1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 33 34 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 35 { 36 switch (type) { 37 case BTRFS_COMPRESS_ZLIB: 38 case BTRFS_COMPRESS_LZO: 39 case BTRFS_COMPRESS_ZSTD: 40 case BTRFS_COMPRESS_NONE: 41 return btrfs_compress_types[type]; 42 } 43 44 return NULL; 45 } 46 47 bool btrfs_compress_is_valid_type(const char *str, size_t len) 48 { 49 int i; 50 51 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 52 size_t comp_len = strlen(btrfs_compress_types[i]); 53 54 if (len < comp_len) 55 continue; 56 57 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 58 return true; 59 } 60 return false; 61 } 62 63 static int btrfs_decompress_bio(struct compressed_bio *cb); 64 65 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 66 unsigned long disk_size) 67 { 68 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 69 70 return sizeof(struct compressed_bio) + 71 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 72 } 73 74 static int check_compressed_csum(struct btrfs_inode *inode, 75 struct compressed_bio *cb, 76 u64 disk_start) 77 { 78 struct btrfs_fs_info *fs_info = inode->root->fs_info; 79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 80 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 81 int ret; 82 struct page *page; 83 unsigned long i; 84 char *kaddr; 85 u8 csum[BTRFS_CSUM_SIZE]; 86 u8 *cb_sum = cb->sums; 87 88 if (inode->flags & BTRFS_INODE_NODATASUM) 89 return 0; 90 91 shash->tfm = fs_info->csum_shash; 92 93 for (i = 0; i < cb->nr_pages; i++) { 94 page = cb->compressed_pages[i]; 95 96 crypto_shash_init(shash); 97 kaddr = kmap_atomic(page); 98 crypto_shash_update(shash, kaddr, PAGE_SIZE); 99 kunmap_atomic(kaddr); 100 crypto_shash_final(shash, (u8 *)&csum); 101 102 if (memcmp(&csum, cb_sum, csum_size)) { 103 btrfs_print_data_csum_error(inode, disk_start, 104 csum, cb_sum, cb->mirror_num); 105 ret = -EIO; 106 goto fail; 107 } 108 cb_sum += csum_size; 109 110 } 111 ret = 0; 112 fail: 113 return ret; 114 } 115 116 /* when we finish reading compressed pages from the disk, we 117 * decompress them and then run the bio end_io routines on the 118 * decompressed pages (in the inode address space). 119 * 120 * This allows the checksumming and other IO error handling routines 121 * to work normally 122 * 123 * The compressed pages are freed here, and it must be run 124 * in process context 125 */ 126 static void end_compressed_bio_read(struct bio *bio) 127 { 128 struct compressed_bio *cb = bio->bi_private; 129 struct inode *inode; 130 struct page *page; 131 unsigned long index; 132 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 133 int ret = 0; 134 135 if (bio->bi_status) 136 cb->errors = 1; 137 138 /* if there are more bios still pending for this compressed 139 * extent, just exit 140 */ 141 if (!refcount_dec_and_test(&cb->pending_bios)) 142 goto out; 143 144 /* 145 * Record the correct mirror_num in cb->orig_bio so that 146 * read-repair can work properly. 147 */ 148 ASSERT(btrfs_io_bio(cb->orig_bio)); 149 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 150 cb->mirror_num = mirror; 151 152 /* 153 * Some IO in this cb have failed, just skip checksum as there 154 * is no way it could be correct. 155 */ 156 if (cb->errors == 1) 157 goto csum_failed; 158 159 inode = cb->inode; 160 ret = check_compressed_csum(BTRFS_I(inode), cb, 161 (u64)bio->bi_iter.bi_sector << 9); 162 if (ret) 163 goto csum_failed; 164 165 /* ok, we're the last bio for this extent, lets start 166 * the decompression. 167 */ 168 ret = btrfs_decompress_bio(cb); 169 170 csum_failed: 171 if (ret) 172 cb->errors = 1; 173 174 /* release the compressed pages */ 175 index = 0; 176 for (index = 0; index < cb->nr_pages; index++) { 177 page = cb->compressed_pages[index]; 178 page->mapping = NULL; 179 put_page(page); 180 } 181 182 /* do io completion on the original bio */ 183 if (cb->errors) { 184 bio_io_error(cb->orig_bio); 185 } else { 186 struct bio_vec *bvec; 187 struct bvec_iter_all iter_all; 188 189 /* 190 * we have verified the checksum already, set page 191 * checked so the end_io handlers know about it 192 */ 193 ASSERT(!bio_flagged(bio, BIO_CLONED)); 194 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 195 SetPageChecked(bvec->bv_page); 196 197 bio_endio(cb->orig_bio); 198 } 199 200 /* finally free the cb struct */ 201 kfree(cb->compressed_pages); 202 kfree(cb); 203 out: 204 bio_put(bio); 205 } 206 207 /* 208 * Clear the writeback bits on all of the file 209 * pages for a compressed write 210 */ 211 static noinline void end_compressed_writeback(struct inode *inode, 212 const struct compressed_bio *cb) 213 { 214 unsigned long index = cb->start >> PAGE_SHIFT; 215 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 216 struct page *pages[16]; 217 unsigned long nr_pages = end_index - index + 1; 218 int i; 219 int ret; 220 221 if (cb->errors) 222 mapping_set_error(inode->i_mapping, -EIO); 223 224 while (nr_pages > 0) { 225 ret = find_get_pages_contig(inode->i_mapping, index, 226 min_t(unsigned long, 227 nr_pages, ARRAY_SIZE(pages)), pages); 228 if (ret == 0) { 229 nr_pages -= 1; 230 index += 1; 231 continue; 232 } 233 for (i = 0; i < ret; i++) { 234 if (cb->errors) 235 SetPageError(pages[i]); 236 end_page_writeback(pages[i]); 237 put_page(pages[i]); 238 } 239 nr_pages -= ret; 240 index += ret; 241 } 242 /* the inode may be gone now */ 243 } 244 245 /* 246 * do the cleanup once all the compressed pages hit the disk. 247 * This will clear writeback on the file pages and free the compressed 248 * pages. 