xref: /openbmc/linux/fs/btrfs/compression.c (revision 5d331b7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
29 
30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31 
32 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33 {
34 	switch (type) {
35 	case BTRFS_COMPRESS_ZLIB:
36 	case BTRFS_COMPRESS_LZO:
37 	case BTRFS_COMPRESS_ZSTD:
38 	case BTRFS_COMPRESS_NONE:
39 		return btrfs_compress_types[type];
40 	}
41 
42 	return NULL;
43 }
44 
45 static int btrfs_decompress_bio(struct compressed_bio *cb);
46 
47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 				      unsigned long disk_size)
49 {
50 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51 
52 	return sizeof(struct compressed_bio) +
53 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 }
55 
56 static int check_compressed_csum(struct btrfs_inode *inode,
57 				 struct compressed_bio *cb,
58 				 u64 disk_start)
59 {
60 	int ret;
61 	struct page *page;
62 	unsigned long i;
63 	char *kaddr;
64 	u32 csum;
65 	u32 *cb_sum = &cb->sums;
66 
67 	if (inode->flags & BTRFS_INODE_NODATASUM)
68 		return 0;
69 
70 	for (i = 0; i < cb->nr_pages; i++) {
71 		page = cb->compressed_pages[i];
72 		csum = ~(u32)0;
73 
74 		kaddr = kmap_atomic(page);
75 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76 		btrfs_csum_final(csum, (u8 *)&csum);
77 		kunmap_atomic(kaddr);
78 
79 		if (csum != *cb_sum) {
80 			btrfs_print_data_csum_error(inode, disk_start, csum,
81 					*cb_sum, cb->mirror_num);
82 			ret = -EIO;
83 			goto fail;
84 		}
85 		cb_sum++;
86 
87 	}
88 	ret = 0;
89 fail:
90 	return ret;
91 }
92 
93 /* when we finish reading compressed pages from the disk, we
94  * decompress them and then run the bio end_io routines on the
95  * decompressed pages (in the inode address space).
96  *
97  * This allows the checksumming and other IO error handling routines
98  * to work normally
99  *
100  * The compressed pages are freed here, and it must be run
101  * in process context
102  */
103 static void end_compressed_bio_read(struct bio *bio)
104 {
105 	struct compressed_bio *cb = bio->bi_private;
106 	struct inode *inode;
107 	struct page *page;
108 	unsigned long index;
109 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110 	int ret = 0;
111 
112 	if (bio->bi_status)
113 		cb->errors = 1;
114 
115 	/* if there are more bios still pending for this compressed
116 	 * extent, just exit
117 	 */
118 	if (!refcount_dec_and_test(&cb->pending_bios))
119 		goto out;
120 
121 	/*
122 	 * Record the correct mirror_num in cb->orig_bio so that
123 	 * read-repair can work properly.
124 	 */
125 	ASSERT(btrfs_io_bio(cb->orig_bio));
126 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 	cb->mirror_num = mirror;
128 
129 	/*
130 	 * Some IO in this cb have failed, just skip checksum as there
131 	 * is no way it could be correct.
132 	 */
133 	if (cb->errors == 1)
134 		goto csum_failed;
135 
136 	inode = cb->inode;
137 	ret = check_compressed_csum(BTRFS_I(inode), cb,
138 				    (u64)bio->bi_iter.bi_sector << 9);
139 	if (ret)
140 		goto csum_failed;
141 
142 	/* ok, we're the last bio for this extent, lets start
143 	 * the decompression.
144 	 */
145 	ret = btrfs_decompress_bio(cb);
146 
147 csum_failed:
148 	if (ret)
149 		cb->errors = 1;
150 
151 	/* release the compressed pages */
152 	index = 0;
153 	for (index = 0; index < cb->nr_pages; index++) {
154 		page = cb->compressed_pages[index];
155 		page->mapping = NULL;
156 		put_page(page);
157 	}
158 
159 	/* do io completion on the original bio */
160 	if (cb->errors) {
161 		bio_io_error(cb->orig_bio);
162 	} else {
163 		int i;
164 		struct bio_vec *bvec;
165 
166 		/*
167 		 * we have verified the checksum already, set page
168 		 * checked so the end_io handlers know about it
169 		 */
170 		ASSERT(!bio_flagged(bio, BIO_CLONED));
171 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
172 			SetPageChecked(bvec->bv_page);
173 
174 		bio_endio(cb->orig_bio);
175 	}
176 
177 	/* finally free the cb struct */
178 	kfree(cb->compressed_pages);
179 	kfree(cb);
180 out:
181 	bio_put(bio);
182 }
183 
184 /*
185  * Clear the writeback bits on all of the file
186  * pages for a compressed write
187  */
188 static noinline void end_compressed_writeback(struct inode *inode,
189 					      const struct compressed_bio *cb)
190 {
191 	unsigned long index = cb->start >> PAGE_SHIFT;
192 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
193 	struct page *pages[16];
194 	unsigned long nr_pages = end_index - index + 1;
195 	int i;
196 	int ret;
197 
198 	if (cb->errors)
199 		mapping_set_error(inode->i_mapping, -EIO);
200 
201 	while (nr_pages > 0) {
202 		ret = find_get_pages_contig(inode->i_mapping, index,
203 				     min_t(unsigned long,
204 				     nr_pages, ARRAY_SIZE(pages)), pages);
205 		if (ret == 0) {
206 			nr_pages -= 1;
207 			index += 1;
208 			continue;
209 		}
210 		for (i = 0; i < ret; i++) {
211 			if (cb->errors)
212 				SetPageError(pages[i]);
213 			end_page_writeback(pages[i]);
214 			put_page(pages[i]);
215 		}
216 		nr_pages -= ret;
217 		index += ret;
218 	}
219 	/* the inode may be gone now */
220 }
221 
222 /*
223  * do the cleanup once all the compressed pages hit the disk.
224  * This will clear writeback on the file pages and free the compressed
225  * pages.
226  *
227  * This also calls the writeback end hooks for the file pages so that
228  * metadata and checksums can be updated in the file.
