failed; 141 142 /* ok, we're the last bio for this extent, lets start 143 * the decompression. 144 */ 145 ret = btrfs_decompress_bio(cb); 146 147 csum_failed: 148 if (ret) 149 cb->errors = 1; 150 151 /* release the compressed pages */ 152 index = 0; 153 for (index = 0; index < cb->nr_pages; index++) { 154 page = cb->compressed_pages[index]; 155 page->mapping = NULL; 156 put_page(page); 157 } 158 159 /* do io completion on the original bio */ 160 if (cb->errors) { 161 bio_io_error(cb->orig_bio); 162 } else { 163 int i; 164 struct bio_vec *bvec; 165 166 /* 167 * we have verified the checksum already, set page 168 * checked so the end_io handlers know about it 169 */ 170 ASSERT(!bio_flagged(bio, BIO_CLONED)); 171 bio_for_each_segment_all(bvec, cb->orig_bio, i) 172 SetPageChecked(bvec->bv_page); 173 174 bio_endio(cb->orig_bio); 175 } 176 177 /* finally free the cb struct */ 178 kfree(cb->compressed_pages); 179 kfree(cb); 180 out: 181 bio_put(bio); 182 } 183 184 /* 185 * Clear the writeback bits on all of the file 186 * pages for a compressed write 187 */ 188 static noinline void end_compressed_writeback(struct inode *inode, 189 const struct compressed_bio *cb) 190 { 191 unsigned long index = cb->start >> PAGE_SHIFT; 192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 193 struct page *pages[16]; 194 unsigned long nr_pages = end_index - index + 1; 195 int i; 196 int ret; 197 198 if (cb->errors) 199 mapping_set_error(inode->i_mapping, -EIO); 200 201 while (nr_pages > 0) { 202 ret = find_get_pages_contig(inode->i_mapping, index, 203 min_t(unsigned long, 204 nr_pages, ARRAY_SIZE(pages)), pages); 205 if (ret == 0) { 206 nr_pages -= 1; 207 index += 1; 208 continue; 209 } 210 for (i = 0; i < ret; i++) { 211 if (cb->errors) 212 SetPageError(pages[i]); 213 end_page_writeback(pages[i]); 214 put_page(pages[i]); 215 } 216 nr_pages -= ret; 217 index += ret; 218 } 219 /* the inode may be gone now */ 220 } 221 222 /* 223 * do the cleanup once all the compressed pages hit the disk. 224 * This will clear writeback on the file pages and free the compressed 225 * pages. 226 * 227 * This also calls the writeback end hooks for the file pages so that 228 * metadata and checksums can be updated in the file. 229 */ 230 static void end_compressed_bio_write(struct bio *bio) 231 { 232 struct extent_io_tree *tree; 233 struct compressed_bio *cb = bio->bi_private; 234 struct inode *inode; 235 struct page *page; 236 unsigned long index; 237 238 if (bio->bi_status) 239 cb->errors = 1; 240 241 /* if there are more bios still pending for this compressed 242 * extent, just exit 243 */ 244 if (!refcount_dec_and_test(&cb->pending_bios)) 245 goto out; 246 247 /* ok, we're the last bio for this extent, step one is to 248 * call back into the FS and do all the end_io operations 249 */ 250 inode = cb->inode; 251 tree = &BTRFS_I(inode)->io_tree; 252 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 253 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 254 cb->start, 255 cb->start + cb->len - 1, 256 NULL, 257 bio->bi_status ? 258 BLK_STS_OK : BLK_STS_NOTSUPP); 259 cb->compressed_pages[0]->mapping = NULL; 260 261 end_compressed_writeback(inode, cb); 262 /* note, our inode could be gone now */ 263 264 /* 265 * release the compressed pages, these came from alloc_page and 266 * are not attached to the inode at all 267 */ 268 index = 0; 269 for (index = 0; index < cb->nr_pages; index++) { 270 page = cb->compressed_pages[index]; 271 page->mapping = NULL; 272 put_page(page); 273 } 274 275 /* finally free the cb struct */ 276 kfree(cb->compressed_pages); 277 kfree(cb); 278 out: 279 bio_put(bio); 280 } 281 282 /* 283 * worker function to build and submit bios for previously compressed pages. 284 * The corresponding pages in the inode should be marked for writeback 285 * and the compressed pages should have a reference on them for dropping 286 * when the IO is complete. 287 * 288 * This also checksums the file bytes and gets things ready for 289 * the end io hooks. 290 */ 291 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 292 unsigned long len, u64 disk_start, 293 unsigned long compressed_len, 294 struct page **compressed_pages, 295 unsigned long nr_pages, 296 unsigned int write_flags) 297 { 298 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 299 struct bio *bio = NULL; 300 struct compressed_bio *cb; 301 unsigned long bytes_left; 302 int pg_index = 0; 303 struct page *page; 304 u64 first_byte = disk_start; 305 struct block_device *bdev; 306 blk_status_t ret; 307 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 308 309 WARN_ON(start & ((u64)PAGE_SIZE - 1)); 310 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 311 if (!cb) 312 return BLK_STS_RESOURCE; 313 refcount_set(&cb->pending_bios, 0); 314 cb->errors = 0; 315 cb->inode = inode; 316 cb->start = start; 317 cb->len = len; 318 cb->mirror_num = 0; 319 cb->compressed_pages = compressed_pages; 320 cb->compressed_len = compressed_len; 321 cb->orig_bio = NULL; 322 cb->nr_pages = nr_pages; 323 324 bdev = fs_info->fs_devices->latest_bdev; 325 326 bio = btrfs_bio_alloc(bdev, first_byte); 327 bio->bi_opf = REQ_OP_WRITE | write_flags; 328 bio->bi_private = cb; 329 