249 * 250 * This also calls the writeback end hooks for the file pages so that 251 * metadata and checksums can be updated in the file. 252 */ 253 static void end_compressed_bio_write(struct bio *bio) 254 { 255 struct compressed_bio *cb = bio->bi_private; 256 struct inode *inode; 257 struct page *page; 258 unsigned long index; 259 260 if (bio->bi_status) 261 cb->errors = 1; 262 263 /* if there are more bios still pending for this compressed 264 * extent, just exit 265 */ 266 if (!refcount_dec_and_test(&cb->pending_bios)) 267 goto out; 268 269 /* ok, we're the last bio for this extent, step one is to 270 * call back into the FS and do all the end_io operations 271 */ 272 inode = cb->inode; 273 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 274 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 275 cb->start, cb->start + cb->len - 1, 276 bio->bi_status == BLK_STS_OK); 277 cb->compressed_pages[0]->mapping = NULL; 278 279 end_compressed_writeback(inode, cb); 280 /* note, our inode could be gone now */ 281 282 /* 283 * release the compressed pages, these came from alloc_page and 284 * are not attached to the inode at all 285 */ 286 index = 0; 287 for (index = 0; index < cb->nr_pages; index++) { 288 page = cb->compressed_pages[index]; 289 page->mapping = NULL; 290 put_page(page); 291 } 292 293 /* finally free the cb struct */ 294 kfree(cb->compressed_pages); 295 kfree(cb); 296 out: 297 bio_put(bio); 298 } 299 300 /* 301 * worker function to build and submit bios for previously compressed pages. 302 * The corresponding pages in the inode should be marked for writeback 303 * and the compressed pages should have a reference on them for dropping 304 * when the IO is complete. 305 * 306 * This also checksums the file bytes and gets things ready for 307 * the end io hooks. 308 */ 309 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 310 unsigned long len, u64 disk_start, 311 unsigned long compressed_len, 312 struct page **compressed_pages, 313 unsigned long nr_pages, 314 unsigned int write_flags) 315 { 316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 317 struct bio *bio = NULL; 318 struct compressed_bio *cb; 319 unsigned long bytes_left; 320 int pg_index = 0; 321 struct page *page; 322 u64 first_byte = disk_start; 323 struct block_device *bdev; 324 blk_status_t ret; 325 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 326 327 WARN_ON(!PAGE_ALIGNED(start)); 328 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 329 if (!cb) 330 return BLK_STS_RESOURCE; 331 refcount_set(&cb->pending_bios, 0); 332 cb->errors = 0; 333 cb->inode = inode; 334 cb->start = start; 335 cb->len = len; 336 cb->mirror_num = 0; 337 cb->compressed_pages = compressed_pages; 338 cb->compressed_len = compressed_len; 339 cb->orig_bio = NULL; 340 cb->nr_pages = nr_pages; 341 342 bdev = fs_info->fs_devices->latest_bdev; 343 344 bio = btrfs_bio_alloc(first_byte); 345 bio_set_dev(bio, bdev); 346 bio->bi_opf = REQ_OP_WRITE | write_flags; 347 bio->bi_private = cb; 348 bio->bi_end_io = end_compressed_bio_write; 349 refcount_set(&cb->pending_bios, 1); 350 351 /* create and submit bios for the compressed pages */ 352 bytes_left = compressed_len; 353 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 354 int submit = 0; 355 356 page = compressed_pages[pg_index]; 357 page->mapping = inode->i_mapping; 358 if (bio->bi_iter.bi_size) 359 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 360 0); 361 362 page->mapping = NULL; 363 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 364 PAGE_SIZE) { 365 /* 366 * inc the count before we submit the bio so 367 * we know the end IO handler won't happen before 368 * we inc the count. Otherwise, the cb might get 369 * freed before we're done setting it up 370 */ 371 refcount_inc(&cb->pending_bios); 372 ret = btrfs_bio_wq_end_io(fs_info, bio, 373 BTRFS_WQ_ENDIO_DATA); 374 BUG_ON(ret); /* -ENOMEM */ 375 376 if (!skip_sum) { 377 ret = btrfs_csum_one_bio(inode, bio, start, 1); 378 BUG_ON(ret); /* -ENOMEM */ 379 } 380 381 ret = btrfs_map_bio(fs_info, bio, 0, 1); 382 if (ret) { 383 bio->bi_status = ret; 384 bio_endio(bio); 385 } 386 387 bio = btrfs_bio_alloc(first_byte); 388 bio_set_dev(bio, bdev); 389 bio->bi_opf = REQ_OP_WRITE | write_flags; 390 bio->bi_private = cb; 391 bio->bi_end_io = end_compressed_bio_write; 392 bio_add_page(bio, page, PAGE_SIZE, 0); 393 } 394 if (bytes_left < PAGE_SIZE) { 395 btrfs_info(fs_info, 396 "bytes left %lu compress len %lu nr %lu", 397 bytes_left, cb->compressed_len, cb->nr_pages); 398 } 399 bytes_left -= PAGE_SIZE; 400 first_byte += PAGE_SIZE; 401 cond_resched(); 402 } 403 404 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 405 BUG_ON(ret); /* -ENOMEM */ 406 407 if (!skip_sum) { 408 ret = btrfs_csum_one_bio(inode, bio, start, 1); 409 BUG_ON(ret); /* -ENOMEM */ 410 } 411 412 ret = btrfs_map_bio(fs_info, bio, 0, 1); 413 if (ret) { 414 bio->bi_status = ret; 415 bio_endio(bio); 416 } 417 418 return 0; 419 } 420 421 static u64 bio_end_offset(struct bio *bio) 422 { 423 struct bio_vec *last = bio_last_bvec_all(bio); 424 425 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 426 } 427 428 static noinline int add_ra_bio_pages(struct inode *inode, 429 u64 compressed_end, 430 struct compressed_bio *cb) 431 { 432 unsigned long end_index; 433 unsigned long pg_index; 434 u64 last_offset; 435 u64 isize = i_size_read(inode); 436 int ret; 437 struct page *page; 438 unsigned long nr_pages = 0; 439 struct extent_map *em; 440 struct address_space *mapping = inode->i_mapping; 441 struct extent_map_tree *em_tree; 442 struct extent_io_tree *tree; 443 u64 end; 444 int misses = 0; 445 446 last_offset = bio_end_offset(cb->orig_bio); 447 em_tree = &BTRFS_I(inode)->extent_tree; 448 tree = &BTRFS_I(inode)->io_tree; 449 450 if (isize == 0) 451 return 0; 452 453 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 454 455 while (last_offset < compressed_end) { 456 pg_index = last_offset >> PAGE_SHIFT; 457 458 if (pg_index > end_index) 459 break; 460 461 page = xa_load(&mapping->i_pages, pg_index); 462 if (page && !xa_is_value(page)) { 463 misses++; 464 if (misses > 4) 465 break; 466 goto next; 467 } 468 469 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 470 ~__GFP_FS)); 471 if (!page) 472 break; 473 474 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 475 put_page(page); 476 goto next; 477 } 478 479 end = last_offset + PAGE_SIZE - 1; 480 /* 481 * at this point, we have a locked page in the page cache 482 * for these bytes in the file. But, we have to make 483 * sure they map to this compressed extent on disk. 484 */ 485 set_page_extent_mapped(page); 486 lock_extent(tree, last_offset, end); 487 read_lock(&em_tree->lock); 488 em = lookup_extent_mapping(em_tree, last_offset, 489 PAGE_SIZE); 490 read_unlock(&em_tree->lock); 491 492 if (!em || last_offset < em->start || 493 (last_offset + PAGE_SIZE > extent_map_end(em)) || 494 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 495 free_extent_map(em); 496 unlock_extent(tree, last_offset, end); 497 unlock_page(page); 498 put_page(page); 499 break; 500 } 501 free_extent_map(em); 502 503 if (page->index == end_index) { 504 char *userpage; 505 size_t zero_offset = offset_in_page(isize); 506 507 if (zero_offset) { 508 int zeros; 509 zeros = PAGE_SIZE - zero_offset; 510 userpage = kmap_atomic(page); 511 memset(userpage + zero_offset, 0, zeros); 512 flush_dcache_page(page); 513 kunmap_atomic(userpage); 514 } 515 } 516 517 ret = bio_add_page(cb->orig_bio, page, 518 PAGE_SIZE, 0); 519 520 if (ret == PAGE_SIZE) { 521 nr_pages++; 522 put_page(page); 523 } else { 524 unlock_extent(tree, last_offset, end); 525 unlock_page(page); 526 put_page(page); 527 break; 528 } 529 next: 530 last_offset += PAGE_SIZE; 531 } 532 return 0; 533 } 534 535 /* 536 * for a compressed read, the bio we get passed has all the inode pages 537 * in it. We don't actually do IO on those pages but allocate new ones 538 * to hold the compressed pages on disk. 539 * 540 * bio->bi_iter.bi_sector points to the compressed extent on disk 541 * bio->bi_io_vec points to all of the inode pages 542 * 543 * After the compressed pages are read, we copy the bytes into the 544 * bio we were passed and then call the bio end_io calls 545 */ 546 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 547 int mirror_num, unsigned long bio_flags) 548 { 549 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 550 struct extent_map_tree *em_tree; 551 struct compressed_bio *cb; 552 unsigned long compressed_len; 553 unsigned long nr_pages; 554 unsigned long pg_index; 555 struct page *page; 556 struct block_device *bdev; 557 struct bio *comp_bio; 558 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 559 u64 em_len; 560 u64 em_start; 561 struct extent_map *em; 562 blk_status_t ret = BLK_STS_RESOURCE; 563 int faili = 0; 564 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 565 u8 *sums; 566 567 em_tree = &BTRFS_I(inode)->extent_tree; 568 569 /* we need the actual starting offset of this extent in the file */ 570 read_lock(&em_tree->lock); 571 em = lookup_extent_mapping(em_tree, 572 page_offset(bio_first_page_all(bio)), 573 PAGE_SIZE); 574 read_unlock(&em_tree->lock); 575 if (!em) 576 return BLK_STS_IOERR; 577 578 compressed_len = em->block_len; 579 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 580 if (!cb) 581 goto out; 582 583 refcount_set(&cb->pending_bios, 0); 584 cb->errors = 0; 585 cb->inode = inode; 586 cb->mirror_num = mirror_num; 587 sums = cb->sums; 588 589 cb->start = em->orig_start; 590 em_len = em->len; 591 em_start = em->start; 592 593 free_extent_map(em); 594 em = NULL; 595 596 cb->len = bio->bi_iter.bi_size; 597 cb->compressed_len = compressed_len; 598 cb->compress_type = extent_compress_type(bio_flags); 599 cb->orig_bio = bio; 600 601 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 602 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 603 GFP_NOFS); 604 if (!cb->compressed_pages) 605 goto fail1; 606 607 bdev = fs_info->fs_devices->latest_bdev; 608 609 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 610 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 611 __GFP_HIGHMEM); 612 if (!cb->compressed_pages[pg_index]) { 613 faili = pg_index - 1; 614 ret = BLK_STS_RESOURCE; 615 goto fail2; 616 } 617 } 618 faili = nr_pages - 1; 619 cb->nr_pages = nr_pages; 620 621 add_ra_bio_pages(inode, em_start + em_len, cb); 622 623 /* include any pages we added in add_ra-bio_pages */ 624 cb->len = bio->bi_iter.bi_size; 625 626 comp_bio = btrfs_bio_alloc(cur_disk_byte); 627 bio_set_dev(comp_bio, bdev); 628 comp_bio->bi_opf = REQ_OP_READ; 629 comp_bio->bi_private = cb; 630 comp_bio->bi_end_io = end_compressed_bio_read; 631 refcount_set(&cb->pending_bios, 1); 632 633 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 634 int submit = 0; 635 636 page = cb->compressed_pages[pg_index]; 637 page->mapping = inode->i_mapping; 638 page->index = em_start >> PAGE_SHIFT; 639 640 if (comp_bio->bi_iter.bi_size) 641 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, 642 comp_bio, 0); 643 644 page->mapping = NULL; 645 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 646 PAGE_SIZE) { 647 unsigned int nr_sectors; 648 649 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 650 