229  */
230 static void end_compressed_bio_write(struct bio *bio)
231 {
232 	struct extent_io_tree *tree;
233 	struct compressed_bio *cb = bio->bi_private;
234 	struct inode *inode;
235 	struct page *page;
236 	unsigned long index;
237 
238 	if (bio->bi_status)
239 		cb->errors = 1;
240 
241 	/* if there are more bios still pending for this compressed
242 	 * extent, just exit
243 	 */
244 	if (!refcount_dec_and_test(&cb->pending_bios))
245 		goto out;
246 
247 	/* ok, we're the last bio for this extent, step one is to
248 	 * call back into the FS and do all the end_io operations
249 	 */
250 	inode = cb->inode;
251 	tree = &BTRFS_I(inode)->io_tree;
252 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
253 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
254 					 cb->start,
255 					 cb->start + cb->len - 1,
256 					 NULL,
257 					 bio->bi_status ?
258 					 BLK_STS_OK : BLK_STS_NOTSUPP);
259 	cb->compressed_pages[0]->mapping = NULL;
260 
261 	end_compressed_writeback(inode, cb);
262 	/* note, our inode could be gone now */
263 
264 	/*
265 	 * release the compressed pages, these came from alloc_page and
266 	 * are not attached to the inode at all
267 	 */
268 	index = 0;
269 	for (index = 0; index < cb->nr_pages; index++) {
270 		page = cb->compressed_pages[index];
271 		page->mapping = NULL;
272 		put_page(page);
273 	}
274 
275 	/* finally free the cb struct */
276 	kfree(cb->compressed_pages);
277 	kfree(cb);
278 out:
279 	bio_put(bio);
280 }
281 
282 /*
283  * worker function to build and submit bios for previously compressed pages.
284  * The corresponding pages in the inode should be marked for writeback
285  * and the compressed pages should have a reference on them for dropping
286  * when the IO is complete.
287  *
288  * This also checksums the file bytes and gets things ready for
289  * the end io hooks.
290  */
291 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
292 				 unsigned long len, u64 disk_start,
293 				 unsigned long compressed_len,
294 				 struct page **compressed_pages,
295 				 unsigned long nr_pages,
296 				 unsigned int write_flags)
297 {
298 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
299 	struct bio *bio = NULL;
300 	struct compressed_bio *cb;
301 	unsigned long bytes_left;
302 	int pg_index = 0;
303 	struct page *page;
304 	u64 first_byte = disk_start;
305 	struct block_device *bdev;
306 	blk_status_t ret;
307 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
308 
309 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
310 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
311 	if (!cb)
312 		return BLK_STS_RESOURCE;
313 	refcount_set(&cb->pending_bios, 0);
314 	cb->errors = 0;
315 	cb->inode = inode;
316 	cb->start = start;
317 	cb->len = len;
318 	cb->mirror_num = 0;
319 	cb->compressed_pages = compressed_pages;
320 	cb->compressed_len = compressed_len;
321 	cb->orig_bio = NULL;
322 	cb->nr_pages = nr_pages;
323 
324 	bdev = fs_info->fs_devices->latest_bdev;
325 
326 	bio = btrfs_bio_alloc(bdev, first_byte);
327 	bio->bi_opf = REQ_OP_WRITE | write_flags;
328 	bio->bi_private = cb;
329 	bio->bi_end_io = end_compressed_bio_write;
330 	refcount_set(&cb->pending_bios, 1);
331 
332 	/* create and submit bios for the compressed pages */
333 	bytes_left = compressed_len;
334 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
335 		int submit = 0;
336 
337 		page = compressed_pages[pg_index];
338 		page->mapping = inode->i_mapping;
339 		if (bio->bi_iter.bi_size)
340 			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0);
341 
342 		page->mapping = NULL;
343 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
344 		    PAGE_SIZE) {
345 			/*
346 			 * inc the count before we submit the bio so
347 			 * we know the end IO handler won't happen before
348 			 * we inc the count.  Otherwise, the cb might get
349 			 * freed before we're done setting it up
350 			 */
351 			refcount_inc(&cb->pending_bios);
352 			ret = btrfs_bio_wq_end_io(fs_info, bio,
353 						  BTRFS_WQ_ENDIO_DATA);
354 			BUG_ON(ret); /* -ENOMEM */
355 
356 			if (!skip_sum) {
357 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
358 				BUG_ON(ret); /* -ENOMEM */
359 			}
360 
361 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
362 			if (ret) {
363 				bio->bi_status = ret;
364 				bio_endio(bio);
365 			}
366 
367 			bio = btrfs_bio_alloc(bdev, first_byte);
368 			bio->bi_opf = REQ_OP_WRITE | write_flags;
369 			bio->bi_private = cb;
370 			bio->bi_end_io = end_compressed_bio_write;
371 			bio_add_page(bio, page, PAGE_SIZE, 0);
372 		}
373 		if (bytes_left < PAGE_SIZE) {
374 			btrfs_info(fs_info,
375 					"bytes left %lu compress len %lu nr %lu",
376 			       bytes_left, cb->compressed_len, cb->nr_pages);
377 		}
378 		bytes_left -= PAGE_SIZE;
379 		first_byte += PAGE_SIZE;
380 		cond_resched();
381 	}
382 
383 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
384 	BUG_ON(ret); /* -ENOMEM */
385 
386 	if (!skip_sum) {
387 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
388 		BUG_ON(ret); /* -ENOMEM */
389 	}
390 
391 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
392 	if (ret) {
393 		bio->bi_status = ret;
394 		bio_endio(bio);
395 	}
396 
397 	return 0;
398 }
399 
400 static u64 bio_end_offset(struct bio *bio)
401 {
402 	struct bio_vec *last = bio_last_bvec_all(bio);
403 
404 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
405 }
406 
407 static noinline int add_ra_bio_pages(struct inode *inode,
408 				     u64 compressed_end,
409 				     struct compressed_bio *cb)
410 {
411 	unsigned long end_index;
412 	unsigned long pg_index;
413 	u64 last_offset;
414 	u64 isize = i_size_read(inode);
415 	int ret;
416 	struct page *page;
417 	unsigned long nr_pages = 0;
418 	struct extent_map *em;
419 	struct address_space *mapping = inode->i_mapping;
420 	struct extent_map_tree *em_tree;
421 	struct extent_io_tree *tree;
422 	u64 end;
423 	int misses = 0;
424 
425 	last_offset = bio_end_offset(cb->orig_bio);
426 	em_tree = &BTRFS_I(inode)->extent_tree;
427 	tree = &BTRFS_I(inode)->io_tree;
428 
429 	if (isize == 0)
430 		return 0;
431 
432 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
433 
434 	while (last_offset < compressed_end) {
435 		pg_index = last_offset >> PAGE_SHIFT;
436 
437 		if (pg_index > end_index)
438 			break;
439 
440 		page = xa_load(&mapping->i_pages, pg_index);
441 		if (page && !xa_is_value(page)) {
442 			misses++;
443 			if (misses > 4)
444 				break;
445 			goto next;
446 		}
447 
448 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
449 								 ~__GFP_FS));
450 		if (!page)
451 			break;
452 
453 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
454 			put_page(page);
455 			goto next;
456 		}
457 
458 		end = last_offset + PAGE_SIZE - 1;
459 		/*
460 		 * at this point, we have a locked page in the page cache
461 		 * for these bytes in the file.  But, we have to make
462 		 * sure they map to this compressed extent on disk.
