xref: /openbmc/linux/fs/btrfs/compression.c (revision 3d37ef41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
33 
34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
35 {
36 	switch (type) {
37 	case BTRFS_COMPRESS_ZLIB:
38 	case BTRFS_COMPRESS_LZO:
39 	case BTRFS_COMPRESS_ZSTD:
40 	case BTRFS_COMPRESS_NONE:
41 		return btrfs_compress_types[type];
42 	default:
43 		break;
44 	}
45 
46 	return NULL;
47 }
48 
49 bool btrfs_compress_is_valid_type(const char *str, size_t len)
50 {
51 	int i;
52 
53 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54 		size_t comp_len = strlen(btrfs_compress_types[i]);
55 
56 		if (len < comp_len)
57 			continue;
58 
59 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
60 			return true;
61 	}
62 	return false;
63 }
64 
65 static int compression_compress_pages(int type, struct list_head *ws,
66                struct address_space *mapping, u64 start, struct page **pages,
67                unsigned long *out_pages, unsigned long *total_in,
68                unsigned long *total_out)
69 {
70 	switch (type) {
71 	case BTRFS_COMPRESS_ZLIB:
72 		return zlib_compress_pages(ws, mapping, start, pages,
73 				out_pages, total_in, total_out);
74 	case BTRFS_COMPRESS_LZO:
75 		return lzo_compress_pages(ws, mapping, start, pages,
76 				out_pages, total_in, total_out);
77 	case BTRFS_COMPRESS_ZSTD:
78 		return zstd_compress_pages(ws, mapping, start, pages,
79 				out_pages, total_in, total_out);
80 	case BTRFS_COMPRESS_NONE:
81 	default:
82 		/*
83 		 * This can happen when compression races with remount setting
84 		 * it to 'no compress', while caller doesn't call
85 		 * inode_need_compress() to check if we really need to
86 		 * compress.
87 		 *
88 		 * Not a big deal, just need to inform caller that we
89 		 * haven't allocated any pages yet.
90 		 */
91 		*out_pages = 0;
92 		return -E2BIG;
93 	}
94 }
95 
96 static int compression_decompress_bio(int type, struct list_head *ws,
97 		struct compressed_bio *cb)
98 {
99 	switch (type) {
100 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
101 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
102 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
103 	case BTRFS_COMPRESS_NONE:
104 	default:
105 		/*
106 		 * This can't happen, the type is validated several times
107 		 * before we get here.
108 		 */
109 		BUG();
110 	}
111 }
112 
113 static int compression_decompress(int type, struct list_head *ws,
114                unsigned char *data_in, struct page *dest_page,
115                unsigned long start_byte, size_t srclen, size_t destlen)
116 {
117 	switch (type) {
118 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
119 						start_byte, srclen, destlen);
120 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
121 						start_byte, srclen, destlen);
122 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
123 						start_byte, srclen, destlen);
124 	case BTRFS_COMPRESS_NONE:
125 	default:
126 		/*
127 		 * This can't happen, the type is validated several times
128 		 * before we get here.
