1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 32 int zlib_compress_pages(struct list_head *ws, struct address_space *mapping, 33 u64 start, struct page **pages, unsigned long *out_pages, 34 unsigned long *total_in, unsigned long *total_out); 35 int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 36 int zlib_decompress(struct list_head *ws, unsigned char *data_in, 37 struct page *dest_page, unsigned long start_byte, size_t srclen, 38 size_t destlen); 39 struct list_head *zlib_alloc_workspace(unsigned int level); 40 void zlib_free_workspace(struct list_head *ws); 41 struct list_head *zlib_get_workspace(unsigned int level); 42 43 int lzo_compress_pages(struct list_head *ws, struct address_space *mapping, 44 u64 start, struct page **pages, unsigned long *out_pages, 45 unsigned long *total_in, unsigned long *total_out); 46 int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 47 int lzo_decompress(struct list_head *ws, unsigned char *data_in, 48 struct page *dest_page, unsigned long start_byte, size_t srclen, 49 size_t destlen); 50 struct list_head *lzo_alloc_workspace(unsigned int level); 51 void lzo_free_workspace(struct list_head *ws); 52 53 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping, 54 u64 start, struct page **pages, unsigned long *out_pages, 55 unsigned long *total_in, unsigned long *total_out); 56 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 57 int zstd_decompress(struct list_head *ws, unsigned char *data_in, 58 struct page *dest_page, unsigned long start_byte, size_t srclen, 59 size_t destlen); 60 void zstd_init_workspace_manager(void); 61 void zstd_cleanup_workspace_manager(void); 62 struct list_head *zstd_alloc_workspace(unsigned int level); 63 void zstd_free_workspace(struct list_head *ws); 64 struct list_head *zstd_get_workspace(unsigned int level); 65 void zstd_put_workspace(struct list_head *ws); 66 67 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 68 69 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 70 { 71 switch (type) { 72 case BTRFS_COMPRESS_ZLIB: 73 case BTRFS_COMPRESS_LZO: 74 case BTRFS_COMPRESS_ZSTD: 75 case BTRFS_COMPRESS_NONE: 76 return btrfs_compress_types[type]; 77 default: 78 break; 79 } 80 81 return NULL; 82 } 83 84 bool btrfs_compress_is_valid_type(const char *str, size_t len) 85 { 86 int i; 87 88 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 89 size_t comp_len = strlen(btrfs_compress_types[i]); 90 91 if (len < comp_len) 92 continue; 93 94 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 95 return true; 96 } 97 return false; 98 } 99 100 static int compression_compress_pages(int type, struct list_head *ws, 101 struct address_space *mapping, u64 start, struct page **pages, 102 unsigned long *out_pages, unsigned long *total_in, 103 unsigned long *total_out) 104 { 105 switch (type) { 106 case BTRFS_COMPRESS_ZLIB: 107 return zlib_compress_pages(ws, mapping, start, pages, 108 out_pages, total_in, total_out); 109 case BTRFS_COMPRESS_LZO: 110 return lzo_compress_pages(ws, mapping, start, pages, 111 out_pages, total_in, total_out); 112 case BTRFS_COMPRESS_ZSTD: 113 return zstd_compress_pages(ws, mapping, start, pages, 114 out_pages, total_in, total_out); 115 case BTRFS_COMPRESS_NONE: 116 default: 117 /* 118 * This can't happen, the type is validated several times 119 * before we get here. As a sane fallback, return what the 120 * callers will understand as 'no compression happened'. 121 */ 122 return -E2BIG; 123 } 124 } 125 126 static int compression_decompress_bio(int type, struct list_head *ws, 127 struct compressed_bio *cb) 128 { 129 switch (type) { 130 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 131 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 132 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 133 case BTRFS_COMPRESS_NONE: 134 default: 135 /* 136 * This can't happen, the type is validated several times 137 * before we get here. 138 */ 139 BUG(); 140 } 141 } 142 143 static int compression_decompress(int type, struct list_head *ws, 144 unsigned char *data_in, struct page *dest_page, 145 unsigned long start_byte, size_t srclen, size_t destlen) 146 { 147 switch (type) { 148 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 149 start_byte, srclen, destlen); 150 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 151 start_byte, srclen, destlen); 152 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 153 start_byte, srclen, destlen); 154 case BTRFS_COMPRESS_NONE: 155 default: 156 /* 157 * This can't happen, the type is validated several times 158 * before we get here. 159 */ 160 BUG(); 161 } 162 } 163 164 static int btrfs_decompress_bio(struct compressed_bio *cb); 165 166 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 167 unsigned long disk_size) 168 { 169 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 170 171 return sizeof(struct compressed_bio) + 172 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 173 } 174 175 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 176 u64 disk_start) 177 { 178 struct btrfs_fs_info *fs_info = inode->root->fs_info; 179 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 180 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 181 struct page *page; 182 unsigned long i; 183 char *kaddr; 184 u8 csum[BTRFS_CSUM_SIZE]; 185 struct compressed_bio *cb = bio->bi_private; 186 u8 *cb_sum = cb->sums; 187 188 if (inode->flags & BTRFS_INODE_NODATASUM) 189 return 0; 190 191 shash->tfm = fs_info->csum_shash; 192 193 for (i = 0; i < cb->nr_pages; i++) { 194 page = cb->compressed_pages[i]; 195 196 kaddr = kmap_atomic(page); 197 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum); 198 kunmap_atomic(kaddr); 199 200 if (memcmp(&csum, cb_sum, csum_size)) { 201 btrfs_print_data_csum_error(inode, disk_start, 202 csum, cb_sum, cb->mirror_num); 203 if (btrfs_io_bio(bio)->device) 204 btrfs_dev_stat_inc_and_print( 205 btrfs_io_bio(bio)->device, 206 BTRFS_DEV_STAT_CORRUPTION_ERRS); 207 return -EIO; 208 } 209 cb_sum += csum_size; 210 } 211 return 0; 212 } 213 214 /* when we finish reading compressed pages from the disk, we 215 * decompress them and then run the bio end_io routines on the 216 * decompressed pages (in the inode address space). 