xref: /openbmc/linux/fs/btrfs/compression.c (revision 46a73e9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
33 
34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
35 {
36 	switch (type) {
37 	case BTRFS_COMPRESS_ZLIB:
38 	case BTRFS_COMPRESS_LZO:
39 	case BTRFS_COMPRESS_ZSTD:
40 	case BTRFS_COMPRESS_NONE:
41 		return btrfs_compress_types[type];
42 	}
43 
44 	return NULL;
45 }
46 
47 bool btrfs_compress_is_valid_type(const char *str, size_t len)
48 {
49 	int i;
50 
51 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
52 		size_t comp_len = strlen(btrfs_compress_types[i]);
53 
54 		if (len < comp_len)
55 			continue;
56 
57 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
58 			return true;
59 	}
60 	return false;
61 }
62 
63 static int btrfs_decompress_bio(struct compressed_bio *cb);
64 
65 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
66 				      unsigned long disk_size)
67 {
68 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
69 
70 	return sizeof(struct compressed_bio) +
71 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
72 }
73 
74 static int check_compressed_csum(struct btrfs_inode *inode,
75 				 struct compressed_bio *cb,
76 				 u64 disk_start)
77 {
78 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
79 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
80 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
81 	int ret;
82 	struct page *page;
83 	unsigned long i;
84 	char *kaddr;
85 	u8 csum[BTRFS_CSUM_SIZE];
86 	u8 *cb_sum = cb->sums;
87 
88 	if (inode->flags & BTRFS_INODE_NODATASUM)
89 		return 0;
90 
91 	shash->tfm = fs_info->csum_shash;
92 
93 	for (i = 0; i < cb->nr_pages; i++) {
94 		page = cb->compressed_pages[i];
95 
96 		crypto_shash_init(shash);
97 		kaddr = kmap_atomic(page);
98 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
99 		kunmap_atomic(kaddr);
100 		crypto_shash_final(shash, (u8 *)&csum);
101 
102 		if (memcmp(&csum, cb_sum, csum_size)) {
103 			btrfs_print_data_csum_error(inode, disk_start,
104 					csum, cb_sum, cb->mirror_num);
105 			ret = -EIO;
106 			goto fail;
107 		}
108 		cb_sum += csum_size;
109 
110 	}
111 	ret = 0;
112 fail:
113 	return ret;
114 }
115 
116 /* when we finish reading compressed pages from the disk, we
117  * decompress them and then run the bio end_io routines on the
118  * decompressed pages (in the inode address space).
119  *
120  * This allows the checksumming and other IO error handling routines
121  * to work normally
122  *
123  * The compressed pages are freed here, and it must be run
124  * in process context
125  */
126 static void end_compressed_bio_read(struct bio *bio)
127 {
128 	struct compressed_bio *cb = bio->bi_private;
129 	struct inode *inode;
130 	struct page *page;
131 	unsigned long index;
132 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
133 	int ret = 0;
134 
135 	if (bio->bi_status)
136 		cb->errors = 1;
137 
138 	/* if there are more bios still pending for this compressed
139 	 * extent, just exit
140 	 */
141 	if (!refcount_dec_and_test(&cb->pending_bios))
142 		goto out;
143 
144 	/*
145 	 * Record the correct mirror_num in cb->orig_bio so that
146 	 * read-repair can work properly.
147 	 */
148 	ASSERT(btrfs_io_bio(cb->orig_bio));
149 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
150 	cb->mirror_num = mirror;
151 
152 	/*
153 	 * Some IO in this cb have failed, just skip checksum as there
154 	 * is no way it could be correct.
155 	 */
156 	if (cb->errors == 1)
157 		goto csum_failed;
158 
159 	inode = cb->inode;
160 	ret = check_compressed_csum(BTRFS_I(inode), cb,
161 				    (u64)bio->bi_iter.bi_sector << 9);
162 	if (ret)
163 		goto csum_failed;
164 
165 	/* ok, we're the last bio for this extent, lets start
166 	 * the decompression.
167 	 */
168 	ret = btrfs_decompress_bio(cb);
169 
170 csum_failed:
171 	if (ret)
172 		cb->errors = 1;
173 
174 	/* release the compressed pages */
175 	index = 0;
176 	for (index = 0; index < cb->nr_pages; index++) {
177 		page = cb->compressed_pages[index];
178 		page->mapping = NULL;
179 		put_page(page);
180 	}
181 
182 	/* do io completion on the original bio */
183 	if (cb->errors) {
184 		bio_io_error(cb->orig_bio);
185 	} else {
186 		struct bio_vec *bvec;
187 		struct bvec_iter_all iter_all;
188 
189 		/*
190 		 * we have verified the checksum already, set page
191 		 * checked so the end_io handlers know about it
192 		 */
193 		ASSERT(!bio_flagged(bio, BIO_CLONED));
194 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
195 			SetPageChecked(bvec->bv_page);
196 
197 		bio_endio(cb->orig_bio);
198 	}
199 
200 	/* finally free the cb struct */
201 	kfree(cb->compressed_pages);
202 	kfree(cb);
203 out:
204 	bio_put(bio);
205 }
206 
207 /*
208  * Clear the writeback bits on all of the file
209  * pages for a compressed write
210  */
211 static noinline void end_compressed_writeback(struct inode *inode,
212 					      const struct compressed_bio *cb)
213 {
214 	unsigned long index = cb->start >> PAGE_SHIFT;
215 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
216 	struct page *pages[16];
217 	unsigned long nr_pages = end_index - index + 1;
218 	int i;
219 	int ret;
220 
221 	if (cb->errors)
222 		mapping_set_error(inode->i_mapping, -EIO);
223 
224 	while (nr_pages > 0) {
225 		ret = find_get_pages_contig(inode->i_mapping, index,
226 				     min_t(unsigned long,
227 				     nr_pages, ARRAY_SIZE(pages)), pages);
228 		if (ret == 0) {
229 			nr_pages -= 1;
230 			index += 1;
231 			continue;
232 		}
233 		for (i = 0; i < ret; i++) {
234 			if (cb->errors)
235 				SetPageError(pages[i]);
236 			end_page_writeback(pages[i]);
237 			put_page(pages[i]);
238 		}
239 		nr_pages -= ret;
240 		index += ret;
241 	}
242 	/* the inode may be gone now */
243 }
244 
245 /*
246  * do the cleanup once all the compressed pages hit the disk.
