xref: /openbmc/linux/fs/btrfs/compression.c (revision 3df0e680)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
29 
30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31 
32 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33 {
34 	switch (type) {
35 	case BTRFS_COMPRESS_ZLIB:
36 	case BTRFS_COMPRESS_LZO:
37 	case BTRFS_COMPRESS_ZSTD:
38 	case BTRFS_COMPRESS_NONE:
39 		return btrfs_compress_types[type];
40 	}
41 
42 	return NULL;
43 }
44 
45 static int btrfs_decompress_bio(struct compressed_bio *cb);
46 
47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 				      unsigned long disk_size)
49 {
50 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51 
52 	return sizeof(struct compressed_bio) +
53 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 }
55 
56 static int check_compressed_csum(struct btrfs_inode *inode,
57 				 struct compressed_bio *cb,
58 				 u64 disk_start)
59 {
60 	int ret;
61 	struct page *page;
62 	unsigned long i;
63 	char *kaddr;
64 	u32 csum;
65 	u32 *cb_sum = &cb->sums;
66 
67 	if (inode->flags & BTRFS_INODE_NODATASUM)
68 		return 0;
69 
70 	for (i = 0; i < cb->nr_pages; i++) {
71 		page = cb->compressed_pages[i];
72 		csum = ~(u32)0;
73 
74 		kaddr = kmap_atomic(page);
75 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76 		btrfs_csum_final(csum, (u8 *)&csum);
77 		kunmap_atomic(kaddr);
78 
79 		if (csum != *cb_sum) {
80 			btrfs_print_data_csum_error(inode, disk_start, csum,
81 					*cb_sum, cb->mirror_num);
82 			ret = -EIO;
83 			goto fail;
84 		}
85 		cb_sum++;
86 
87 	}
88 	ret = 0;
89 fail:
90 	return ret;
91 }
92 
93 /* when we finish reading compressed pages from the disk, we
94  * decompress them and then run the bio end_io routines on the
95  * decompressed pages (in the inode address space).
96  *
97  * This allows the checksumming and other IO error handling routines
98  * to work normally
99  *
100  * The compressed pages are freed here, and it must be run
101  * in process context
102  */
103 static void end_compressed_bio_read(struct bio *bio)
104 {
105 	struct compressed_bio *cb = bio->bi_private;
106 	struct inode *inode;
107 	struct page *page;
108 	unsigned long index;
109 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110 	int ret = 0;
111 
112 	if (bio->bi_status)
113 		cb->errors = 1;
114 
115 	/* if there are more bios still pending for this compressed
116 	 * extent, just exit
117 	 */
118 	if (!refcount_dec_and_test(&cb->pending_bios))
119 		goto out;
120 
121 	/*
122 	 * Record the correct mirror_num in cb->orig_bio so that
123 	 * read-repair can work properly.
124 	 */
125 	ASSERT(btrfs_io_bio(cb->orig_bio));
126 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 	cb->mirror_num = mirror;
128 
129 	/*
130 	 * Some IO in this cb have failed, just skip checksum as there
131 	 * is no way it could be correct.
132 	 */
133 	if (cb->errors == 1)
134 		goto csum_failed;
135 
136 	inode = cb->inode;
137 	ret = check_compressed_csum(BTRFS_I(inode), cb,
138 				    (u64)bio->bi_iter.bi_sector << 9);
139 	if (ret)
140 		goto csum_failed;
141 
142 	/* ok, we're the last bio for this extent, lets start
143 	 * the decompression.
144 	 */
145 	ret = btrfs_decompress_bio(cb);
146 
147 csum_failed:
148 	if (ret)
149 		cb->errors = 1;
150 
151 	/* release the compressed pages */
152 	index = 0;
153 	for (index = 0; index < cb->nr_pages; index++) {
154 		page = cb->compressed_pages[index];
155 		page->mapping = NULL;
156 		put_page(page);
157 	}
158 
159 	/* do io completion on the original bio */
160 	if (cb->errors) {
161 		bio_io_error(cb->orig_bio);
162 	} else {
163 		int i;
164 		struct bio_vec *bvec;
165 
166 		/*
167 		 * we have verified the checksum already, set page
168 		 * checked so the end_io handlers know about it
169 		 */
170 		ASSERT(!bio_flagged(bio, BIO_CLONED));
171 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
172 			SetPageChecked(bvec->bv_page);
173 
174 		bio_endio(cb->orig_bio);
175 	}
176 
177 	/* finally free the cb struct */
178 	kfree(cb->compressed_pages);
179 	kfree(cb);
180 out:
181 	bio_put(bio);
182 }
183 
184 /*
185  * Clear the writeback bits on all of the file
186  * pages for a compressed write
187  */
188 static noinline void end_compressed_writeback(struct inode *inode,
189 					      const struct compressed_bio *cb)
190 {
191 	unsigned long index = cb->start >> PAGE_SHIFT;
192 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
193 	struct page *pages[16];
194 	unsigned long nr_pages = end_index - index + 1;
195 	int i;
196 	int ret;
197 
198 	if (cb->errors)
199 		mapping_set_error(inode->i_mapping, -EIO);
200 
201 	while (nr_pages > 0) {
202 		ret = find_get_pages_contig(inode->i_mapping, index,
203 				     min_t(unsigned long,
204 				     nr_pages, ARRAY_SIZE(pages)), pages);
205 		if (ret == 0) {
206 			nr_pages -= 1;
207 			index += 1;
208 			continue;
209 		}
210 		for (i = 0; i < ret; i++) {
211 			if (cb->errors)
212 				SetPageError(pages[i]);
213 			end_page_writeback(pages[i]);
214 			put_page(pages[i]);
215 		}
216 		nr_pages -= ret;
217 		index += ret;
218 	}
219 	/* the inode may be gone now */
220 }
221 
222 /*
223  * do the cleanup once all the compressed pages hit the disk.
224  * This will clear writeback on the file pages and free the compressed
225  * pages.
226  *
227  * This also calls the writeback end hooks for the file pages so that
228  * metadata and checksums can be updated in the file.