217 * 218 * This allows the checksumming and other IO error handling routines 219 * to work normally 220 * 221 * The compressed pages are freed here, and it must be run 222 * in process context 223 */ 224 static void end_compressed_bio_read(struct bio *bio) 225 { 226 struct compressed_bio *cb = bio->bi_private; 227 struct inode *inode; 228 struct page *page; 229 unsigned long index; 230 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 231 int ret = 0; 232 233 if (bio->bi_status) 234 cb->errors = 1; 235 236 /* if there are more bios still pending for this compressed 237 * extent, just exit 238 */ 239 if (!refcount_dec_and_test(&cb->pending_bios)) 240 goto out; 241 242 /* 243 * Record the correct mirror_num in cb->orig_bio so that 244 * read-repair can work properly. 245 */ 246 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 247 cb->mirror_num = mirror; 248 249 /* 250 * Some IO in this cb have failed, just skip checksum as there 251 * is no way it could be correct. 252 */ 253 if (cb->errors == 1) 254 goto csum_failed; 255 256 inode = cb->inode; 257 ret = check_compressed_csum(BTRFS_I(inode), bio, 258 (u64)bio->bi_iter.bi_sector << 9); 259 if (ret) 260 goto csum_failed; 261 262 /* ok, we're the last bio for this extent, lets start 263 * the decompression. 264 */ 265 ret = btrfs_decompress_bio(cb); 266 267 csum_failed: 268 if (ret) 269 cb->errors = 1; 270 271 /* release the compressed pages */ 272 index = 0; 273 for (index = 0; index < cb->nr_pages; index++) { 274 page = cb->compressed_pages[index]; 275 page->mapping = NULL; 276 put_page(page); 277 } 278 279 /* do io completion on the original bio */ 280 if (cb->errors) { 281 bio_io_error(cb->orig_bio); 282 } else { 283 struct bio_vec *bvec; 284 struct bvec_iter_all iter_all; 285 286 /* 287 * we have verified the checksum already, set page 288 * checked so the end_io handlers know about it 289 */ 290 ASSERT(!bio_flagged(bio, BIO_CLONED)); 291 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 292 SetPageChecked(bvec->bv_page); 293 294 bio_endio(cb->orig_bio); 295 } 296 297 /* finally free the cb struct */ 298 kfree(cb->compressed_pages); 299 kfree(cb); 300 out: 301 bio_put(bio); 302 } 303 304 /* 305 * Clear the writeback bits on all of the file 306 * pages for a compressed write 307 */ 308 static noinline void end_compressed_writeback(struct inode *inode, 309 const struct compressed_bio *cb) 310 { 311 unsigned long index = cb->start >> PAGE_SHIFT; 312 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 313 struct page *pages[16]; 314 unsigned long nr_pages = end_index - index + 1; 315 int i; 316 int ret; 317 318 if (cb->errors) 319 mapping_set_error(inode->i_mapping, -EIO); 320 321 while (nr_pages > 0) { 322 ret = find_get_pages_contig(inode->i_mapping, index, 323 min_t(unsigned long, 324 nr_pages, ARRAY_SIZE(pages)), pages); 325 if (ret == 0) { 326 nr_pages -= 1; 327 index += 1; 328 continue; 329 } 330 for (i = 0; i < ret; i++) { 331 if (cb->errors) 332 SetPageError(pages[i]); 333 end_page_writeback(pages[i]); 334 put_page(pages[i]); 335 } 336 nr_pages -= ret; 337 index += ret; 338 } 339 /* the inode may be gone now */ 340 } 341 342 /* 343 * do the cleanup once all the compressed pages hit the disk. 344 * This will clear writeback on the file pages and free the compressed 345 * pages. 346 * 347 * This also calls the writeback end hooks for the file pages so that 348 * metadata and checksums can be updated in the file. 349 */ 350 static void end_compressed_bio_write(struct bio *bio) 351 { 352 struct compressed_bio *cb = bio->bi_private; 353 struct inode *inode; 354 struct page *page; 355 unsigned long index; 356 357 if (bio->bi_status) 358 cb->errors = 1; 359 360 /* if there are more bios still pending for this compressed 361 * extent, just exit 362 */ 363 if (!refcount_dec_and_test(&cb->pending_bios)) 364 goto out; 365 366 /* ok, we're the last bio for this extent, step one is to 367 * call back into the FS and do all the end_io operations 368 */ 369 inode = cb->inode; 370 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 371 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 372 cb->start, cb->start + cb->len - 1, 373 bio->bi_status == BLK_STS_OK); 374 cb->compressed_pages[0]->mapping = NULL; 375 376 end_compressed_writeback(inode, cb); 377 /* note, our inode could be gone now */ 378 379 /* 380 * release the compressed pages, these came from alloc_page and 381 * are not attached to the inode at all 382 */ 383 index = 0; 384 for (index = 0; index < cb->nr_pages; index++) { 385 page = cb->compressed_pages[index]; 386 page->mapping = NULL; 387 put_page(page); 388 } 389 390 /* finally free the cb struct */ 391 kfree(cb->compressed_pages); 392 kfree(cb); 393 out: 394 bio_put(bio); 395 } 396 397 /* 398 * worker function to build and submit bios for previously compressed pages. 399 * The corresponding pages in the inode should be marked for writeback 400 * and the compressed pages should have a reference on them for dropping 401 * when the IO is complete. 402 * 403 * This also checksums the file bytes and gets things ready for 404 * the end io hooks. 405 */ 406 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 407 unsigned long len, u64 disk_start, 408 unsigned long compressed_len, 409 struct page **compressed_pages, 410 unsigned long nr_pages, 411 unsigned int write_flags, 412 struct cgroup_subsys_state *blkcg_css) 413 { 414 struct btrfs_fs_info *fs_info = inode->root->fs_info; 415 struct bio *bio = NULL; 416 struct compressed_bio *cb; 417 unsigned long bytes_left; 418 int pg_index = 0; 419 struct page *page; 420 u64 first_byte = disk_start; 421 blk_status_t ret; 422 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 423 424 WARN_ON(!PAGE_ALIGNED(start)); 425 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 426 if (!cb) 427 return BLK_STS_RESOURCE; 428 refcount_set(&cb->pending_bios, 0); 429 cb->errors = 0; 430 cb->inode = &inode->vfs_inode; 431 cb->start = start; 432 cb->len = len; 433 cb->mirror_num = 0; 434 cb->compressed_pages = compressed_pages; 435 cb->compressed_len = compressed_len; 436 cb->orig_bio = NULL; 437 cb->nr_pages = nr_pages; 438 439 bio = btrfs_bio_alloc(first_byte); 440 bio->bi_opf = REQ_OP_WRITE | write_flags; 441 bio->bi_private = cb; 442 bio->bi_end_io = end_compressed_bio_write; 