BTRFS_WQ_ENDIO_DATA); 651 BUG_ON(ret); /* -ENOMEM */ 652 653 /* 654 * inc the count before we submit the bio so 655 * we know the end IO handler won't happen before 656 * we inc the count. Otherwise, the cb might get 657 * freed before we're done setting it up 658 */ 659 refcount_inc(&cb->pending_bios); 660 661 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 662 ret = btrfs_lookup_bio_sums(inode, comp_bio, 663 sums); 664 BUG_ON(ret); /* -ENOMEM */ 665 } 666 667 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 668 fs_info->sectorsize); 669 sums += csum_size * nr_sectors; 670 671 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 672 if (ret) { 673 comp_bio->bi_status = ret; 674 bio_endio(comp_bio); 675 } 676 677 comp_bio = btrfs_bio_alloc(cur_disk_byte); 678 bio_set_dev(comp_bio, bdev); 679 comp_bio->bi_opf = REQ_OP_READ; 680 comp_bio->bi_private = cb; 681 comp_bio->bi_end_io = end_compressed_bio_read; 682 683 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 684 } 685 cur_disk_byte += PAGE_SIZE; 686 } 687 688 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 689 BUG_ON(ret); /* -ENOMEM */ 690 691 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 692 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 693 BUG_ON(ret); /* -ENOMEM */ 694 } 695 696 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 697 if (ret) { 698 comp_bio->bi_status = ret; 699 bio_endio(comp_bio); 700 } 701 702 return 0; 703 704 fail2: 705 while (faili >= 0) { 706 __free_page(cb->compressed_pages[faili]); 707 faili--; 708 } 709 710 kfree(cb->compressed_pages); 711 fail1: 712 kfree(cb); 713 out: 714 free_extent_map(em); 715 return ret; 716 } 717 718 /* 719 * Heuristic uses systematic sampling to collect data from the input data 720 * range, the logic can be tuned by the following constants: 721 * 722 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 723 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 724 */ 725 #define SAMPLING_READ_SIZE (16) 726 #define SAMPLING_INTERVAL (256) 727 728 /* 729 * For statistical analysis of the input data we consider bytes that form a 730 * Galois Field of 256 objects. Each object has an attribute count, ie. how 731 * many times the object appeared in the sample. 732 */ 733 #define BUCKET_SIZE (256) 734 735 /* 736 * The size of the sample is based on a statistical sampling rule of thumb. 737 * The common way is to perform sampling tests as long as the number of 738 * elements in each cell is at least 5. 739 * 740 * Instead of 5, we choose 32 to obtain more accurate results. 741 * If the data contain the maximum number of symbols, which is 256, we obtain a 742 * sample size bound by 8192. 743 * 744 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 745 * from up to 512 locations. 746 */ 747 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 748 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 749 750 struct bucket_item { 751 u32 count; 752 }; 753 754 struct heuristic_ws { 755 /* Partial copy of input data */ 756 u8 *sample; 757 u32 sample_size; 758 /* Buckets store counters for each byte value */ 759 struct bucket_item *bucket; 760 /* Sorting buffer */ 761 struct bucket_item *bucket_b; 762 struct list_head list; 763 }; 764 765 static struct workspace_manager heuristic_wsm; 766 767 static void heuristic_init_workspace_manager(void) 768 { 769 btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress); 770 } 771 772 static void heuristic_cleanup_workspace_manager(void) 773 { 774 btrfs_cleanup_workspace_manager(&heuristic_wsm); 775 } 776 777 static struct list_head *heuristic_get_workspace(unsigned int level) 778 { 779 return btrfs_get_workspace(&heuristic_wsm, level); 780 } 781 782 static void heuristic_put_workspace(struct list_head *ws) 783 { 784 btrfs_put_workspace(&heuristic_wsm, ws); 785 } 786 787 static void free_heuristic_ws(struct list_head *ws) 788 { 789 struct heuristic_ws *workspace; 790 791 workspace = list_entry(ws, struct heuristic_ws, list); 792 793 kvfree(workspace->sample); 794 kfree(workspace->bucket); 795 kfree(workspace->bucket_b); 796 kfree(workspace); 797 } 798 799 static struct list_head *alloc_heuristic_ws(unsigned int level) 800 { 801 struct heuristic_ws *ws; 802 803 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 804 if (!ws) 805 return ERR_PTR(-ENOMEM); 806 807 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 808 if (!ws->sample) 809 goto fail; 810 811 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 812 if (!ws->bucket) 813 goto fail; 814 815 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 816 if (!ws->bucket_b) 817 goto fail; 818 819 INIT_LIST_HEAD(&ws->list); 820 return &ws->list; 821 fail: 822 free_heuristic_ws(&ws->list); 823 return ERR_PTR(-ENOMEM); 824 } 825 826 const struct btrfs_compress_op btrfs_heuristic_compress = { 827 .init_workspace_manager = heuristic_init_workspace_manager, 828 .cleanup_workspace_manager = heuristic_cleanup_workspace_manager, 829 .get_workspace = heuristic_get_workspace, 830 .put_workspace = heuristic_put_workspace, 831 .alloc_workspace = alloc_heuristic_ws, 832 .free_workspace = free_heuristic_ws, 833 }; 834 835 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 836 /* The heuristic is represented as compression type 0 */ 837 &btrfs_heuristic_compress, 838 &btrfs_zlib_compress, 839 &btrfs_lzo_compress, 840 &btrfs_zstd_compress, 841 }; 842 843 void btrfs_init_workspace_manager(struct workspace_manager *wsm, 844 const struct btrfs_compress_op *ops) 845 { 846 struct list_head *workspace; 847 848 wsm->ops = ops; 849 850 INIT_LIST_HEAD(&wsm->idle_ws); 851 