463 		 */
464 		set_page_extent_mapped(page);
465 		lock_extent(tree, last_offset, end);
466 		read_lock(&em_tree->lock);
467 		em = lookup_extent_mapping(em_tree, last_offset,
468 					   PAGE_SIZE);
469 		read_unlock(&em_tree->lock);
470 
471 		if (!em || last_offset < em->start ||
472 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
473 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
474 			free_extent_map(em);
475 			unlock_extent(tree, last_offset, end);
476 			unlock_page(page);
477 			put_page(page);
478 			break;
479 		}
480 		free_extent_map(em);
481 
482 		if (page->index == end_index) {
483 			char *userpage;
484 			size_t zero_offset = isize & (PAGE_SIZE - 1);
485 
486 			if (zero_offset) {
487 				int zeros;
488 				zeros = PAGE_SIZE - zero_offset;
489 				userpage = kmap_atomic(page);
490 				memset(userpage + zero_offset, 0, zeros);
491 				flush_dcache_page(page);
492 				kunmap_atomic(userpage);
493 			}
494 		}
495 
496 		ret = bio_add_page(cb->orig_bio, page,
497 				   PAGE_SIZE, 0);
498 
499 		if (ret == PAGE_SIZE) {
500 			nr_pages++;
501 			put_page(page);
502 		} else {
503 			unlock_extent(tree, last_offset, end);
504 			unlock_page(page);
505 			put_page(page);
506 			break;
507 		}
508 next:
509 		last_offset += PAGE_SIZE;
510 	}
511 	return 0;
512 }
513 
514 /*
515  * for a compressed read, the bio we get passed has all the inode pages
516  * in it.  We don't actually do IO on those pages but allocate new ones
517  * to hold the compressed pages on disk.
518  *
519  * bio->bi_iter.bi_sector points to the compressed extent on disk
520  * bio->bi_io_vec points to all of the inode pages
521  *
522  * After the compressed pages are read, we copy the bytes into the
523  * bio we were passed and then call the bio end_io calls
524  */
525 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
526 				 int mirror_num, unsigned long bio_flags)
527 {
528 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
529 	struct extent_map_tree *em_tree;
530 	struct compressed_bio *cb;
531 	unsigned long compressed_len;
532 	unsigned long nr_pages;
533 	unsigned long pg_index;
534 	struct page *page;
535 	struct block_device *bdev;
536 	struct bio *comp_bio;
537 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
538 	u64 em_len;
539 	u64 em_start;
540 	struct extent_map *em;
541 	blk_status_t ret = BLK_STS_RESOURCE;
542 	int faili = 0;
543 	u32 *sums;
544 
545 	em_tree = &BTRFS_I(inode)->extent_tree;
546 
547 	/* we need the actual starting offset of this extent in the file */
548 	read_lock(&em_tree->lock);
549 	em = lookup_extent_mapping(em_tree,
550 				   page_offset(bio_first_page_all(bio)),
551 				   PAGE_SIZE);
552 	read_unlock(&em_tree->lock);
553 	if (!em)
554 		return BLK_STS_IOERR;
555 
556 	compressed_len = em->block_len;
557 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
558 	if (!cb)
559 		goto out;
560 
561 	refcount_set(&cb->pending_bios, 0);
562 	cb->errors = 0;
563 	cb->inode = inode;
564 	cb->mirror_num = mirror_num;
565 	sums = &cb->sums;
566 
567 	cb->start = em->orig_start;
568 	em_len = em->len;
569 	em_start = em->start;
570 
571 	free_extent_map(em);
572 	em = NULL;
573 
574 	cb->len = bio->bi_iter.bi_size;
575 	cb->compressed_len = compressed_len;
576 	cb->compress_type = extent_compress_type(bio_flags);
577 	cb->orig_bio = bio;
578 
579 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
580 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
581 				       GFP_NOFS);
582 	if (!cb->compressed_pages)
583 		goto fail1;
584 
585 	bdev = fs_info->fs_devices->latest_bdev;
586 
587 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
588 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
589 							      __GFP_HIGHMEM);
590 		if (!cb->compressed_pages[pg_index]) {
591 			faili = pg_index - 1;
592 			ret = BLK_STS_RESOURCE;
593 			goto fail2;
594 		}
595 	}
596 	faili = nr_pages - 1;
597 	cb->nr_pages = nr_pages;
598 
599 	add_ra_bio_pages(inode, em_start + em_len, cb);
600 
601 	/* include any pages we added in add_ra-bio_pages */
602 	cb->len = bio->bi_iter.bi_size;
603 
604 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
605 	comp_bio->bi_opf = REQ_OP_READ;
606 	comp_bio->bi_private = cb;
607 	comp_bio->bi_end_io = end_compressed_bio_read;
608 	refcount_set(&cb->pending_bios, 1);
609 
610 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
611 		int submit = 0;
612 
613 		page = cb->compressed_pages[pg_index];
614 		page->mapping = inode->i_mapping;
615 		page->index = em_start >> PAGE_SHIFT;
616 
617 		if (comp_bio->bi_iter.bi_size)
618 			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE,
619 					comp_bio, 0);
620 
621 		page->mapping = NULL;
622 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
623 		    PAGE_SIZE) {
624 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
625 						  BTRFS_WQ_ENDIO_DATA);
626 			BUG_ON(ret); /* -ENOMEM */
627 
628 			/*
629 			 * inc the count before we submit the bio so
630 			 * we know the end IO handler won't happen before
631 			 * we inc the count.  Otherwise, the cb might get
632 			 * freed before we're done setting it up
633 			 */
634 			refcount_inc(&cb->pending_bios);
635 
636 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
637 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
638 							    sums);
639 				BUG_ON(ret); /* -ENOMEM */
640 			}
641 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
642 					     fs_info->sectorsize);
643 
644 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
645 			if (ret) {
646 				comp_bio->bi_status = ret;
647 				bio_endio(comp_bio);