129 		 */
130 		BUG();
131 	}
132 }
133 
134 static int btrfs_decompress_bio(struct compressed_bio *cb);
135 
136 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
137 				      unsigned long disk_size)
138 {
139 	return sizeof(struct compressed_bio) +
140 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
141 }
142 
143 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
144 				 u64 disk_start)
145 {
146 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
147 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
148 	const u32 csum_size = fs_info->csum_size;
149 	const u32 sectorsize = fs_info->sectorsize;
150 	struct page *page;
151 	unsigned long i;
152 	char *kaddr;
153 	u8 csum[BTRFS_CSUM_SIZE];
154 	struct compressed_bio *cb = bio->bi_private;
155 	u8 *cb_sum = cb->sums;
156 
157 	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
158 		return 0;
159 
160 	shash->tfm = fs_info->csum_shash;
161 
162 	for (i = 0; i < cb->nr_pages; i++) {
163 		u32 pg_offset;
164 		u32 bytes_left = PAGE_SIZE;
165 		page = cb->compressed_pages[i];
166 
167 		/* Determine the remaining bytes inside the page first */
168 		if (i == cb->nr_pages - 1)
169 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
170 
171 		/* Hash through the page sector by sector */
172 		for (pg_offset = 0; pg_offset < bytes_left;
173 		     pg_offset += sectorsize) {
174 			kaddr = kmap_atomic(page);
175 			crypto_shash_digest(shash, kaddr + pg_offset,
176 					    sectorsize, csum);
177 			kunmap_atomic(kaddr);
178 
179 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
180 				btrfs_print_data_csum_error(inode, disk_start,
181 						csum, cb_sum, cb->mirror_num);
182 				if (btrfs_io_bio(bio)->device)
183 					btrfs_dev_stat_inc_and_print(
184 						btrfs_io_bio(bio)->device,
185 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
186 				return -EIO;
187 			}
188 			cb_sum += csum_size;
189 			disk_start += sectorsize;
190 		}
191 	}
192 	return 0;
193 }
194 
195 /* when we finish reading compressed pages from the disk, we
196  * decompress them and then run the bio end_io routines on the
197  * decompressed pages (in the inode address space).
198  *
199  * This allows the checksumming and other IO error handling routines
200  * to work normally
201  *
202  * The compressed pages are freed here, and it must be run
203  * in process context
204  */
205 static void end_compressed_bio_read(struct bio *bio)
206 {
207 	struct compressed_bio *cb = bio->bi_private;
208 	struct inode *inode;
209 	struct page *page;
210 	unsigned long index;
211 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
212 	int ret = 0;
213 
214 	if (bio->bi_status)
215 		cb->errors = 1;
216 
217 	/* if there are more bios still pending for this compressed
218 	 * extent, just exit
219 	 */
220 	if (!refcount_dec_and_test(&cb->pending_bios))
221 		goto out;
222 
223 	/*
224 	 * Record the correct mirror_num in cb->orig_bio so that
225 	 * read-repair can work properly.
226 	 */
227 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
228 	cb->mirror_num = mirror;
229 
230 	/*
231 	 * Some IO in this cb have failed, just skip checksum as there
232 	 * is no way it could be correct.
233 	 */
234 	if (cb->errors == 1)
235 		goto csum_failed;
236 
237 	inode = cb->inode;
238 	ret = check_compressed_csum(BTRFS_I(inode), bio,
239 				    bio->bi_iter.bi_sector << 9);
240 	if (ret)
241 		goto csum_failed;
242 
243 	/* ok, we're the last bio for this extent, lets start
244 	 * the decompression.
245 	 */
246 	ret = btrfs_decompress_bio(cb);
247 
248 csum_failed:
249 	if (ret)
250 		cb->errors = 1;
251 
252 	/* release the compressed pages */
253 	index = 0;
254 	for (index = 0; index < cb->nr_pages; index++) {
255 		page = cb->compressed_pages[index];
256 		page->mapping = NULL;
257 		put_page(page);
258 	}
259 
260 	/* do io completion on the original bio */
261 	if (cb->errors) {
262 		bio_io_error(cb->orig_bio);
263 	} else {
264 		struct bio_vec *bvec;
265 		struct bvec_iter_all iter_all;
266 
267 		/*
268 		 * we have verified the checksum already, set page
269 		 * checked so the end_io handlers know about it
270 		 */
271 		ASSERT(!bio_flagged(bio, BIO_CLONED));
272 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
273 			SetPageChecked(bvec->bv_page);
274 
275 		bio_endio(cb->orig_bio);
276 	}
277 
278 	/* finally free the cb struct */
279 	kfree(cb->compressed_pages);
280 	kfree(cb);
281 out:
282 	bio_put(bio);
283 }
284 
285 /*
286  * Clear the writeback bits on all of the file
287  * pages for a compressed write
288  */
289 static noinline void end_compressed_writeback(struct inode *inode,
290 					      const struct compressed_bio *cb)
291 {
292 	unsigned long index = cb->start >> PAGE_SHIFT;
293 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
294 	struct page *pages[16];
295 	unsigned long nr_pages = end_index - index + 1;
296 	int i;
297 	int ret;
298 
299 	if (cb->errors)
300 		mapping_set_error(inode->i_mapping, -EIO);
301 
302 	while (nr_pages > 0) {
303 		ret = find_get_pages_contig(inode->i_mapping, index,
304 				     min_t(unsigned long,
305 				     nr_pages, ARRAY_SIZE(pages)), pages);
306 		if (ret == 0) {
307 			nr_pages -= 1;
308 			index += 1;
309 			continue;
310 		}
311 		for (i = 0; i < ret; i++) {
312 			if (cb->errors)
313 				SetPageError(pages[i]);
314 			end_page_writeback(pages[i]);
315 			put_page(pages[i]);
316 		}
317 		nr_pages -= ret;
318 		index += ret;
319 	}
320 	/* the inode may be gone now */
321 }
322 
323 /*
324  * do the cleanup once all the compressed pages hit the disk.