247  * This will clear writeback on the file pages and free the compressed
248  * pages.
249  *
250  * This also calls the writeback end hooks for the file pages so that
251  * metadata and checksums can be updated in the file.
252  */
253 static void end_compressed_bio_write(struct bio *bio)
254 {
255 	struct compressed_bio *cb = bio->bi_private;
256 	struct inode *inode;
257 	struct page *page;
258 	unsigned long index;
259 
260 	if (bio->bi_status)
261 		cb->errors = 1;
262 
263 	/* if there are more bios still pending for this compressed
264 	 * extent, just exit
265 	 */
266 	if (!refcount_dec_and_test(&cb->pending_bios))
267 		goto out;
268 
269 	/* ok, we're the last bio for this extent, step one is to
270 	 * call back into the FS and do all the end_io operations
271 	 */
272 	inode = cb->inode;
273 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
274 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
275 			cb->start, cb->start + cb->len - 1,
276 			bio->bi_status == BLK_STS_OK);
277 	cb->compressed_pages[0]->mapping = NULL;
278 
279 	end_compressed_writeback(inode, cb);
280 	/* note, our inode could be gone now */
281 
282 	/*
283 	 * release the compressed pages, these came from alloc_page and
284 	 * are not attached to the inode at all
285 	 */
286 	index = 0;
287 	for (index = 0; index < cb->nr_pages; index++) {
288 		page = cb->compressed_pages[index];
289 		page->mapping = NULL;
290 		put_page(page);
291 	}
292 
293 	/* finally free the cb struct */
294 	kfree(cb->compressed_pages);
295 	kfree(cb);
296 out:
297 	bio_put(bio);
298 }
299 
300 /*
301  * worker function to build and submit bios for previously compressed pages.
302  * The corresponding pages in the inode should be marked for writeback
303  * and the compressed pages should have a reference on them for dropping
304  * when the IO is complete.
305  *
306  * This also checksums the file bytes and gets things ready for
307  * the end io hooks.
308  */
309 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
310 				 unsigned long len, u64 disk_start,
311 				 unsigned long compressed_len,
312 				 struct page **compressed_pages,
313 				 unsigned long nr_pages,
314 				 unsigned int write_flags)
315 {
316 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
317 	struct bio *bio = NULL;
318 	struct compressed_bio *cb;
319 	unsigned long bytes_left;
320 	int pg_index = 0;
321 	struct page *page;
322 	u64 first_byte = disk_start;
323 	struct block_device *bdev;
324 	blk_status_t ret;
325 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
326 
327 	WARN_ON(!PAGE_ALIGNED(start));
328 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
329 	if (!cb)
330 		return BLK_STS_RESOURCE;
331 	refcount_set(&cb->pending_bios, 0);
332 	cb->errors = 0;
333 	cb->inode = inode;
334 	cb->start = start;
335 	cb->len = len;
336 	cb->mirror_num = 0;
337 	cb->compressed_pages = compressed_pages;
338 	cb->compressed_len = compressed_len;
339 	cb->orig_bio = NULL;
340 	cb->nr_pages = nr_pages;
341 
342 	bdev = fs_info->fs_devices->latest_bdev;
343 
344 	bio = btrfs_bio_alloc(first_byte);
345 	bio_set_dev(bio, bdev);
346 	bio->bi_opf = REQ_OP_WRITE | write_flags;
347 	bio->bi_private = cb;
348 	bio->bi_end_io = end_compressed_bio_write;
349 	refcount_set(&cb->pending_bios, 1);
350 
351 	/* create and submit bios for the compressed pages */
352 	bytes_left = compressed_len;
353 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
354 		int submit = 0;
355 
356 		page = compressed_pages[pg_index];
357 		page->mapping = inode->i_mapping;
358 		if (bio->bi_iter.bi_size)
359 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
360 							  0);
361 
362 		page->mapping = NULL;
363 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
364 		    PAGE_SIZE) {
365 			/*
366 			 * inc the count before we submit the bio so
367 			 * we know the end IO handler won't happen before
368 			 * we inc the count.  Otherwise, the cb might get
369 			 * freed before we're done setting it up
370 			 */
371 			refcount_inc(&cb->pending_bios);
372 			ret = btrfs_bio_wq_end_io(fs_info, bio,
373 						  BTRFS_WQ_ENDIO_DATA);
374 			BUG_ON(ret); /* -ENOMEM */
375 
376 			if (!skip_sum) {
377 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
378 				BUG_ON(ret); /* -ENOMEM */
379 			}
380 
381 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
382 			if (ret) {
383 				bio->bi_status = ret;
384 				bio_endio(bio);
385 			}
386 
387 			bio = btrfs_bio_alloc(first_byte);
388 			bio_set_dev(bio, bdev);
389 			bio->bi_opf = REQ_OP_WRITE | write_flags;
390 			bio->bi_private = cb;
391 			bio->bi_end_io = end_compressed_bio_write;
392 			bio_add_page(bio, page, PAGE_SIZE, 0);
393 		}
394 		if (bytes_left < PAGE_SIZE) {
395 			btrfs_info(fs_info,
396 					"bytes left %lu compress len %lu nr %lu",
397 			       bytes_left, cb->compressed_len, cb->nr_pages);
398 		}
399 		bytes_left -= PAGE_SIZE;
400 		first_byte += PAGE_SIZE;
401 		cond_resched();
402 	}
403 
404 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
405 	BUG_ON(ret); /* -ENOMEM */
406 
407 	if (!skip_sum) {
408 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
409 		BUG_ON(ret); /* -ENOMEM */
410 	}
411 
412 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
413 	if (ret) {
414 		bio->bi_status = ret;
415 		bio_endio(bio);
416 	}
417 
418 	return 0;
419 }
420 
421 static u64 bio_end_offset(struct bio *bio)
422 {
423 	struct bio_vec *last = bio_last_bvec_all(bio);
424 
425 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
426 }
427 
428 static noinline int add_ra_bio_pages(struct inode *inode,
429 				     u64 compressed_end,
430 				     struct compressed_bio *cb)
431 {
432 	unsigned long end_index;
433 	unsigned long pg_index;
434 	u64 last_offset;
435 	u64 isize = i_size_read(inode);
436 	int ret;
437 	struct page *page;
438 	unsigned long nr_pages = 0;
439 	struct extent_map *em;
440 	struct address_space *mapping = inode->i_mapping;
441 	struct extent_map_tree *em_tree;
442 	struct extent_io_tree *tree;
443 	u64 end;
444 	int misses = 0;
445 
446 	last_offset = bio_end_offset(cb->orig_bio);
447 	em_tree = &BTRFS_I(inode)->extent_tree;
448 	tree = &BTRFS_I(inode)->io_tree;
449 
450 	if (isize == 0)
451 		return 0;
452 
453 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
454 
455 	while (last_offset < compressed_end) {
456 		pg_index = last_offset >> PAGE_SHIFT;
457 
458 		if (pg_index > end_index)
459 			break;
460 
461 		page = xa_load(&mapping->i_pages, pg_index);
462 		if (page && !xa_is_value(page)) {
463 			misses++;
464 			if (misses > 4)
465 				break;
466 			goto next;
467 		}
468 
469 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
470 								 ~__GFP_FS));
471 		if (!page)
472 			break;
473 
474 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
475 			put_page(page);
476 			goto next;
477 		}
478 
479 		end = last_offset + PAGE_SIZE - 1;
480 		/*
481 		 * at this point, we have a locked page in the page cache
482 		 * for these bytes in the file.  But, we have to make
483 		 * sure they map to this compressed extent on disk.