229  */
230 static void end_compressed_bio_write(struct bio *bio)
231 {
232 	struct extent_io_tree *tree;
233 	struct compressed_bio *cb = bio->bi_private;
234 	struct inode *inode;
235 	struct page *page;
236 	unsigned long index;
237 
238 	if (bio->bi_status)
239 		cb->errors = 1;
240 
241 	/* if there are more bios still pending for this compressed
242 	 * extent, just exit
243 	 */
244 	if (!refcount_dec_and_test(&cb->pending_bios))
245 		goto out;
246 
247 	/* ok, we're the last bio for this extent, step one is to
248 	 * call back into the FS and do all the end_io operations
249 	 */
250 	inode = cb->inode;
251 	tree = &BTRFS_I(inode)->io_tree;
252 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
253 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
254 					 cb->start,
255 					 cb->start + cb->len - 1,
256 					 NULL,
257 					 bio->bi_status ?
258 					 BLK_STS_OK : BLK_STS_NOTSUPP);
259 	cb->compressed_pages[0]->mapping = NULL;
260 
261 	end_compressed_writeback(inode, cb);
262 	/* note, our inode could be gone now */
263 
264 	/*
265 	 * release the compressed pages, these came from alloc_page and
266 	 * are not attached to the inode at all
267 	 */
268 	index = 0;
269 	for (index = 0; index < cb->nr_pages; index++) {
270 		page = cb->compressed_pages[index];
271 		page->mapping = NULL;
272 		put_page(page);
273 	}
274 
275 	/* finally free the cb struct */
276 	kfree(cb->compressed_pages);
277 	kfree(cb);
278 out:
279 	bio_put(bio);
280 }
281 
282 /*
283  * worker function to build and submit bios for previously compressed pages.
284  * The corresponding pages in the inode should be marked for writeback
285  * and the compressed pages should have a reference on them for dropping
286  * when the IO is complete.
287  *
288  * This also checksums the file bytes and gets things ready for
289  * the end io hooks.
290  */
291 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
292 				 unsigned long len, u64 disk_start,
293 				 unsigned long compressed_len,
294 				 struct page **compressed_pages,
295 				 unsigned long nr_pages,
296 				 unsigned int write_flags)
297 {
298 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
299 	struct bio *bio = NULL;
300 	struct compressed_bio *cb;
301 	unsigned long bytes_left;
302 	int pg_index = 0;
303 	struct page *page;
304 	u64 first_byte = disk_start;
305 	struct block_device *bdev;
306 	blk_status_t ret;
307 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
308 
309 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
310 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
311 	if (!cb)
312 		return BLK_STS_RESOURCE;
313 	refcount_set(&cb->pending_bios, 0);
314 	cb->errors = 0;
315 	cb->inode = inode;
316 	cb->start = start;
317 	cb->len = len;
318 	cb->mirror_num = 0;
319 	cb->compressed_pages = compressed_pages;
320 	cb->compressed_len = compressed_len;
321 	cb->orig_bio = NULL;
322 	cb->nr_pages = nr_pages;
323 
324 	bdev = fs_info->fs_devices->latest_bdev;
325 
326 	bio = btrfs_bio_alloc(bdev, first_byte);
327 	bio->bi_opf = REQ_OP_WRITE | write_flags;
328 	bio->bi_private = cb;
329 	bio->bi_end_io = end_compressed_bio_write;
330 	refcount_set(&cb->pending_bios, 1);
331 
332 	/* create and submit bios for the compressed pages */
333 	bytes_left = compressed_len;
334 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
335 		int submit = 0;
336 
337 		page = compressed_pages[pg_index];
338 		page->mapping = inode->i_mapping;
339 		if (bio->bi_iter.bi_size)
340 			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0);
341 
342 		page->mapping = NULL;
343 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
344 		    PAGE_SIZE) {
345 			/*
346 			 * inc the count before we submit the bio so
347 			 * we know the end IO handler won't happen before
348 			 * we inc the count.  Otherwise, the cb might get
349 			 * freed before we're done setting it up
350 			 */
351 			refcount_inc(&cb->pending_bios);
352 			ret = btrfs_bio_wq_end_io(fs_info, bio,
353 						  BTRFS_WQ_ENDIO_DATA);
354 			BUG_ON(ret); /* -ENOMEM */
355 
356 			if (!skip_sum) {
357 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
358 				BUG_ON(ret); /* -ENOMEM */
359 			}
360 
361 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
362 			if (ret) {
363 				bio->bi_status = ret;
364 				bio_endio(bio);
365 			}
366 
367 			bio = btrfs_bio_alloc(bdev, first_byte);
368 			bio->bi_opf = REQ_OP_WRITE | write_flags;
369 			bio->bi_private = cb;
370 			bio->bi_end_io = end_compressed_bio_write;
371 			bio_add_page(bio, page, PAGE_SIZE, 0);
372 		}
373 		if (bytes_left < PAGE_SIZE) {
374 			btrfs_info(fs_info,
375 					"bytes left %lu compress len %lu nr %lu",
376 			       bytes_left, cb->compressed_len, cb->nr_pages);
377 		}
378 		bytes_left -= PAGE_SIZE;
379 		first_byte += PAGE_SIZE;
380 		cond_resched();
381 	}
382 
383 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
384 	BUG_ON(ret); /* -ENOMEM */
385 
386 	if (!skip_sum) {
387 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
388 		BUG_ON(ret); /* -ENOMEM */
389 	}
390 
391 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
392 	if (ret) {
393 		bio->bi_status = ret;
394 		bio_endio(bio);
395 	}
396 
397 	return 0;
398 }
399 
400 static u64 bio_end_offset(struct bio *bio)
401 {
402 	struct bio_vec *last = bio_last_bvec_all(bio);
403 
404 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
405 }
406 
407 static noinline int add_ra_bio_pages(struct inode *inode,
408 				     u64 compressed_end,
409 				     struct compressed_bio *cb)
410 {
411 	unsigned long end_index;
412 	unsigned long pg_index;
413 	u64 last_offset;
414 	u64 isize = i_size_read(inode);
415 	int ret;
416 	struct page *page;
417 	unsigned long nr_pages = 0;
418 	struct extent_map *em;
419 	struct address_space *mapping = inode->i_mapping;
420 	struct extent_map_tree *em_tree;
421 	struct extent_io_tree *tree;
422 	u64 end;
423 	int misses = 0;
424 
425 	last_offset = bio_end_offset(cb->orig_bio);
426 	em_tree = &BTRFS_I(inode)->extent_tree;
427 	tree = &BTRFS_I(inode)->io_tree;
428 
429 	if (isize == 0)
430 		return 0;
431 
432 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
433 
434 	while (last_offset < compressed_end) {
435 		pg_index = last_offset >> PAGE_SHIFT;
436 
437 		if (pg_index > end_index)
438 			break;
439 
440 		rcu_read_lock();
441 		page = radix_tree_lookup(&mapping->i_pages, pg_index);
442 		rcu_read_unlock();
443 		if (page && !radix_tree_exceptional_entry(page)) {
444 			misses++;
445 			if (misses > 4)
446 				break;
447 			goto next;
448 		}
449 
450 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
451 								 ~__GFP_FS));
452 		if (!page)
453 			break;
454 
455 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
456 			put_page(page);
457 			goto next;
458 		}
459 
460 		end = last_offset + PAGE_SIZE - 1;
461 		/*
462 		 * at this point, we have a locked page in the page cache
463 		 * for these bytes in the file.  But, we have to make
464 		 * sure they map to this compressed extent on disk.