spin_lock_init(&wsm->ws_lock); 852 atomic_set(&wsm->total_ws, 0); 853 init_waitqueue_head(&wsm->ws_wait); 854 855 /* 856 * Preallocate one workspace for each compression type so we can 857 * guarantee forward progress in the worst case 858 */ 859 workspace = wsm->ops->alloc_workspace(0); 860 if (IS_ERR(workspace)) { 861 pr_warn( 862 "BTRFS: cannot preallocate compression workspace, will try later\n"); 863 } else { 864 atomic_set(&wsm->total_ws, 1); 865 wsm->free_ws = 1; 866 list_add(workspace, &wsm->idle_ws); 867 } 868 } 869 870 void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman) 871 { 872 struct list_head *ws; 873 874 while (!list_empty(&wsman->idle_ws)) { 875 ws = wsman->idle_ws.next; 876 list_del(ws); 877 wsman->ops->free_workspace(ws); 878 atomic_dec(&wsman->total_ws); 879 } 880 } 881 882 /* 883 * This finds an available workspace or allocates a new one. 884 * If it's not possible to allocate a new one, waits until there's one. 885 * Preallocation makes a forward progress guarantees and we do not return 886 * errors. 887 */ 888 struct list_head *btrfs_get_workspace(struct workspace_manager *wsm, 889 unsigned int level) 890 { 891 struct list_head *workspace; 892 int cpus = num_online_cpus(); 893 unsigned nofs_flag; 894 struct list_head *idle_ws; 895 spinlock_t *ws_lock; 896 atomic_t *total_ws; 897 wait_queue_head_t *ws_wait; 898 int *free_ws; 899 900 idle_ws = &wsm->idle_ws; 901 ws_lock = &wsm->ws_lock; 902 total_ws = &wsm->total_ws; 903 ws_wait = &wsm->ws_wait; 904 free_ws = &wsm->free_ws; 905 906 again: 907 spin_lock(ws_lock); 908 if (!list_empty(idle_ws)) { 909 workspace = idle_ws->next; 910 list_del(workspace); 911 (*free_ws)--; 912 spin_unlock(ws_lock); 913 return workspace; 914 915 } 916 if (atomic_read(total_ws) > cpus) { 917 DEFINE_WAIT(wait); 918 919 spin_unlock(ws_lock); 920 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 921 if (atomic_read(total_ws) > cpus && !*free_ws) 922 schedule(); 923 finish_wait(ws_wait, &wait); 924 goto again; 925 } 926 atomic_inc(total_ws); 927 spin_unlock(ws_lock); 928 929 /* 930 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 931 * to turn it off here because we might get called from the restricted 932 * context of btrfs_compress_bio/btrfs_compress_pages 933 */ 934 nofs_flag = memalloc_nofs_save(); 935 workspace = wsm->ops->alloc_workspace(level); 936 memalloc_nofs_restore(nofs_flag); 937 938 if (IS_ERR(workspace)) { 939 atomic_dec(total_ws); 940 wake_up(ws_wait); 941 942 /* 943 * Do not return the error but go back to waiting. There's a 944 * workspace preallocated for each type and the compression 945 * time is bounded so we get to a workspace eventually. This 946 * makes our caller's life easier. 947 * 948 * To prevent silent and low-probability deadlocks (when the 949 * initial preallocation fails), check if there are any 950 * workspaces at all. 951 */ 952 if (atomic_read(total_ws) == 0) { 953 static DEFINE_RATELIMIT_STATE(_rs, 954 /* once per minute */ 60 * HZ, 955 /* no burst */ 1); 956 957 if (__ratelimit(&_rs)) { 958 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 959 } 960 } 961 goto again; 962 } 963 return workspace; 964 } 965 966 static struct list_head *get_workspace(int type, int level) 967 { 968 return btrfs_compress_op[type]->get_workspace(level); 969 } 970 971 /* 972 * put a workspace struct back on the list or free it if we have enough 973 * idle ones sitting around 974 */ 975 void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws) 976 { 977 struct list_head *idle_ws; 978 spinlock_t *ws_lock; 979 atomic_t *total_ws; 980 wait_queue_head_t *ws_wait; 981 int *free_ws; 982 983 idle_ws = &wsm->idle_ws; 984 ws_lock = &wsm->ws_lock; 985 total_ws = &wsm->total_ws; 986 ws_wait = &wsm->ws_wait; 987 free_ws = &wsm->free_ws; 988 989 spin_lock(ws_lock); 990 if (*free_ws <= num_online_cpus()) { 991 list_add(ws, idle_ws); 992 (*free_ws)++; 993 spin_unlock(ws_lock); 994 goto wake; 995 } 996 spin_unlock(ws_lock); 997 998 wsm->ops->free_workspace(ws); 999 atomic_dec(total_ws); 1000 wake: 1001 cond_wake_up(ws_wait); 1002 } 1003 1004 static void put_workspace(int type, struct list_head *ws) 1005 { 1006 return btrfs_compress_op[type]->put_workspace(ws); 1007 } 1008 1009 /* 1010 * Given an address space and start and length, compress the bytes into @pages 1011 * that are allocated on demand. 1012 * 1013 * @type_level is encoded algorithm and level, where level 0 means whatever 1014 * default the algorithm chooses and is opaque here; 1015 * - compression algo are 0-3 1016 * - the level are bits 4-7 1017 * 1018 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1019 * and returns number of actually allocated pages 1020 * 1021 * @total_in is used to return the number of bytes actually read. It 1022 * may be smaller than the input length if we had to exit early because we 1023 * ran out of room in the pages array or because we cross the 1024 * max_out threshold. 1025 * 1026 * @total_out is an in/out parameter, must be set to the input length and will 1027 * be also used to return the total number of compressed bytes 1028 * 1029 * @max_out tells us the max number of bytes that we're allowed to 1030 * stuff into pages 1031 */ 1032 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1033 u64 start, struct page **pages, 1034 unsigned long *out_pages, 1035 unsigned long *total_in, 1036 unsigned long *total_out) 1037 { 1038 int type = btrfs_compress_type(type_level); 1039 int level = btrfs_compress_level(type_level); 1040 struct list_head *workspace; 1041 int ret; 1042 1043 level = btrfs_compress_set_level(type, level); 1044 workspace = get_workspace(type, level); 1045 ret = btrfs_compress_op[type]->compress_pages(workspace, mapping, 1046 start, pages, 1047 out_pages, 1048 total_in, total_out); 1049 put_workspace(type, workspace); 1050 return ret; 1051 } 1052 1053 /* 1054 * pages_in is an array of pages with compressed data. 1055 * 1056 * disk_start is the starting logical offset of this array in the file 1057 * 1058 * orig_bio contains the pages from the file that we want to decompress into 1059 * 1060 * srclen is the number of bytes in pages_in 1061 * 1062 * The basic idea is that we have a bio that was created by readpages. 