xref: /openbmc/linux/fs/btrfs/compression.c (revision 4513cb0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <crypto/hash.h>
24 #include "misc.h"
25 #include "ctree.h"
26 #include "fs.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "btrfs_inode.h"
30 #include "bio.h"
31 #include "ordered-data.h"
32 #include "compression.h"
33 #include "extent_io.h"
34 #include "extent_map.h"
35 #include "subpage.h"
36 #include "zoned.h"
37 #include "file-item.h"
38 #include "super.h"
39 
40 struct bio_set btrfs_compressed_bioset;
41 
42 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
43 
44 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
45 {
46 	switch (type) {
47 	case BTRFS_COMPRESS_ZLIB:
48 	case BTRFS_COMPRESS_LZO:
49 	case BTRFS_COMPRESS_ZSTD:
50 	case BTRFS_COMPRESS_NONE:
51 		return btrfs_compress_types[type];
52 	default:
53 		break;
54 	}
55 
56 	return NULL;
57 }
58 
59 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
60 {
61 	return container_of(bbio, struct compressed_bio, bbio);
62 }
63 
64 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
65 						   u64 start, blk_opf_t op,
66 						   btrfs_bio_end_io_t end_io)
67 {
68 	struct btrfs_bio *bbio;
69 
70 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
71 					  GFP_NOFS, &btrfs_compressed_bioset));
72 	btrfs_bio_init(bbio, inode, end_io, NULL);
73 	bbio->file_offset = start;
74 	return to_compressed_bio(bbio);
75 }
76 
77 bool btrfs_compress_is_valid_type(const char *str, size_t len)
78 {
79 	int i;
80 
81 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
82 		size_t comp_len = strlen(btrfs_compress_types[i]);
83 
84 		if (len < comp_len)
85 			continue;
86 
87 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
88 			return true;
89 	}
90 	return false;
91 }
92 
93 static int compression_compress_pages(int type, struct list_head *ws,
94                struct address_space *mapping, u64 start, struct page **pages,
95                unsigned long *out_pages, unsigned long *total_in,
96                unsigned long *total_out)
97 {
98 	switch (type) {
99 	case BTRFS_COMPRESS_ZLIB:
100 		return zlib_compress_pages(ws, mapping, start, pages,
101 				out_pages, total_in, total_out);
102 	case BTRFS_COMPRESS_LZO:
103 		return lzo_compress_pages(ws, mapping, start, pages,
104 				out_pages, total_in, total_out);
105 	case BTRFS_COMPRESS_ZSTD:
106 		return zstd_compress_pages(ws, mapping, start, pages,
107 				out_pages, total_in, total_out);
108 	case BTRFS_COMPRESS_NONE:
109 	default:
110 		/*
111 		 * This can happen when compression races with remount setting
112 		 * it to 'no compress', while caller doesn't call
113 		 * inode_need_compress() to check if we really need to
114 		 * compress.
115 		 *
116 		 * Not a big deal, just need to inform caller that we
117 		 * haven't allocated any pages yet.
118 		 */
119 		*out_pages = 0;
120 		return -E2BIG;
121 	}
122 }
123 
124 static int compression_decompress_bio(struct list_head *ws,
125 				      struct compressed_bio *cb)
126 {
127 	switch (cb->compress_type) {
128 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
129 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
130 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
131 	case BTRFS_COMPRESS_NONE:
132 	default:
133 		/*
134 		 * This can't happen, the type is validated several times
135 		 * before we get here.
136 		 */
137 		BUG();
138 	}
139 }
140 
141 static int compression_decompress(int type, struct list_head *ws,
142                const u8 *data_in, struct page *dest_page,
143                unsigned long start_byte, size_t srclen, size_t destlen)
144 {
145 	switch (type) {
146 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
147 						start_byte, srclen, destlen);
148 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
149 						start_byte, srclen, destlen);
150 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
151 						start_byte, srclen, destlen);
152 	case BTRFS_COMPRESS_NONE:
153 	default:
154 		/*
155 		 * This can't happen, the type is validated several times
156 		 * before we get here.
157 		 */
158 		BUG();
159 	}
160 }
161 
162 static void btrfs_free_compressed_pages(struct compressed_bio *cb)
163 {
164 	for (unsigned int i = 0; i < cb->nr_pages; i++)
165 		put_page(cb->compressed_pages[i]);
166 	kfree(cb->compressed_pages);
167 }
168 
169 static int btrfs_decompress_bio(struct compressed_bio *cb);
170 
171 static void end_compressed_bio_read(struct btrfs_bio *bbio)
172 {
173 	struct compressed_bio *cb = to_compressed_bio(bbio);
174 	blk_status_t status = bbio->bio.bi_status;
175 
176 	if (!status)
177 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
178 
179 	btrfs_free_compressed_pages(cb);
180 	btrfs_bio_end_io(cb->orig_bbio, status);
181 	bio_put(&bbio->bio);
182 }
183 
184 /*
185  * Clear the writeback bits on all of the file
186  * pages for a compressed write
187  */
188 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
189 {
190 	struct inode *inode = &cb->bbio.inode->vfs_inode;
191 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
192 	unsigned long index = cb->start >> PAGE_SHIFT;
193 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
194 	struct folio_batch fbatch;
195 	const int errno = blk_status_to_errno(cb->bbio.bio.bi_status);
196 	int i;
197 	int ret;
198 
199 	if (errno)
200 		mapping_set_error(inode->i_mapping, errno);
201 
202 	folio_batch_init(&fbatch);
203 	while (index <= end_index) {
204 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
205 				&fbatch);
206 
207 		if (ret == 0)
208 			return;
209 
210 		for (i = 0; i < ret; i++) {
211 			struct folio *folio = fbatch.folios[i];
212 
213 			if (errno)
214 				folio_set_error(folio);
215 			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
216 							 cb->start, cb->len);
217 		}
218 		folio_batch_release(&fbatch);
219 	}
220 	/* the inode may be gone now */
221 }
222 
223 static void btrfs_finish_compressed_write_work(struct work_struct *work)
224 {
225 	struct compressed_bio *cb =
226 		container_of(work, struct compressed_bio, write_end_work);
227 
228 	/*
229 	 * Ok, we're the last bio for this extent, step one is to call back
230 	 * into the FS and do all the end_io operations.