bio->bi_end_io = end_compressed_bio_write; 330 refcount_set(&cb->pending_bios, 1); 331 332 /* create and submit bios for the compressed pages */ 333 bytes_left = compressed_len; 334 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 335 int submit = 0; 336 337 page = compressed_pages[pg_index]; 338 page->mapping = inode->i_mapping; 339 if (bio->bi_iter.bi_size) 340 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0); 341 342 page->mapping = NULL; 343 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 344 PAGE_SIZE) { 345 /* 346 * inc the count before we submit the bio so 347 * we know the end IO handler won't happen before 348 * we inc the count. Otherwise, the cb might get 349 * freed before we're done setting it up 350 */ 351 refcount_inc(&cb->pending_bios); 352 ret = btrfs_bio_wq_end_io(fs_info, bio, 353 BTRFS_WQ_ENDIO_DATA); 354 BUG_ON(ret); /* -ENOMEM */ 355 356 if (!skip_sum) { 357 ret = btrfs_csum_one_bio(inode, bio, start, 1); 358 BUG_ON(ret); /* -ENOMEM */ 359 } 360 361 ret = btrfs_map_bio(fs_info, bio, 0, 1); 362 if (ret) { 363 bio->bi_status = ret; 364 bio_endio(bio); 365 } 366 367 bio = btrfs_bio_alloc(bdev, first_byte); 368 bio->bi_opf = REQ_OP_WRITE | write_flags; 369 bio->bi_private = cb; 370 bio->bi_end_io = end_compressed_bio_write; 371 bio_add_page(bio, page, PAGE_SIZE, 0); 372 } 373 if (bytes_left < PAGE_SIZE) { 374 btrfs_info(fs_info, 375 "bytes left %lu compress len %lu nr %lu", 376 bytes_left, cb->compressed_len, cb->nr_pages); 377 } 378 bytes_left -= PAGE_SIZE; 379 first_byte += PAGE_SIZE; 380 cond_resched(); 381 } 382 383 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 384 BUG_ON(ret); /* -ENOMEM */ 385 386 if (!skip_sum) { 387 ret = btrfs_csum_one_bio(inode, bio, start, 1); 388 BUG_ON(ret); /* -ENOMEM */ 389 } 390 391 ret = btrfs_map_bio(fs_info, bio, 0, 1); 392 if (ret) { 393 bio->bi_status = ret; 394 bio_endio(bio); 395 } 396 397 return 0; 398 } 399 400 static u64 bio_end_offset(struct bio *bio) 401 { 402 struct bio_vec *last = bio_last_bvec_all(bio); 403 404 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 405 } 406 407 static noinline int add_ra_bio_pages(struct inode *inode, 408 u64 compressed_end, 409 struct compressed_bio *cb) 410 { 411 unsigned long end_index; 412 unsigned long pg_index; 413 u64 last_offset; 414 u64 isize = i_size_read(inode); 415 int ret; 416 struct page *page; 417 unsigned long nr_pages = 0; 418 struct extent_map *em; 419 struct address_space *mapping = inode->i_mapping; 420 struct extent_map_tree *em_tree; 421 struct extent_io_tree *tree; 422 u64 end; 423 int misses = 0; 424 425 last_offset = bio_end_offset(cb->orig_bio); 426 em_tree = &BTRFS_I(inode)->extent_tree; 427 tree = &BTRFS_I(inode)->io_tree; 428 429 if (isize == 0) 430 return 0; 431 432 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 433 434 while (last_offset < compressed_end) { 435 pg_index = last_offset >> PAGE_SHIFT; 436 437 if (pg_index > end_index) 438 break; 439 440 page = xa_load(&mapping->i_pages, pg_index); 441 if (page && !xa_is_value(page)) { 442 misses++; 443 if (misses > 4) 444 break; 445 goto next; 446 } 447 448 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 449 ~__GFP_FS)); 450 if (!page) 451 break; 452 453 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 454 put_page(page); 455 goto next; 456 } 457 458 end = last_offset + PAGE_SIZE - 1; 459 /* 460 * at this point, we have a locked page in the page cache 461 * for these bytes in the file. But, we have to make 462 * sure they map to this compressed extent on disk. 463 */ 464 set_page_extent_mapped(page); 465 lock_extent(tree, last_offset, end); 466 read_lock(&em_tree->lock); 467 em = lookup_extent_mapping(em_tree, last_offset, 468 PAGE_SIZE); 469 read_unlock(&em_tree->lock); 470 471 if (!em || last_offset < em->start || 472 (last_offset + PAGE_SIZE > extent_map_end(em)) || 473 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 474 free_extent_map(em); 475 unlock_extent(tree, last_offset, end); 476 unlock_page(page); 477 put_page(page); 478 break; 479 } 480 free_extent_map(em); 481 482 if (page->index == end_index) { 483 char *userpage; 484 size_t zero_offset = isize & (PAGE_SIZE - 1); 485 486 if (zero_offset) { 487 int zeros; 488 zeros = PAGE_SIZE - zero_offset; 489 userpage = kmap_atomic(page); 490 memset(userpage + zero_offset, 0, zeros); 491 flush_dcache_page(page); 492 kunmap_atomic(userpage); 493 } 494 } 495 496 ret = bio_add_page(cb->orig_bio, page, 497 PAGE_SIZE, 0); 498 499 if (ret == PAGE_SIZE) { 500 nr_pages++; 501 put_page(page); 502 } else { 503 unlock_extent(tree, last_offset, end); 504 unlock_page(page); 505 put_page(page); 506 break; 507 } 508 next: 509 last_offset += PAGE_SIZE; 510 } 511 return 0; 512 } 513 514 /* 515 * for a compressed read, the bio we get passed has all the inode pages 516 * in it. We don't actually do IO on those pages but allocate new ones 517 * to hold the compressed pages on disk. 518 * 519 * bio->bi_iter.bi_sector points to the compressed extent on disk 520 * bio->bi_io_vec points to all of the inode pages 521 * 522 * After the compressed pages are read, we copy the bytes into the 523 * bio we were passed and then call the bio end_io