465 		 */
466 		set_page_extent_mapped(page);
467 		lock_extent(tree, last_offset, end);
468 		read_lock(&em_tree->lock);
469 		em = lookup_extent_mapping(em_tree, last_offset,
470 					   PAGE_SIZE);
471 		read_unlock(&em_tree->lock);
472 
473 		if (!em || last_offset < em->start ||
474 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
475 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
476 			free_extent_map(em);
477 			unlock_extent(tree, last_offset, end);
478 			unlock_page(page);
479 			put_page(page);
480 			break;
481 		}
482 		free_extent_map(em);
483 
484 		if (page->index == end_index) {
485 			char *userpage;
486 			size_t zero_offset = isize & (PAGE_SIZE - 1);
487 
488 			if (zero_offset) {
489 				int zeros;
490 				zeros = PAGE_SIZE - zero_offset;
491 				userpage = kmap_atomic(page);
492 				memset(userpage + zero_offset, 0, zeros);
493 				flush_dcache_page(page);
494 				kunmap_atomic(userpage);
495 			}
496 		}
497 
498 		ret = bio_add_page(cb->orig_bio, page,
499 				   PAGE_SIZE, 0);
500 
501 		if (ret == PAGE_SIZE) {
502 			nr_pages++;
503 			put_page(page);
504 		} else {
505 			unlock_extent(tree, last_offset, end);
506 			unlock_page(page);
507 			put_page(page);
508 			break;
509 		}
510 next:
511 		last_offset += PAGE_SIZE;
512 	}
513 	return 0;
514 }
515 
516 /*
517  * for a compressed read, the bio we get passed has all the inode pages
518  * in it.  We don't actually do IO on those pages but allocate new ones
519  * to hold the compressed pages on disk.
520  *
521  * bio->bi_iter.bi_sector points to the compressed extent on disk
522  * bio->bi_io_vec points to all of the inode pages
523  *
524  * After the compressed pages are read, we copy the bytes into the
525  * bio we were passed and then call the bio end_io calls
526  */
527 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
528 				 int mirror_num, unsigned long bio_flags)
529 {
530 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
531 	struct extent_io_tree *tree;
532 	struct extent_map_tree *em_tree;
533 	struct compressed_bio *cb;
534 	unsigned long compressed_len;
535 	unsigned long nr_pages;
536 	unsigned long pg_index;
537 	struct page *page;
538 	struct block_device *bdev;
539 	struct bio *comp_bio;
540 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
541 	u64 em_len;
542 	u64 em_start;
543 	struct extent_map *em;
544 	blk_status_t ret = BLK_STS_RESOURCE;
545 	int faili = 0;
546 	u32 *sums;
547 
548 	tree = &BTRFS_I(inode)->io_tree;
549 	em_tree = &BTRFS_I(inode)->extent_tree;
550 
551 	/* we need the actual starting offset of this extent in the file */
552 	read_lock(&em_tree->lock);
553 	em = lookup_extent_mapping(em_tree,
554 				   page_offset(bio_first_page_all(bio)),
555 				   PAGE_SIZE);
556 	read_unlock(&em_tree->lock);
557 	if (!em)
558 		return BLK_STS_IOERR;
559 
560 	compressed_len = em->block_len;
561 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
562 	if (!cb)
563 		goto out;
564 
565 	refcount_set(&cb->pending_bios, 0);
566 	cb->errors = 0;
567 	cb->inode = inode;
568 	cb->mirror_num = mirror_num;
569 	sums = &cb->sums;
570 
571 	cb->start = em->orig_start;
572 	em_len = em->len;
573 	em_start = em->start;
574 
575 	free_extent_map(em);
576 	em = NULL;
577 
578 	cb->len = bio->bi_iter.bi_size;
579 	cb->compressed_len = compressed_len;
580 	cb->compress_type = extent_compress_type(bio_flags);
581 	cb->orig_bio = bio;
582 
583 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
584 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
585 				       GFP_NOFS);
586 	if (!cb->compressed_pages)
587 		goto fail1;
588 
589 	bdev = fs_info->fs_devices->latest_bdev;
590 
591 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
592 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
593 							      __GFP_HIGHMEM);
594 		if (!cb->compressed_pages[pg_index]) {
595 			faili = pg_index - 1;
596 			ret = BLK_STS_RESOURCE;
597 			goto fail2;
598 		}
599 	}
600 	faili = nr_pages - 1;
601 	cb->nr_pages = nr_pages;
602 
603 	add_ra_bio_pages(inode, em_start + em_len, cb);
604 
605 	/* include any pages we added in add_ra-bio_pages */
606 	cb->len = bio->bi_iter.bi_size;
607 
608 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
609 	comp_bio->bi_opf = REQ_OP_READ;
610 	comp_bio->bi_private = cb;
611 	comp_bio->bi_end_io = end_compressed_bio_read;
612 	refcount_set(&cb->pending_bios, 1);
613 
614 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
615 		int submit = 0;
616 
617 		page = cb->compressed_pages[pg_index];
618 		page->mapping = inode->i_mapping;
619 		page->index = em_start >> PAGE_SHIFT;
620 
621 		if (comp_bio->bi_iter.bi_size)
622 			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE,
623 					comp_bio, 0);
624 
625 		page->mapping = NULL;
626 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
627 		    PAGE_SIZE) {
628 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
629 						  BTRFS_WQ_ENDIO_DATA);
630 			BUG_ON(ret); /* -ENOMEM */
631 
632 			/*
633 			 * inc the count before we submit the bio so
634 			 * we know the end IO handler won't happen before
635 			 * we inc the count.  Otherwise, the cb might get
636 			 * freed before we're done setting it up
637 			 */
638 			refcount_inc(&cb->pending_bios);
639 
640 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
641 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
642 							    sums);
643 				BUG_ON(ret); /* -ENOMEM */
644 			}
645 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
646 					     fs_info->sectorsize);
647 
648 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
649 			if (ret) {
650 				comp_bio->bi_status = ret;