484 		 */
485 		set_page_extent_mapped(page);
486 		lock_extent(tree, last_offset, end);
487 		read_lock(&em_tree->lock);
488 		em = lookup_extent_mapping(em_tree, last_offset,
489 					   PAGE_SIZE);
490 		read_unlock(&em_tree->lock);
491 
492 		if (!em || last_offset < em->start ||
493 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
494 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
495 			free_extent_map(em);
496 			unlock_extent(tree, last_offset, end);
497 			unlock_page(page);
498 			put_page(page);
499 			break;
500 		}
501 		free_extent_map(em);
502 
503 		if (page->index == end_index) {
504 			char *userpage;
505 			size_t zero_offset = offset_in_page(isize);
506 
507 			if (zero_offset) {
508 				int zeros;
509 				zeros = PAGE_SIZE - zero_offset;
510 				userpage = kmap_atomic(page);
511 				memset(userpage + zero_offset, 0, zeros);
512 				flush_dcache_page(page);
513 				kunmap_atomic(userpage);
514 			}
515 		}
516 
517 		ret = bio_add_page(cb->orig_bio, page,
518 				   PAGE_SIZE, 0);
519 
520 		if (ret == PAGE_SIZE) {
521 			nr_pages++;
522 			put_page(page);
523 		} else {
524 			unlock_extent(tree, last_offset, end);
525 			unlock_page(page);
526 			put_page(page);
527 			break;
528 		}
529 next:
530 		last_offset += PAGE_SIZE;
531 	}
532 	return 0;
533 }
534 
535 /*
536  * for a compressed read, the bio we get passed has all the inode pages
537  * in it.  We don't actually do IO on those pages but allocate new ones
538  * to hold the compressed pages on disk.
539  *
540  * bio->bi_iter.bi_sector points to the compressed extent on disk
541  * bio->bi_io_vec points to all of the inode pages
542  *
543  * After the compressed pages are read, we copy the bytes into the
544  * bio we were passed and then call the bio end_io calls
545  */
546 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
547 				 int mirror_num, unsigned long bio_flags)
548 {
549 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
550 	struct extent_map_tree *em_tree;
551 	struct compressed_bio *cb;
552 	unsigned long compressed_len;
553 	unsigned long nr_pages;
554 	unsigned long pg_index;
555 	struct page *page;
556 	struct block_device *bdev;
557 	struct bio *comp_bio;
558 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
559 	u64 em_len;
560 	u64 em_start;
561 	struct extent_map *em;
562 	blk_status_t ret = BLK_STS_RESOURCE;
563 	int faili = 0;
564 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
565 	u8 *sums;
566 
567 	em_tree = &BTRFS_I(inode)->extent_tree;
568 
569 	/* we need the actual starting offset of this extent in the file */
570 	read_lock(&em_tree->lock);
571 	em = lookup_extent_mapping(em_tree,
572 				   page_offset(bio_first_page_all(bio)),
573 				   PAGE_SIZE);
574 	read_unlock(&em_tree->lock);
575 	if (!em)
576 		return BLK_STS_IOERR;
577 
578 	compressed_len = em->block_len;
579 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
580 	if (!cb)
581 		goto out;
582 
583 	refcount_set(&cb->pending_bios, 0);
584 	cb->errors = 0;
585 	cb->inode = inode;
586 	cb->mirror_num = mirror_num;
587 	sums = cb->sums;
588 
589 	cb->start = em->orig_start;
590 	em_len = em->len;
591 	em_start = em->start;
592 
593 	free_extent_map(em);
594 	em = NULL;
595 
596 	cb->len = bio->bi_iter.bi_size;
597 	cb->compressed_len = compressed_len;
598 	cb->compress_type = extent_compress_type(bio_flags);
599 	cb->orig_bio = bio;
600 
601 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
602 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
603 				       GFP_NOFS);
604 	if (!cb->compressed_pages)
605 		goto fail1;
606 
607 	bdev = fs_info->fs_devices->latest_bdev;
608 
609 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
610 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
611 							      __GFP_HIGHMEM);
612 		if (!cb->compressed_pages[pg_index]) {
613 			faili = pg_index - 1;
614 			ret = BLK_STS_RESOURCE;
615 			goto fail2;
616 		}
617 	}
618 	faili = nr_pages - 1;
619 	cb->nr_pages = nr_pages;
620 
621 	add_ra_bio_pages(inode, em_start + em_len, cb);
622 
623 	/* include any pages we added in add_ra-bio_pages */
624 	cb->len = bio->bi_iter.bi_size;
625 
626 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
627 	bio_set_dev(comp_bio, bdev);
628 	comp_bio->bi_opf = REQ_OP_READ;
629 	comp_bio->bi_private = cb;
630 	comp_bio->bi_end_io = end_compressed_bio_read;
631 	refcount_set(&cb->pending_bios, 1);
632 
633 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
634 		int submit = 0;
635 
636 		page = cb->compressed_pages[pg_index];
637 		page->mapping = inode->i_mapping;
638 		page->index = em_start >> PAGE_SHIFT;
639 
640 		if (comp_bio->bi_iter.bi_size)
641 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
642 							  comp_bio, 0);
643 
644 		page->mapping = NULL;
645 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
646 		    PAGE_SIZE) {
647 			unsigned int nr_sectors;
648 
649 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
650 						  BTRFS_WQ_ENDIO_DATA);
651 			BUG_ON(ret); /* -ENOMEM */
652 
653 			/*
654 			 * inc the count before we submit the bio so
655 			 * we know the end IO handler won't happen before
656 			 * we inc the count.  Otherwise, the cb might get
657 			 * freed before we're done setting it up
658 			 */
659 			refcount_inc(&cb->pending_bios);
660 
661 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
662 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
663 							    sums);
664 				BUG_ON(ret); /* -ENOMEM */
665 			}
666 
667 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
668 						  fs_info->sectorsize);
669 			sums += csum_size * nr_sectors;
670 
671 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
672 			if (ret) {
673 				comp_bio->bi_status = ret;
674 				bio_endio(comp_bio);
675 			}
676 
677 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