calls 524 */ 525 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 526 int mirror_num, unsigned long bio_flags) 527 { 528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 529 struct extent_map_tree *em_tree; 530 struct compressed_bio *cb; 531 unsigned long compressed_len; 532 unsigned long nr_pages; 533 unsigned long pg_index; 534 struct page *page; 535 struct block_device *bdev; 536 struct bio *comp_bio; 537 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 538 u64 em_len; 539 u64 em_start; 540 struct extent_map *em; 541 blk_status_t ret = BLK_STS_RESOURCE; 542 int faili = 0; 543 u32 *sums; 544 545 em_tree = &BTRFS_I(inode)->extent_tree; 546 547 /* we need the actual starting offset of this extent in the file */ 548 read_lock(&em_tree->lock); 549 em = lookup_extent_mapping(em_tree, 550 page_offset(bio_first_page_all(bio)), 551 PAGE_SIZE); 552 read_unlock(&em_tree->lock); 553 if (!em) 554 return BLK_STS_IOERR; 555 556 compressed_len = em->block_len; 557 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 558 if (!cb) 559 goto out; 560 561 refcount_set(&cb->pending_bios, 0); 562 cb->errors = 0; 563 cb->inode = inode; 564 cb->mirror_num = mirror_num; 565 sums = &cb->sums; 566 567 cb->start = em->orig_start; 568 em_len = em->len; 569 em_start = em->start; 570 571 free_extent_map(em); 572 em = NULL; 573 574 cb->len = bio->bi_iter.bi_size; 575 cb->compressed_len = compressed_len; 576 cb->compress_type = extent_compress_type(bio_flags); 577 cb->orig_bio = bio; 578 579 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 580 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 581 GFP_NOFS); 582 if (!cb->compressed_pages) 583 goto fail1; 584 585 bdev = fs_info->fs_devices->latest_bdev; 586 587 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 588 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 589 __GFP_HIGHMEM); 590 if (!cb->compressed_pages[pg_index]) { 591 faili = pg_index - 1; 592 ret = BLK_STS_RESOURCE; 593 goto fail2; 594 } 595 } 596 faili = nr_pages - 1; 597 cb->nr_pages = nr_pages; 598 599 add_ra_bio_pages(inode, em_start + em_len, cb); 600 601 /* include any pages we added in add_ra-bio_pages */ 602 cb->len = bio->bi_iter.bi_size; 603 604 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 605 comp_bio->bi_opf = REQ_OP_READ; 606 comp_bio->bi_private = cb; 607 comp_bio->bi_end_io = end_compressed_bio_read; 608 refcount_set(&cb->pending_bios, 1); 609 610 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 611 int submit = 0; 612 613 page = cb->compressed_pages[pg_index]; 614 page->mapping = inode->i_mapping; 615 page->index = em_start >> PAGE_SHIFT; 616 617 if (comp_bio->bi_iter.bi_size) 618 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, 619 comp_bio, 0); 620 621 page->mapping = NULL; 622 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 623 PAGE_SIZE) { 624 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 625 BTRFS_WQ_ENDIO_DATA); 626 BUG_ON(ret); /* -ENOMEM */ 627 628 /* 629 * inc the count before we submit the bio so 630 * we know the end IO handler won't happen before 631 * we inc the count. Otherwise, the cb might get 632 * freed before we're done setting it up 633 */ 634 refcount_inc(&cb->pending_bios); 635 636 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 637 ret = btrfs_lookup_bio_sums(inode, comp_bio, 638 sums); 639 BUG_ON(ret); /* -ENOMEM */ 640 } 641 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 642 fs_info->sectorsize); 643 644 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 645 if (ret) { 646 comp_bio->bi_status = ret; 647 bio_endio(comp_bio); 648 } 649 650 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 651 comp_bio->bi_opf = REQ_OP_READ; 652 comp_bio->bi_private = cb; 653 comp_bio->bi_end_io = end_compressed_bio_read; 654 655 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 656 } 657 cur_disk_byte += PAGE_SIZE; 658 } 659 660 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 661 BUG_ON(ret); /* -ENOMEM */ 662 663 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 664 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 665 BUG_ON(ret); /* -ENOMEM */ 666 } 667 668 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 669 if (ret) { 670 comp_bio->bi_status = ret; 671 bio_endio(comp_bio); 672 } 673 674 return 0; 675 676 fail2: 677 while (faili >= 0) { 678 __free_page(cb->compressed_pages[faili]); 679 faili--; 680 } 681 682 kfree(cb->compressed_pages); 683 fail1: 684 kfree(cb); 685 out: 686 free_extent_map(em); 687 return ret; 688 } 689 690 /* 691 * Heuristic uses systematic sampling to collect data from the input data 692 * range, the logic can be tuned by the following constants: 693 * 694 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 695 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 696 */ 697 #define SAMPLING_READ_SIZE (16) 698 #define SAMPLING_INTERVAL (256) 699 700 /* 701 * For statistical analysis of the input data we consider bytes that form a 702 * Galois Field of 256 objects. Each object has an attribute count, ie. how 703 * many times the object appeared in the sample. 704 */ 705 #define BUCKET_SIZE (256) 706 707 /* 708 * The size of the sample is based on a statistical sampling rule of thumb. 