648 			}
649 
650 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
651 			comp_bio->bi_opf = REQ_OP_READ;
652 			comp_bio->bi_private = cb;
653 			comp_bio->bi_end_io = end_compressed_bio_read;
654 
655 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
656 		}
657 		cur_disk_byte += PAGE_SIZE;
658 	}
659 
660 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
661 	BUG_ON(ret); /* -ENOMEM */
662 
663 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
664 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
665 		BUG_ON(ret); /* -ENOMEM */
666 	}
667 
668 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
669 	if (ret) {
670 		comp_bio->bi_status = ret;
671 		bio_endio(comp_bio);
672 	}
673 
674 	return 0;
675 
676 fail2:
677 	while (faili >= 0) {
678 		__free_page(cb->compressed_pages[faili]);
679 		faili--;
680 	}
681 
682 	kfree(cb->compressed_pages);
683 fail1:
684 	kfree(cb);
685 out:
686 	free_extent_map(em);
687 	return ret;
688 }
689 
690 /*
691  * Heuristic uses systematic sampling to collect data from the input data
692  * range, the logic can be tuned by the following constants:
693  *
694  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
695  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
696  */
697 #define SAMPLING_READ_SIZE	(16)
698 #define SAMPLING_INTERVAL	(256)
699 
700 /*
701  * For statistical analysis of the input data we consider bytes that form a
702  * Galois Field of 256 objects. Each object has an attribute count, ie. how
703  * many times the object appeared in the sample.
704  */
705 #define BUCKET_SIZE		(256)
706 
707 /*
708  * The size of the sample is based on a statistical sampling rule of thumb.
709  * The common way is to perform sampling tests as long as the number of
710  * elements in each cell is at least 5.
711  *
712  * Instead of 5, we choose 32 to obtain more accurate results.
713  * If the data contain the maximum number of symbols, which is 256, we obtain a
714  * sample size bound by 8192.
715  *
716  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
717  * from up to 512 locations.
718  */
719 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
720 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
721 
722 struct bucket_item {
723 	u32 count;
724 };
725 
726 struct heuristic_ws {
727 	/* Partial copy of input data */
728 	u8 *sample;
729 	u32 sample_size;
730 	/* Buckets store counters for each byte value */
731 	struct bucket_item *bucket;
732 	/* Sorting buffer */
733 	struct bucket_item *bucket_b;
734 	struct list_head list;
735 };
736 
737 static void free_heuristic_ws(struct list_head *ws)
738 {
739 	struct heuristic_ws *workspace;
740 
741 	workspace = list_entry(ws, struct heuristic_ws, list);
742 
743 	kvfree(workspace->sample);
744 	kfree(workspace->bucket);
745 	kfree(workspace->bucket_b);
746 	kfree(workspace);
747 }
748 
749 static struct list_head *alloc_heuristic_ws(void)
750 {
751 	struct heuristic_ws *ws;
752 
753 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
754 	if (!ws)
755 		return ERR_PTR(-ENOMEM);
756 
757 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
758 	if (!ws->sample)
759 		goto fail;
760 
761 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
762 	if (!ws->bucket)
763 		goto fail;
764 
765 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
766 	if (!ws->bucket_b)
767 		goto fail;
768 
769 	INIT_LIST_HEAD(&ws->list);
770 	return &ws->list;
771 fail:
772 	free_heuristic_ws(&ws->list);
773 	return ERR_PTR(-ENOMEM);
774 }
775 
776 struct workspaces_list {
777 	struct list_head idle_ws;
778 	spinlock_t ws_lock;
779 	/* Number of free workspaces */
780 	int free_ws;
781 	/* Total number of allocated workspaces */
782 	atomic_t total_ws;
783 	/* Waiters for a free workspace */
784 	wait_queue_head_t ws_wait;
785 };
786 
787 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
788 
789 static struct workspaces_list btrfs_heuristic_ws;
790 
791 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
792 	&btrfs_zlib_compress,
793 	&btrfs_lzo_compress,
794 	&btrfs_zstd_compress,
795 };
796 
797 void __init btrfs_init_compress(void)
798 {
799 	struct list_head *workspace;
800 	int i;
801 
802 	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
803 	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
804 	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
805 	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
806 
807 	workspace = alloc_heuristic_ws();
808 	if (IS_ERR(workspace)) {
809 		pr_warn(
810 	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
811 	} else {
812 		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
813 		btrfs_heuristic_ws.free_ws = 1;
814 		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
815 	}
816 
817 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
818 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
819 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
820 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
821 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
822 
823 		/*
824 		 * Preallocate one workspace for each compression type so
825 		 * we can guarantee forward progress in the worst case
826 		 */
827 		workspace = btrfs_compress_op[i]->alloc_workspace();
828 		if (IS_ERR(workspace)) {
829 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
830 		} else {
831 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
832 			btrfs_comp_ws[i].free_ws = 1;
833 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
834 		}
835 	}
836 }
837 
838 /*
839  * This finds an available workspace or allocates a new one.