651 				bio_endio(comp_bio);
652 			}
653 
654 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
655 			comp_bio->bi_opf = REQ_OP_READ;
656 			comp_bio->bi_private = cb;
657 			comp_bio->bi_end_io = end_compressed_bio_read;
658 
659 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
660 		}
661 		cur_disk_byte += PAGE_SIZE;
662 	}
663 
664 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
665 	BUG_ON(ret); /* -ENOMEM */
666 
667 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
668 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
669 		BUG_ON(ret); /* -ENOMEM */
670 	}
671 
672 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
673 	if (ret) {
674 		comp_bio->bi_status = ret;
675 		bio_endio(comp_bio);
676 	}
677 
678 	return 0;
679 
680 fail2:
681 	while (faili >= 0) {
682 		__free_page(cb->compressed_pages[faili]);
683 		faili--;
684 	}
685 
686 	kfree(cb->compressed_pages);
687 fail1:
688 	kfree(cb);
689 out:
690 	free_extent_map(em);
691 	return ret;
692 }
693 
694 /*
695  * Heuristic uses systematic sampling to collect data from the input data
696  * range, the logic can be tuned by the following constants:
697  *
698  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
699  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
700  */
701 #define SAMPLING_READ_SIZE	(16)
702 #define SAMPLING_INTERVAL	(256)
703 
704 /*
705  * For statistical analysis of the input data we consider bytes that form a
706  * Galois Field of 256 objects. Each object has an attribute count, ie. how
707  * many times the object appeared in the sample.
708  */
709 #define BUCKET_SIZE		(256)
710 
711 /*
712  * The size of the sample is based on a statistical sampling rule of thumb.
713  * The common way is to perform sampling tests as long as the number of
714  * elements in each cell is at least 5.
715  *
716  * Instead of 5, we choose 32 to obtain more accurate results.
717  * If the data contain the maximum number of symbols, which is 256, we obtain a
718  * sample size bound by 8192.
719  *
720  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
721  * from up to 512 locations.
722  */
723 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
724 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
725 
726 struct bucket_item {
727 	u32 count;
728 };
729 
730 struct heuristic_ws {
731 	/* Partial copy of input data */
732 	u8 *sample;
733 	u32 sample_size;
734 	/* Buckets store counters for each byte value */
735 	struct bucket_item *bucket;
736 	/* Sorting buffer */
737 	struct bucket_item *bucket_b;
738 	struct list_head list;
739 };
740 
741 static void free_heuristic_ws(struct list_head *ws)
742 {
743 	struct heuristic_ws *workspace;
744 
745 	workspace = list_entry(ws, struct heuristic_ws, list);
746 
747 	kvfree(workspace->sample);
748 	kfree(workspace->bucket);
749 	kfree(workspace->bucket_b);
750 	kfree(workspace);
751 }
752 
753 static struct list_head *alloc_heuristic_ws(void)
754 {
755 	struct heuristic_ws *ws;
756 
757 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
758 	if (!ws)
759 		return ERR_PTR(-ENOMEM);
760 
761 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
762 	if (!ws->sample)
763 		goto fail;
764 
765 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
766 	if (!ws->bucket)
767 		goto fail;
768 
769 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
770 	if (!ws->bucket_b)
771 		goto fail;
772 
773 	INIT_LIST_HEAD(&ws->list);
774 	return &ws->list;
775 fail:
776 	free_heuristic_ws(&ws->list);
777 	return ERR_PTR(-ENOMEM);
778 }
779 
780 struct workspaces_list {
781 	struct list_head idle_ws;
782 	spinlock_t ws_lock;
783 	/* Number of free workspaces */
784 	int free_ws;
785 	/* Total number of allocated workspaces */
786 	atomic_t total_ws;
787 	/* Waiters for a free workspace */
788 	wait_queue_head_t ws_wait;
789 };
790 
791 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
792 
793 static struct workspaces_list btrfs_heuristic_ws;
794 
795 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
796 	&btrfs_zlib_compress,
797 	&btrfs_lzo_compress,
798 	&btrfs_zstd_compress,
799 };
800 
801 void __init btrfs_init_compress(void)
802 {
803 	struct list_head *workspace;
804 	int i;
805 
806 	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
807 	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
808 	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
809 	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
810 
811 	workspace = alloc_heuristic_ws();
812 	if (IS_ERR(workspace)) {
813 		pr_warn(
814 	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
815 	} else {
816 		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
817 		btrfs_heuristic_ws.free_ws = 1;
818 		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
819 	}
820 
821 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
822 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
823 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
824 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
825 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
826 
827 		/*
828 		 * Preallocate one workspace for each compression type so
829 		 * we can guarantee forward progress in the worst case
830 		 */
831 		workspace = btrfs_compress_op[i]->alloc_workspace();
832 		if (IS_ERR(workspace)) {
833 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
834 		} else {
835 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
836 			btrfs_comp_ws[i].free_ws = 1;
837 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
838 		}
839 	}
840 }
841 
842 /*
843  * This finds an available workspace or allocates a new one.