231 	 */
232 	btrfs_writepage_endio_finish_ordered(cb->bbio.inode, NULL,
233 			cb->start, cb->start + cb->len - 1,
234 			cb->bbio.bio.bi_status == BLK_STS_OK);
235 
236 	if (cb->writeback)
237 		end_compressed_writeback(cb);
238 	/* Note, our inode could be gone now */
239 
240 	btrfs_free_compressed_pages(cb);
241 	bio_put(&cb->bbio.bio);
242 }
243 
244 /*
245  * Do the cleanup once all the compressed pages hit the disk.  This will clear
246  * writeback on the file pages and free the compressed pages.
247  *
248  * This also calls the writeback end hooks for the file pages so that metadata
249  * and checksums can be updated in the file.
250  */
251 static void end_compressed_bio_write(struct btrfs_bio *bbio)
252 {
253 	struct compressed_bio *cb = to_compressed_bio(bbio);
254 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
255 
256 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
257 }
258 
259 static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb)
260 {
261 	struct btrfs_fs_info *fs_info = cb->bbio.inode->root->fs_info;
262 	struct bio *bio = &cb->bbio.bio;
263 	u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
264 	u64 cur_disk_byte = disk_bytenr;
265 
266 	while (cur_disk_byte < disk_bytenr + cb->compressed_len) {
267 		u64 offset = cur_disk_byte - disk_bytenr;
268 		unsigned int index = offset >> PAGE_SHIFT;
269 		unsigned int real_size;
270 		unsigned int added;
271 		struct page *page = cb->compressed_pages[index];
272 
273 		/*
274 		 * We have various limit on the real read size:
275 		 * - page boundary
276 		 * - compressed length boundary
277 		 */
278 		real_size = min_t(u64, U32_MAX, PAGE_SIZE - offset_in_page(offset));
279 		real_size = min_t(u64, real_size, cb->compressed_len - offset);
280 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
281 
282 		added = bio_add_page(bio, page, real_size, offset_in_page(offset));
283 		/*
284 		 * Maximum compressed extent is smaller than bio size limit,
285 		 * thus bio_add_page() should always success.
286 		 */
287 		ASSERT(added == real_size);
288 		cur_disk_byte += added;
289 	}
290 
291 	ASSERT(bio->bi_iter.bi_size);
292 }
293 
294 /*
295  * worker function to build and submit bios for previously compressed pages.
296  * The corresponding pages in the inode should be marked for writeback
297  * and the compressed pages should have a reference on them for dropping
298  * when the IO is complete.
299  *
300  * This also checksums the file bytes and gets things ready for
301  * the end io hooks.
302  */
303 void btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
304 				 unsigned int len, u64 disk_start,
305 				 unsigned int compressed_len,
306 				 struct page **compressed_pages,
307 				 unsigned int nr_pages,
308 				 blk_opf_t write_flags,
309 				 struct cgroup_subsys_state *blkcg_css,
310 				 bool writeback)
311 {
312 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
313 	struct compressed_bio *cb;
314 
315 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
316 	       IS_ALIGNED(len, fs_info->sectorsize));
317 
318 	if (blkcg_css) {
319 		kthread_associate_blkcg(blkcg_css);
320 		write_flags |= REQ_CGROUP_PUNT;
321 	}
322 	write_flags |= REQ_BTRFS_ONE_ORDERED;
323 
324 	cb = alloc_compressed_bio(inode, start, REQ_OP_WRITE | write_flags,
325 				  end_compressed_bio_write);
326 	cb->start = start;
327 	cb->len = len;
328 	cb->compressed_pages = compressed_pages;
329 	cb->compressed_len = compressed_len;
330 	cb->writeback = writeback;
331 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
332 	cb->nr_pages = nr_pages;
333 	cb->bbio.bio.bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
334 	btrfs_add_compressed_bio_pages(cb);
335 
336 	btrfs_submit_bio(&cb->bbio, 0);
337 
338 	if (blkcg_css)
339 		kthread_associate_blkcg(NULL);
340 }
341 
342 /*
343  * Add extra pages in the same compressed file extent so that we don't need to
344  * re-read the same extent again and again.
345  *
346  * NOTE: this won't work well for subpage, as for subpage read, we lock the
347  * full page then submit bio for each compressed/regular extents.
348  *
349  * This means, if we have several sectors in the same page points to the same
350  * on-disk compressed data, we will re-read the same extent many times and
351  * this function can only help for the next page.
352  */
353 static noinline int add_ra_bio_pages(struct inode *inode,
354 				     u64 compressed_end,
355 				     struct compressed_bio *cb,
356 				     int *memstall, unsigned long *pflags)
357 {
358 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
359 	unsigned long end_index;
360 	struct bio *orig_bio = &cb->orig_bbio->bio;
361 	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
362 	u64 isize = i_size_read(inode);
363 	int ret;
364 	struct page *page;
365 	struct extent_map *em;
366 	struct address_space *mapping = inode->i_mapping;
367 	struct extent_map_tree *em_tree;
368 	struct extent_io_tree *tree;
369 	int sectors_missed = 0;
370 
371 	em_tree = &BTRFS_I(inode)->extent_tree;
372 	tree = &BTRFS_I(inode)->io_tree;
373 
374 	if (isize == 0)
375 		return 0;
376 
377 	/*
378 	 * For current subpage support, we only support 64K page size,
379 	 * which means maximum compressed extent size (128K) is just 2x page
380 	 * size.