709 * The common way is to perform sampling tests as long as the number of 710 * elements in each cell is at least 5. 711 * 712 * Instead of 5, we choose 32 to obtain more accurate results. 713 * If the data contain the maximum number of symbols, which is 256, we obtain a 714 * sample size bound by 8192. 715 * 716 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 717 * from up to 512 locations. 718 */ 719 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 720 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 721 722 struct bucket_item { 723 u32 count; 724 }; 725 726 struct heuristic_ws { 727 /* Partial copy of input data */ 728 u8 *sample; 729 u32 sample_size; 730 /* Buckets store counters for each byte value */ 731 struct bucket_item *bucket; 732 /* Sorting buffer */ 733 struct bucket_item *bucket_b; 734 struct list_head list; 735 }; 736 737 static void free_heuristic_ws(struct list_head *ws) 738 { 739 struct heuristic_ws *workspace; 740 741 workspace = list_entry(ws, struct heuristic_ws, list); 742 743 kvfree(workspace->sample); 744 kfree(workspace->bucket); 745 kfree(workspace->bucket_b); 746 kfree(workspace); 747 } 748 749 static struct list_head *alloc_heuristic_ws(void) 750 { 751 struct heuristic_ws *ws; 752 753 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 754 if (!ws) 755 return ERR_PTR(-ENOMEM); 756 757 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 758 if (!ws->sample) 759 goto fail; 760 761 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 762 if (!ws->bucket) 763 goto fail; 764 765 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 766 if (!ws->bucket_b) 767 goto fail; 768 769 INIT_LIST_HEAD(&ws->list); 770 return &ws->list; 771 fail: 772 free_heuristic_ws(&ws->list); 773 return ERR_PTR(-ENOMEM); 774 } 775 776 struct workspaces_list { 777 struct list_head idle_ws; 778 spinlock_t ws_lock; 779 /* Number of free workspaces */ 780 int free_ws; 781 /* Total number of allocated workspaces */ 782 atomic_t total_ws; 783 /* Waiters for a free workspace */ 784 wait_queue_head_t ws_wait; 785 }; 786 787 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 788 789 static struct workspaces_list btrfs_heuristic_ws; 790 791 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 792 &btrfs_zlib_compress, 793 &btrfs_lzo_compress, 794 &btrfs_zstd_compress, 795 }; 796 797 void __init btrfs_init_compress(void) 798 { 799 struct list_head *workspace; 800 int i; 801 802 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws); 803 spin_lock_init(&btrfs_heuristic_ws.ws_lock); 804 atomic_set(&btrfs_heuristic_ws.total_ws, 0); 805 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait); 806 807 workspace = alloc_heuristic_ws(); 808 if (IS_ERR(workspace)) { 809 pr_warn( 810 "BTRFS: cannot preallocate heuristic workspace, will try later\n"); 811 } else { 812 atomic_set(&btrfs_heuristic_ws.total_ws, 1); 813 btrfs_heuristic_ws.free_ws = 1; 814 list_add(workspace, &btrfs_heuristic_ws.idle_ws); 815 } 816 817 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 818 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 819 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 820 atomic_set(&btrfs_comp_ws[i].total_ws, 0); 821 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 822 823 /* 824 * Preallocate one workspace for each compression type so 825 * we can guarantee forward progress in the worst case 826 */ 827 workspace = btrfs_compress_op[i]->alloc_workspace(); 828 if (IS_ERR(workspace)) { 829 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n"); 830 } else { 831 atomic_set(&btrfs_comp_ws[i].total_ws, 1); 832 btrfs_comp_ws[i].free_ws = 1; 833 list_add(workspace, &btrfs_comp_ws[i].idle_ws); 834 } 835 } 836 } 837 838 /* 839 * This finds an available workspace or allocates a new one. 840 * If it's not possible to allocate a new one, waits until there's one. 841 * Preallocation makes a forward progress guarantees and we do not return 842 * errors. 843 */ 844 static struct list_head *__find_workspace(int type, bool heuristic) 845 { 846 struct list_head *workspace; 847 int cpus = num_online_cpus(); 848 int idx = type - 1; 849 unsigned nofs_flag; 850 struct list_head *idle_ws; 851 spinlock_t *ws_lock; 852 atomic_t *total_ws; 853 wait_queue_head_t *ws_wait; 854 int *free_ws; 855 856 if (heuristic) { 857 idle_ws = &btrfs_heuristic_ws.idle_ws; 858 ws_lock = &btrfs_heuristic_ws.ws_lock; 859 total_ws = &btrfs_heuristic_ws.total_ws; 860 ws_wait = &btrfs_heuristic_ws.ws_wait; 861 free_ws = &btrfs_heuristic_ws.free_ws; 862 } else { 863 idle_ws = &btrfs_comp_ws[idx].idle_ws; 864 ws_lock = &btrfs_comp_ws[idx].ws_lock; 865 total_ws = &btrfs_comp_ws[idx].total_ws; 866 ws_wait = &btrfs_comp_ws[idx].ws_wait; 867 free_ws = &btrfs_comp_ws[idx].free_ws; 868 } 869 870 again: 871 spin_lock(ws_lock); 872 if (!list_empty(idle_ws)) { 873 workspace = idle_ws->next; 874 list_del(workspace); 875 (*free_ws)--; 876 spin_unlock(ws_lock); 877 return workspace; 878 879 } 880 if (atomic_read(total_ws) > cpus) { 881 DEFINE_WAIT(wait); 882 883 spin_unlock(ws_lock); 884 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 885 if (atomic_read(total_ws) > cpus && !