678 			bio_set_dev(comp_bio, bdev);
679 			comp_bio->bi_opf = REQ_OP_READ;
680 			comp_bio->bi_private = cb;
681 			comp_bio->bi_end_io = end_compressed_bio_read;
682 
683 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
684 		}
685 		cur_disk_byte += PAGE_SIZE;
686 	}
687 
688 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
689 	BUG_ON(ret); /* -ENOMEM */
690 
691 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
692 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
693 		BUG_ON(ret); /* -ENOMEM */
694 	}
695 
696 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
697 	if (ret) {
698 		comp_bio->bi_status = ret;
699 		bio_endio(comp_bio);
700 	}
701 
702 	return 0;
703 
704 fail2:
705 	while (faili >= 0) {
706 		__free_page(cb->compressed_pages[faili]);
707 		faili--;
708 	}
709 
710 	kfree(cb->compressed_pages);
711 fail1:
712 	kfree(cb);
713 out:
714 	free_extent_map(em);
715 	return ret;
716 }
717 
718 /*
719  * Heuristic uses systematic sampling to collect data from the input data
720  * range, the logic can be tuned by the following constants:
721  *
722  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
723  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
724  */
725 #define SAMPLING_READ_SIZE	(16)
726 #define SAMPLING_INTERVAL	(256)
727 
728 /*
729  * For statistical analysis of the input data we consider bytes that form a
730  * Galois Field of 256 objects. Each object has an attribute count, ie. how
731  * many times the object appeared in the sample.
732  */
733 #define BUCKET_SIZE		(256)
734 
735 /*
736  * The size of the sample is based on a statistical sampling rule of thumb.
737  * The common way is to perform sampling tests as long as the number of
738  * elements in each cell is at least 5.
739  *
740  * Instead of 5, we choose 32 to obtain more accurate results.
741  * If the data contain the maximum number of symbols, which is 256, we obtain a
742  * sample size bound by 8192.
743  *
744  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
745  * from up to 512 locations.
746  */
747 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
748 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
749 
750 struct bucket_item {
751 	u32 count;
752 };
753 
754 struct heuristic_ws {
755 	/* Partial copy of input data */
756 	u8 *sample;
757 	u32 sample_size;
758 	/* Buckets store counters for each byte value */
759 	struct bucket_item *bucket;
760 	/* Sorting buffer */
761 	struct bucket_item *bucket_b;
762 	struct list_head list;
763 };
764 
765 static struct workspace_manager heuristic_wsm;
766 
767 static void heuristic_init_workspace_manager(void)
768 {
769 	btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
770 }
771 
772 static void heuristic_cleanup_workspace_manager(void)
773 {
774 	btrfs_cleanup_workspace_manager(&heuristic_wsm);
775 }
776 
777 static struct list_head *heuristic_get_workspace(unsigned int level)
778 {
779 	return btrfs_get_workspace(&heuristic_wsm, level);
780 }
781 
782 static void heuristic_put_workspace(struct list_head *ws)
783 {
784 	btrfs_put_workspace(&heuristic_wsm, ws);
785 }
786 
787 static void free_heuristic_ws(struct list_head *ws)
788 {
789 	struct heuristic_ws *workspace;
790 
791 	workspace = list_entry(ws, struct heuristic_ws, list);
792 
793 	kvfree(workspace->sample);
794 	kfree(workspace->bucket);
795 	kfree(workspace->bucket_b);
796 	kfree(workspace);
797 }
798 
799 static struct list_head *alloc_heuristic_ws(unsigned int level)
800 {
801 	struct heuristic_ws *ws;
802 
803 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
804 	if (!ws)
805 		return ERR_PTR(-ENOMEM);
806 
807 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
808 	if (!ws->sample)
809 		goto fail;
810 
811 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
812 	if (!ws->bucket)
813 		goto fail;
814 
815 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
816 	if (!ws->bucket_b)
817 		goto fail;
818 
819 	INIT_LIST_HEAD(&ws->list);
820 	return &ws->list;
821 fail:
822 	free_heuristic_ws(&ws->list);
823 	return ERR_PTR(-ENOMEM);
824 }
825 
826 const struct btrfs_compress_op btrfs_heuristic_compress = {
827 	.init_workspace_manager = heuristic_init_workspace_manager,
828 	.cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
829 	.get_workspace = heuristic_get_workspace,
830 	.put_workspace = heuristic_put_workspace,
831 	.alloc_workspace = alloc_heuristic_ws,
832 	.free_workspace = free_heuristic_ws,
833 };
834 
835 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
836 	/* The heuristic is represented as compression type 0 */
837 	&btrfs_heuristic_compress,
838 	&btrfs_zlib_compress,
839 	&btrfs_lzo_compress,
840 	&btrfs_zstd_compress,
841 };
842 
843 void btrfs_init_workspace_manager(struct workspace_manager *wsm,
844 				  const struct btrfs_compress_op *ops)
845 {
846 	struct list_head *workspace;
847 
848 	wsm->ops = ops;
849 
850 	INIT_LIST_HEAD(&wsm->idle_ws);
851 	spin_lock_init(&wsm->ws_lock);
852 	atomic_set(&wsm->total_ws, 0);
853 	init_waitqueue_head(&wsm->ws_wait);
854 
855 	/*
856 	 * Preallocate one workspace for each compression type so we can
857 	 * guarantee forward progress in the worst case
858 	 */
859 	workspace = wsm->ops->alloc_workspace(0);
860 	if (IS_ERR(workspace)) {
861 		pr_warn(
862 	"BTRFS: cannot preallocate compression workspace, will try later\n");
863 	} else {
864 		atomic_set(&wsm->total_ws, 1);
865 		wsm->free_ws = 1;
866 		list_add(workspace, &wsm->idle_ws);
867 	}
868 }
869 
870 void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
871 {
872 	struct list_head *ws;
873 
874 	while (!list_empty(&wsman->idle_ws)) {
875 		ws = wsman->idle_ws.next;
876 		list_del(ws);
877 		wsman->ops->free_workspace(ws);
878 		atomic_dec(&wsman->total_ws);
879 	}
880 }
881 
882 /*
883  * This finds an available workspace or allocates a new one.