381 	 * This makes readahead less effective, so here disable readahead for
382 	 * subpage for now, until full compressed write is supported.
383 	 */
384 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
385 		return 0;
386 
387 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
388 
389 	while (cur < compressed_end) {
390 		u64 page_end;
391 		u64 pg_index = cur >> PAGE_SHIFT;
392 		u32 add_size;
393 
394 		if (pg_index > end_index)
395 			break;
396 
397 		page = xa_load(&mapping->i_pages, pg_index);
398 		if (page && !xa_is_value(page)) {
399 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
400 					  fs_info->sectorsize_bits;
401 
402 			/* Beyond threshold, no need to continue */
403 			if (sectors_missed > 4)
404 				break;
405 
406 			/*
407 			 * Jump to next page start as we already have page for
408 			 * current offset.
409 			 */
410 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
411 			continue;
412 		}
413 
414 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
415 								 ~__GFP_FS));
416 		if (!page)
417 			break;
418 
419 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
420 			put_page(page);
421 			/* There is already a page, skip to page end */
422 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
423 			continue;
424 		}
425 
426 		if (!*memstall && PageWorkingset(page)) {
427 			psi_memstall_enter(pflags);
428 			*memstall = 1;
429 		}
430 
431 		ret = set_page_extent_mapped(page);
432 		if (ret < 0) {
433 			unlock_page(page);
434 			put_page(page);
435 			break;
436 		}
437 
438 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
439 		lock_extent(tree, cur, page_end, NULL);
440 		read_lock(&em_tree->lock);
441 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
442 		read_unlock(&em_tree->lock);
443 
444 		/*
445 		 * At this point, we have a locked page in the page cache for
446 		 * these bytes in the file.  But, we have to make sure they map
447 		 * to this compressed extent on disk.
448 		 */
449 		if (!em || cur < em->start ||
450 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
451 		    (em->block_start >> 9) != orig_bio->bi_iter.bi_sector) {
452 			free_extent_map(em);
453 			unlock_extent(tree, cur, page_end, NULL);
454 			unlock_page(page);
455 			put_page(page);
456 			break;
457 		}
458 		free_extent_map(em);
459 
460 		if (page->index == end_index) {
461 			size_t zero_offset = offset_in_page(isize);
462 
463 			if (zero_offset) {
464 				int zeros;
465 				zeros = PAGE_SIZE - zero_offset;
466 				memzero_page(page, zero_offset, zeros);
467 			}
468 		}
469 
470 		add_size = min(em->start + em->len, page_end + 1) - cur;
471 		ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur));
472 		if (ret != add_size) {
473 			unlock_extent(tree, cur, page_end, NULL);
474 			unlock_page(page);
475 			put_page(page);
476 			break;
477 		}
478 		/*
479 		 * If it's subpage, we also need to increase its
480 		 * subpage::readers number, as at endio we will decrease
481 		 * subpage::readers and to unlock the page.
482 		 */
483 		if (fs_info->sectorsize < PAGE_SIZE)
484 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
485 		put_page(page);
486 		cur += add_size;
487 	}
488 	return 0;
489 }
490 
491 /*
492  * for a compressed read, the bio we get passed has all the inode pages
493  * in it.  We don't actually do IO on those pages but allocate new ones
494  * to hold the compressed pages on disk.
495  *
496  * bio->bi_iter.bi_sector points to the compressed extent on disk
497  * bio->bi_io_vec points to all of the inode pages
498  *
499  * After the compressed pages are read, we copy the bytes into the
500  * bio we were passed and then call the bio end_io calls
501  */
502 void btrfs_submit_compressed_read(struct btrfs_bio *bbio, int mirror_num)
503 {
504 	struct btrfs_inode *inode = bbio->inode;
505 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
506 	struct extent_map_tree *em_tree = &inode->extent_tree;
507 	struct compressed_bio *cb;
508 	unsigned int compressed_len;
509 	u64 file_offset = bbio->file_offset;
510 	u64 em_len;
511 	u64 em_start;
512 	struct extent_map *em;
513 	unsigned long pflags;
514 	int memstall = 0;
515 	blk_status_t ret;
516 	int ret2;
517 
518 	/* we need the actual starting offset of this extent in the file */
519 	read_lock(&em_tree->lock);
520 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
521 	read_unlock(&em_tree->lock);
522 	if (!em) {
523 		ret = BLK_STS_IOERR;
524 		goto out;
525 	}
526 
527 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
528 	compressed_len = em->block_len;
529 
530 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
531 				  end_compressed_bio_read);
532 
533 	cb->start = em->orig_start;
534 	em_len = em->len;
535 	em_start = em->start;
536 
537 	cb->len = bbio->bio.bi_iter.bi_size;
538 	cb->compressed_len = compressed_len;
539 	cb->compress_type = em->compress_type;
540 	cb->orig_bbio = bbio;
541 
542 	free_extent_map(em);
543 
544 	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
545 	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
546 	if (!cb->compressed_pages) {
547 		ret = BLK_STS_RESOURCE;
548 		goto out_free_bio;
549 	}
550 
551 	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
552 	if (ret2) {
553 		ret = BLK_STS_RESOURCE;
554 		goto out_free_compressed_pages;
555 	}
556 
557 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
558 			 &pflags);
559 
560 	/* include any pages we added in add_ra-bio_pages */
561 	cb->len = bbio->bio.bi_iter.bi_size;
562 	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
563 	btrfs_add_compressed_bio_pages(cb);
564 
565 	if (memstall)
566 		psi_memstall_leave(&pflags);
567 
568 	btrfs_submit_bio(&cb->bbio, mirror_num);
569 	return;
570 
571 out_free_compressed_pages:
572 	kfree(cb->compressed_pages);
573 out_free_bio:
574 	bio_put(&cb->bbio.bio);
575 out:
576 	btrfs_bio_end_io(bbio, ret);
577 }
578 
579 /*
580  * Heuristic uses systematic sampling to collect data from the input data
581  * range, the logic can be tuned by the following constants:
582  *
583  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
584  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
585  */
586 #define SAMPLING_READ_SIZE	(16)
587 #define SAMPLING_INTERVAL	(256)
588 
589 /*
590  * For statistical analysis of the input data we consider bytes that form a
591  * Galois Field of 256 objects. Each object has an attribute count, ie. how
592  * many times the object appeared in the sample.