325  * This will clear writeback on the file pages and free the compressed
326  * pages.
327  *
328  * This also calls the writeback end hooks for the file pages so that
329  * metadata and checksums can be updated in the file.
330  */
331 static void end_compressed_bio_write(struct bio *bio)
332 {
333 	struct compressed_bio *cb = bio->bi_private;
334 	struct inode *inode;
335 	struct page *page;
336 	unsigned long index;
337 
338 	if (bio->bi_status)
339 		cb->errors = 1;
340 
341 	/* if there are more bios still pending for this compressed
342 	 * extent, just exit
343 	 */
344 	if (!refcount_dec_and_test(&cb->pending_bios))
345 		goto out;
346 
347 	/* ok, we're the last bio for this extent, step one is to
348 	 * call back into the FS and do all the end_io operations
349 	 */
350 	inode = cb->inode;
351 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
352 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
353 			cb->start, cb->start + cb->len - 1,
354 			bio->bi_status == BLK_STS_OK);
355 	cb->compressed_pages[0]->mapping = NULL;
356 
357 	end_compressed_writeback(inode, cb);
358 	/* note, our inode could be gone now */
359 
360 	/*
361 	 * release the compressed pages, these came from alloc_page and
362 	 * are not attached to the inode at all
363 	 */
364 	index = 0;
365 	for (index = 0; index < cb->nr_pages; index++) {
366 		page = cb->compressed_pages[index];
367 		page->mapping = NULL;
368 		put_page(page);
369 	}
370 
371 	/* finally free the cb struct */
372 	kfree(cb->compressed_pages);
373 	kfree(cb);
374 out:
375 	bio_put(bio);
376 }
377 
378 /*
379  * worker function to build and submit bios for previously compressed pages.
380  * The corresponding pages in the inode should be marked for writeback
381  * and the compressed pages should have a reference on them for dropping
382  * when the IO is complete.
383  *
384  * This also checksums the file bytes and gets things ready for
385  * the end io hooks.