443 444 if (blkcg_css) { 445 bio->bi_opf |= REQ_CGROUP_PUNT; 446 kthread_associate_blkcg(blkcg_css); 447 } 448 refcount_set(&cb->pending_bios, 1); 449 450 /* create and submit bios for the compressed pages */ 451 bytes_left = compressed_len; 452 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 453 int submit = 0; 454 455 page = compressed_pages[pg_index]; 456 page->mapping = inode->vfs_inode.i_mapping; 457 if (bio->bi_iter.bi_size) 458 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 459 0); 460 461 page->mapping = NULL; 462 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 463 PAGE_SIZE) { 464 /* 465 * inc the count before we submit the bio so 466 * we know the end IO handler won't happen before 467 * we inc the count. Otherwise, the cb might get 468 * freed before we're done setting it up 469 */ 470 refcount_inc(&cb->pending_bios); 471 ret = btrfs_bio_wq_end_io(fs_info, bio, 472 BTRFS_WQ_ENDIO_DATA); 473 BUG_ON(ret); /* -ENOMEM */ 474 475 if (!skip_sum) { 476 ret = btrfs_csum_one_bio(inode, bio, start, 1); 477 BUG_ON(ret); /* -ENOMEM */ 478 } 479 480 ret = btrfs_map_bio(fs_info, bio, 0); 481 if (ret) { 482 bio->bi_status = ret; 483 bio_endio(bio); 484 } 485 486 bio = btrfs_bio_alloc(first_byte); 487 bio->bi_opf = REQ_OP_WRITE | write_flags; 488 bio->bi_private = cb; 489 bio->bi_end_io = end_compressed_bio_write; 490 if (blkcg_css) 491 bio->bi_opf |= REQ_CGROUP_PUNT; 492 bio_add_page(bio, page, PAGE_SIZE, 0); 493 } 494 if (bytes_left < PAGE_SIZE) { 495 btrfs_info(fs_info, 496 "bytes left %lu compress len %lu nr %lu", 497 bytes_left, cb->compressed_len, cb->nr_pages); 498 } 499 bytes_left -= PAGE_SIZE; 500 first_byte += PAGE_SIZE; 501 cond_resched(); 502 } 503 504 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 505 BUG_ON(ret); /* -ENOMEM */ 506 507 if (!skip_sum) { 508 ret = btrfs_csum_one_bio(inode, bio, start, 1); 509 BUG_ON(ret); /* -ENOMEM */ 510 } 511 512 ret = btrfs_map_bio(fs_info, bio, 0); 513 if (ret) { 514 bio->bi_status = ret; 515 bio_endio(bio); 516 } 517 518 if (blkcg_css) 519 kthread_associate_blkcg(NULL); 520 521 return 0; 522 } 523 524 static u64 bio_end_offset(struct bio *bio) 525 { 526 struct bio_vec *last = bio_last_bvec_all(bio); 527 528 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 529 } 530 531 static noinline int add_ra_bio_pages(struct inode *inode, 532 u64 compressed_end, 533 struct compressed_bio *cb) 534 { 535 unsigned long end_index; 536 unsigned long pg_index; 537 u64 last_offset; 538 u64 isize = i_size_read(inode); 539 int ret; 540 struct page *page; 541 unsigned long nr_pages = 0; 542 struct extent_map *em; 543 struct address_space *mapping = inode->i_mapping; 544 struct extent_map_tree *em_tree; 545 struct extent_io_tree *tree; 546 u64 end; 547 int misses = 0; 548 549 last_offset = bio_end_offset(cb->orig_bio); 550 em_tree = &BTRFS_I(inode)->extent_tree; 551 tree = &BTRFS_I(inode)->io_tree; 552 553 if (isize == 0) 554 return 0; 555 556 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 557 558 while (last_offset < compressed_end) { 559 pg_index = last_offset >> PAGE_SHIFT; 560 561 if (pg_index > end_index) 562 break; 563 564 page = xa_load(&mapping->i_pages, pg_index); 565 if (page && !xa_is_value(page)) { 566 misses++; 567 if (misses > 4) 568 break; 569 goto next; 570 } 571 572 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 573 ~__GFP_FS)); 574 if (!page) 575 break; 576 577 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 578 put_page(page); 579 goto next; 580 } 581 582 end = last_offset + PAGE_SIZE - 1; 583 /* 584 * at this point, we have a locked page in the page cache 585 * for these bytes in the file. But, we have to make 586 * sure they map to this compressed extent on disk. 587 */ 588 set_page_extent_mapped(page); 589 lock_extent(tree, last_offset, end); 590 read_lock(&em_tree->lock); 591 em = lookup_extent_mapping(em_tree, last_offset, 592 PAGE_SIZE); 593 read_unlock(&em_tree->lock); 594 595 if (!em || last_offset < em->start || 596 (last_offset + PAGE_SIZE > extent_map_end(em)) || 597 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 598 free_extent_map(em); 599 unlock_extent(tree, last_offset, end); 600 unlock_page(page); 601 put_page(page); 602 break; 603 } 604 free_extent_map(em); 605 606 if (page->index == end_index) { 607 char *userpage; 608 size_t zero_offset = offset_in_page(isize); 609 610 if (zero_offset) { 611 int zeros; 612 zeros = PAGE_SIZE - zero_offset; 613 userpage = kmap_atomic(page); 614 memset(userpage + zero_offset, 0, zeros); 615 flush_dcache_page(page); 616 kunmap_atomic(userpage); 617 } 618 } 619 620 ret = bio_add_page(cb->orig_bio, page, 621 PAGE_SIZE, 0); 622 623 if (ret == PAGE_SIZE) { 624 nr_pages++; 625 put_page(page); 626 } else { 627 unlock_extent(tree, last_offset, end); 628 unlock_page(page); 629 put_page(page); 630 break; 631 } 632 next: 633 last_offset += PAGE_SIZE; 634 } 635 return 0; 636 } 637 638 /* 639 * for a compressed read, the bio we get passed has all the inode pages 640 * in it. We don't actually do IO on those pages but allocate new ones 641 * to hold the compressed pages on disk. 642 * 643 * bio->bi_iter.bi_sector points to the compressed extent on disk 644 * bio->bi_io_vec points to all of the inode pages 645 * 646 * After the compressed pages are read, we copy the bytes into the 647 * bio we were passed and then call the bio end_io calls 648 */ 649 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 650 int mirror_num, unsigned long bio_flags) 651 { 652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 653 struct extent_map_tree *em_tree; 654 struct compressed_bio *cb; 655 unsigned long compressed_len; 656 unsigned long nr_pages; 657 unsigned long pg_index; 658 struct page *page; 659 struct bio *comp_bio; 660 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 661 u64 em_len; 662 u64 em_start; 663 struct extent_map *em; 664 blk_status_t ret = BLK_STS_RESOURCE; 665 int faili = 0; 666 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 667 u8 *sums; 668 669 em_tree = &BTRFS_I(inode)->extent_tree; 670 671 /* we need the actual starting offset of this extent in the file */ 672 read_lock(&em_tree->lock); 673 em = lookup_extent_mapping(em_tree, 674 page_offset(bio_first_page_all(bio)), 