884  * If it's not possible to allocate a new one, waits until there's one.
885  * Preallocation makes a forward progress guarantees and we do not return
886  * errors.
887  */
888 struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
889 				      unsigned int level)
890 {
891 	struct list_head *workspace;
892 	int cpus = num_online_cpus();
893 	unsigned nofs_flag;
894 	struct list_head *idle_ws;
895 	spinlock_t *ws_lock;
896 	atomic_t *total_ws;
897 	wait_queue_head_t *ws_wait;
898 	int *free_ws;
899 
900 	idle_ws	 = &wsm->idle_ws;
901 	ws_lock	 = &wsm->ws_lock;
902 	total_ws = &wsm->total_ws;
903 	ws_wait	 = &wsm->ws_wait;
904 	free_ws	 = &wsm->free_ws;
905 
906 again:
907 	spin_lock(ws_lock);
908 	if (!list_empty(idle_ws)) {
909 		workspace = idle_ws->next;
910 		list_del(workspace);
911 		(*free_ws)--;
912 		spin_unlock(ws_lock);
913 		return workspace;
914 
915 	}
916 	if (atomic_read(total_ws) > cpus) {
917 		DEFINE_WAIT(wait);
918 
919 		spin_unlock(ws_lock);
920 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
921 		if (atomic_read(total_ws) > cpus && !*free_ws)
922 			schedule();
923 		finish_wait(ws_wait, &wait);
924 		goto again;
925 	}
926 	atomic_inc(total_ws);
927 	spin_unlock(ws_lock);
928 
929 	/*
930 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
931 	 * to turn it off here because we might get called from the restricted
932 	 * context of btrfs_compress_bio/btrfs_compress_pages
933 	 */
934 	nofs_flag = memalloc_nofs_save();
935 	workspace = wsm->ops->alloc_workspace(level);
936 	memalloc_nofs_restore(nofs_flag);
937 
938 	if (IS_ERR(workspace)) {
939 		atomic_dec(total_ws);
940 		wake_up(ws_wait);
941 
942 		/*
943 		 * Do not return the error but go back to waiting. There's a
944 		 * workspace preallocated for each type and the compression
945 		 * time is bounded so we get to a workspace eventually. This
946 		 * makes our caller's life easier.
947 		 *
948 		 * To prevent silent and low-probability deadlocks (when the
949 		 * initial preallocation fails), check if there are any
950 		 * workspaces at all.
951 		 */
952 		if (atomic_read(total_ws) == 0) {
953 			static DEFINE_RATELIMIT_STATE(_rs,
954 					/* once per minute */ 60 * HZ,
955 					/* no burst */ 1);
956 
957 			if (__ratelimit(&_rs)) {
958 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
959 			}
960 		}
961 		goto again;
962 	}
963 	return workspace;
964 }
965 
966 static struct list_head *get_workspace(int type, int level)
967 {
968 	return btrfs_compress_op[type]->get_workspace(level);
969 }
970 
971 /*
972  * put a workspace struct back on the list or free it if we have enough
973  * idle ones sitting around
974  */
975 void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
976 {
977 	struct list_head *idle_ws;
978 	spinlock_t *ws_lock;
979 	atomic_t *total_ws;
980 	wait_queue_head_t *ws_wait;
981 	int *free_ws;
982 
983 	idle_ws	 = &wsm->idle_ws;
984 	ws_lock	 = &wsm->ws_lock;
985 	total_ws = &wsm->total_ws;
986 	ws_wait	 = &wsm->ws_wait;
987 	free_ws	 = &wsm->free_ws;
988 
989 	spin_lock(ws_lock);
990 	if (*free_ws <= num_online_cpus()) {
991 		list_add(ws, idle_ws);
992 		(*free_ws)++;
993 		spin_unlock(ws_lock);
994 		goto wake;
995 	}
996 	spin_unlock(ws_lock);
997 
998 	wsm->ops->free_workspace(ws);
999 	atomic_dec(total_ws);
1000 wake:
1001 	cond_wake_up(ws_wait);
1002 }
1003 
1004 static void put_workspace(int type, struct list_head *ws)
1005 {
1006 	return btrfs_compress_op[type]->put_workspace(ws);
1007 }
1008 
1009 /*
1010  * Given an address space and start and length, compress the bytes into @pages
1011  * that are allocated on demand.
1012  *
1013  * @type_level is encoded algorithm and level, where level 0 means whatever
1014  * default the algorithm chooses and is opaque here;
1015  * - compression algo are 0-3
1016  * - the level are bits 4-7
1017  *
1018  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1019  * and returns number of actually allocated pages
1020  *
1021  * @total_in is used to return the number of bytes actually read.  It
1022  * may be smaller than the input length if we had to exit early because we
1023  * ran out of room in the pages array or because we cross the
1024  * max_out threshold.