1063 * The pages in the bio are for the uncompressed data, and they may not 1064 * be contiguous. They all correspond to the range of bytes covered by 1065 * the compressed extent. 1066 */ 1067 static int btrfs_decompress_bio(struct compressed_bio *cb) 1068 { 1069 struct list_head *workspace; 1070 int ret; 1071 int type = cb->compress_type; 1072 1073 workspace = get_workspace(type, 0); 1074 ret = btrfs_compress_op[type]->decompress_bio(workspace, cb); 1075 put_workspace(type, workspace); 1076 1077 return ret; 1078 } 1079 1080 /* 1081 * a less complex decompression routine. Our compressed data fits in a 1082 * single page, and we want to read a single page out of it. 1083 * start_byte tells us the offset into the compressed data we're interested in 1084 */ 1085 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1086 unsigned long start_byte, size_t srclen, size_t destlen) 1087 { 1088 struct list_head *workspace; 1089 int ret; 1090 1091 workspace = get_workspace(type, 0); 1092 ret = btrfs_compress_op[type]->decompress(workspace, data_in, 1093 dest_page, start_byte, 1094 srclen, destlen); 1095 put_workspace(type, workspace); 1096 1097 return ret; 1098 } 1099 1100 void __init btrfs_init_compress(void) 1101 { 1102 int i; 1103 1104 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++) 1105 btrfs_compress_op[i]->init_workspace_manager(); 1106 } 1107 1108 void __cold btrfs_exit_compress(void) 1109 { 1110 int i; 1111 1112 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++) 1113 btrfs_compress_op[i]->cleanup_workspace_manager(); 1114 } 1115 1116 /* 1117 * Copy uncompressed data from working buffer to pages. 1118 * 1119 * buf_start is the byte offset we're of the start of our workspace buffer. 1120 * 1121 * total_out is the last byte of the buffer 1122 */ 1123 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1124 unsigned long total_out, u64 disk_start, 1125 struct bio *bio) 1126 { 1127 unsigned long buf_offset; 1128 unsigned long current_buf_start; 1129 unsigned long start_byte; 1130 unsigned long prev_start_byte; 1131 unsigned long working_bytes = total_out - buf_start; 1132 unsigned long bytes; 1133 char *kaddr; 1134 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1135 1136 /* 1137 * start byte is the first byte of the page we're currently 1138 * copying into relative to the start of the compressed data. 1139 */ 1140 start_byte = page_offset(bvec.bv_page) - disk_start; 1141 1142 /* we haven't yet hit data corresponding to this page */ 1143 if (total_out <= start_byte) 1144 return 1; 1145 1146 /* 1147 * the start of the data we care about is offset into 1148 * the middle of our working buffer 1149 */ 1150 if (total_out > start_byte && buf_start < start_byte) { 1151 buf_offset = start_byte - buf_start; 1152 working_bytes -= buf_offset; 1153 } else { 1154 buf_offset = 0; 1155 } 1156 current_buf_start = buf_start; 1157 1158 /* copy bytes from the working buffer into the pages */ 1159 while (working_bytes > 0) { 1160 bytes = min_t(unsigned long, bvec.bv_len, 1161 PAGE_SIZE - buf_offset); 1162 bytes = min(bytes, working_bytes); 1163 1164 kaddr = kmap_atomic(bvec.bv_page); 1165 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1166 kunmap_atomic(kaddr); 1167 flush_dcache_page(bvec.bv_page); 1168 1169 buf_offset += bytes; 1170 working_bytes -= bytes; 1171 current_buf_start += bytes; 1172 1173 /* check if we need to pick another page */ 1174 bio_advance(bio, bytes); 1175 if (!bio->bi_iter.bi_size) 1176 return 0; 1177 bvec = bio_iter_iovec(bio, bio->bi_iter); 1178 prev_start_byte = start_byte; 1179 start_byte = page_offset(bvec.bv_page) - disk_start; 1180 1181 /* 1182 * We need to make sure we're only adjusting 1183 * our offset into compression working buffer when 1184 * we're switching pages. Otherwise we can incorrectly 1185 * keep copying when we were actually done. 1186 */ 1187 if (start_byte != prev_start_byte) { 1188 /* 1189 * make sure our new page is covered by this 1190 * working buffer 1191 */ 1192 if (total_out <= start_byte) 1193 return 1; 1194 1195 /* 1196 * the next page in the biovec might not be adjacent 1197 * to the last page, but it might still be found 1198 * inside this working buffer. bump our offset pointer 1199 */ 1200 if (total_out > start_byte && 1201 current_buf_start < start_byte) { 1202 buf_offset = start_byte - buf_start; 1203 working_bytes = total_out - start_byte; 1204 current_buf_start = buf_start + buf_offset; 1205 } 1206 } 1207 } 1208 1209 return 1; 1210 } 1211 1212 /* 1213 * Shannon Entropy calculation 1214 * 1215 * Pure byte distribution analysis fails to determine compressibility of data. 1216 * Try calculating entropy to estimate the average minimum number of bits 1217 * needed to encode the sampled data. 1218 * 1219 * For convenience, return the percentage of needed bits, instead of amount of 1220 * bits directly. 