675 PAGE_SIZE); 676 read_unlock(&em_tree->lock); 677 if (!em) 678 return BLK_STS_IOERR; 679 680 compressed_len = em->block_len; 681 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 682 if (!cb) 683 goto out; 684 685 refcount_set(&cb->pending_bios, 0); 686 cb->errors = 0; 687 cb->inode = inode; 688 cb->mirror_num = mirror_num; 689 sums = cb->sums; 690 691 cb->start = em->orig_start; 692 em_len = em->len; 693 em_start = em->start; 694 695 free_extent_map(em); 696 em = NULL; 697 698 cb->len = bio->bi_iter.bi_size; 699 cb->compressed_len = compressed_len; 700 cb->compress_type = extent_compress_type(bio_flags); 701 cb->orig_bio = bio; 702 703 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 704 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 705 GFP_NOFS); 706 if (!cb->compressed_pages) 707 goto fail1; 708 709 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 710 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 711 __GFP_HIGHMEM); 712 if (!cb->compressed_pages[pg_index]) { 713 faili = pg_index - 1; 714 ret = BLK_STS_RESOURCE; 715 goto fail2; 716 } 717 } 718 faili = nr_pages - 1; 719 cb->nr_pages = nr_pages; 720 721 add_ra_bio_pages(inode, em_start + em_len, cb); 722 723 /* include any pages we added in add_ra-bio_pages */ 724 cb->len = bio->bi_iter.bi_size; 725 726 comp_bio = btrfs_bio_alloc(cur_disk_byte); 727 comp_bio->bi_opf = REQ_OP_READ; 728 comp_bio->bi_private = cb; 729 comp_bio->bi_end_io = end_compressed_bio_read; 730 refcount_set(&cb->pending_bios, 1); 731 732 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 733 int submit = 0; 734 735 page = cb->compressed_pages[pg_index]; 736 page->mapping = inode->i_mapping; 737 page->index = em_start >> PAGE_SHIFT; 738 739 if (comp_bio->bi_iter.bi_size) 740 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, 741 comp_bio, 0); 742 743 page->mapping = NULL; 744 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 745 PAGE_SIZE) { 746 unsigned int nr_sectors; 747 748 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 749 BTRFS_WQ_ENDIO_DATA); 750 BUG_ON(ret); /* -ENOMEM */ 751 752 /* 753 * inc the count before we submit the bio so 754 * we know the end IO handler won't happen before 755 * we inc the count. Otherwise, the cb might get 756 * freed before we're done setting it up 757 */ 758 refcount_inc(&cb->pending_bios); 759 760 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 761 ret = btrfs_lookup_bio_sums(inode, comp_bio, 762 (u64)-1, sums); 763 BUG_ON(ret); /* -ENOMEM */ 764 } 765 766 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 767 fs_info->sectorsize); 768 sums += csum_size * nr_sectors; 769 770 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 771 if (ret) { 772 comp_bio->bi_status = ret; 773 bio_endio(comp_bio); 774 } 775 776 comp_bio = btrfs_bio_alloc(cur_disk_byte); 777 comp_bio->bi_opf = REQ_OP_READ; 778 comp_bio->bi_private = cb; 779 comp_bio->bi_end_io = end_compressed_bio_read; 780 781 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 782 } 783 cur_disk_byte += PAGE_SIZE; 784 } 785 786 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 787 BUG_ON(ret); /* -ENOMEM */ 788 789 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 790 ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums); 791 BUG_ON(ret); /* -ENOMEM */ 792 } 793 794 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 795 if (ret) { 796 comp_bio->bi_status = ret; 797 bio_endio(comp_bio); 798 } 799 800 return 0; 801 802 fail2: 803 while (faili >= 0) { 804 __free_page(cb->compressed_pages[faili]); 805 faili--; 806 } 807 808 kfree(cb->compressed_pages); 809 fail1: 810 kfree(cb); 811 out: 812 free_extent_map(em); 813 return ret; 814 } 815 816 /* 817 * Heuristic uses systematic sampling to collect data from the input data 818 * range, the logic can be tuned by the following constants: 819 * 820 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 821 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 822 */ 823 #define SAMPLING_READ_SIZE (16) 824 #define SAMPLING_INTERVAL (256) 825 826 /* 827 * For statistical analysis of the input data we consider bytes that form a 828 * Galois Field of 256 objects. Each object has an attribute count, ie. how 829 * many times the object appeared in the sample. 830 */ 831 #define BUCKET_SIZE (256) 832 833 /* 834 * The size of the sample is based on a statistical sampling rule of thumb. 835 * The common way is to perform sampling tests as long as the number of 836 * elements in each cell is at least 5. 837 * 838 * Instead of 5, we choose 32 to obtain more accurate results. 839 * If the data contain the maximum number of symbols, which is 256, we obtain a 840 * sample size bound by 8192. 841 * 842 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 843 * from up to 512 locations. 844 */ 845 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 846 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 847 848 struct bucket_item { 849 u32 count; 850 }; 851 852 struct heuristic_ws { 853 /* Partial copy of input data */ 854 u8 *sample; 855 u32 sample_size; 856 /* Buckets store counters for each byte value */ 857 struct bucket_item *bucket; 858 /* Sorting buffer */ 859 struct bucket_item *bucket_b; 860 struct list_head list; 861 }; 862 863 static struct workspace_manager heuristic_wsm; 864 865 static void free_heuristic_ws(struct list_head *ws) 866 { 867 struct heuristic_ws *workspace; 868 869 workspace = list_entry(ws, struct heuristic_ws, list); 870 871 kvfree(workspace->sample); 872 kfree(workspace->bucket); 873 kfree(workspace->bucket_b); 874 kfree(workspace); 875 } 876 877 static struct list_head *alloc_heuristic_ws(unsigned int level) 878 { 879 struct heuristic_ws *ws; 880 881 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 882 if (!ws) 883 return ERR_PTR(-ENOMEM); 884 885 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 886 if (!ws->sample) 887 goto fail; 888 889 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 890 if (!ws->bucket) 891 goto fail; 892 893 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 894 if (!ws->bucket_b) 895 goto fail; 896 897 INIT_LIST_HEAD(&ws->list); 898 return &ws->list; 899 fail: 900 free_heuristic_ws(&ws->list); 901 return ERR_PTR(-ENOMEM); 902 } 903 904 const