*free_ws) 886 schedule(); 887 finish_wait(ws_wait, &wait); 888 goto again; 889 } 890 atomic_inc(total_ws); 891 spin_unlock(ws_lock); 892 893 /* 894 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 895 * to turn it off here because we might get called from the restricted 896 * context of btrfs_compress_bio/btrfs_compress_pages 897 */ 898 nofs_flag = memalloc_nofs_save(); 899 if (heuristic) 900 workspace = alloc_heuristic_ws(); 901 else 902 workspace = btrfs_compress_op[idx]->alloc_workspace(); 903 memalloc_nofs_restore(nofs_flag); 904 905 if (IS_ERR(workspace)) { 906 atomic_dec(total_ws); 907 wake_up(ws_wait); 908 909 /* 910 * Do not return the error but go back to waiting. There's a 911 * workspace preallocated for each type and the compression 912 * time is bounded so we get to a workspace eventually. This 913 * makes our caller's life easier. 914 * 915 * To prevent silent and low-probability deadlocks (when the 916 * initial preallocation fails), check if there are any 917 * workspaces at all. 918 */ 919 if (atomic_read(total_ws) == 0) { 920 static DEFINE_RATELIMIT_STATE(_rs, 921 /* once per minute */ 60 * HZ, 922 /* no burst */ 1); 923 924 if (__ratelimit(&_rs)) { 925 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 926 } 927 } 928 goto again; 929 } 930 return workspace; 931 } 932 933 static struct list_head *find_workspace(int type) 934 { 935 return __find_workspace(type, false); 936 } 937 938 /* 939 * put a workspace struct back on the list or free it if we have enough 940 * idle ones sitting around 941 */ 942 static void __free_workspace(int type, struct list_head *workspace, 943 bool heuristic) 944 { 945 int idx = type - 1; 946 struct list_head *idle_ws; 947 spinlock_t *ws_lock; 948 atomic_t *total_ws; 949 wait_queue_head_t *ws_wait; 950 int *free_ws; 951 952 if (heuristic) { 953 idle_ws = &btrfs_heuristic_ws.idle_ws; 954 ws_lock = &btrfs_heuristic_ws.ws_lock; 955 total_ws = &btrfs_heuristic_ws.total_ws; 956 ws_wait = &btrfs_heuristic_ws.ws_wait; 957 free_ws = &btrfs_heuristic_ws.free_ws; 958 } else { 959 idle_ws = &btrfs_comp_ws[idx].idle_ws; 960 ws_lock = &btrfs_comp_ws[idx].ws_lock; 961 total_ws = &btrfs_comp_ws[idx].total_ws; 962 ws_wait = &btrfs_comp_ws[idx].ws_wait; 963 free_ws = &btrfs_comp_ws[idx].free_ws; 964 } 965 966 spin_lock(ws_lock); 967 if (*free_ws <= num_online_cpus()) { 968 list_add(workspace, idle_ws); 969 (*free_ws)++; 970 spin_unlock(ws_lock); 971 goto wake; 972 } 973 spin_unlock(ws_lock); 974 975 if (heuristic) 976 free_heuristic_ws(workspace); 977 else 978 btrfs_compress_op[idx]->free_workspace(workspace); 979 atomic_dec(total_ws); 980 wake: 981 cond_wake_up(ws_wait); 982 } 983 984 static void free_workspace(int type, struct list_head *ws) 985 { 986 return __free_workspace(type, ws, false); 987 } 988 989 /* 990 * cleanup function for module exit 991 */ 992 static void free_workspaces(void) 993 { 994 struct list_head *workspace; 995 int i; 996 997 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) { 998 workspace = btrfs_heuristic_ws.idle_ws.next; 999 list_del(workspace); 1000 free_heuristic_ws(workspace); 1001 atomic_dec(&btrfs_heuristic_ws.total_ws); 1002 } 1003 1004 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 1005 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 1006 workspace = btrfs_comp_ws[i].idle_ws.next; 1007 list_del(workspace); 1008 btrfs_compress_op[i]->free_workspace(workspace); 1009 atomic_dec(&btrfs_comp_ws[i].total_ws); 1010 } 1011 } 1012 } 1013 1014 /* 1015 * Given an address space and start and length, compress the bytes into @pages 1016 * that are allocated on demand. 1017 * 1018 * @type_level is encoded algorithm and level, where level 0 means whatever 1019 * default the algorithm chooses and is opaque here; 1020 * - compression algo are 0-3 1021 * - the level are bits 4-7 1022 * 1023 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1024 * and returns number of actually allocated pages 1025 * 1026 * @total_in is used to return the number of bytes actually read. It 1027 * may be smaller than the input length if we had to exit early because we 1028 * ran out of room in the pages array or because we cross the 1029 * max_out threshold. 1030 * 1031 * @total_out is an in/out parameter, must be set to the input length and will 1032 * be also used to return the total number of compressed bytes 1033 * 1034 * @max_out tells us the max number of bytes that we're allowed to 1035 * stuff into pages 1036 */ 1037 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1038 u64 start, struct page **pages, 1039 unsigned long *out_pages, 1040 unsigned long *total_in, 1041 unsigned long *total_out) 1042 { 1043 struct list_head *workspace; 1044 int ret; 1045 int type = type_level & 0xF; 1046 1047 workspace = find_workspace(type); 1048 1049 btrfs_compress_op[type - 1]->set_level(workspace, type_level); 1050 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 1051 start, pages, 1052 out_pages, 1053 total_in, total_out); 1054 free_workspace(type, workspace); 1055 return ret; 1056 } 1057 1058 /* 1059 * pages_in is an array of pages with compressed data. 1060 * 1061 * disk_start is the starting logical offset of this array in the file 1062 * 1063 * orig_bio contains the pages from the file that we want to decompress into 1064 * 1065 * srclen is the number of bytes in pages_in 1066 * 1067 * The basic idea is that we have a bio that was created by readpages. 