386  */
387 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
388 				 unsigned long len, u64 disk_start,
389 				 unsigned long compressed_len,
390 				 struct page **compressed_pages,
391 				 unsigned long nr_pages,
392 				 unsigned int write_flags,
393 				 struct cgroup_subsys_state *blkcg_css)
394 {
395 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
396 	struct bio *bio = NULL;
397 	struct compressed_bio *cb;
398 	unsigned long bytes_left;
399 	int pg_index = 0;
400 	struct page *page;
401 	u64 first_byte = disk_start;
402 	blk_status_t ret;
403 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
404 
405 	WARN_ON(!PAGE_ALIGNED(start));
406 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
407 	if (!cb)
408 		return BLK_STS_RESOURCE;
409 	refcount_set(&cb->pending_bios, 0);
410 	cb->errors = 0;
411 	cb->inode = &inode->vfs_inode;
412 	cb->start = start;
413 	cb->len = len;
414 	cb->mirror_num = 0;
415 	cb->compressed_pages = compressed_pages;
416 	cb->compressed_len = compressed_len;
417 	cb->orig_bio = NULL;
418 	cb->nr_pages = nr_pages;
419 
420 	bio = btrfs_bio_alloc(first_byte);
421 	bio->bi_opf = REQ_OP_WRITE | write_flags;
422 	bio->bi_private = cb;
423 	bio->bi_end_io = end_compressed_bio_write;
424 
425 	if (blkcg_css) {
426 		bio->bi_opf |= REQ_CGROUP_PUNT;
427 		kthread_associate_blkcg(blkcg_css);
428 	}
429 	refcount_set(&cb->pending_bios, 1);
430 
431 	/* create and submit bios for the compressed pages */
432 	bytes_left = compressed_len;
433 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
434 		int submit = 0;
435 
436 		page = compressed_pages[pg_index];
437 		page->mapping = inode->vfs_inode.i_mapping;
438 		if (bio->bi_iter.bi_size)
439 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
440 							  0);
441 
442 		page->mapping = NULL;
443 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
444 		    PAGE_SIZE) {
445 			/*
446 			 * inc the count before we submit the bio so
447 			 * we know the end IO handler won't happen before
448 			 * we inc the count.  Otherwise, the cb might get
449 			 * freed before we're done setting it up
450 			 */
451 			refcount_inc(&cb->pending_bios);
452 			ret = btrfs_bio_wq_end_io(fs_info, bio,
453 						  BTRFS_WQ_ENDIO_DATA);
454 			BUG_ON(ret); /* -ENOMEM */
455 
456 			if (!skip_sum) {
457 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
458 				BUG_ON(ret); /* -ENOMEM */
459 			}
460 
461 			ret = btrfs_map_bio(fs_info, bio, 0);
462 			if (ret) {
463 				bio->bi_status = ret;
464 				bio_endio(bio);
465 			}
466 
467 			bio = btrfs_bio_alloc(first_byte);
468 			bio->bi_opf = REQ_OP_WRITE | write_flags;
469 			bio->bi_private = cb;
470 			bio->bi_end_io = end_compressed_bio_write;
471 			if (blkcg_css)
472 				bio->bi_opf |= REQ_CGROUP_PUNT;
473 			bio_add_page(bio, page, PAGE_SIZE, 0);
474 		}
475 		if (bytes_left < PAGE_SIZE) {
476 			btrfs_info(fs_info,
477 					"bytes left %lu compress len %lu nr %lu",
478 			       bytes_left, cb->compressed_len, cb->nr_pages);
479 		}
480 		bytes_left -= PAGE_SIZE;
481 		first_byte += PAGE_SIZE;
482 		cond_resched();
483 	}
484 
485 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
486 	BUG_ON(ret); /* -ENOMEM */
487 
488 	if (!skip_sum) {
489 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
490 		BUG_ON(ret); /* -ENOMEM */
491 	}
492 
493 	ret = btrfs_map_bio(fs_info, bio, 0);
494 	if (ret) {
495 		bio->bi_status = ret;
496 		bio_endio(bio);
497 	}
498 
499 	if (blkcg_css)
500 		kthread_associate_blkcg(NULL);
501 
502 	return 0;
503 }
504 
505 static u64 bio_end_offset(struct bio *bio)
506 {
507 	struct bio_vec *last = bio_last_bvec_all(bio);
508 
509 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
510 }
511 
512 static noinline int add_ra_bio_pages(struct inode *inode,
513 				     u64 compressed_end,
514 				     struct compressed_bio *cb)
515 {
516 	unsigned long end_index;
517 	unsigned long pg_index;
518 	u64 last_offset;
519 	u64 isize = i_size_read(inode);
520 	int ret;
521 	struct page *page;
522 	unsigned long nr_pages = 0;
523 	struct extent_map *em;
524 	struct address_space *mapping = inode->i_mapping;
525 	struct extent_map_tree *em_tree;
526 	struct extent_io_tree *tree;
527 	u64 end;
528 	int misses = 0;
529 
530 	last_offset = bio_end_offset(cb->orig_bio);
531 	em_tree = &BTRFS_I(inode)->extent_tree;
532 	tree = &BTRFS_I(inode)->io_tree;
533 
534 	if (isize == 0)
535 		return 0;
536 
537 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
538 
539 	while (last_offset < compressed_end) {
540 		pg_index = last_offset >> PAGE_SHIFT;
541 
542 		if (pg_index > end_index)
543 			break;
544 
545 		page = xa_load(&mapping->i_pages, pg_index);
546 		if (page && !xa_is_value(page)) {
547 			misses++;
548 			if (misses > 4)
549 				break;
550 			goto next;
551 		}
552 
553 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
554 								 ~__GFP_FS));
555 		if (!page)
556 			break;
557 
558 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
559 			put_page(page);
560 			goto next;
561 		}
562 
563 		/*
564 		 * at this point, we have a locked page in the page cache
565 		 * for these bytes in the file.  But, we have to make
566 		 * sure they map to this compressed extent on disk.