593  */
594 #define BUCKET_SIZE		(256)
595 
596 /*
597  * The size of the sample is based on a statistical sampling rule of thumb.
598  * The common way is to perform sampling tests as long as the number of
599  * elements in each cell is at least 5.
600  *
601  * Instead of 5, we choose 32 to obtain more accurate results.
602  * If the data contain the maximum number of symbols, which is 256, we obtain a
603  * sample size bound by 8192.
604  *
605  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
606  * from up to 512 locations.
607  */
608 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
609 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
610 
611 struct bucket_item {
612 	u32 count;
613 };
614 
615 struct heuristic_ws {
616 	/* Partial copy of input data */
617 	u8 *sample;
618 	u32 sample_size;
619 	/* Buckets store counters for each byte value */
620 	struct bucket_item *bucket;
621 	/* Sorting buffer */
622 	struct bucket_item *bucket_b;
623 	struct list_head list;
624 };
625 
626 static struct workspace_manager heuristic_wsm;
627 
628 static void free_heuristic_ws(struct list_head *ws)
629 {
630 	struct heuristic_ws *workspace;
631 
632 	workspace = list_entry(ws, struct heuristic_ws, list);
633 
634 	kvfree(workspace->sample);
635 	kfree(workspace->bucket);
636 	kfree(workspace->bucket_b);
637 	kfree(workspace);
638 }
639 
640 static struct list_head *alloc_heuristic_ws(unsigned int level)
641 {
642 	struct heuristic_ws *ws;
643 
644 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
645 	if (!ws)
646 		return ERR_PTR(-ENOMEM);
647 
648 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
649 	if (!ws->sample)
650 		goto fail;
651 
652 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
653 	if (!ws->bucket)
654 		goto fail;
655 
656 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
657 	if (!ws->bucket_b)
658 		goto fail;
659 
660 	INIT_LIST_HEAD(&ws->list);
661 	return &ws->list;
662 fail:
663 	free_heuristic_ws(&ws->list);
664 	return ERR_PTR(-ENOMEM);
665 }
666 
667 const struct btrfs_compress_op btrfs_heuristic_compress = {
668 	.workspace_manager = &heuristic_wsm,
669 };
670 
671 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
672 	/* The heuristic is represented as compression type 0 */
673 	&btrfs_heuristic_compress,
674 	&btrfs_zlib_compress,
675 	&btrfs_lzo_compress,
676 	&btrfs_zstd_compress,
677 };
678 
679 static struct list_head *alloc_workspace(int type, unsigned int level)
680 {
681 	switch (type) {
682 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
683 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
684 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
685 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
686 	default:
687 		/*
688 		 * This can't happen, the type is validated several times
689 		 * before we get here.
690 		 */
691 		BUG();
692 	}
693 }
694 
695 static void free_workspace(int type, struct list_head *ws)
696 {
697 	switch (type) {
698 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
699 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
700 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
701 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
702 	default:
703 		/*
704 		 * This can't happen, the type is validated several times
705 		 * before we get here.
706 		 */
707 		BUG();
708 	}
709 }
710 
711 static void btrfs_init_workspace_manager(int type)
712 {
713 	struct workspace_manager *wsm;
714 	struct list_head *workspace;
715 
716 	wsm = btrfs_compress_op[type]->workspace_manager;
717 	INIT_LIST_HEAD(&wsm->idle_ws);
718 	spin_lock_init(&wsm->ws_lock);
719 	atomic_set(&wsm->total_ws, 0);
720 	init_waitqueue_head(&wsm->ws_wait);
721 
722 	/*
723 	 * Preallocate one workspace for each compression type so we can
724 	 * guarantee forward progress in the worst case
725 	 */
726 	workspace = alloc_workspace(type, 0);
727 	if (IS_ERR(workspace)) {
728 		pr_warn(
729 	"BTRFS: cannot preallocate compression workspace, will try later\n");
730 	} else {
731 		atomic_set(&wsm->total_ws, 1);
732 		wsm->free_ws = 1;
733 		list_add(workspace, &wsm->idle_ws);
734 	}
735 }
736 
737 static void btrfs_cleanup_workspace_manager(int type)
738 {
739 	struct workspace_manager *wsman;
740 	struct list_head *ws;
741 
742 	wsman = btrfs_compress_op[type]->workspace_manager;
743 	while (!list_empty(&wsman->idle_ws)) {
744 		ws = wsman->idle_ws.next;
745 		list_del(ws);
746 		free_workspace(type, ws);
747 		atomic_dec(&wsman->total_ws);
748 	}
749 }
750 
751 /*
752  * This finds an available workspace or allocates a new one.
753  * If it's not possible to allocate a new one, waits until there's one.
754  * Preallocation makes a forward progress guarantees and we do not return
755  * errors.