1068 * The pages in the bio are for the uncompressed data, and they may not 1069 * be contiguous. They all correspond to the range of bytes covered by 1070 * the compressed extent. 1071 */ 1072 static int btrfs_decompress_bio(struct compressed_bio *cb) 1073 { 1074 struct list_head *workspace; 1075 int ret; 1076 int type = cb->compress_type; 1077 1078 workspace = find_workspace(type); 1079 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb); 1080 free_workspace(type, workspace); 1081 1082 return ret; 1083 } 1084 1085 /* 1086 * a less complex decompression routine. Our compressed data fits in a 1087 * single page, and we want to read a single page out of it. 1088 * start_byte tells us the offset into the compressed data we're interested in 1089 */ 1090 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1091 unsigned long start_byte, size_t srclen, size_t destlen) 1092 { 1093 struct list_head *workspace; 1094 int ret; 1095 1096 workspace = find_workspace(type); 1097 1098 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 1099 dest_page, start_byte, 1100 srclen, destlen); 1101 1102 free_workspace(type, workspace); 1103 return ret; 1104 } 1105 1106 void __cold btrfs_exit_compress(void) 1107 { 1108 free_workspaces(); 1109 } 1110 1111 /* 1112 * Copy uncompressed data from working buffer to pages. 1113 * 1114 * buf_start is the byte offset we're of the start of our workspace buffer. 1115 * 1116 * total_out is the last byte of the buffer 1117 */ 1118 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1119 unsigned long total_out, u64 disk_start, 1120 struct bio *bio) 1121 { 1122 unsigned long buf_offset; 1123 unsigned long current_buf_start; 1124 unsigned long start_byte; 1125 unsigned long prev_start_byte; 1126 unsigned long working_bytes = total_out - buf_start; 1127 unsigned long bytes; 1128 char *kaddr; 1129 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1130 1131 /* 1132 * start byte is the first byte of the page we're currently 1133 * copying into relative to the start of the compressed data. 1134 */ 1135 start_byte = page_offset(bvec.bv_page) - disk_start; 1136 1137 /* we haven't yet hit data corresponding to this page */ 1138 if (total_out <= start_byte) 1139 return 1; 1140 1141 /* 1142 * the start of the data we care about is offset into 1143 * the middle of our working buffer 1144 */ 1145 if (total_out > start_byte && buf_start < start_byte) { 1146 buf_offset = start_byte - buf_start; 1147 working_bytes -= buf_offset; 1148 } else { 1149 buf_offset = 0; 1150 } 1151 current_buf_start = buf_start; 1152 1153 /* copy bytes from the working buffer into the pages */ 1154 while (working_bytes > 0) { 1155 bytes = min_t(unsigned long, bvec.bv_len, 1156 PAGE_SIZE - buf_offset); 1157 bytes = min(bytes, working_bytes); 1158 1159 kaddr = kmap_atomic(bvec.bv_page); 1160 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1161 kunmap_atomic(kaddr); 1162 flush_dcache_page(bvec.bv_page); 1163 1164 buf_offset += bytes; 1165 working_bytes -= bytes; 1166 current_buf_start += bytes; 1167 1168 /* check if we need to pick another page */ 1169 bio_advance(bio, bytes); 1170 if (!bio->bi_iter.bi_size) 1171 return 0; 1172 bvec = bio_iter_iovec(bio, bio->bi_iter); 1173 prev_start_byte = start_byte; 1174 start_byte = page_offset(bvec.bv_page) - disk_start; 1175 1176 /* 1177 * We need to make sure we're only adjusting 1178 * our offset into compression working buffer when 1179 * we're switching pages. Otherwise we can incorrectly 1180 * keep copying when we were actually done. 1181 */ 1182 if (start_byte != prev_start_byte) { 1183 /* 1184 * make sure our new page is covered by this 1185 * working buffer 1186 */ 1187 if (total_out <= start_byte) 1188 return 1; 1189 1190 /* 1191 * the next page in the biovec might not be adjacent 1192 * to the last page, but it might still be found 1193 * inside this working buffer. bump our offset pointer 1194 */ 1195 if (total_out > start_byte && 1196 current_buf_start < start_byte) { 1197 buf_offset = start_byte - buf_start; 1198 working_bytes = total_out - start_byte; 1199 current_buf_start = buf_start + buf_offset; 1200 } 1201 } 1202 } 1203 1204 return 1; 1205 } 1206 1207 /* 1208 * Shannon Entropy calculation 1209 * 1210 * Pure byte distribution analysis fails to determine compressiability of data. 1211 * Try calculating entropy to estimate the average minimum number of bits 1212 * needed to encode the sampled data. 1213 * 1214 * For convenience, return the percentage of needed bits, instead of amount of 1215 * bits directly. 1216 * 1217 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1218 * and can be compressible with high probability 1219 * 1220 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1221 * 1222 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1223 */ 1224 #define ENTROPY_LVL_ACEPTABLE (65) 1225 #define ENTROPY_LVL_HIGH (80) 1226 1227 /* 1228 * For increasead precision in shannon_entropy calculation, 1229 * let's do pow(n, M) to save more digits after comma: 1230 * 1231 * - maximum int bit length is 64 1232 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1233 * - 13 * 4 = 52 < 64 -> M = 4 1234 * 1235 * So use pow(n, 4). 