567 		 */
568 		ret = set_page_extent_mapped(page);
569 		if (ret < 0) {
570 			unlock_page(page);
571 			put_page(page);
572 			break;
573 		}
574 
575 		end = last_offset + PAGE_SIZE - 1;
576 		lock_extent(tree, last_offset, end);
577 		read_lock(&em_tree->lock);
578 		em = lookup_extent_mapping(em_tree, last_offset,
579 					   PAGE_SIZE);
580 		read_unlock(&em_tree->lock);
581 
582 		if (!em || last_offset < em->start ||
583 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
584 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
585 			free_extent_map(em);
586 			unlock_extent(tree, last_offset, end);
587 			unlock_page(page);
588 			put_page(page);
589 			break;
590 		}
591 		free_extent_map(em);
592 
593 		if (page->index == end_index) {
594 			size_t zero_offset = offset_in_page(isize);
595 
596 			if (zero_offset) {
597 				int zeros;
598 				zeros = PAGE_SIZE - zero_offset;
599 				memzero_page(page, zero_offset, zeros);
600 				flush_dcache_page(page);
601 			}
602 		}
603 
604 		ret = bio_add_page(cb->orig_bio, page,
605 				   PAGE_SIZE, 0);
606 
607 		if (ret == PAGE_SIZE) {
608 			nr_pages++;
609 			put_page(page);
610 		} else {
611 			unlock_extent(tree, last_offset, end);
612 			unlock_page(page);
613 			put_page(page);
614 			break;
615 		}
616 next:
617 		last_offset += PAGE_SIZE;
618 	}
619 	return 0;
620 }
621 
622 /*
623  * for a compressed read, the bio we get passed has all the inode pages
624  * in it.  We don't actually do IO on those pages but allocate new ones
625  * to hold the compressed pages on disk.
626  *
627  * bio->bi_iter.bi_sector points to the compressed extent on disk
628  * bio->bi_io_vec points to all of the inode pages
629  *
630  * After the compressed pages are read, we copy the bytes into the
631  * bio we were passed and then call the bio end_io calls
632  */
633 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
634 				 int mirror_num, unsigned long bio_flags)
635 {
636 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
637 	struct extent_map_tree *em_tree;
638 	struct compressed_bio *cb;
639 	unsigned long compressed_len;
640 	unsigned long nr_pages;
641 	unsigned long pg_index;
642 	struct page *page;
643 	struct bio *comp_bio;
644 	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
645 	u64 em_len;
646 	u64 em_start;
647 	struct extent_map *em;
648 	blk_status_t ret = BLK_STS_RESOURCE;
649 	int faili = 0;
650 	u8 *sums;
651 
652 	em_tree = &BTRFS_I(inode)->extent_tree;
653 
654 	/* we need the actual starting offset of this extent in the file */
655 	read_lock(&em_tree->lock);
656 	em = lookup_extent_mapping(em_tree,
657 				   page_offset(bio_first_page_all(bio)),
658 				   fs_info->sectorsize);
659 	read_unlock(&em_tree->lock);
660 	if (!em)
661 		return BLK_STS_IOERR;
662 
663 	compressed_len = em->block_len;
664 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
665 	if (!cb)
666 		goto out;
667 
668 	refcount_set(&cb->pending_bios, 0);
669 	cb->errors = 0;
670 	cb->inode = inode;
671 	cb->mirror_num = mirror_num;
672 	sums = cb->sums;
673 
674 	cb->start = em->orig_start;
675 	em_len = em->len;
676 	em_start = em->start;
677 
678 	free_extent_map(em);
679 	em = NULL;
680 
681 	cb->len = bio->bi_iter.bi_size;
682 	cb->compressed_len = compressed_len;
683 	cb->compress_type = extent_compress_type(bio_flags);
684 	cb->orig_bio = bio;
685 