840  * If it's not possible to allocate a new one, waits until there's one.
841  * Preallocation makes a forward progress guarantees and we do not return
842  * errors.
843  */
844 static struct list_head *__find_workspace(int type, bool heuristic)
845 {
846 	struct list_head *workspace;
847 	int cpus = num_online_cpus();
848 	int idx = type - 1;
849 	unsigned nofs_flag;
850 	struct list_head *idle_ws;
851 	spinlock_t *ws_lock;
852 	atomic_t *total_ws;
853 	wait_queue_head_t *ws_wait;
854 	int *free_ws;
855 
856 	if (heuristic) {
857 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
858 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
859 		total_ws = &btrfs_heuristic_ws.total_ws;
860 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
861 		free_ws	 = &btrfs_heuristic_ws.free_ws;
862 	} else {
863 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
864 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
865 		total_ws = &btrfs_comp_ws[idx].total_ws;
866 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
867 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
868 	}
869 
870 again:
871 	spin_lock(ws_lock);
872 	if (!list_empty(idle_ws)) {
873 		workspace = idle_ws->next;
874 		list_del(workspace);
875 		(*free_ws)--;
876 		spin_unlock(ws_lock);
877 		return workspace;
878 
879 	}
880 	if (atomic_read(total_ws) > cpus) {
881 		DEFINE_WAIT(wait);
882 
883 		spin_unlock(ws_lock);
884 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
885 		if (atomic_read(total_ws) > cpus && !*free_ws)
886 			schedule();
887 		finish_wait(ws_wait, &wait);
888 		goto again;
889 	}
890 	atomic_inc(total_ws);
891 	spin_unlock(ws_lock);
892 
893 	/*
894 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
895 	 * to turn it off here because we might get called from the restricted
896 	 * context of btrfs_compress_bio/btrfs_compress_pages
897 	 */
898 	nofs_flag = memalloc_nofs_save();
899 	if (heuristic)
900 		workspace = alloc_heuristic_ws();
901 	else
902 		workspace = btrfs_compress_op[idx]->alloc_workspace();
903 	memalloc_nofs_restore(nofs_flag);
904 
905 	if (IS_ERR(workspace)) {
906 		atomic_dec(total_ws);
907 		wake_up(ws_wait);
908 
909 		/*
910 		 * Do not return the error but go back to waiting. There's a
911 		 * workspace preallocated for each type and the compression
912 		 * time is bounded so we get to a workspace eventually. This
913 		 * makes our caller's life easier.
914 		 *
915 		 * To prevent silent and low-probability deadlocks (when the
916 		 * initial preallocation fails), check if there are any
917 		 * workspaces at all.
918 		 */
919 		if (atomic_read(total_ws) == 0) {
920 			static DEFINE_RATELIMIT_STATE(_rs,
921 					/* once per minute */ 60 * HZ,
922 					/* no burst */ 1);
923 
924 			if (__ratelimit(&_rs)) {
925 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
926 			}
927 		}
928 		goto again;
929 	}
930 	return workspace;
931 }
932 
933 static struct list_head *find_workspace(int type)
934 {
935 	return __find_workspace(type, false);
936 }
937 
938 /*
939  * put a workspace struct back on the list or free it if we have enough
940  * idle ones sitting around
941  */
942 static void __free_workspace(int type, struct list_head *workspace,
943 			     bool heuristic)
944 {
945 	int idx = type - 1;
946 	struct list_head *idle_ws;
947 	spinlock_t *ws_lock;
948 	atomic_t *total_ws;
949 	wait_queue_head_t *ws_wait;
950 	int *free_ws;
951 
952 	if (heuristic) {
953 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
954 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
955 		total_ws = &btrfs_heuristic_ws.total_ws;
956 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
957 		free_ws	 = &btrfs_heuristic_ws.free_ws;
958 	} else {
959 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
960 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
961 		total_ws = &btrfs_comp_ws[idx].total_ws;
962 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
963 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
964 	}
965 
966 	spin_lock(ws_lock);
967 	if (*free_ws <= num_online_cpus()) {
968 		list_add(workspace, idle_ws);
969 		(*free_ws)++;
970 		spin_unlock(ws_lock);
971 		goto wake;
972 	}
973 	spin_unlock(ws_lock);
974 
975 	if (heuristic)
976 		free_heuristic_ws(workspace);
977 	else
978 		btrfs_compress_op[idx]->free_workspace(workspace);
979 	atomic_dec(total_ws);
980 wake:
981 	cond_wake_up(ws_wait);
982 }
983 
984 static void free_workspace(int type, struct list_head *ws)
985 {
986 	return __free_workspace(type, ws, false);
987 }
988 
989 /*
990  * cleanup function for module exit
991  */
992 static void free_workspaces(void)
993 {
994 	struct list_head *workspace;
995 	int i;
996 
997 	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
998 		workspace = btrfs_heuristic_ws.idle_ws.next;
999 		list_del(workspace);
1000 		free_heuristic_ws(workspace);
1001 		atomic_dec(&btrfs_heuristic_ws.total_ws);
1002 	}
1003 
1004 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1005 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1006 			workspace = btrfs_comp_ws[i].idle_ws.next;
1007 			list_del(workspace);
1008 			btrfs_compress_op[i]->free_workspace(workspace);
1009 			atomic_dec(&btrfs_comp_ws[i].total_ws);
1010 		}
1011 	}
1012 }
1013 
1014 /*
1015  * Given an address space and start and length, compress the bytes into @pages
1016  * that are allocated on demand.
1017  *
1018  * @type_level is encoded algorithm and level, where level 0 means whatever
1019  * default the algorithm chooses and is opaque here;
1020  * - compression algo are 0-3
1021  * - the level are bits 4-7
1022  *
1023  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1024  * and returns number of actually allocated pages
1025  *
1026  * @total_in is used to return the number of bytes actually read.  It
1027  * may be smaller than the input length if we had to exit early because we
1028  * ran out of room in the pages array or because we cross the
1029  * max_out threshold.