1236 */ 1237 static inline u32 ilog2_w(u64 n) 1238 { 1239 return ilog2(n * n * n * n); 1240 } 1241 1242 static u32 shannon_entropy(struct heuristic_ws *ws) 1243 { 1244 const u32 entropy_max = 8 * ilog2_w(2); 1245 u32 entropy_sum = 0; 1246 u32 p, p_base, sz_base; 1247 u32 i; 1248 1249 sz_base = ilog2_w(ws->sample_size); 1250 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1251 p = ws->bucket[i].count; 1252 p_base = ilog2_w(p); 1253 entropy_sum += p * (sz_base - p_base); 1254 } 1255 1256 entropy_sum /= ws->sample_size; 1257 return entropy_sum * 100 / entropy_max; 1258 } 1259 1260 #define RADIX_BASE 4U 1261 #define COUNTERS_SIZE (1U << RADIX_BASE) 1262 1263 static u8 get4bits(u64 num, int shift) { 1264 u8 low4bits; 1265 1266 num >>= shift; 1267 /* Reverse order */ 1268 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1269 return low4bits; 1270 } 1271 1272 /* 1273 * Use 4 bits as radix base 1274 * Use 16 u32 counters for calculating new possition in buf array 1275 * 1276 * @array - array that will be sorted 1277 * @array_buf - buffer array to store sorting results 1278 * must be equal in size to @array 1279 * @num - array size 1280 */ 1281 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1282 int num) 1283 { 1284 u64 max_num; 1285 u64 buf_num; 1286 u32 counters[COUNTERS_SIZE]; 1287 u32 new_addr; 1288 u32 addr; 1289 int bitlen; 1290 int shift; 1291 int i; 1292 1293 /* 1294 * Try avoid useless loop iterations for small numbers stored in big 1295 * counters. Example: 48 33 4 ... in 64bit array 1296 */ 1297 max_num = array[0].count; 1298 for (i = 1; i < num; i++) { 1299 buf_num = array[i].count; 1300 if (buf_num > max_num) 1301 max_num = buf_num; 1302 } 1303 1304 buf_num = ilog2(max_num); 1305 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1306 1307 shift = 0; 1308 while (shift < bitlen) { 1309 memset(counters, 0, sizeof(counters)); 1310 1311 for (i = 0; i < num; i++) { 1312 buf_num = array[i].count; 1313 addr = get4bits(buf_num, shift); 1314 counters[addr]++; 1315 } 1316 1317 for (i = 1; i < COUNTERS_SIZE; i++) 1318 counters[i] += counters[i - 1]; 1319 1320 for (i = num - 1; i >= 0; i--) { 1321 buf_num = array[i].count; 1322 addr = get4bits(buf_num, shift); 1323 counters[addr]--; 1324 new_addr = counters[addr]; 1325 array_buf[new_addr] = array[i]; 1326 } 1327 1328 shift += RADIX_BASE; 1329 1330 /* 1331 * Normal radix expects to move data from a temporary array, to 1332 * the main one. But that requires some CPU time. Avoid that 1333 * by doing another sort iteration to original array instead of 1334 * memcpy() 1335 */ 1336 memset(counters, 0, sizeof(counters)); 1337 1338 for (i = 0; i < num; i ++) { 1339 buf_num = array_buf[i].count; 1340 addr = get4bits(buf_num, shift); 1341 counters[addr]++; 1342 } 1343 1344 for (i = 1; i < COUNTERS_SIZE; i++) 1345 counters[i] += counters[i - 1]; 1346 1347 for (i = num - 1; i >= 0; i--) { 1348 buf_num = array_buf[i].count; 1349 addr = get4bits(buf_num, shift); 1350 counters[addr]--; 1351 new_addr = counters[addr]; 1352 array[new_addr] = array_buf[i]; 1353 } 1354 1355 shift += RADIX_BASE; 1356 } 1357 } 1358 1359 /* 1360 * Size of the core byte set - how many bytes cover 90% of the sample 1361 * 1362 * There are several types of structured binary data that use nearly all byte 1363 * values. The distribution can be uniform and counts in all buckets will be 1364 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1365 * 1366 * Other possibility is normal (Gaussian) distribution, where the data could 1367 * be potentially compressible, but we have to take a few more steps to decide 1368 * how much. 1369 * 1370 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1371 * compression algo can easy fix that 1372 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1373 * probability is not compressible 1374 */ 1375 #define BYTE_CORE_SET_LOW (64) 1376 #define BYTE_CORE_SET_HIGH (200) 1377 1378 static int byte_core_set_size(struct heuristic_ws *ws) 1379 { 1380 u32 i; 1381 u32 coreset_sum = 0; 1382 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1383 struct bucket_item *bucket = ws->bucket; 1384 1385 /* Sort in reverse order */ 1386 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1387 1388 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1389 coreset_sum += bucket[i].count; 1390 1391 if (coreset_sum > core_set_threshold) 1392 return i; 1393 1394 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1395 coreset_sum += bucket[i].count; 1396 if (coreset_sum > core_set_threshold) 1397 break; 1398 } 1399 1400 return i; 1401 } 1402 1403 /* 1404 * Count byte values in buckets. 1405 * This heuristic can detect textual data (configs, xml, json, html, etc). 1406 * Because in most text-like data byte set is restricted to limited number of 1407 * possible characters, and that restriction in most cases makes data easy to 1408 * compress. 