struct btrfs_compress_op btrfs_heuristic_compress = { 905 .workspace_manager = &heuristic_wsm, 906 }; 907 908 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 909 /* The heuristic is represented as compression type 0 */ 910 &btrfs_heuristic_compress, 911 &btrfs_zlib_compress, 912 &btrfs_lzo_compress, 913 &btrfs_zstd_compress, 914 }; 915 916 static struct list_head *alloc_workspace(int type, unsigned int level) 917 { 918 switch (type) { 919 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 920 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 921 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 922 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 923 default: 924 /* 925 * This can't happen, the type is validated several times 926 * before we get here. 927 */ 928 BUG(); 929 } 930 } 931 932 static void free_workspace(int type, struct list_head *ws) 933 { 934 switch (type) { 935 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 936 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 937 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 938 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 939 default: 940 /* 941 * This can't happen, the type is validated several times 942 * before we get here. 943 */ 944 BUG(); 945 } 946 } 947 948 static void btrfs_init_workspace_manager(int type) 949 { 950 struct workspace_manager *wsm; 951 struct list_head *workspace; 952 953 wsm = btrfs_compress_op[type]->workspace_manager; 954 INIT_LIST_HEAD(&wsm->idle_ws); 955 spin_lock_init(&wsm->ws_lock); 956 atomic_set(&wsm->total_ws, 0); 957 init_waitqueue_head(&wsm->ws_wait); 958 959 /* 960 * Preallocate one workspace for each compression type so we can 961 * guarantee forward progress in the worst case 962 */ 963 workspace = alloc_workspace(type, 0); 964 if (IS_ERR(workspace)) { 965 pr_warn( 966 "BTRFS: cannot preallocate compression workspace, will try later\n"); 967 } else { 968 atomic_set(&wsm->total_ws, 1); 969 wsm->free_ws = 1; 970 list_add(workspace, &wsm->idle_ws); 971 } 972 } 973 974 static void btrfs_cleanup_workspace_manager(int type) 975 { 976 struct workspace_manager *wsman; 977 struct list_head *ws; 978 979 wsman = btrfs_compress_op[type]->workspace_manager; 980 while (!list_empty(&wsman->idle_ws)) { 981 ws = wsman->idle_ws.next; 982 list_del(ws); 983 free_workspace(type, ws); 984 atomic_dec(&wsman->total_ws); 985 } 986 } 987 988 /* 989 * This finds an available workspace or allocates a new one. 990 * If it's not possible to allocate a new one, waits until there's one. 991 * Preallocation makes a forward progress guarantees and we do not return 992 * errors. 993 */ 994 struct list_head *btrfs_get_workspace(int type, unsigned int level) 995 { 996 struct workspace_manager *wsm; 997 struct list_head *workspace; 998 int cpus = num_online_cpus(); 999 unsigned nofs_flag; 1000 struct list_head *idle_ws; 1001 spinlock_t *ws_lock; 1002 atomic_t *total_ws; 1003 wait_queue_head_t *ws_wait; 1004 int *free_ws; 1005 1006 wsm = btrfs_compress_op[type]->workspace_manager; 1007 idle_ws = &wsm->idle_ws; 1008 ws_lock = &wsm->ws_lock; 1009 total_ws = &wsm->total_ws; 1010 ws_wait = &wsm->ws_wait; 1011 free_ws = &wsm->free_ws; 1012 1013 again: 1014 spin_lock(ws_lock); 1015 if (!list_empty(idle_ws)) { 1016 workspace = idle_ws->next; 1017 list_del(workspace); 1018 (*free_ws)--; 1019 spin_unlock(ws_lock); 1020 return workspace; 1021 1022 } 1023 if (atomic_read(total_ws) > cpus) { 1024 DEFINE_WAIT(wait); 1025 1026 spin_unlock(ws_lock); 1027 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1028 if (atomic_read(total_ws) > cpus && !*free_ws) 1029 schedule(); 1030 finish_wait(ws_wait, &wait); 1031 goto again; 1032 } 1033 atomic_inc(total_ws); 1034 spin_unlock(ws_lock); 1035 1036 /* 1037 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1038 * to turn it off here because we might get called from the restricted 1039 * context of btrfs_compress_bio/btrfs_compress_pages 1040 */ 1041 nofs_flag = memalloc_nofs_save(); 1042 workspace = alloc_workspace(type, level); 1043 memalloc_nofs_restore(nofs_flag); 1044 1045 if (IS_ERR(workspace)) { 1046 atomic_dec(total_ws); 1047 wake_up(ws_wait); 1048 1049 /* 1050 * Do not return the error but go back to waiting. There's a 1051 * workspace preallocated for each type and the compression 1052 * time is bounded so we get to a workspace eventually. This 1053 * makes our caller's life easier. 1054 * 1055 * To prevent silent and low-probability deadlocks (when the 1056 * initial preallocation fails), check if there are any 1057 * workspaces at all. 1058 */ 1059 if (atomic_read(total_ws) == 0) { 1060 static DEFINE_RATELIMIT_STATE(_rs, 1061 /* once per minute */ 60 * HZ, 1062 /* no burst */ 1); 1063 1064 if (__ratelimit(&_rs)) { 1065 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1066 } 1067 } 1068 goto again; 1069 } 1070 return workspace; 1071 } 1072 1073 static struct list_head *get_workspace(int type, int level) 1074 { 1075 switch (type) { 1076 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1077 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1078 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1079 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1080 default: 1081 /* 1082 * This can't happen, the type is validated several times 1083 * before we get here. 1084 */ 1085 BUG(); 1086 } 1087 } 1088 1089 /* 1090 * put a workspace struct back on the list or free it if we have enough 1091 * idle ones sitting around 1092 */ 1093 void btrfs_put_workspace(int type, struct list_head *ws) 1094 { 1095 struct workspace_manager *wsm; 1096 struct list_head *idle_ws; 1097 spinlock_t *ws_lock; 1098 atomic_t *total_ws; 1099 wait_queue_head_t *ws_wait; 1100 int *free_ws; 1101 1102 wsm = btrfs_compress_op[type]->workspace_manager; 1103 idle_ws = &wsm->idle_ws; 1104 ws_lock = &wsm->ws_lock; 1105 total_ws = &wsm->total_ws; 1106 ws_wait = &wsm->ws_wait; 1107 free_ws = &wsm->free_ws; 1108 1109 spin_lock(ws_lock); 1110 if (*free_ws <= num_online_cpus()) { 1111 list_add(ws, idle_ws); 1112 (*free_ws)++; 1113 spin_unlock(ws_lock); 1114 goto wake; 1115 } 1116 spin_unlock(ws_lock); 1117 1118 free_workspace(type, ws); 1119 atomic_dec(total_ws); 1120 wake: 1121 cond_wake_up(ws_wait); 1122 } 1123 1124 static