1030  *
1031  * @total_out is an in/out parameter, must be set to the input length and will
1032  * be also used to return the total number of compressed bytes
1033  *
1034  * @max_out tells us the max number of bytes that we're allowed to
1035  * stuff into pages
1036  */
1037 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1038 			 u64 start, struct page **pages,
1039 			 unsigned long *out_pages,
1040 			 unsigned long *total_in,
1041 			 unsigned long *total_out)
1042 {
1043 	struct list_head *workspace;
1044 	int ret;
1045 	int type = type_level & 0xF;
1046 
1047 	workspace = find_workspace(type);
1048 
1049 	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1050 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1051 						      start, pages,
1052 						      out_pages,
1053 						      total_in, total_out);
1054 	free_workspace(type, workspace);
1055 	return ret;
1056 }
1057 
1058 /*
1059  * pages_in is an array of pages with compressed data.
1060  *
1061  * disk_start is the starting logical offset of this array in the file
1062  *
1063  * orig_bio contains the pages from the file that we want to decompress into
1064  *
1065  * srclen is the number of bytes in pages_in
1066  *
1067  * The basic idea is that we have a bio that was created by readpages.
1068  * The pages in the bio are for the uncompressed data, and they may not
1069  * be contiguous.  They all correspond to the range of bytes covered by
1070  * the compressed extent.
1071  */
1072 static int btrfs_decompress_bio(struct compressed_bio *cb)
1073 {
1074 	struct list_head *workspace;
1075 	int ret;
1076 	int type = cb->compress_type;
1077 
1078 	workspace = find_workspace(type);
1079 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1080 	free_workspace(type, workspace);
1081 
1082 	return ret;
1083 }
1084 
1085 /*
1086  * a less complex decompression routine.  Our compressed data fits in a
1087  * single page, and we want to read a single page out of it.
1088  * start_byte tells us the offset into the compressed data we're interested in
1089  */
1090 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1091 		     unsigned long start_byte, size_t srclen, size_t destlen)
1092 {
1093 	struct list_head *workspace;
1094 	int ret;
1095 
1096 	workspace = find_workspace(type);
1097 
1098 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1099 						  dest_page, start_byte,
1100 						  srclen, destlen);
1101 
1102 	free_workspace(type, workspace);
1103 	return ret;
1104 }
1105 
1106 void __cold btrfs_exit_compress(void)
1107 {
1108 	free_workspaces();
1109 }
1110 
1111 /*
1112  * Copy uncompressed data from working buffer to pages.
1113  *
1114  * buf_start is the byte offset we're of the start of our workspace buffer.
1115  *
1116  * total_out is the last byte of the buffer
1117  */
1118 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1119 			      unsigned long total_out, u64 disk_start,
1120 			      struct bio *bio)
1121 {
1122 	unsigned long buf_offset;
1123 	unsigned long current_buf_start;
1124 	unsigned long start_byte;
1125 	unsigned long prev_start_byte;
1126 	unsigned long working_bytes = total_out - buf_start;
1127 	unsigned long bytes;
1128 	char *kaddr;
1129 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1130 
1131 	/*
1132 	 * start byte is the first byte of the page we're currently
1133 	 * copying into relative to the start of the compressed data.
1134 	 */
1135 	start_byte = page_offset(bvec.bv_page) - disk_start;
1136 
1137 	/* we haven't yet hit data corresponding to this page */
1138 	if (total_out <= start_byte)
1139 		return 1;
1140 
1141 	/*
1142 	 * the start of the data we care about is offset into
1143 	 * the middle of our working buffer
1144 	 */
1145 	if (total_out > start_byte && buf_start < start_byte) {
1146 		buf_offset = start_byte - buf_start;
1147 		working_bytes -= buf_offset;
1148 	} else {
1149 		buf_offset = 0;
1150 	}
1151 	current_buf_start = buf_start;
1152 
1153 	/* copy bytes from the working buffer into the pages */
1154 	while (working_bytes > 0) {
1155 		bytes = min_t(unsigned long, bvec.bv_len,
1156 				PAGE_SIZE - buf_offset);
1157 		bytes = min(bytes, working_bytes);
1158 
1159 		kaddr = kmap_atomic(bvec.bv_page);
1160 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1161 		kunmap_atomic(kaddr);
1162 		flush_dcache_page(bvec.bv_page);
1163 
1164 		buf_offset += bytes;
1165 		working_bytes -= bytes;
1166 		current_buf_start += bytes;
1167 
1168 		/* check if we need to pick another page */
1169 		bio_advance(bio, bytes);
1170 		if (!bio->bi_iter.bi_size)
1171 			return 0;
1172 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1173 		prev_start_byte = start_byte;
1174 		start_byte = page_offset(bvec.bv_page) - disk_start;
1175 
1176 		/*
1177 		 * We need to make sure we're only adjusting
1178 		 * our offset into compression working buffer when
1179 		 * we're switching pages.  Otherwise we can incorrectly
1180 		 * keep copying when we were actually done.
1181 		 */
1182 		if (start_byte != prev_start_byte) {
1183 			/*
1184 			 * make sure our new page is covered by this
1185 			 * working buffer
1186 			 */
1187 			if (total_out <= start_byte)
1188 				return 1;
1189 
1190 			/*
1191 			 * the next page in the biovec might not be adjacent
1192 			 * to the last page, but it might still be found
1193 			 * inside this working buffer. bump our offset pointer
1194 			 */
1195 			if (total_out > start_byte &&
1196 			    current_buf_start < start_byte) {
1197 				buf_offset = start_byte - buf_start;
1198 				working_bytes = total_out - start_byte;
1199 				current_buf_start = buf_start + buf_offset;
1200 			}
1201 		}
1202 	}
1203 
1204 	return 1;
1205 }
1206 
1207 /*
1208  * Shannon Entropy calculation
1209  *
1210  * Pure byte distribution analysis fails to determine compressiability of data.
1211  * Try calculating entropy to estimate the average minimum number of bits
1212  * needed to encode the sampled data.
1213  *
1214  * For convenience, return the percentage of needed bits, instead of amount of
1215  * bits directly.