1409 * 1410 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1411 * less - compressible 1412 * more - need additional analysis 1413 */ 1414 #define BYTE_SET_THRESHOLD (64) 1415 1416 static u32 byte_set_size(const struct heuristic_ws *ws) 1417 { 1418 u32 i; 1419 u32 byte_set_size = 0; 1420 1421 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1422 if (ws->bucket[i].count > 0) 1423 byte_set_size++; 1424 } 1425 1426 /* 1427 * Continue collecting count of byte values in buckets. If the byte 1428 * set size is bigger then the threshold, it's pointless to continue, 1429 * the detection technique would fail for this type of data. 1430 */ 1431 for (; i < BUCKET_SIZE; i++) { 1432 if (ws->bucket[i].count > 0) { 1433 byte_set_size++; 1434 if (byte_set_size > BYTE_SET_THRESHOLD) 1435 return byte_set_size; 1436 } 1437 } 1438 1439 return byte_set_size; 1440 } 1441 1442 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1443 { 1444 const u32 half_of_sample = ws->sample_size / 2; 1445 const u8 *data = ws->sample; 1446 1447 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1448 } 1449 1450 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1451 struct heuristic_ws *ws) 1452 { 1453 struct page *page; 1454 u64 index, index_end; 1455 u32 i, curr_sample_pos; 1456 u8 *in_data; 1457 1458 /* 1459 * Compression handles the input data by chunks of 128KiB 1460 * (defined by BTRFS_MAX_UNCOMPRESSED) 1461 * 1462 * We do the same for the heuristic and loop over the whole range. 1463 * 1464 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1465 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1466 */ 1467 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1468 end = start + BTRFS_MAX_UNCOMPRESSED; 1469 1470 index = start >> PAGE_SHIFT; 1471 index_end = end >> PAGE_SHIFT; 1472 1473 /* Don't miss unaligned end */ 1474 if (!IS_ALIGNED(end, PAGE_SIZE)) 1475 index_end++; 1476 1477 curr_sample_pos = 0; 1478 while (index < index_end) { 1479 page = find_get_page(inode->i_mapping, index); 1480 in_data = kmap(page); 1481 /* Handle case where the start is not aligned to PAGE_SIZE */ 1482 i = start % PAGE_SIZE; 1483 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1484 /* Don't sample any garbage from the last page */ 1485 if (start > end - SAMPLING_READ_SIZE) 1486 break; 1487 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1488 SAMPLING_READ_SIZE); 1489 i += SAMPLING_INTERVAL; 1490 start += SAMPLING_INTERVAL; 1491 curr_sample_pos += SAMPLING_READ_SIZE; 1492 } 1493 kunmap(page); 1494 put_page(page); 1495 1496 index++; 1497 } 1498 1499 ws->sample_size = curr_sample_pos; 1500 } 1501 1502 /* 1503 * Compression heuristic. 1504 * 1505 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1506 * quickly (compared to direct compression) detect data characteristics 1507 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1508 * data. 1509 * 1510 * The following types of analysis can be performed: 1511 * - detect mostly zero data 1512 * - detect data with low "byte set" size (text, etc) 1513 * - detect data with low/high "core byte" set 1514 * 1515 * Return non-zero if the compression should be done, 0 otherwise. 1516 */ 1517 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1518 { 1519 struct list_head *ws_list = __find_workspace(0, true); 1520 struct heuristic_ws *ws; 1521 u32 i; 1522 u8 byte; 1523 int ret = 0; 1524 1525 ws = list_entry(ws_list, struct heuristic_ws, list); 1526 1527 heuristic_collect_sample(inode, start, end, ws); 1528 1529 if (sample_repeated_patterns(ws)) { 1530 ret = 1; 1531 goto out; 1532 } 1533 1534 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1535 1536 for (i = 0; i < ws->sample_size; i++) { 1537 byte = ws->sample[i]; 1538 ws->bucket[byte].count++; 1539 } 1540 1541 i = byte_set_size(ws); 1542 if (i < BYTE_SET_THRESHOLD) { 1543 ret = 2; 1544 goto out; 1545 } 1546 1547 i = byte_core_set_size(ws); 1548 if (i <= BYTE_CORE_SET_LOW) { 1549 ret = 3; 1550 goto out; 1551 } 1552 1553 if (i >= BYTE_CORE_SET_HIGH) { 1554 ret = 0; 1555 goto out; 1556 } 1557 1558 i = shannon_entropy(ws); 1559 if (i <= ENTROPY_LVL_ACEPTABLE) { 1560 ret = 4; 1561 goto out; 1562 } 1563 1564 /* 1565 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1566 * needed to give green light to compression. 1567 * 1568 * For now just assume that compression at that level is not worth the 1569 * resources because: 1570 * 1571 * 1. it is possible to defrag the data later 1572 * 1573 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1574 * values, every bucket has counter at level ~54. The heuristic would 1575 * be confused. This can happen when data have some internal repeated 1576 * patterns like "abbacbbc...". This can be detected by analyzing 1577 * pairs of bytes, which is too costly. 1578 */ 1579 if (i < ENTROPY_LVL_HIGH) { 1580 ret = 5; 1581 goto out; 1582 } else { 1583 ret = 0; 1584 goto out; 1585 } 1586 1587 out: 1588 __free_workspace(0, ws_list, true); 1589 return ret; 1590 } 1591 1592 unsigned int btrfs_compress_str2level(const char *str) 1593 { 1594 if (strncmp(str, "zlib", 4) != 0) 1595 return 0; 1596 1597 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */ 1598 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0) 1599 return str[5] - '0'; 1600 1601 return BTRFS_ZLIB_DEFAULT_LEVEL; 1602 } 1603