1025  *
1026  * @total_out is an in/out parameter, must be set to the input length and will
1027  * be also used to return the total number of compressed bytes
1028  *
1029  * @max_out tells us the max number of bytes that we're allowed to
1030  * stuff into pages
1031  */
1032 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1033 			 u64 start, struct page **pages,
1034 			 unsigned long *out_pages,
1035 			 unsigned long *total_in,
1036 			 unsigned long *total_out)
1037 {
1038 	int type = btrfs_compress_type(type_level);
1039 	int level = btrfs_compress_level(type_level);
1040 	struct list_head *workspace;
1041 	int ret;
1042 
1043 	level = btrfs_compress_set_level(type, level);
1044 	workspace = get_workspace(type, level);
1045 	ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1046 						      start, pages,
1047 						      out_pages,
1048 						      total_in, total_out);
1049 	put_workspace(type, workspace);
1050 	return ret;
1051 }
1052 
1053 /*
1054  * pages_in is an array of pages with compressed data.
1055  *
1056  * disk_start is the starting logical offset of this array in the file
1057  *
1058  * orig_bio contains the pages from the file that we want to decompress into
1059  *
1060  * srclen is the number of bytes in pages_in
1061  *
1062  * The basic idea is that we have a bio that was created by readpages.
1063  * The pages in the bio are for the uncompressed data, and they may not
1064  * be contiguous.  They all correspond to the range of bytes covered by
1065  * the compressed extent.
1066  */
1067 static int btrfs_decompress_bio(struct compressed_bio *cb)
1068 {
1069 	struct list_head *workspace;
1070 	int ret;
1071 	int type = cb->compress_type;
1072 
1073 	workspace = get_workspace(type, 0);
1074 	ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1075 	put_workspace(type, workspace);
1076 
1077 	return ret;
1078 }
1079 
1080 /*
1081  * a less complex decompression routine.  Our compressed data fits in a
1082  * single page, and we want to read a single page out of it.
1083  * start_byte tells us the offset into the compressed data we're interested in
1084  */
1085 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1086 		     unsigned long start_byte, size_t srclen, size_t destlen)
1087 {
1088 	struct list_head *workspace;
1089 	int ret;
1090 
1091 	workspace = get_workspace(type, 0);
1092 	ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1093 						  dest_page, start_byte,
1094 						  srclen, destlen);
1095 	put_workspace(type, workspace);
1096 
1097 	return ret;
1098 }
1099 
1100 void __init btrfs_init_compress(void)
1101 {
1102 	int i;
1103 
1104 	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1105 		btrfs_compress_op[i]->init_workspace_manager();
1106 }
1107 
1108 void __cold btrfs_exit_compress(void)
1109 {
1110 	int i;
1111 
1112 	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1113 		btrfs_compress_op[i]->cleanup_workspace_manager();
1114 }
1115 
1116 /*
1117  * Copy uncompressed data from working buffer to pages.
1118  *
1119  * buf_start is the byte offset we're of the start of our workspace buffer.
1120  *
1121  * total_out is the last byte of the buffer
1122  */
1123 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1124 			      unsigned long total_out, u64 disk_start,
1125 			      struct bio *bio)
1126 {
1127 	unsigned long buf_offset;
1128 	unsigned long current_buf_start;
1129 	unsigned long start_byte;
1130 	unsigned long prev_start_byte;
1131 	unsigned long working_bytes = total_out - buf_start;
1132 	unsigned long bytes;
1133 	char *kaddr;
1134 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1135 
1136 	/*
1137 	 * start byte is the first byte of the page we're currently
1138 	 * copying into relative to the start of the compressed data.
1139 	 */
1140 	start_byte = page_offset(bvec.bv_page) - disk_start;
1141 
1142 	/* we haven't yet hit data corresponding to this page */
1143 	if (total_out <= start_byte)
1144 		return 1;
1145 
1146 	/*
1147 	 * the start of the data we care about is offset into
1148 	 * the middle of our working buffer
1149 	 */
1150 	if (total_out > start_byte && buf_start < start_byte) {
1151 		buf_offset = start_byte - buf_start;
1152 		working_bytes -= buf_offset;
1153 	} else {
1154 		buf_offset = 0;
1155 	}
1156 	current_buf_start = buf_start;
1157 
1158 	/* copy bytes from the working buffer into the pages */
1159 	while (working_bytes > 0) {
1160 		bytes = min_t(unsigned long, bvec.bv_len,
1161 				PAGE_SIZE - buf_offset);
1162 		bytes = min(bytes, working_bytes);
1163 
1164 		kaddr = kmap_atomic(bvec.bv_page);
1165 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1166 		kunmap_atomic(kaddr);
1167 		flush_dcache_page(bvec.bv_page);
1168 
1169 		buf_offset += bytes;
1170 		working_bytes -= bytes;
1171 		current_buf_start += bytes;
1172 
1173 		/* check if we need to pick another page */
1174 		bio_advance(bio, bytes);
1175 		if (!bio->bi_iter.bi_size)
1176 			return 0;
1177 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1178 		prev_start_byte = start_byte;
1179 		start_byte = page_offset(bvec.bv_page) - disk_start;
1180 
1181 		/*
1182 		 * We need to make sure we're only adjusting
1183 		 * our offset into compression working buffer when
1184 		 * we're switching pages.  Otherwise we can incorrectly
1185 		 * keep copying when we were actually done.
1186 		 */
1187 		if (start_byte != prev_start_byte) {
1188 			/*
1189 			 * make sure our new page is covered by this
1190 			 * working buffer
1191 			 */
1192 			if (total_out <= start_byte)
1193 				return 1;
1194 
1195 			/*
1196 			 * the next page in the biovec might not be adjacent
1197 			 * to the last page, but it might still be found
1198 			 * inside this working buffer. bump our offset pointer
1199 			 */
1200 			if (total_out > start_byte &&
1201 			    current_buf_start < start_byte) {
1202 				buf_offset = start_byte - buf_start;
1203 				working_bytes = total_out - start_byte;
1204 				current_buf_start = buf_start + buf_offset;
1205 			}
1206 		}
1207 	}
1208 
1209 	return 1;
1210 }
1211 
1212 /*
1213  * Shannon Entropy calculation
1214  *
1215  * Pure byte distribution analysis fails to determine compressibility of data.
1216  * Try calculating entropy to estimate the average minimum number of bits
1217  * needed to encode the sampled data.
1218  *
1219  * For convenience, return the percentage of needed bits, instead of amount of
1220  * bits directly.