844  * If it's not possible to allocate a new one, waits until there's one.
845  * Preallocation makes a forward progress guarantees and we do not return
846  * errors.
847  */
848 static struct list_head *__find_workspace(int type, bool heuristic)
849 {
850 	struct list_head *workspace;
851 	int cpus = num_online_cpus();
852 	int idx = type - 1;
853 	unsigned nofs_flag;
854 	struct list_head *idle_ws;
855 	spinlock_t *ws_lock;
856 	atomic_t *total_ws;
857 	wait_queue_head_t *ws_wait;
858 	int *free_ws;
859 
860 	if (heuristic) {
861 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
862 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
863 		total_ws = &btrfs_heuristic_ws.total_ws;
864 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
865 		free_ws	 = &btrfs_heuristic_ws.free_ws;
866 	} else {
867 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
868 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
869 		total_ws = &btrfs_comp_ws[idx].total_ws;
870 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
871 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
872 	}
873 
874 again:
875 	spin_lock(ws_lock);
876 	if (!list_empty(idle_ws)) {
877 		workspace = idle_ws->next;
878 		list_del(workspace);
879 		(*free_ws)--;
880 		spin_unlock(ws_lock);
881 		return workspace;
882 
883 	}
884 	if (atomic_read(total_ws) > cpus) {
885 		DEFINE_WAIT(wait);
886 
887 		spin_unlock(ws_lock);
888 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
889 		if (atomic_read(total_ws) > cpus && !*free_ws)
890 			schedule();
891 		finish_wait(ws_wait, &wait);
892 		goto again;
893 	}
894 	atomic_inc(total_ws);
895 	spin_unlock(ws_lock);
896 
897 	/*
898 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
899 	 * to turn it off here because we might get called from the restricted
900 	 * context of btrfs_compress_bio/btrfs_compress_pages
901 	 */
902 	nofs_flag = memalloc_nofs_save();
903 	if (heuristic)
904 		workspace = alloc_heuristic_ws();
905 	else
906 		workspace = btrfs_compress_op[idx]->alloc_workspace();
907 	memalloc_nofs_restore(nofs_flag);
908 
909 	if (IS_ERR(workspace)) {
910 		atomic_dec(total_ws);
911 		wake_up(ws_wait);
912 
913 		/*
914 		 * Do not return the error but go back to waiting. There's a
915 		 * workspace preallocated for each type and the compression
916 		 * time is bounded so we get to a workspace eventually. This
917 		 * makes our caller's life easier.
918 		 *
919 		 * To prevent silent and low-probability deadlocks (when the
920 		 * initial preallocation fails), check if there are any
921 		 * workspaces at all.
922 		 */
923 		if (atomic_read(total_ws) == 0) {
924 			static DEFINE_RATELIMIT_STATE(_rs,
925 					/* once per minute */ 60 * HZ,
926 					/* no burst */ 1);
927 
928 			if (__ratelimit(&_rs)) {
929 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
930 			}
931 		}
932 		goto again;
933 	}
934 	return workspace;
935 }
936 
937 static struct list_head *find_workspace(int type)
938 {
939 	return __find_workspace(type, false);
940 }
941 
942 /*
943  * put a workspace struct back on the list or free it if we have enough
944  * idle ones sitting around
945  */
946 static void __free_workspace(int type, struct list_head *workspace,
947 			     bool heuristic)
948 {
949 	int idx = type - 1;
950 	struct list_head *idle_ws;
951 	spinlock_t *ws_lock;
952 	atomic_t *total_ws;
953 	wait_queue_head_t *ws_wait;
954 	int *free_ws;
955 
956 	if (heuristic) {
957 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
958 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
959 		total_ws = &btrfs_heuristic_ws.total_ws;
960 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
961 		free_ws	 = &btrfs_heuristic_ws.free_ws;
962 	} else {
963 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
964 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
965 		total_ws = &btrfs_comp_ws[idx].total_ws;
966 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
967 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
968 	}
969 
970 	spin_lock(ws_lock);
971 	if (*free_ws <= num_online_cpus()) {
972 		list_add(workspace, idle_ws);
973 		(*free_ws)++;
974 		spin_unlock(ws_lock);
975 		goto wake;
976 	}
977 	spin_unlock(ws_lock);
978 
979 	if (heuristic)
980 		free_heuristic_ws(workspace);
981 	else
982 		btrfs_compress_op[idx]->free_workspace(workspace);
983 	atomic_dec(total_ws);
984 wake:
985 	cond_wake_up(ws_wait);
986 }
987 
988 static void free_workspace(int type, struct list_head *ws)
989 {
990 	return __free_workspace(type, ws, false);
991 }
992 
993 /*
994  * cleanup function for module exit
995  */
996 static void free_workspaces(void)
997 {
998 	struct list_head *workspace;
999 	int i;
1000 
1001 	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1002 		workspace = btrfs_heuristic_ws.idle_ws.next;
1003 		list_del(workspace);
1004 		free_heuristic_ws(workspace);
1005 		atomic_dec(&btrfs_heuristic_ws.total_ws);
1006 	}
1007 
1008 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1009 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1010 			workspace = btrfs_comp_ws[i].idle_ws.next;
1011 			list_del(workspace);
1012 			btrfs_compress_op[i]->free_workspace(workspace);
1013 			atomic_dec(&btrfs_comp_ws[i].total_ws);
1014 		}
1015 	}
1016 }
1017 
1018 /*
1019  * Given an address space and start and length, compress the bytes into @pages
1020  * that are allocated on demand.
1021  *
1022  * @type_level is encoded algorithm and level, where level 0 means whatever
1023  * default the algorithm chooses and is opaque here;
1024  * - compression algo are 0-3
1025  * - the level are bits 4-7
1026  *
1027  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1028  * and returns number of actually allocated pages
1029  *
1030  * @total_in is used to return the number of bytes actually read.  It
1031  * may be smaller than the input length if we had to exit early because we
1032  * ran out of room in the pages array or because we cross the
1033  * max_out threshold.