1221 * 1222 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1223 * and can be compressible with high probability 1224 * 1225 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1226 * 1227 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1228 */ 1229 #define ENTROPY_LVL_ACEPTABLE (65) 1230 #define ENTROPY_LVL_HIGH (80) 1231 1232 /* 1233 * For increasead precision in shannon_entropy calculation, 1234 * let's do pow(n, M) to save more digits after comma: 1235 * 1236 * - maximum int bit length is 64 1237 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1238 * - 13 * 4 = 52 < 64 -> M = 4 1239 * 1240 * So use pow(n, 4). 1241 */ 1242 static inline u32 ilog2_w(u64 n) 1243 { 1244 return ilog2(n * n * n * n); 1245 } 1246 1247 static u32 shannon_entropy(struct heuristic_ws *ws) 1248 { 1249 const u32 entropy_max = 8 * ilog2_w(2); 1250 u32 entropy_sum = 0; 1251 u32 p, p_base, sz_base; 1252 u32 i; 1253 1254 sz_base = ilog2_w(ws->sample_size); 1255 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1256 p = ws->bucket[i].count; 1257 p_base = ilog2_w(p); 1258 entropy_sum += p * (sz_base - p_base); 1259 } 1260 1261 entropy_sum /= ws->sample_size; 1262 return entropy_sum * 100 / entropy_max; 1263 } 1264 1265 #define RADIX_BASE 4U 1266 #define COUNTERS_SIZE (1U << RADIX_BASE) 1267 1268 static u8 get4bits(u64 num, int shift) { 1269 u8 low4bits; 1270 1271 num >>= shift; 1272 /* Reverse order */ 1273 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1274 return low4bits; 1275 } 1276 1277 /* 1278 * Use 4 bits as radix base 1279 * Use 16 u32 counters for calculating new position in buf array 1280 * 1281 * @array - array that will be sorted 1282 * @array_buf - buffer array to store sorting results 1283 * must be equal in size to @array 1284 * @num - array size 1285 */ 1286 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1287 int num) 1288 { 1289 u64 max_num; 1290 u64 buf_num; 1291 u32 counters[COUNTERS_SIZE]; 1292 u32 new_addr; 1293 u32 addr; 1294 int bitlen; 1295 int shift; 1296 int i; 1297 1298 /* 1299 * Try avoid useless loop iterations for small numbers stored in big 1300 * counters. Example: 48 33 4 ... in 64bit array 1301 */ 1302 max_num = array[0].count; 1303 for (i = 1; i < num; i++) { 1304 buf_num = array[i].count; 1305 if (buf_num > max_num) 1306 max_num = buf_num; 1307 } 1308 1309 buf_num = ilog2(max_num); 1310 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1311 1312 shift = 0; 1313 while (shift < bitlen) { 1314 memset(counters, 0, sizeof(counters)); 1315 1316 for (i = 0; i < num; i++) { 1317 buf_num = array[i].count; 1318 addr = get4bits(buf_num, shift); 1319 counters[addr]++; 1320 } 1321 1322 for (i = 1; i < COUNTERS_SIZE; i++) 1323 counters[i] += counters[i - 1]; 1324 1325 for (i = num - 1; i >= 0; i--) { 1326 buf_num = array[i].count; 1327 addr = get4bits(buf_num, shift); 1328 counters[addr]--; 1329 new_addr = counters[addr]; 1330 array_buf[new_addr] = array[i]; 1331 } 1332 1333 shift += RADIX_BASE; 1334 1335 /* 1336 * Normal radix expects to move data from a temporary array, to 1337 * the main one. But that requires some CPU time. Avoid that 1338 * by doing another sort iteration to original array instead of 1339 * memcpy() 1340 */ 1341 memset(counters, 0, sizeof(counters)); 1342 1343 for (i = 0; i < num; i ++) { 1344 buf_num = array_buf[i].count; 1345 addr = get4bits(buf_num, shift); 1346 counters[addr]++; 1347 } 1348 1349 for (i = 1; i < COUNTERS_SIZE; i++) 1350 counters[i] += counters[i - 1]; 1351 1352 for (i = num - 1; i >= 0; i--) { 1353 buf_num = array_buf[i].count; 1354 addr = get4bits(buf_num, shift); 1355 counters[addr]--; 1356 new_addr = counters[addr]; 1357 array[new_addr] = array_buf[i]; 1358 } 1359 1360 shift += RADIX_BASE; 1361 } 1362 } 1363 1364 /* 1365 * Size of the core byte set - how many bytes cover 90% of the sample 1366 * 1367 * There are several types of structured binary data that use nearly all byte 1368 * values. The distribution can be uniform and counts in all buckets will be 1369 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1370 * 1371 * Other possibility is normal (Gaussian) distribution, where the data could 1372 * be potentially compressible, but we have to take a few more steps to decide 1373 * how much. 1374 * 1375 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1376 * compression algo can easy fix that 1377 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1378 * probability is not compressible 1379 */ 1380 #define BYTE_CORE_SET_LOW (64) 1381 #define BYTE_CORE_SET_HIGH (200) 1382 1383 static int byte_core_set_size(struct heuristic_ws *ws) 1384 { 1385 u32 i; 1386 u32 coreset_sum = 0; 1387 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1388 struct bucket_item *bucket = ws->bucket; 1389 1390 /* Sort in reverse order */ 1391 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1392 1393 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1394 coreset_sum += bucket[i].count; 1395 1396 if (coreset_sum > core_set_threshold) 1397 return i; 1398 1399 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1400 coreset_sum += bucket[i].count; 1401 if (coreset_sum > core_set_threshold) 1402 break; 1403 } 1404 1405 return i; 1406 } 1407 1408 /* 1409 * Count byte values in buckets. 1410 * This heuristic can detect textual data (configs, xml, json, html, etc). 1411 * Because in most text-like data byte set is restricted to limited number of 1412 * possible characters, and that restriction in most cases makes data easy to 1413 * compress. 