756  */
757 struct list_head *btrfs_get_workspace(int type, unsigned int level)
758 {
759 	struct workspace_manager *wsm;
760 	struct list_head *workspace;
761 	int cpus = num_online_cpus();
762 	unsigned nofs_flag;
763 	struct list_head *idle_ws;
764 	spinlock_t *ws_lock;
765 	atomic_t *total_ws;
766 	wait_queue_head_t *ws_wait;
767 	int *free_ws;
768 
769 	wsm = btrfs_compress_op[type]->workspace_manager;
770 	idle_ws	 = &wsm->idle_ws;
771 	ws_lock	 = &wsm->ws_lock;
772 	total_ws = &wsm->total_ws;
773 	ws_wait	 = &wsm->ws_wait;
774 	free_ws	 = &wsm->free_ws;
775 
776 again:
777 	spin_lock(ws_lock);
778 	if (!list_empty(idle_ws)) {
779 		workspace = idle_ws->next;
780 		list_del(workspace);
781 		(*free_ws)--;
782 		spin_unlock(ws_lock);
783 		return workspace;
784 
785 	}
786 	if (atomic_read(total_ws) > cpus) {
787 		DEFINE_WAIT(wait);
788 
789 		spin_unlock(ws_lock);
790 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
791 		if (atomic_read(total_ws) > cpus && !*free_ws)
792 			schedule();
793 		finish_wait(ws_wait, &wait);
794 		goto again;
795 	}
796 	atomic_inc(total_ws);
797 	spin_unlock(ws_lock);
798 
799 	/*
800 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
801 	 * to turn it off here because we might get called from the restricted
802 	 * context of btrfs_compress_bio/btrfs_compress_pages
803 	 */
804 	nofs_flag = memalloc_nofs_save();
805 	workspace = alloc_workspace(type, level);
806 	memalloc_nofs_restore(nofs_flag);
807 
808 	if (IS_ERR(workspace)) {
809 		atomic_dec(total_ws);
810 		wake_up(ws_wait);
811 
812 		/*
813 		 * Do not return the error but go back to waiting. There's a
814 		 * workspace preallocated for each type and the compression
815 		 * time is bounded so we get to a workspace eventually. This
816 		 * makes our caller's life easier.
817 		 *
818 		 * To prevent silent and low-probability deadlocks (when the
819 		 * initial preallocation fails), check if there are any
820 		 * workspaces at all.
821 		 */
822 		if (atomic_read(total_ws) == 0) {
823 			static DEFINE_RATELIMIT_STATE(_rs,
824 					/* once per minute */ 60 * HZ,
825 					/* no burst */ 1);
826 
827 			if (__ratelimit(&_rs)) {
828 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
829 			}
830 		}
831 		goto again;
832 	}
833 	return workspace;
834 }
835 
836 static struct list_head *get_workspace(int type, int level)
837 {
838 	switch (type) {
839 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
840 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
841 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
842 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
843 	default:
844 		/*
845 		 * This can't happen, the type is validated several times
846 		 * before we get here.
847 		 */
848 		BUG();
849 	}
850 }
851 
852 /*
853  * put a workspace struct back on the list or free it if we have enough
854  * idle ones sitting around
855  */
856 void btrfs_put_workspace(int type, struct list_head *ws)
857 {
858 	struct workspace_manager *wsm;
859 	struct list_head *idle_ws;
860 	spinlock_t *ws_lock;
861 	atomic_t *total_ws;
862 	wait_queue_head_t *ws_wait;
863 	int *free_ws;
864 
865 	wsm = btrfs_compress_op[type]->workspace_manager;
866 	idle_ws	 = &wsm->idle_ws;
867 	ws_lock	 = &wsm->ws_lock;
868 	total_ws = &wsm->total_ws;
869 	ws_wait	 = &wsm->ws_wait;
870 	free_ws	 = &wsm->free_ws;
871 
872 	spin_lock(ws_lock);
873 	if (*free_ws <= num_online_cpus()) {
874 		list_add(ws, idle_ws);
875 		(*free_ws)++;
876 		spin_unlock(ws_lock);
877 		goto wake;
878 	}
879 	spin_unlock(ws_lock);
880 
881 	free_workspace(type, ws);
882 	atomic_dec(total_ws);
883 wake:
884 	cond_wake_up(ws_wait);
885 }
886 
887 static void put_workspace(int type, struct list_head *ws)
888 {
889 	switch (type) {
890 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
891 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
892 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
893 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
894 	default:
895 		/*
896 		 * This can't happen, the type is validated several times
897 		 * before we get here.
898 		 */
899 		BUG();
900 	}
901 }
902 
903 /*
904  * Adjust @level according to the limits of the compression algorithm or
905  * fallback to default
906  */
907 static unsigned int btrfs_compress_set_level(int type, unsigned level)
908 {
909 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
910 
911 	if (level == 0)
912 		level = ops->default_level;
913 	else
914 		level = min(level, ops->max_level);
915 
916 	return level;
917 }
918 
919 /*
920  * Given an address space and start and length, compress the bytes into @pages
921  * that are allocated on demand.
922  *
923  * @type_level is encoded algorithm and level, where level 0 means whatever
924  * default the algorithm chooses and is opaque here;
925  * - compression algo are 0-3
926  * - the level are bits 4-7
927  *
928  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
929  * and returns number of actually allocated pages
930  *
931  * @total_in is used to return the number of bytes actually read.  It
932  * may be smaller than the input length if we had to exit early because we
933  * ran out of room in the pages array or because we cross the
934  * max_out threshold.
935  *
936  * @total_out is an in/out parameter, must be set to the input length and will
937  * be also used to return the total number of compressed bytes
938  */
939 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
940 			 u64 start, struct page **pages,
941 			 unsigned long *out_pages,
942 			 unsigned long *total_in,
943 			 unsigned long *total_out)
944 {
945 	int type = btrfs_compress_type(type_level);
946 	int level = btrfs_compress_level(type_level);
947 	struct list_head *workspace;
948 	int ret;
949 
950 	level = btrfs_compress_set_level(type, level);
951 	workspace = get_workspace(type, level);
952 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
953 					 out_pages, total_in, total_out);
954 	put_workspace(type, workspace);
955 	return ret;
956 }
957 
958 static int btrfs_decompress_bio(struct compressed_bio *cb)
959 {
960 	struct list_head *workspace;
961 	int ret;
962 	int type = cb->compress_type;
963 
964 	workspace = get_workspace(type, 0);
965 	ret = compression_decompress_bio(workspace, cb);
966 	put_workspace(type, workspace);
967 
968 	if (!ret)
969 		zero_fill_bio(&cb->orig_bbio->bio);
970 	return ret;
971 }
972 
973 /*
974  * a less complex decompression routine.  Our compressed data fits in a
975  * single page, and we want to read a single page out of it.