1034  *
1035  * @total_out is an in/out parameter, must be set to the input length and will
1036  * be also used to return the total number of compressed bytes
1037  *
1038  * @max_out tells us the max number of bytes that we're allowed to
1039  * stuff into pages
1040  */
1041 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1042 			 u64 start, struct page **pages,
1043 			 unsigned long *out_pages,
1044 			 unsigned long *total_in,
1045 			 unsigned long *total_out)
1046 {
1047 	struct list_head *workspace;
1048 	int ret;
1049 	int type = type_level & 0xF;
1050 
1051 	workspace = find_workspace(type);
1052 
1053 	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1054 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1055 						      start, pages,
1056 						      out_pages,
1057 						      total_in, total_out);
1058 	free_workspace(type, workspace);
1059 	return ret;
1060 }
1061 
1062 /*
1063  * pages_in is an array of pages with compressed data.
1064  *
1065  * disk_start is the starting logical offset of this array in the file
1066  *
1067  * orig_bio contains the pages from the file that we want to decompress into
1068  *
1069  * srclen is the number of bytes in pages_in
1070  *
1071  * The basic idea is that we have a bio that was created by readpages.
1072  * The pages in the bio are for the uncompressed data, and they may not
1073  * be contiguous.  They all correspond to the range of bytes covered by
1074  * the compressed extent.
1075  */
1076 static int btrfs_decompress_bio(struct compressed_bio *cb)
1077 {
1078 	struct list_head *workspace;
1079 	int ret;
1080 	int type = cb->compress_type;
1081 
1082 	workspace = find_workspace(type);
1083 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1084 	free_workspace(type, workspace);
1085 
1086 	return ret;
1087 }
1088 
1089 /*
1090  * a less complex decompression routine.  Our compressed data fits in a
1091  * single page, and we want to read a single page out of it.
1092  * start_byte tells us the offset into the compressed data we're interested in
1093  */
1094 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1095 		     unsigned long start_byte, size_t srclen, size_t destlen)
1096 {
1097 	struct list_head *workspace;
1098 	int ret;
1099 
1100 	workspace = find_workspace(type);
1101 
1102 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1103 						  dest_page, start_byte,
1104 						  srclen, destlen);
1105 
1106 	free_workspace(type, workspace);
1107 	return ret;
1108 }
1109 
1110 void __cold btrfs_exit_compress(void)
1111 {
1112 	free_workspaces();
1113 }
1114 
1115 /*
1116  * Copy uncompressed data from working buffer to pages.
1117  *
1118  * buf_start is the byte offset we're of the start of our workspace buffer.
1119  *
1120  * total_out is the last byte of the buffer
1121  */
1122 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1123 			      unsigned long total_out, u64 disk_start,
1124 			      struct bio *bio)
1125 {
1126 	unsigned long buf_offset;
1127 	unsigned long current_buf_start;
1128 	unsigned long start_byte;
1129 	unsigned long prev_start_byte;
1130 	unsigned long working_bytes = total_out - buf_start;
1131 	unsigned long bytes;
1132 	char *kaddr;
1133 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1134 
1135 	/*
1136 	 * start byte is the first byte of the page we're currently
1137 	 * copying into relative to the start of the compressed data.
1138 	 */
1139 	start_byte = page_offset(bvec.bv_page) - disk_start;
1140 
1141 	/* we haven't yet hit data corresponding to this page */
1142 	if (total_out <= start_byte)
1143 		return 1;
1144 
1145 	/*
1146 	 * the start of the data we care about is offset into
1147 	 * the middle of our working buffer
1148 	 */
1149 	if (total_out > start_byte && buf_start < start_byte) {
1150 		buf_offset = start_byte - buf_start;
1151 		working_bytes -= buf_offset;
1152 	} else {
1153 		buf_offset = 0;
1154 	}
1155 	current_buf_start = buf_start;
1156 
1157 	/* copy bytes from the working buffer into the pages */
1158 	while (working_bytes > 0) {
1159 		bytes = min_t(unsigned long, bvec.bv_len,
1160 				PAGE_SIZE - buf_offset);
1161 		bytes = min(bytes, working_bytes);
1162 
1163 		kaddr = kmap_atomic(bvec.bv_page);
1164 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1165 		kunmap_atomic(kaddr);
1166 		flush_dcache_page(bvec.bv_page);
1167 
1168 		buf_offset += bytes;
1169 		working_bytes -= bytes;
1170 		current_buf_start += bytes;
1171 
1172 		/* check if we need to pick another page */
1173 		bio_advance(bio, bytes);
1174 		if (!bio->bi_iter.bi_size)
1175 			return 0;
1176 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1177 		prev_start_byte = start_byte;
1178 		start_byte = page_offset(bvec.bv_page) - disk_start;
1179 
1180 		/*
1181 		 * We need to make sure we're only adjusting
1182 		 * our offset into compression working buffer when
1183 		 * we're switching pages.  Otherwise we can incorrectly
1184 		 * keep copying when we were actually done.
1185 		 */
1186 		if (start_byte != prev_start_byte) {
1187 			/*
1188 			 * make sure our new page is covered by this
1189 			 * working buffer
1190 			 */
1191 			if (total_out <= start_byte)
1192 				return 1;
1193 
1194 			/*
1195 			 * the next page in the biovec might not be adjacent
1196 			 * to the last page, but it might still be found
1197 			 * inside this working buffer. bump our offset pointer
1198 			 */
1199 			if (total_out > start_byte &&
1200 			    current_buf_start < start_byte) {
1201 				buf_offset = start_byte - buf_start;
1202 				working_bytes = total_out - start_byte;
1203 				current_buf_start = buf_start + buf_offset;
1204 			}
1205 		}
1206 	}
1207 
1208 	return 1;
1209 }
1210 
1211 /*
1212  * Shannon Entropy calculation
1213  *
1214  * Pure byte distribution analysis fails to determine compressiability of data.
1215  * Try calculating entropy to estimate the average minimum number of bits
1216  * needed to encode the sampled data.