1216  *
1217  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1218  *			    and can be compressible with high probability
1219  *
1220  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1221  *
1222  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1223  */
1224 #define ENTROPY_LVL_ACEPTABLE		(65)
1225 #define ENTROPY_LVL_HIGH		(80)
1226 
1227 /*
1228  * For increasead precision in shannon_entropy calculation,
1229  * let's do pow(n, M) to save more digits after comma:
1230  *
1231  * - maximum int bit length is 64
1232  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1233  * - 13 * 4 = 52 < 64		-> M = 4
1234  *
1235  * So use pow(n, 4).
1236  */
1237 static inline u32 ilog2_w(u64 n)
1238 {
1239 	return ilog2(n * n * n * n);
1240 }
1241 
1242 static u32 shannon_entropy(struct heuristic_ws *ws)
1243 {
1244 	const u32 entropy_max = 8 * ilog2_w(2);
1245 	u32 entropy_sum = 0;
1246 	u32 p, p_base, sz_base;
1247 	u32 i;
1248 
1249 	sz_base = ilog2_w(ws->sample_size);
1250 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1251 		p = ws->bucket[i].count;
1252 		p_base = ilog2_w(p);
1253 		entropy_sum += p * (sz_base - p_base);
1254 	}
1255 
1256 	entropy_sum /= ws->sample_size;
1257 	return entropy_sum * 100 / entropy_max;
1258 }
1259 
1260 #define RADIX_BASE		4U
1261 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1262 
1263 static u8 get4bits(u64 num, int shift) {
1264 	u8 low4bits;
1265 
1266 	num >>= shift;
1267 	/* Reverse order */
1268 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1269 	return low4bits;
1270 }
1271 
1272 /*
1273  * Use 4 bits as radix base
1274  * Use 16 u32 counters for calculating new possition in buf array
1275  *
1276  * @array     - array that will be sorted
1277  * @array_buf - buffer array to store sorting results
1278  *              must be equal in size to @array
1279  * @num       - array size
1280  */
1281 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1282 		       int num)
1283 {
1284 	u64 max_num;
1285 	u64 buf_num;
1286 	u32 counters[COUNTERS_SIZE];
1287 	u32 new_addr;
1288 	u32 addr;
1289 	int bitlen;
1290 	int shift;
1291 	int i;
1292 
1293 	/*
1294 	 * Try avoid useless loop iterations for small numbers stored in big
1295 	 * counters.  Example: 48 33 4 ... in 64bit array
1296 	 */
1297 	max_num = array[0].count;
1298 	for (i = 1; i < num; i++) {
1299 		buf_num = array[i].count;
1300 		if (buf_num > max_num)
1301 			max_num = buf_num;
1302 	}
1303 
1304 	buf_num = ilog2(max_num);
1305 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1306 
1307 	shift = 0;
1308 	while (shift < bitlen) {
1309 		memset(counters, 0, sizeof(counters));
1310 
1311 		for (i = 0; i < num; i++) {
1312 			buf_num = array[i].count;
1313 			addr = get4bits(buf_num, shift);
1314 			counters[addr]++;
1315 		}
1316 
1317 		for (i = 1; i < COUNTERS_SIZE; i++)
1318 			counters[i] += counters[i - 1];
1319 
1320 		for (i = num - 1; i >= 0; i--) {
1321 			buf_num = array[i].count;
1322 			addr = get4bits(buf_num, shift);
1323 			counters[addr]--;
1324 			new_addr = counters[addr];
1325 			array_buf[new_addr] = array[i];
1326 		}
1327 
1328 		shift += RADIX_BASE;
1329 
1330 		/*
1331 		 * Normal radix expects to move data from a temporary array, to
1332 		 * the main one.  But that requires some CPU time. Avoid that
1333 		 * by doing another sort iteration to original array instead of
1334 		 * memcpy()
1335 		 */
1336 		memset(counters, 0, sizeof(counters));
1337 
1338 		for (i = 0; i < num; i ++) {
1339 			buf_num = array_buf[i].count;
1340 			addr = get4bits(buf_num, shift);
1341 			counters[addr]++;
1342 		}
1343 
1344 		for (i = 1; i < COUNTERS_SIZE; i++)
1345 			counters[i] += counters[i - 1];
1346 
1347 		for (i = num - 1; i >= 0; i--) {
1348 			buf_num = array_buf[i].count;
1349 			addr = get4bits(buf_num, shift);
1350 			counters[addr]--;
1351 			new_addr = counters[addr];
1352 			array[new_addr] = array_buf[i];
1353 		}
1354 
1355 		shift += RADIX_BASE;
1356 	}
1357 }
1358 
1359 /*
1360  * Size of the core byte set - how many bytes cover 90% of the sample
1361  *
1362  * There are several types of structured binary data that use nearly all byte
1363  * values. The distribution can be uniform and counts in all buckets will be
1364  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1365  *
1366  * Other possibility is normal (Gaussian) distribution, where the data could
1367  * be potentially compressible, but we have to take a few more steps to decide
1368  * how much.
1369  *
1370  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1371  *                       compression algo can easy fix that
1372  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1373  *                       probability is not compressible
1374  */
1375 #define BYTE_CORE_SET_LOW		(64)
1376 #define BYTE_CORE_SET_HIGH		(200)
1377 
1378 static int byte_core_set_size(struct heuristic_ws *ws)
1379 {
1380 	u32 i;
1381 	u32 coreset_sum = 0;
1382 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1383 	struct bucket_item *bucket = ws->bucket;
1384 
1385 	/* Sort in reverse order */
1386 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1387 
1388 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1389 		coreset_sum += bucket[i].count;
1390 
1391 	if (coreset_sum > core_set_threshold)
1392 		return i;
1393 
1394 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1395 		coreset_sum += bucket[i].count;
1396 		if (coreset_sum > core_set_threshold)
1397 			break;
1398 	}
1399 
1400 	return i;
1401 }
1402 
1403 /*
1404  * Count byte values in buckets.
1405  * This heuristic can detect textual data (configs, xml, json, html, etc).