976  * start_byte tells us the offset into the compressed data we're interested in
977  */
978 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
979 		     unsigned long start_byte, size_t srclen, size_t destlen)
980 {
981 	struct list_head *workspace;
982 	int ret;
983 
984 	workspace = get_workspace(type, 0);
985 	ret = compression_decompress(type, workspace, data_in, dest_page,
986 				     start_byte, srclen, destlen);
987 	put_workspace(type, workspace);
988 
989 	return ret;
990 }
991 
992 int __init btrfs_init_compress(void)
993 {
994 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
995 			offsetof(struct compressed_bio, bbio.bio),
996 			BIOSET_NEED_BVECS))
997 		return -ENOMEM;
998 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
999 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1000 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1001 	zstd_init_workspace_manager();
1002 	return 0;
1003 }
1004 
1005 void __cold btrfs_exit_compress(void)
1006 {
1007 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1008 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1009 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1010 	zstd_cleanup_workspace_manager();
1011 	bioset_exit(&btrfs_compressed_bioset);
1012 }
1013 
1014 /*
1015  * Copy decompressed data from working buffer to pages.
1016  *
1017  * @buf:		The decompressed data buffer
1018  * @buf_len:		The decompressed data length
1019  * @decompressed:	Number of bytes that are already decompressed inside the
1020  * 			compressed extent
1021  * @cb:			The compressed extent descriptor
1022  * @orig_bio:		The original bio that the caller wants to read for
1023  *
1024  * An easier to understand graph is like below:
1025  *
1026  * 		|<- orig_bio ->|     |<- orig_bio->|
1027  * 	|<-------      full decompressed extent      ----->|
1028  * 	|<-----------    @cb range   ---->|
1029  * 	|			|<-- @buf_len -->|
1030  * 	|<--- @decompressed --->|
1031  *
1032  * Note that, @cb can be a subpage of the full decompressed extent, but
1033  * @cb->start always has the same as the orig_file_offset value of the full
1034  * decompressed extent.
1035  *
1036  * When reading compressed extent, we have to read the full compressed extent,
1037  * while @orig_bio may only want part of the range.
1038  * Thus this function will ensure only data covered by @orig_bio will be copied
1039  * to.
1040  *
1041  * Return 0 if we have copied all needed contents for @orig_bio.
1042  * Return >0 if we need continue decompress.
1043  */
1044 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1045 			      struct compressed_bio *cb, u32 decompressed)
1046 {
1047 	struct bio *orig_bio = &cb->orig_bbio->bio;
1048 	/* Offset inside the full decompressed extent */
1049 	u32 cur_offset;
1050 
1051 	cur_offset = decompressed;
1052 	/* The main loop to do the copy */
1053 	while (cur_offset < decompressed + buf_len) {
1054 		struct bio_vec bvec;
1055 		size_t copy_len;
1056 		u32 copy_start;
1057 		/* Offset inside the full decompressed extent */
1058 		u32 bvec_offset;
1059 
1060 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1061 		/*
1062 		 * cb->start may underflow, but subtracting that value can still
1063 		 * give us correct offset inside the full decompressed extent.
1064 		 */
1065 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1066 
1067 		/* Haven't reached the bvec range, exit */
1068 		if (decompressed + buf_len <= bvec_offset)
1069 			return 1;
1070 
1071 		copy_start = max(cur_offset, bvec_offset);
1072 		copy_len = min(bvec_offset + bvec.bv_len,
1073 			       decompressed + buf_len) - copy_start;
1074 		ASSERT(copy_len);
1075 
1076 		/*
1077 		 * Extra range check to ensure we didn't go beyond
1078 		 * @buf + @buf_len.
1079 		 */
1080 		ASSERT(copy_start - decompressed < buf_len);
1081 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1082 			       buf + copy_start - decompressed, copy_len);
1083 		cur_offset += copy_len;
1084 
1085 		bio_advance(orig_bio, copy_len);
1086 		/* Finished the bio */
1087 		if (!orig_bio->bi_iter.bi_size)
1088 			return 0;
1089 	}
1090 	return 1;
1091 }
1092 
1093 /*
1094  * Shannon Entropy calculation
1095  *
1096  * Pure byte distribution analysis fails to determine compressibility of data.
1097  * Try calculating entropy to estimate the average minimum number of bits
1098  * needed to encode the sampled data.
1099  *
1100  * For convenience, return the percentage of needed bits, instead of amount of
1101  * bits directly.
1102  *
1103  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1104  *			    and can be compressible with high probability
1105  *
1106  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1107  *
1108  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1109  */
1110 #define ENTROPY_LVL_ACEPTABLE		(65)
1111 #define ENTROPY_LVL_HIGH		(80)
1112 
1113 /*
1114  * For increasead precision in shannon_entropy calculation,
1115  * let's do pow(n, M) to save more digits after comma:
1116  *
1117  * - maximum int bit length is 64
1118  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1119  * - 13 * 4 = 52 < 64		-> M = 4
1120  *
1121  * So use pow(n, 4).