1217  *
1218  * For convenience, return the percentage of needed bits, instead of amount of
1219  * bits directly.
1220  *
1221  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1222  *			    and can be compressible with high probability
1223  *
1224  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1225  *
1226  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1227  */
1228 #define ENTROPY_LVL_ACEPTABLE		(65)
1229 #define ENTROPY_LVL_HIGH		(80)
1230 
1231 /*
1232  * For increasead precision in shannon_entropy calculation,
1233  * let's do pow(n, M) to save more digits after comma:
1234  *
1235  * - maximum int bit length is 64
1236  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1237  * - 13 * 4 = 52 < 64		-> M = 4
1238  *
1239  * So use pow(n, 4).
1240  */
1241 static inline u32 ilog2_w(u64 n)
1242 {
1243 	return ilog2(n * n * n * n);
1244 }
1245 
1246 static u32 shannon_entropy(struct heuristic_ws *ws)
1247 {
1248 	const u32 entropy_max = 8 * ilog2_w(2);
1249 	u32 entropy_sum = 0;
1250 	u32 p, p_base, sz_base;
1251 	u32 i;
1252 
1253 	sz_base = ilog2_w(ws->sample_size);
1254 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1255 		p = ws->bucket[i].count;
1256 		p_base = ilog2_w(p);
1257 		entropy_sum += p * (sz_base - p_base);
1258 	}
1259 
1260 	entropy_sum /= ws->sample_size;
1261 	return entropy_sum * 100 / entropy_max;
1262 }
1263 
1264 #define RADIX_BASE		4U
1265 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1266 
1267 static u8 get4bits(u64 num, int shift) {
1268 	u8 low4bits;
1269 
1270 	num >>= shift;
1271 	/* Reverse order */
1272 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1273 	return low4bits;
1274 }
1275 
1276 /*
1277  * Use 4 bits as radix base
1278  * Use 16 u32 counters for calculating new possition in buf array
1279  *
1280  * @array     - array that will be sorted
1281  * @array_buf - buffer array to store sorting results
1282  *              must be equal in size to @array
1283  * @num       - array size
1284  */
1285 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1286 		       int num)
1287 {
1288 	u64 max_num;
1289 	u64 buf_num;
1290 	u32 counters[COUNTERS_SIZE];
1291 	u32 new_addr;
1292 	u32 addr;
1293 	int bitlen;
1294 	int shift;
1295 	int i;
1296 
1297 	/*
1298 	 * Try avoid useless loop iterations for small numbers stored in big
1299 	 * counters.  Example: 48 33 4 ... in 64bit array
1300 	 */
1301 	max_num = array[0].count;
1302 	for (i = 1; i < num; i++) {
1303 		buf_num = array[i].count;
1304 		if (buf_num > max_num)
1305 			max_num = buf_num;
1306 	}
1307 
1308 	buf_num = ilog2(max_num);
1309 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1310 
1311 	shift = 0;
1312 	while (shift < bitlen) {
1313 		memset(counters, 0, sizeof(counters));
1314 
1315 		for (i = 0; i < num; i++) {
1316 			buf_num = array[i].count;
1317 			addr = get4bits(buf_num, shift);
1318 			counters[addr]++;
1319 		}
1320 
1321 		for (i = 1; i < COUNTERS_SIZE; i++)
1322 			counters[i] += counters[i - 1];
1323 
1324 		for (i = num - 1; i >= 0; i--) {
1325 			buf_num = array[i].count;
1326 			addr = get4bits(buf_num, shift);
1327 			counters[addr]--;
1328 			new_addr = counters[addr];
1329 			array_buf[new_addr] = array[i];
1330 		}
1331 
1332 		shift += RADIX_BASE;
1333 
1334 		/*
1335 		 * Normal radix expects to move data from a temporary array, to
1336 		 * the main one.  But that requires some CPU time. Avoid that
1337 		 * by doing another sort iteration to original array instead of
1338 		 * memcpy()
1339 		 */
1340 		memset(counters, 0, sizeof(counters));
1341 
1342 		for (i = 0; i < num; i ++) {
1343 			buf_num = array_buf[i].count;
1344 			addr = get4bits(buf_num, shift);
1345 			counters[addr]++;
1346 		}
1347 
1348 		for (i = 1; i < COUNTERS_SIZE; i++)
1349 			counters[i] += counters[i - 1];
1350 
1351 		for (i = num - 1; i >= 0; i--) {
1352 			buf_num = array_buf[i].count;
1353 			addr = get4bits(buf_num, shift);
1354 			counters[addr]--;
1355 			new_addr = counters[addr];
1356 			array[new_addr] = array_buf[i];
1357 		}
1358 
1359 		shift += RADIX_BASE;
1360 	}
1361 }
1362 
1363 /*
1364  * Size of the core byte set - how many bytes cover 90% of the sample
1365  *
1366  * There are several types of structured binary data that use nearly all byte
1367  * values. The distribution can be uniform and counts in all buckets will be
1368  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1369  *
1370  * Other possibility is normal (Gaussian) distribution, where the data could
1371  * be potentially compressible, but we have to take a few more steps to decide
1372  * how much.
1373  *
1374  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1375  *                       compression algo can easy fix that
1376  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1377  *                       probability is not compressible
1378  */
1379 #define BYTE_CORE_SET_LOW		(64)
1380 #define BYTE_CORE_SET_HIGH		(200)
1381 
1382 static int byte_core_set_size(struct heuristic_ws *ws)
1383 {
1384 	u32 i;
1385 	u32 coreset_sum = 0;
1386 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1387 	struct bucket_item *bucket = ws->bucket;
1388 
1389 	/* Sort in reverse order */
1390 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1391 
1392 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1393 		coreset_sum += bucket[i].count;
1394 
1395 	if (coreset_sum > core_set_threshold)
1396 		return i;
1397 
1398 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1399 		coreset_sum += bucket[i].count;
1400 		if (coreset_sum > core_set_threshold)
1401 			break;
1402 	}
1403 
1404 	return i;
1405 }
1406 
1407 /*
1408  * Count byte values in buckets.
1409  * This heuristic can detect textual data (configs, xml, json, html, etc).