1406  * Because in most text-like data byte set is restricted to limited number of
1407  * possible characters, and that restriction in most cases makes data easy to
1408  * compress.
1409  *
1410  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1411  *	less - compressible
1412  *	more - need additional analysis
1413  */
1414 #define BYTE_SET_THRESHOLD		(64)
1415 
1416 static u32 byte_set_size(const struct heuristic_ws *ws)
1417 {
1418 	u32 i;
1419 	u32 byte_set_size = 0;
1420 
1421 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1422 		if (ws->bucket[i].count > 0)
1423 			byte_set_size++;
1424 	}
1425 
1426 	/*
1427 	 * Continue collecting count of byte values in buckets.  If the byte
1428 	 * set size is bigger then the threshold, it's pointless to continue,
1429 	 * the detection technique would fail for this type of data.
1430 	 */
1431 	for (; i < BUCKET_SIZE; i++) {
1432 		if (ws->bucket[i].count > 0) {
1433 			byte_set_size++;
1434 			if (byte_set_size > BYTE_SET_THRESHOLD)
1435 				return byte_set_size;
1436 		}
1437 	}
1438 
1439 	return byte_set_size;
1440 }
1441 
1442 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1443 {
1444 	const u32 half_of_sample = ws->sample_size / 2;
1445 	const u8 *data = ws->sample;
1446 
1447 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1448 }
1449 
1450 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1451 				     struct heuristic_ws *ws)
1452 {
1453 	struct page *page;
1454 	u64 index, index_end;
1455 	u32 i, curr_sample_pos;
1456 	u8 *in_data;
1457 
1458 	/*
1459 	 * Compression handles the input data by chunks of 128KiB
1460 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1461 	 *
1462 	 * We do the same for the heuristic and loop over the whole range.
1463 	 *
1464 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1465 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1466 	 */
1467 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1468 		end = start + BTRFS_MAX_UNCOMPRESSED;
1469 
1470 	index = start >> PAGE_SHIFT;
1471 	index_end = end >> PAGE_SHIFT;
1472 
1473 	/* Don't miss unaligned end */
1474 	if (!IS_ALIGNED(end, PAGE_SIZE))
1475 		index_end++;
1476 
1477 	curr_sample_pos = 0;
1478 	while (index < index_end) {
1479 		page = find_get_page(inode->i_mapping, index);
1480 		in_data = kmap(page);
1481 		/* Handle case where the start is not aligned to PAGE_SIZE */
1482 		i = start % PAGE_SIZE;
1483 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1484 			/* Don't sample any garbage from the last page */
1485 			if (start > end - SAMPLING_READ_SIZE)
1486 				break;
1487 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1488 					SAMPLING_READ_SIZE);
1489 			i += SAMPLING_INTERVAL;
1490 			start += SAMPLING_INTERVAL;
1491 			curr_sample_pos += SAMPLING_READ_SIZE;
1492 		}
1493 		kunmap(page);
1494 		put_page(page);
1495 
1496 		index++;
1497 	}
1498 
1499 	ws->sample_size = curr_sample_pos;
1500 }
1501 
1502 /*
1503  * Compression heuristic.
1504  *
1505  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1506  * quickly (compared to direct compression) detect data characteristics
1507  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1508  * data.
1509  *
1510  * The following types of analysis can be performed:
1511  * - detect mostly zero data
1512  * - detect data with low "byte set" size (text, etc)
1513  * - detect data with low/high "core byte" set
1514  *
1515  * Return non-zero if the compression should be done, 0 otherwise.
1516  */
1517 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1518 {
1519 	struct list_head *ws_list = __find_workspace(0, true);
1520 	struct heuristic_ws *ws;
1521 	u32 i;
1522 	u8 byte;
1523 	int ret = 0;
1524 
1525 	ws = list_entry(ws_list, struct heuristic_ws, list);
1526 
1527 	heuristic_collect_sample(inode, start, end, ws);
1528 
1529 	if (sample_repeated_patterns(ws)) {
1530 		ret = 1;
1531 		goto out;
1532 	}
1533 
1534 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1535 
1536 	for (i = 0; i < ws->sample_size; i++) {
1537 		byte = ws->sample[i];
1538 		ws->bucket[byte].count++;
1539 	}
1540 
1541 	i = byte_set_size(ws);
1542 	if (i < BYTE_SET_THRESHOLD) {
1543 		ret = 2;
1544 		goto out;
1545 	}
1546 
1547 	i = byte_core_set_size(ws);
1548 	if (i <= BYTE_CORE_SET_LOW) {
1549 		ret = 3;
1550 		goto out;
1551 	}
1552 
1553 	if (i >= BYTE_CORE_SET_HIGH) {
1554 		ret = 0;
1555 		goto out;
1556 	}
1557 
1558 	i = shannon_entropy(ws);
1559 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1560 		ret = 4;
1561 		goto out;
1562 	}
1563 
1564 	/*
1565 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1566 	 * needed to give green light to compression.
1567 	 *
1568 	 * For now just assume that compression at that level is not worth the
1569 	 * resources because:
1570 	 *
1571 	 * 1. it is possible to defrag the data later
1572 	 *
1573 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1574 	 * values, every bucket has counter at level ~54. The heuristic would
1575 	 * be confused. This can happen when data have some internal repeated
1576 	 * patterns like "abbacbbc...". This can be detected by analyzing
1577 	 * pairs of bytes, which is too costly.
1578 	 */
1579 	if (i < ENTROPY_LVL_HIGH) {
1580 		ret = 5;
1581 		goto out;
1582 	} else {
1583 		ret = 0;
1584 		goto out;
1585 	}
1586 
1587 out:
1588 	__free_workspace(0, ws_list, true);
1589 	return ret;
1590 }
1591 
1592 unsigned int btrfs_compress_str2level(const char *str)
1593 {
1594 	if (strncmp(str, "zlib", 4) != 0)
1595 		return 0;
1596 
1597 	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1598 	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1599 		return str[5] - '0';
1600 
1601 	return BTRFS_ZLIB_DEFAULT_LEVEL;
1602 }
1603