1221  *
1222  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1223  *			    and can be compressible with high probability
1224  *
1225  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1226  *
1227  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1228  */
1229 #define ENTROPY_LVL_ACEPTABLE		(65)
1230 #define ENTROPY_LVL_HIGH		(80)
1231 
1232 /*
1233  * For increasead precision in shannon_entropy calculation,
1234  * let's do pow(n, M) to save more digits after comma:
1235  *
1236  * - maximum int bit length is 64
1237  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1238  * - 13 * 4 = 52 < 64		-> M = 4
1239  *
1240  * So use pow(n, 4).
1241  */
1242 static inline u32 ilog2_w(u64 n)
1243 {
1244 	return ilog2(n * n * n * n);
1245 }
1246 
1247 static u32 shannon_entropy(struct heuristic_ws *ws)
1248 {
1249 	const u32 entropy_max = 8 * ilog2_w(2);
1250 	u32 entropy_sum = 0;
1251 	u32 p, p_base, sz_base;
1252 	u32 i;
1253 
1254 	sz_base = ilog2_w(ws->sample_size);
1255 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1256 		p = ws->bucket[i].count;
1257 		p_base = ilog2_w(p);
1258 		entropy_sum += p * (sz_base - p_base);
1259 	}
1260 
1261 	entropy_sum /= ws->sample_size;
1262 	return entropy_sum * 100 / entropy_max;
1263 }
1264 
1265 #define RADIX_BASE		4U
1266 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1267 
1268 static u8 get4bits(u64 num, int shift) {
1269 	u8 low4bits;
1270 
1271 	num >>= shift;
1272 	/* Reverse order */
1273 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1274 	return low4bits;
1275 }
1276 
1277 /*
1278  * Use 4 bits as radix base
1279  * Use 16 u32 counters for calculating new position in buf array
1280  *
1281  * @array     - array that will be sorted
1282  * @array_buf - buffer array to store sorting results
1283  *              must be equal in size to @array
1284  * @num       - array size
1285  */
1286 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1287 		       int num)
1288 {
1289 	u64 max_num;
1290 	u64 buf_num;
1291 	u32 counters[COUNTERS_SIZE];
1292 	u32 new_addr;
1293 	u32 addr;
1294 	int bitlen;
1295 	int shift;
1296 	int i;
1297 
1298 	/*
1299 	 * Try avoid useless loop iterations for small numbers stored in big
1300 	 * counters.  Example: 48 33 4 ... in 64bit array
1301 	 */
1302 	max_num = array[0].count;
1303 	for (i = 1; i < num; i++) {
1304 		buf_num = array[i].count;
1305 		if (buf_num > max_num)
1306 			max_num = buf_num;
1307 	}
1308 
1309 	buf_num = ilog2(max_num);
1310 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1311 
1312 	shift = 0;
1313 	while (shift < bitlen) {
1314 		memset(counters, 0, sizeof(counters));
1315 
1316 		for (i = 0; i < num; i++) {
1317 			buf_num = array[i].count;
1318 			addr = get4bits(buf_num, shift);
1319 			counters[addr]++;
1320 		}
1321 
1322 		for (i = 1; i < COUNTERS_SIZE; i++)
1323 			counters[i] += counters[i - 1];
1324 
1325 		for (i = num - 1; i >= 0; i--) {
1326 			buf_num = array[i].count;
1327 			addr = get4bits(buf_num, shift);
1328 			counters[addr]--;
1329 			new_addr = counters[addr];
1330 			array_buf[new_addr] = array[i];
1331 		}
1332 
1333 		shift += RADIX_BASE;
1334 
1335 		/*
1336 		 * Normal radix expects to move data from a temporary array, to
1337 		 * the main one.  But that requires some CPU time. Avoid that
1338 		 * by doing another sort iteration to original array instead of
1339 		 * memcpy()
1340 		 */
1341 		memset(counters, 0, sizeof(counters));
1342 
1343 		for (i = 0; i < num; i ++) {
1344 			buf_num = array_buf[i].count;
1345 			addr = get4bits(buf_num, shift);
1346 			counters[addr]++;
1347 		}
1348 
1349 		for (i = 1; i < COUNTERS_SIZE; i++)
1350 			counters[i] += counters[i - 1];
1351 
1352 		for (i = num - 1; i >= 0; i--) {
1353 			buf_num = array_buf[i].count;
1354 			addr = get4bits(buf_num, shift);
1355 			counters[addr]--;
1356 			new_addr = counters[addr];
1357 			array[new_addr] = array_buf[i];
1358 		}
1359 
1360 		shift += RADIX_BASE;
1361 	}
1362 }
1363 
1364 /*
1365  * Size of the core byte set - how many bytes cover 90% of the sample
1366  *
1367  * There are several types of structured binary data that use nearly all byte
1368  * values. The distribution can be uniform and counts in all buckets will be
1369  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1370  *
1371  * Other possibility is normal (Gaussian) distribution, where the data could
1372  * be potentially compressible, but we have to take a few more steps to decide
1373  * how much.
1374  *
1375  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1376  *                       compression algo can easy fix that
1377  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1378  *                       probability is not compressible
1379  */
1380 #define BYTE_CORE_SET_LOW		(64)
1381 #define BYTE_CORE_SET_HIGH		(200)
1382 
1383 static int byte_core_set_size(struct heuristic_ws *ws)
1384 {
1385 	u32 i;
1386 	u32 coreset_sum = 0;
1387 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1388 	struct bucket_item *bucket = ws->bucket;
1389 
1390 	/* Sort in reverse order */
1391 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1392 
1393 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1394 		coreset_sum += bucket[i].count;
1395 
1396 	if (coreset_sum > core_set_threshold)
1397 		return i;
1398 
1399 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1400 		coreset_sum += bucket[i].count;
1401 		if (coreset_sum > core_set_threshold)
1402 			break;
1403 	}
1404 
1405 	return i;
1406 }
1407 
1408 /*
1409  * Count byte values in buckets.
1410  * This heuristic can detect textual data (configs, xml, json, html, etc).
1411  * Because in most text-like data byte set is restricted to limited number of
1412  * possible characters, and that restriction in most cases makes data easy to
1413  * compress.