1410  * Because in most text-like data byte set is restricted to limited number of
1411  * possible characters, and that restriction in most cases makes data easy to
1412  * compress.
1413  *
1414  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1415  *	less - compressible
1416  *	more - need additional analysis
1417  */
1418 #define BYTE_SET_THRESHOLD		(64)
1419 
1420 static u32 byte_set_size(const struct heuristic_ws *ws)
1421 {
1422 	u32 i;
1423 	u32 byte_set_size = 0;
1424 
1425 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1426 		if (ws->bucket[i].count > 0)
1427 			byte_set_size++;
1428 	}
1429 
1430 	/*
1431 	 * Continue collecting count of byte values in buckets.  If the byte
1432 	 * set size is bigger then the threshold, it's pointless to continue,
1433 	 * the detection technique would fail for this type of data.
1434 	 */
1435 	for (; i < BUCKET_SIZE; i++) {
1436 		if (ws->bucket[i].count > 0) {
1437 			byte_set_size++;
1438 			if (byte_set_size > BYTE_SET_THRESHOLD)
1439 				return byte_set_size;
1440 		}
1441 	}
1442 
1443 	return byte_set_size;
1444 }
1445 
1446 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1447 {
1448 	const u32 half_of_sample = ws->sample_size / 2;
1449 	const u8 *data = ws->sample;
1450 
1451 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1452 }
1453 
1454 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1455 				     struct heuristic_ws *ws)
1456 {
1457 	struct page *page;
1458 	u64 index, index_end;
1459 	u32 i, curr_sample_pos;
1460 	u8 *in_data;
1461 
1462 	/*
1463 	 * Compression handles the input data by chunks of 128KiB
1464 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1465 	 *
1466 	 * We do the same for the heuristic and loop over the whole range.
1467 	 *
1468 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1469 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1470 	 */
1471 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1472 		end = start + BTRFS_MAX_UNCOMPRESSED;
1473 
1474 	index = start >> PAGE_SHIFT;
1475 	index_end = end >> PAGE_SHIFT;
1476 
1477 	/* Don't miss unaligned end */
1478 	if (!IS_ALIGNED(end, PAGE_SIZE))
1479 		index_end++;
1480 
1481 	curr_sample_pos = 0;
1482 	while (index < index_end) {
1483 		page = find_get_page(inode->i_mapping, index);
1484 		in_data = kmap(page);
1485 		/* Handle case where the start is not aligned to PAGE_SIZE */
1486 		i = start % PAGE_SIZE;
1487 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1488 			/* Don't sample any garbage from the last page */
1489 			if (start > end - SAMPLING_READ_SIZE)
1490 				break;
1491 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1492 					SAMPLING_READ_SIZE);
1493 			i += SAMPLING_INTERVAL;
1494 			start += SAMPLING_INTERVAL;
1495 			curr_sample_pos += SAMPLING_READ_SIZE;
1496 		}
1497 		kunmap(page);
1498 		put_page(page);
1499 
1500 		index++;
1501 	}
1502 
1503 	ws->sample_size = curr_sample_pos;
1504 }
1505 
1506 /*
1507  * Compression heuristic.
1508  *
1509  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1510  * quickly (compared to direct compression) detect data characteristics
1511  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1512  * data.
1513  *
1514  * The following types of analysis can be performed:
1515  * - detect mostly zero data
1516  * - detect data with low "byte set" size (text, etc)
1517  * - detect data with low/high "core byte" set
1518  *
1519  * Return non-zero if the compression should be done, 0 otherwise.
1520  */
1521 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1522 {
1523 	struct list_head *ws_list = __find_workspace(0, true);
1524 	struct heuristic_ws *ws;
1525 	u32 i;
1526 	u8 byte;
1527 	int ret = 0;
1528 
1529 	ws = list_entry(ws_list, struct heuristic_ws, list);
1530 
1531 	heuristic_collect_sample(inode, start, end, ws);
1532 
1533 	if (sample_repeated_patterns(ws)) {
1534 		ret = 1;
1535 		goto out;
1536 	}
1537 
1538 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1539 
1540 	for (i = 0; i < ws->sample_size; i++) {
1541 		byte = ws->sample[i];
1542 		ws->bucket[byte].count++;
1543 	}
1544 
1545 	i = byte_set_size(ws);
1546 	if (i < BYTE_SET_THRESHOLD) {
1547 		ret = 2;
1548 		goto out;
1549 	}
1550 
1551 	i = byte_core_set_size(ws);
1552 	if (i <= BYTE_CORE_SET_LOW) {
1553 		ret = 3;
1554 		goto out;
1555 	}
1556 
1557 	if (i >= BYTE_CORE_SET_HIGH) {
1558 		ret = 0;
1559 		goto out;
1560 	}
1561 
1562 	i = shannon_entropy(ws);
1563 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1564 		ret = 4;
1565 		goto out;
1566 	}
1567 
1568 	/*
1569 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1570 	 * needed to give green light to compression.
1571 	 *
1572 	 * For now just assume that compression at that level is not worth the
1573 	 * resources because:
1574 	 *
1575 	 * 1. it is possible to defrag the data later
1576 	 *
1577 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1578 	 * values, every bucket has counter at level ~54. The heuristic would
1579 	 * be confused. This can happen when data have some internal repeated
1580 	 * patterns like "abbacbbc...". This can be detected by analyzing
1581 	 * pairs of bytes, which is too costly.
1582 	 */
1583 	if (i < ENTROPY_LVL_HIGH) {
1584 		ret = 5;
1585 		goto out;
1586 	} else {
1587 		ret = 0;
1588 		goto out;
1589 	}
1590 
1591 out:
1592 	__free_workspace(0, ws_list, true);
1593 	return ret;
1594 }
1595 
1596 unsigned int btrfs_compress_str2level(const char *str)
1597 {
1598 	if (strncmp(str, "zlib", 4) != 0)
1599 		return 0;
1600 
1601 	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1602 	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1603 		return str[5] - '0';
1604 
1605 	return BTRFS_ZLIB_DEFAULT_LEVEL;
1606 }
1607