1414 * 1415 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1416 * less - compressible 1417 * more - need additional analysis 1418 */ 1419 #define BYTE_SET_THRESHOLD (64) 1420 1421 static u32 byte_set_size(const struct heuristic_ws *ws) 1422 { 1423 u32 i; 1424 u32 byte_set_size = 0; 1425 1426 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1427 if (ws->bucket[i].count > 0) 1428 byte_set_size++; 1429 } 1430 1431 /* 1432 * Continue collecting count of byte values in buckets. If the byte 1433 * set size is bigger then the threshold, it's pointless to continue, 1434 * the detection technique would fail for this type of data. 1435 */ 1436 for (; i < BUCKET_SIZE; i++) { 1437 if (ws->bucket[i].count > 0) { 1438 byte_set_size++; 1439 if (byte_set_size > BYTE_SET_THRESHOLD) 1440 return byte_set_size; 1441 } 1442 } 1443 1444 return byte_set_size; 1445 } 1446 1447 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1448 { 1449 const u32 half_of_sample = ws->sample_size / 2; 1450 const u8 *data = ws->sample; 1451 1452 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1453 } 1454 1455 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1456 struct heuristic_ws *ws) 1457 { 1458 struct page *page; 1459 u64 index, index_end; 1460 u32 i, curr_sample_pos; 1461 u8 *in_data; 1462 1463 /* 1464 * Compression handles the input data by chunks of 128KiB 1465 * (defined by BTRFS_MAX_UNCOMPRESSED) 1466 * 1467 * We do the same for the heuristic and loop over the whole range. 1468 * 1469 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1470 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1471 */ 1472 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1473 end = start + BTRFS_MAX_UNCOMPRESSED; 1474 1475 index = start >> PAGE_SHIFT; 1476 index_end = end >> PAGE_SHIFT; 1477 1478 /* Don't miss unaligned end */ 1479 if (!IS_ALIGNED(end, PAGE_SIZE)) 1480 index_end++; 1481 1482 curr_sample_pos = 0; 1483 while (index < index_end) { 1484 page = find_get_page(inode->i_mapping, index); 1485 in_data = kmap(page); 1486 /* Handle case where the start is not aligned to PAGE_SIZE */ 1487 i = start % PAGE_SIZE; 1488 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1489 /* Don't sample any garbage from the last page */ 1490 if (start > end - SAMPLING_READ_SIZE) 1491 break; 1492 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1493 SAMPLING_READ_SIZE); 1494 i += SAMPLING_INTERVAL; 1495 start += SAMPLING_INTERVAL; 1496 curr_sample_pos += SAMPLING_READ_SIZE; 1497 } 1498 kunmap(page); 1499 put_page(page); 1500 1501 index++; 1502 } 1503 1504 ws->sample_size = curr_sample_pos; 1505 } 1506 1507 /* 1508 * Compression heuristic. 1509 * 1510 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1511 * quickly (compared to direct compression) detect data characteristics 1512 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1513 * data. 1514 * 1515 * The following types of analysis can be performed: 1516 * - detect mostly zero data 1517 * - detect data with low "byte set" size (text, etc) 1518 * - detect data with low/high "core byte" set 1519 * 1520 * Return non-zero if the compression should be done, 0 otherwise. 1521 */ 1522 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1523 { 1524 struct list_head *ws_list = get_workspace(0, 0); 1525 struct heuristic_ws *ws; 1526 u32 i; 1527 u8 byte; 1528 int ret = 0; 1529 1530 ws = list_entry(ws_list, struct heuristic_ws, list); 1531 1532 heuristic_collect_sample(inode, start, end, ws); 1533 1534 if (sample_repeated_patterns(ws)) { 1535 ret = 1; 1536 goto out; 1537 } 1538 1539 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1540 1541 for (i = 0; i < ws->sample_size; i++) { 1542 byte = ws->sample[i]; 1543 ws->bucket[byte].count++; 1544 } 1545 1546 i = byte_set_size(ws); 1547 if (i < BYTE_SET_THRESHOLD) { 1548 ret = 2; 1549 goto out; 1550 } 1551 1552 i = byte_core_set_size(ws); 1553 if (i <= BYTE_CORE_SET_LOW) { 1554 ret = 3; 1555 goto out; 1556 } 1557 1558 if (i >= BYTE_CORE_SET_HIGH) { 1559 ret = 0; 1560 goto out; 1561 } 1562 1563 i = shannon_entropy(ws); 1564 if (i <= ENTROPY_LVL_ACEPTABLE) { 1565 ret = 4; 1566 goto out; 1567 } 1568 1569 /* 1570 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1571 * needed to give green light to compression. 1572 * 1573 * For now just assume that compression at that level is not worth the 1574 * resources because: 1575 * 1576 * 1. it is possible to defrag the data later 1577 * 1578 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1579 * values, every bucket has counter at level ~54. The heuristic would 1580 * be confused. This can happen when data have some internal repeated 1581 * patterns like "abbacbbc...". This can be detected by analyzing 1582 * pairs of bytes, which is too costly. 1583 */ 1584 if (i < ENTROPY_LVL_HIGH) { 1585 ret = 5; 1586 goto out; 1587 } else { 1588 ret = 0; 1589 goto out; 1590 } 1591 1592 out: 1593 put_workspace(0, ws_list); 1594 return ret; 1595 } 1596 1597 /* 1598 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1599 * level, unrecognized string will set the default level 1600 */ 1601 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1602 { 1603 unsigned int level = 0; 1604 int ret; 1605 1606 if (!type) 1607 return 0; 1608 1609 if (str[0] == ':') { 1610 ret = kstrtouint(str + 1, 10, &level); 1611 if (ret) 1612 level = 0; 1613 } 1614 1615 level = btrfs_compress_set_level(type, level); 1616 1617 return level; 1618 } 1619 1620 /* 1621 * Adjust @level according to the limits of the compression algorithm or 1622 * fallback to default 1623 */ 1624 unsigned int btrfs_compress_set_level(int type, unsigned level) 1625 { 1626 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1627 1628 if (level == 0) 1629 level = ops->default_level; 1630 else 1631 level = min(level, ops->max_level); 1632 1633 return level; 1634 } 1635