void put_workspace(int type, struct list_head *ws) 1125 { 1126 switch (type) { 1127 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1128 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1129 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1130 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1131 default: 1132 /* 1133 * This can't happen, the type is validated several times 1134 * before we get here. 1135 */ 1136 BUG(); 1137 } 1138 } 1139 1140 /* 1141 * Adjust @level according to the limits of the compression algorithm or 1142 * fallback to default 1143 */ 1144 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1145 { 1146 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1147 1148 if (level == 0) 1149 level = ops->default_level; 1150 else 1151 level = min(level, ops->max_level); 1152 1153 return level; 1154 } 1155 1156 /* 1157 * Given an address space and start and length, compress the bytes into @pages 1158 * that are allocated on demand. 1159 * 1160 * @type_level is encoded algorithm and level, where level 0 means whatever 1161 * default the algorithm chooses and is opaque here; 1162 * - compression algo are 0-3 1163 * - the level are bits 4-7 1164 * 1165 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1166 * and returns number of actually allocated pages 1167 * 1168 * @total_in is used to return the number of bytes actually read. It 1169 * may be smaller than the input length if we had to exit early because we 1170 * ran out of room in the pages array or because we cross the 1171 * max_out threshold. 1172 * 1173 * @total_out is an in/out parameter, must be set to the input length and will 1174 * be also used to return the total number of compressed bytes 1175 * 1176 * @max_out tells us the max number of bytes that we're allowed to 1177 * stuff into pages 1178 */ 1179 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1180 u64 start, struct page **pages, 1181 unsigned long *out_pages, 1182 unsigned long *total_in, 1183 unsigned long *total_out) 1184 { 1185 int type = btrfs_compress_type(type_level); 1186 int level = btrfs_compress_level(type_level); 1187 struct list_head *workspace; 1188 int ret; 1189 1190 level = btrfs_compress_set_level(type, level); 1191 workspace = get_workspace(type, level); 1192 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1193 out_pages, total_in, total_out); 1194 put_workspace(type, workspace); 1195 return ret; 1196 } 1197 1198 /* 1199 * pages_in is an array of pages with compressed data. 1200 * 1201 * disk_start is the starting logical offset of this array in the file 1202 * 1203 * orig_bio contains the pages from the file that we want to decompress into 1204 * 1205 * srclen is the number of bytes in pages_in 1206 * 1207 * The basic idea is that we have a bio that was created by readpages. 1208 * The pages in the bio are for the uncompressed data, and they may not 1209 * be contiguous. They all correspond to the range of bytes covered by 1210 * the compressed extent. 1211 */ 1212 static int btrfs_decompress_bio(struct compressed_bio *cb) 1213 { 1214 struct list_head *workspace; 1215 int ret; 1216 int type = cb->compress_type; 1217 1218 workspace = get_workspace(type, 0); 1219 ret = compression_decompress_bio(type, workspace, cb); 1220 put_workspace(type, workspace); 1221 1222 return ret; 1223 } 1224 1225 /* 1226 * a less complex decompression routine. Our compressed data fits in a 1227 * single page, and we want to read a single page out of it. 1228 * start_byte tells us the offset into the compressed data we're interested in 1229 */ 1230 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1231 unsigned long start_byte, size_t srclen, size_t destlen) 1232 { 1233 struct list_head *workspace; 1234 int ret; 1235 1236 workspace = get_workspace(type, 0); 1237 ret = compression_decompress(type, workspace, data_in, dest_page, 1238 start_byte, srclen, destlen); 1239 put_workspace(type, workspace); 1240 1241 return ret; 1242 } 1243 1244 void __init btrfs_init_compress(void) 1245 { 1246 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1247 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1248 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1249 zstd_init_workspace_manager(); 1250 } 1251 1252 void __cold btrfs_exit_compress(void) 1253 { 1254 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1255 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1256 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1257 zstd_cleanup_workspace_manager(); 1258 } 1259 1260 /* 1261 * Copy uncompressed data from working buffer to pages. 1262 * 1263 * buf_start is the byte offset we're of the start of our workspace buffer. 1264 * 1265 * total_out is the last byte of the buffer 1266 */ 1267 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1268 unsigned long total_out, u64 disk_start, 1269 struct bio *bio) 1270 { 1271 unsigned long buf_offset; 1272 unsigned long current_buf_start; 1273 unsigned long start_byte; 1274 unsigned long prev_start_byte; 1275 unsigned long working_bytes = total_out - buf_start; 1276 unsigned long bytes; 1277 char *kaddr; 1278 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1279 1280 /* 1281 * start byte is the first byte of the page we're currently 1282 * copying into relative to the start of the compressed data. 1283 */ 1284 start_byte = page_offset(bvec.bv_page) - disk_start; 1285 1286 /* we haven't yet hit data corresponding to this page */ 1287 if (total_out <= start_byte) 1288 return 1; 1289 1290 /* 1291 * the start of the data we care about is offset into 1292 * the middle of our working buffer 1293 */ 1294 if (total_out > start_byte && buf_start < start_byte) { 1295 buf_offset = start_byte - buf_start; 1296 working_bytes -= buf_offset; 1297 } else { 1298 buf_offset = 0; 1299 } 1300 current_buf_start = buf_start; 1301 1302 /* copy bytes from the working buffer into the pages */ 1303 while (working_bytes > 0) { 1304 bytes = min_t(unsigned long, bvec.bv_len, 1305 PAGE_SIZE - (buf_offset % PAGE_SIZE)); 1306 bytes = min(bytes, working_bytes); 1307 1308 kaddr = kmap_atomic(bvec.bv_page); 1309 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1310 kunmap_atomic(kaddr); 1311 flush_dcache_page(bvec.bv_page); 1312 1313 buf_offset += bytes; 