1414  *
1415  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1416  *	less - compressible
1417  *	more - need additional analysis
1418  */
1419 #define BYTE_SET_THRESHOLD		(64)
1420 
1421 static u32 byte_set_size(const struct heuristic_ws *ws)
1422 {
1423 	u32 i;
1424 	u32 byte_set_size = 0;
1425 
1426 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1427 		if (ws->bucket[i].count > 0)
1428 			byte_set_size++;
1429 	}
1430 
1431 	/*
1432 	 * Continue collecting count of byte values in buckets.  If the byte
1433 	 * set size is bigger then the threshold, it's pointless to continue,
1434 	 * the detection technique would fail for this type of data.
1435 	 */
1436 	for (; i < BUCKET_SIZE; i++) {
1437 		if (ws->bucket[i].count > 0) {
1438 			byte_set_size++;
1439 			if (byte_set_size > BYTE_SET_THRESHOLD)
1440 				return byte_set_size;
1441 		}
1442 	}
1443 
1444 	return byte_set_size;
1445 }
1446 
1447 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1448 {
1449 	const u32 half_of_sample = ws->sample_size / 2;
1450 	const u8 *data = ws->sample;
1451 
1452 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1453 }
1454 
1455 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1456 				     struct heuristic_ws *ws)
1457 {
1458 	struct page *page;
1459 	u64 index, index_end;
1460 	u32 i, curr_sample_pos;
1461 	u8 *in_data;
1462 
1463 	/*
1464 	 * Compression handles the input data by chunks of 128KiB
1465 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1466 	 *
1467 	 * We do the same for the heuristic and loop over the whole range.
1468 	 *
1469 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1470 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1471 	 */
1472 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1473 		end = start + BTRFS_MAX_UNCOMPRESSED;
1474 
1475 	index = start >> PAGE_SHIFT;
1476 	index_end = end >> PAGE_SHIFT;
1477 
1478 	/* Don't miss unaligned end */
1479 	if (!IS_ALIGNED(end, PAGE_SIZE))
1480 		index_end++;
1481 
1482 	curr_sample_pos = 0;
1483 	while (index < index_end) {
1484 		page = find_get_page(inode->i_mapping, index);
1485 		in_data = kmap(page);
1486 		/* Handle case where the start is not aligned to PAGE_SIZE */
1487 		i = start % PAGE_SIZE;
1488 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1489 			/* Don't sample any garbage from the last page */
1490 			if (start > end - SAMPLING_READ_SIZE)
1491 				break;
1492 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1493 					SAMPLING_READ_SIZE);
1494 			i += SAMPLING_INTERVAL;
1495 			start += SAMPLING_INTERVAL;
1496 			curr_sample_pos += SAMPLING_READ_SIZE;
1497 		}
1498 		kunmap(page);
1499 		put_page(page);
1500 
1501 		index++;
1502 	}
1503 
1504 	ws->sample_size = curr_sample_pos;
1505 }
1506 
1507 /*
1508  * Compression heuristic.
1509  *
1510  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1511  * quickly (compared to direct compression) detect data characteristics
1512  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1513  * data.
1514  *
1515  * The following types of analysis can be performed:
1516  * - detect mostly zero data
1517  * - detect data with low "byte set" size (text, etc)
1518  * - detect data with low/high "core byte" set
1519  *
1520  * Return non-zero if the compression should be done, 0 otherwise.
1521  */
1522 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1523 {
1524 	struct list_head *ws_list = get_workspace(0, 0);
1525 	struct heuristic_ws *ws;
1526 	u32 i;
1527 	u8 byte;
1528 	int ret = 0;
1529 
1530 	ws = list_entry(ws_list, struct heuristic_ws, list);
1531 
1532 	heuristic_collect_sample(inode, start, end, ws);
1533 
1534 	if (sample_repeated_patterns(ws)) {
1535 		ret = 1;
1536 		goto out;
1537 	}
1538 
1539 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1540 
1541 	for (i = 0; i < ws->sample_size; i++) {
1542 		byte = ws->sample[i];
1543 		ws->bucket[byte].count++;
1544 	}
1545 
1546 	i = byte_set_size(ws);
1547 	if (i < BYTE_SET_THRESHOLD) {
1548 		ret = 2;
1549 		goto out;
1550 	}
1551 
1552 	i = byte_core_set_size(ws);
1553 	if (i <= BYTE_CORE_SET_LOW) {
1554 		ret = 3;
1555 		goto out;
1556 	}
1557 
1558 	if (i >= BYTE_CORE_SET_HIGH) {
1559 		ret = 0;
1560 		goto out;
1561 	}
1562 
1563 	i = shannon_entropy(ws);
1564 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1565 		ret = 4;
1566 		goto out;
1567 	}
1568 
1569 	/*
1570 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1571 	 * needed to give green light to compression.
1572 	 *
1573 	 * For now just assume that compression at that level is not worth the
1574 	 * resources because:
1575 	 *
1576 	 * 1. it is possible to defrag the data later
1577 	 *
1578 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1579 	 * values, every bucket has counter at level ~54. The heuristic would
1580 	 * be confused. This can happen when data have some internal repeated
1581 	 * patterns like "abbacbbc...". This can be detected by analyzing
1582 	 * pairs of bytes, which is too costly.
1583 	 */
1584 	if (i < ENTROPY_LVL_HIGH) {
1585 		ret = 5;
1586 		goto out;
1587 	} else {
1588 		ret = 0;
1589 		goto out;
1590 	}
1591 
1592 out:
1593 	put_workspace(0, ws_list);
1594 	return ret;
1595 }
1596 
1597 /*
1598  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1599  * level, unrecognized string will set the default level
1600  */
1601 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1602 {
1603 	unsigned int level = 0;
1604 	int ret;
1605 
1606 	if (!type)
1607 		return 0;
1608 
1609 	if (str[0] == ':') {
1610 		ret = kstrtouint(str + 1, 10, &level);
1611 		if (ret)
1612 			level = 0;
1613 	}
1614 
1615 	level = btrfs_compress_set_level(type, level);
1616 
1617 	return level;
1618 }
1619 
1620 /*
1621  * Adjust @level according to the limits of the compression algorithm or
1622  * fallback to default
1623  */
1624 unsigned int btrfs_compress_set_level(int type, unsigned level)
1625 {
1626 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1627 
1628 	if (level == 0)
1629 		level = ops->default_level;
1630 	else
1631 		level = min(level, ops->max_level);
1632 
1633 	return level;
1634 }
1635