1122  */
1123 static inline u32 ilog2_w(u64 n)
1124 {
1125 	return ilog2(n * n * n * n);
1126 }
1127 
1128 static u32 shannon_entropy(struct heuristic_ws *ws)
1129 {
1130 	const u32 entropy_max = 8 * ilog2_w(2);
1131 	u32 entropy_sum = 0;
1132 	u32 p, p_base, sz_base;
1133 	u32 i;
1134 
1135 	sz_base = ilog2_w(ws->sample_size);
1136 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1137 		p = ws->bucket[i].count;
1138 		p_base = ilog2_w(p);
1139 		entropy_sum += p * (sz_base - p_base);
1140 	}
1141 
1142 	entropy_sum /= ws->sample_size;
1143 	return entropy_sum * 100 / entropy_max;
1144 }
1145 
1146 #define RADIX_BASE		4U
1147 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1148 
1149 static u8 get4bits(u64 num, int shift) {
1150 	u8 low4bits;
1151 
1152 	num >>= shift;
1153 	/* Reverse order */
1154 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1155 	return low4bits;
1156 }
1157 
1158 /*
1159  * Use 4 bits as radix base
1160  * Use 16 u32 counters for calculating new position in buf array
1161  *
1162  * @array     - array that will be sorted
1163  * @array_buf - buffer array to store sorting results
1164  *              must be equal in size to @array
1165  * @num       - array size
1166  */
1167 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1168 		       int num)
1169 {
1170 	u64 max_num;
1171 	u64 buf_num;
1172 	u32 counters[COUNTERS_SIZE];
1173 	u32 new_addr;
1174 	u32 addr;
1175 	int bitlen;
1176 	int shift;
1177 	int i;
1178 
1179 	/*
1180 	 * Try avoid useless loop iterations for small numbers stored in big
1181 	 * counters.  Example: 48 33 4 ... in 64bit array
1182 	 */
1183 	max_num = array[0].count;
1184 	for (i = 1; i < num; i++) {
1185 		buf_num = array[i].count;
1186 		if (buf_num > max_num)
1187 			max_num = buf_num;
1188 	}
1189 
1190 	buf_num = ilog2(max_num);
1191 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1192 
1193 	shift = 0;
1194 	while (shift < bitlen) {
1195 		memset(counters, 0, sizeof(counters));
1196 
1197 		for (i = 0; i < num; i++) {
1198 			buf_num = array[i].count;
1199 			addr = get4bits(buf_num, shift);
1200 			counters[addr]++;
1201 		}
1202 
1203 		for (i = 1; i < COUNTERS_SIZE; i++)
1204 			counters[i] += counters[i - 1];
1205 
1206 		for (i = num - 1; i >= 0; i--) {
1207 			buf_num = array[i].count;
1208 			addr = get4bits(buf_num, shift);
1209 			counters[addr]--;
1210 			new_addr = counters[addr];
1211 			array_buf[new_addr] = array[i];
1212 		}
1213 
1214 		shift += RADIX_BASE;
1215 
1216 		/*
1217 		 * Normal radix expects to move data from a temporary array, to
1218 		 * the main one.  But that requires some CPU time. Avoid that
1219 		 * by doing another sort iteration to original array instead of
1220 		 * memcpy()
1221 		 */
1222 		memset(counters, 0, sizeof(counters));
1223 
1224 		for (i = 0; i < num; i ++) {
1225 			buf_num = array_buf[i].count;
1226 			addr = get4bits(buf_num, shift);
1227 			counters[addr]++;
1228 		}
1229 
1230 		for (i = 1; i < COUNTERS_SIZE; i++)
1231 			counters[i] += counters[i - 1];
1232 
1233 		for (i = num - 1; i >= 0; i--) {
1234 			buf_num = array_buf[i].count;
1235 			addr = get4bits(buf_num, shift);
1236 			counters[addr]--;
1237 			new_addr = counters[addr];
1238 			array[new_addr] = array_buf[i];
1239 		}
1240 
1241 		shift += RADIX_BASE;
1242 	}
1243 }
1244 
1245 /*
1246  * Size of the core byte set - how many bytes cover 90% of the sample
1247  *
1248  * There are several types of structured binary data that use nearly all byte
1249  * values. The distribution can be uniform and counts in all buckets will be
1250  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1251  *
1252  * Other possibility is normal (Gaussian) distribution, where the data could
1253  * be potentially compressible, but we have to take a few more steps to decide
1254  * how much.
1255  *
1256  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1257  *                       compression algo can easy fix that
1258  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1259  *                       probability is not compressible
1260  */
1261 #define BYTE_CORE_SET_LOW		(64)
1262 #define BYTE_CORE_SET_HIGH		(200)
1263 
1264 static int byte_core_set_size(struct heuristic_ws *ws)
1265 {
1266 	u32 i;
1267 	u32 coreset_sum = 0;
1268 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1269 	struct bucket_item *bucket = ws->bucket;
1270 
1271 	/* Sort in reverse order */
1272 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1273 
1274 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1275 		coreset_sum += bucket[i].count;
1276 
1277 	if (coreset_sum > core_set_threshold)
1278 		return i;
1279 
1280 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1281 		coreset_sum += bucket[i].count;
1282 		if (coreset_sum > core_set_threshold)
1283 			break;
1284 	}
1285 
1286 	return i;
1287 }
1288 
1289 /*
1290  * Count byte values in buckets.
1291  * This heuristic can detect textual data (configs, xml, json, html, etc).
1292  * Because in most text-like data byte set is restricted to limited number of
1293  * possible characters, and that restriction in most cases makes data easy to
1294  * compress.
1295  *
1296  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1297  *	less - compressible
1298  *	more - need additional analysis
1299  */
1300 #define BYTE_SET_THRESHOLD		(64)
1301 
1302 static u32 byte_set_size(const struct heuristic_ws *ws)
1303 {
1304 	u32 i;
1305 	u32 byte_set_size = 0;
1306 
1307 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1308 		if (ws->bucket[i].count > 0)
1309 			byte_set_size++;
1310 	}
1311 
1312 	/*
1313 	 * Continue collecting count of byte values in buckets.  If the byte
1314 	 * set size is bigger then the threshold, it's pointless to continue,
1315 	 * the detection technique would fail for this type of data.