1314 working_bytes -= bytes; 1315 current_buf_start += bytes; 1316 1317 /* check if we need to pick another page */ 1318 bio_advance(bio, bytes); 1319 if (!bio->bi_iter.bi_size) 1320 return 0; 1321 bvec = bio_iter_iovec(bio, bio->bi_iter); 1322 prev_start_byte = start_byte; 1323 start_byte = page_offset(bvec.bv_page) - disk_start; 1324 1325 /* 1326 * We need to make sure we're only adjusting 1327 * our offset into compression working buffer when 1328 * we're switching pages. Otherwise we can incorrectly 1329 * keep copying when we were actually done. 1330 */ 1331 if (start_byte != prev_start_byte) { 1332 /* 1333 * make sure our new page is covered by this 1334 * working buffer 1335 */ 1336 if (total_out <= start_byte) 1337 return 1; 1338 1339 /* 1340 * the next page in the biovec might not be adjacent 1341 * to the last page, but it might still be found 1342 * inside this working buffer. bump our offset pointer 1343 */ 1344 if (total_out > start_byte && 1345 current_buf_start < start_byte) { 1346 buf_offset = start_byte - buf_start; 1347 working_bytes = total_out - start_byte; 1348 current_buf_start = buf_start + buf_offset; 1349 } 1350 } 1351 } 1352 1353 return 1; 1354 } 1355 1356 /* 1357 * Shannon Entropy calculation 1358 * 1359 * Pure byte distribution analysis fails to determine compressibility of data. 1360 * Try calculating entropy to estimate the average minimum number of bits 1361 * needed to encode the sampled data. 1362 * 1363 * For convenience, return the percentage of needed bits, instead of amount of 1364 * bits directly. 1365 * 1366 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1367 * and can be compressible with high probability 1368 * 1369 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1370 * 1371 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1372 */ 1373 #define ENTROPY_LVL_ACEPTABLE (65) 1374 #define ENTROPY_LVL_HIGH (80) 1375 1376 /* 1377 * For increasead precision in shannon_entropy calculation, 1378 * let's do pow(n, M) to save more digits after comma: 1379 * 1380 * - maximum int bit length is 64 1381 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1382 * - 13 * 4 = 52 < 64 -> M = 4 1383 * 1384 * So use pow(n, 4). 1385 */ 1386 static inline u32 ilog2_w(u64 n) 1387 { 1388 return ilog2(n * n * n * n); 1389 } 1390 1391 static u32 shannon_entropy(struct heuristic_ws *ws) 1392 { 1393 const u32 entropy_max = 8 * ilog2_w(2); 1394 u32 entropy_sum = 0; 1395 u32 p, p_base, sz_base; 1396 u32 i; 1397 1398 sz_base = ilog2_w(ws->sample_size); 1399 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1400 p = ws->bucket[i].count; 1401 p_base = ilog2_w(p); 1402 entropy_sum += p * (sz_base - p_base); 1403 } 1404 1405 entropy_sum /= ws->sample_size; 1406 return entropy_sum * 100 / entropy_max; 1407 } 1408 1409 #define RADIX_BASE 4U 1410 #define COUNTERS_SIZE (1U << RADIX_BASE) 1411 1412 static u8 get4bits(u64 num, int shift) { 1413 u8 low4bits; 1414 1415 num >>= shift; 1416 /* Reverse order */ 1417 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1418 return low4bits; 1419 } 1420 1421 /* 1422 * Use 4 bits as radix base 1423 * Use 16 u32 counters for calculating new position in buf array 1424 * 1425 * @array - array that will be sorted 1426 * @array_buf - buffer array to store sorting results 1427 * must be equal in size to @array 1428 * @num - array size 1429 */ 1430 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1431 int num) 1432 { 1433 u64 max_num; 1434 u64 buf_num; 1435 u32 counters[COUNTERS_SIZE]; 1436 u32 new_addr; 1437 u32 addr; 1438 int bitlen; 1439 int shift; 1440 int i; 1441 1442 /* 1443 * Try avoid useless loop iterations for small numbers stored in big 1444 * counters. Example: 48 33 4 ... in 64bit array 1445 */ 1446 max_num = array[0].count; 1447 for (i = 1; i < num; i++) { 1448 buf_num = array[i].count; 1449 if (buf_num > max_num) 1450 max_num = buf_num; 1451 } 1452 1453 buf_num = ilog2(max_num); 1454 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1455 1456 shift = 0; 1457 while (shift < bitlen) { 1458 memset(counters, 0, sizeof(counters)); 1459 1460 for (i = 0; i < num; i++) { 1461 buf_num = array[i].count; 1462 addr = get4bits(buf_num, shift); 1463 counters[addr]++; 1464 } 1465 1466 for (i = 1; i < COUNTERS_SIZE; i++) 1467 counters[i] += counters[i - 1]; 1468 1469 for (i = num - 1; i >= 0; i--) { 1470 buf_num = array[i].count; 1471 addr = get4bits(buf_num, shift); 1472 counters[addr]--; 1473 new_addr = counters[addr]; 1474 array_buf[new_addr] = array[i]; 1475 } 1476 1477 shift += RADIX_BASE; 1478 1479 /* 1480 * Normal radix expects to move data from a temporary array, to 1481 * the main one. But that requires some CPU time. Avoid that 1482 * by doing another sort iteration to original array instead of 1483 * memcpy() 1484 */ 1485 memset(counters, 0, sizeof(counters)); 1486 1487 for (i = 0; i < num; i ++) { 1488 buf_num = array_buf[i].count; 1489 addr = get4bits(buf_num, shift); 1490 counters[addr]++; 1491 } 1492 1493 for (i = 1; i < COUNTERS_SIZE; i++) 1494 counters[i] += counters[i - 1]; 1495 1496 for (i = num - 1; i >= 0; i--) { 1497 buf_num = array_buf[i].count; 1498 addr = get4bits(buf_num, shift); 1499 counters[addr]--; 1500 new_addr = counters[addr]; 1501 array[new_addr] = array_buf[i]; 1502 } 1503 1504 shift += RADIX_BASE; 1505 } 1506 } 1507 1508 /* 1509 * Size of the core byte set - how many bytes cover 90% of the sample 1510 * 1511 * There are several types of structured binary data that use nearly all byte 1512 * values. The distribution can be uniform and counts in all buckets will be 1513 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1514 * 1515 * Other possibility is normal (Gaussian) distribution, where the data could 1516 * be potentially compressible, but we have to take a few more steps to decide 1517 * how much. 1518 * 1519 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1520 * compression algo can easy fix that 1521 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1522 * probability is not compressible 1523 */ 1524 #define BYTE_CORE_SET_LOW (64) 1525 #define BYTE_CORE_SET_HIGH (200) 1526 1527 static int byte_core_set_size(struct heuristic_ws *ws) 1528 { 1529 u32 i; 1530 u32 coreset_sum = 0; 1531 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1532 struct bucket_item *bucket = ws->bucket; 1533 1534 /* Sort in reverse order */ 1535 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1536 1537 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1538 coreset_sum += bucket[i].count; 1539 1540 if (coreset_sum > core_set_threshold) 1541 return i; 1542 1543 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1544 coreset_sum += bucket[i].count; 1545 if (coreset_sum > core_set_threshold) 1546 break; 1547 } 1548 1549 return i; 1550 } 1551 1552 /* 1553 * Count byte values in buckets. 1554 * This heuristic can detect textual data (configs, xml, json, html, etc). 1555 * Because in most text-like data byte set is restricted to limited number of 1556 * possible characters, and that restriction in most cases makes data easy to 1557 * compress. 1558 * 1559 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1560 * less - compressible 1561 * more - need additional analysis 1562 */ 1563 #define BYTE_SET_THRESHOLD (64) 1564 1565 static u32 byte_set_size(const struct heuristic_ws *ws) 1566 { 1567 u32 i; 1568 u32 byte_set_size = 0; 1569 1570 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1571 if (ws->bucket[i].count > 0) 1572 byte_set_size++; 1573 } 1574 1575 /* 1576 * Continue collecting count of byte values in buckets. If the byte 1577 * set size is bigger then the threshold, it's pointless to continue, 1578 * the detection technique would fail for this type of data. 1579 */ 1580 for (; i < BUCKET_SIZE; i++) { 1581 if (ws->bucket[i].count > 0) { 1582 byte_set_size++; 1583 if (byte_set_size > BYTE_SET_THRESHOLD) 1584 return byte_set_size; 1585 } 1586 } 1587 1588 return byte_set_size; 1589 } 1590 1591 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1592 { 1593 const u32 half_of_sample = ws->sample_size / 2; 1594 const u8 *data = ws->sample; 1595 1596 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1597 } 1598 1599 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1600 struct heuristic_ws *ws) 1601 { 1602 struct page *page; 1603 u64 index, index_end; 1604 u32 i, curr_sample_pos; 1605 u8 *in_data; 1606 1607 /* 1608 * Compression handles the input data by chunks of 128KiB 1609 * (defined by BTRFS_MAX_UNCOMPRESSED) 1610 * 1611 * We do the same for the heuristic and loop over the whole range. 1612 * 1613 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1614 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1615 */ 1616 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1617 end = start + BTRFS_MAX_UNCOMPRESSED; 1618 1619 index = start >> PAGE_SHIFT; 1620 index_end = end >> PAGE_SHIFT; 1621 1622 /* Don't miss unaligned end */ 1623 if (!IS_ALIGNED(end, PAGE_SIZE)) 1624 index_end++; 1625 1626 curr_sample_pos = 0; 1627 while (index < index_end) { 1628 page = find_get_page(inode->i_mapping, index); 1629 in_data = kmap(page); 1630 /* Handle case where the start is not aligned to PAGE_SIZE */ 1631 i = start % PAGE_SIZE; 1632 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1633 /* Don't sample any garbage from the last page */ 1634 if (start > end - SAMPLING_READ_SIZE) 1635 break; 1636 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1637 SAMPLING_READ_SIZE); 1638 i += SAMPLING_INTERVAL; 1639 start += SAMPLING_INTERVAL; 1640 curr_sample_pos += SAMPLING_READ_SIZE; 1641 } 1642 kunmap(page); 1643 put_page(page); 1644 1645 index++; 1646 } 1647 1648 ws->sample_size = curr_sample_pos; 1649 } 1650 1651 /* 1652 * Compression heuristic. 1653 * 1654 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1655 * quickly (compared to direct compression) detect data characteristics 1656 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1657 * data. 1658 * 1659 * The following types of analysis can be performed: 1660 * - detect mostly zero data 1661 * - detect data with low "byte set" size (text, etc) 1662 * - detect data with low/high "core byte" set 1663 * 1664 * Return non-zero if the compression should be done, 0 otherwise. 1665 */ 1666 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1667 { 1668 struct list_head *ws_list = get_workspace(0, 0); 1669 struct heuristic_ws *ws; 1670 u32 i; 1671 u8 byte; 1672 int ret = 0; 1673 1674 ws = list_entry(ws_list, struct heuristic_ws, list); 1675 1676 heuristic_collect_sample(inode, start, end, ws); 1677 1678 if (sample_repeated_patterns(ws)) { 1679 ret = 1; 1680 goto out; 1681 } 1682 1683 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1684 1685 for (i = 0; i < ws->sample_size; i++) { 1686 byte = ws->sample[i]; 1687 ws->bucket[byte].count++; 1688 } 1689 1690 i = byte_set_size(ws); 1691 if (i < BYTE_SET_THRESHOLD) { 1692 ret = 2; 1693 goto out; 1694 } 1695 1696 i = byte_core_set_size(ws); 1697 if (i <= BYTE_CORE_SET_LOW) { 1698 ret = 3; 1699 goto out; 1700 } 1701 1702 if (i >= BYTE_CORE_SET_HIGH) { 1703 ret = 0; 1704 goto out; 1705 } 1706 1707 i = shannon_entropy(ws); 1708 if (i <= ENTROPY_LVL_ACEPTABLE) { 1709 ret = 4; 1710 goto out; 1711 } 1712 1713 /* 1714 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1715 * needed to give green light to compression. 1716 * 1717 * For now just assume that compression at that level is not worth the 1718 * resources because: 1719 * 1720 * 1. it is possible to defrag the data later 1721 * 1722 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1723 * values, every bucket has counter at level ~54. The heuristic would 1724 * be confused. This can happen when data have some internal repeated 1725 * patterns like "abbacbbc...". This can be detected by analyzing 1726 * pairs of bytes, which is too costly. 1727 */ 1728 if (i < ENTROPY_LVL_HIGH) { 1729 ret = 5; 1730 goto out; 1731 } else { 1732 ret = 0; 1733 goto out; 1734 } 1735 1736 out: 1737 put_workspace(0, ws_list); 1738 return ret; 1739 } 1740 1741 /* 1742 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1743 * level, unrecognized string will set the default level 1744 */ 1745 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1746 { 1747 unsigned int level = 0; 1748 int ret; 1749 1750 if (!type) 1751 return 0; 1752 1753 if (str[0] == ':') { 1754 ret = kstrtouint(str + 1, 10, &level); 1755 if (ret) 1756 level = 0; 1757 } 1758 1759 level = btrfs_compress_set_level(type, level); 1760 1761 return level; 1762 } 1763