1316 	 */
1317 	for (; i < BUCKET_SIZE; i++) {
1318 		if (ws->bucket[i].count > 0) {
1319 			byte_set_size++;
1320 			if (byte_set_size > BYTE_SET_THRESHOLD)
1321 				return byte_set_size;
1322 		}
1323 	}
1324 
1325 	return byte_set_size;
1326 }
1327 
1328 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1329 {
1330 	const u32 half_of_sample = ws->sample_size / 2;
1331 	const u8 *data = ws->sample;
1332 
1333 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1334 }
1335 
1336 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1337 				     struct heuristic_ws *ws)
1338 {
1339 	struct page *page;
1340 	u64 index, index_end;
1341 	u32 i, curr_sample_pos;
1342 	u8 *in_data;
1343 
1344 	/*
1345 	 * Compression handles the input data by chunks of 128KiB
1346 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1347 	 *
1348 	 * We do the same for the heuristic and loop over the whole range.
1349 	 *
1350 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1351 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1352 	 */
1353 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1354 		end = start + BTRFS_MAX_UNCOMPRESSED;
1355 
1356 	index = start >> PAGE_SHIFT;
1357 	index_end = end >> PAGE_SHIFT;
1358 
1359 	/* Don't miss unaligned end */
1360 	if (!PAGE_ALIGNED(end))
1361 		index_end++;
1362 
1363 	curr_sample_pos = 0;
1364 	while (index < index_end) {
1365 		page = find_get_page(inode->i_mapping, index);
1366 		in_data = kmap_local_page(page);
1367 		/* Handle case where the start is not aligned to PAGE_SIZE */
1368 		i = start % PAGE_SIZE;
1369 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1370 			/* Don't sample any garbage from the last page */
1371 			if (start > end - SAMPLING_READ_SIZE)
1372 				break;
1373 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1374 					SAMPLING_READ_SIZE);
1375 			i += SAMPLING_INTERVAL;
1376 			start += SAMPLING_INTERVAL;
1377 			curr_sample_pos += SAMPLING_READ_SIZE;
1378 		}
1379 		kunmap_local(in_data);
1380 		put_page(page);
1381 
1382 		index++;
1383 	}
1384 
1385 	ws->sample_size = curr_sample_pos;
1386 }
1387 
1388 /*
1389  * Compression heuristic.
1390  *
1391  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1392  * quickly (compared to direct compression) detect data characteristics
1393  * (compressible/incompressible) to avoid wasting CPU time on incompressible
1394  * data.
1395  *
1396  * The following types of analysis can be performed:
1397  * - detect mostly zero data
1398  * - detect data with low "byte set" size (text, etc)
1399  * - detect data with low/high "core byte" set
1400  *
1401  * Return non-zero if the compression should be done, 0 otherwise.
1402  */
1403 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1404 {
1405 	struct list_head *ws_list = get_workspace(0, 0);
1406 	struct heuristic_ws *ws;
1407 	u32 i;
1408 	u8 byte;
1409 	int ret = 0;
1410 
1411 	ws = list_entry(ws_list, struct heuristic_ws, list);
1412 
1413 	heuristic_collect_sample(inode, start, end, ws);
1414 
1415 	if (sample_repeated_patterns(ws)) {
1416 		ret = 1;
1417 		goto out;
1418 	}
1419 
1420 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1421 
1422 	for (i = 0; i < ws->sample_size; i++) {
1423 		byte = ws->sample[i];
1424 		ws->bucket[byte].count++;
1425 	}
1426 
1427 	i = byte_set_size(ws);
1428 	if (i < BYTE_SET_THRESHOLD) {
1429 		ret = 2;
1430 		goto out;
1431 	}
1432 
1433 	i = byte_core_set_size(ws);
1434 	if (i <= BYTE_CORE_SET_LOW) {
1435 		ret = 3;
1436 		goto out;
1437 	}
1438 
1439 	if (i >= BYTE_CORE_SET_HIGH) {
1440 		ret = 0;
1441 		goto out;
1442 	}
1443 
1444 	i = shannon_entropy(ws);
1445 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1446 		ret = 4;
1447 		goto out;
1448 	}
1449 
1450 	/*
1451 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1452 	 * needed to give green light to compression.
1453 	 *
1454 	 * For now just assume that compression at that level is not worth the
1455 	 * resources because:
1456 	 *
1457 	 * 1. it is possible to defrag the data later
1458 	 *
1459 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1460 	 * values, every bucket has counter at level ~54. The heuristic would
1461 	 * be confused. This can happen when data have some internal repeated
1462 	 * patterns like "abbacbbc...". This can be detected by analyzing
1463 	 * pairs of bytes, which is too costly.
1464 	 */
1465 	if (i < ENTROPY_LVL_HIGH) {
1466 		ret = 5;
1467 		goto out;
1468 	} else {
1469 		ret = 0;
1470 		goto out;
1471 	}
1472 
1473 out:
1474 	put_workspace(0, ws_list);
1475 	return ret;
1476 }
1477 
1478 /*
1479  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1480  * level, unrecognized string will set the default level
1481  */
1482 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1483 {
1484 	unsigned int level = 0;
1485 	int ret;
1486 
1487 	if (!type)
1488 		return 0;
1489 
1490 	if (str[0] == ':') {
1491 		ret = kstrtouint(str + 1, 10, &level);
1492 		if (ret)
1493 			level = 0;
1494 	}
1495 
1496 	level = btrfs_compress_set_level(type, level);
1497 
1498 	return level;
1499 }
1500