686 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
687 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
688 				       GFP_NOFS);
689 	if (!cb->compressed_pages)
690 		goto fail1;
691 
692 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
693 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
694 							      __GFP_HIGHMEM);
695 		if (!cb->compressed_pages[pg_index]) {
696 			faili = pg_index - 1;
697 			ret = BLK_STS_RESOURCE;
698 			goto fail2;
699 		}
700 	}
701 	faili = nr_pages - 1;
702 	cb->nr_pages = nr_pages;
703 
704 	add_ra_bio_pages(inode, em_start + em_len, cb);
705 
706 	/* include any pages we added in add_ra-bio_pages */
707 	cb->len = bio->bi_iter.bi_size;
708 
709 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
710 	comp_bio->bi_opf = REQ_OP_READ;
711 	comp_bio->bi_private = cb;
712 	comp_bio->bi_end_io = end_compressed_bio_read;
713 	refcount_set(&cb->pending_bios, 1);
714 
715 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
716 		u32 pg_len = PAGE_SIZE;
717 		int submit = 0;
718 
719 		/*
720 		 * To handle subpage case, we need to make sure the bio only
721 		 * covers the range we need.
722 		 *
723 		 * If we're at the last page, truncate the length to only cover
724 		 * the remaining part.
725 		 */
726 		if (pg_index == nr_pages - 1)
727 			pg_len = min_t(u32, PAGE_SIZE,
728 					compressed_len - pg_index * PAGE_SIZE);
729 
730 		page = cb->compressed_pages[pg_index];
731 		page->mapping = inode->i_mapping;
732 		page->index = em_start >> PAGE_SHIFT;
733 
734 		if (comp_bio->bi_iter.bi_size)
735 			submit = btrfs_bio_fits_in_stripe(page, pg_len,
736 							  comp_bio, 0);
737 
738 		page->mapping = NULL;
739 		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
740 			unsigned int nr_sectors;
741 
742 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
743 						  BTRFS_WQ_ENDIO_DATA);
744 			BUG_ON(ret); /* -ENOMEM */
745 
746 			/*
747 			 * inc the count before we submit the bio so
748 			 * we know the end IO handler won't happen before
749 			 * we inc the count.  Otherwise, the cb might get
750 			 * freed before we're done setting it up
751 			 */
752 			refcount_inc(&cb->pending_bios);
753 
754 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
755 			BUG_ON(ret); /* -ENOMEM */
756 
757 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
758 						  fs_info->sectorsize);
759 			sums += fs_info->csum_size * nr_sectors;
760 
761 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
762 			if (ret) {
763 				comp_bio->bi_status = ret;
764 				bio_endio(comp_bio);
765 			}
766 
767 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
768 			comp_bio->bi_opf = REQ_OP_READ;
769 			comp_bio->bi_private = cb;
770 			comp_bio->bi_end_io = end_compressed_bio_read;
771 
772 			bio_add_page(comp_bio, page, pg_len, 0);
773 		}
774 		cur_disk_byte += pg_len;
775 	}
776 
777 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
778 	BUG_ON(ret); /* -ENOMEM */
779 
780 	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
781 	BUG_ON(ret); /* -ENOMEM */
782 
783 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
784 	if (ret) {
785 		comp_bio->bi_status = ret;
786 		bio_endio(comp_bio);
787 	}
788 
789 	return 0;
790 
791 fail2:
792 	while (faili >= 0) {
793 		__free_page(cb->compressed_pages[faili]);
794 		faili--;
795 	}
796 
797 	kfree(cb->compressed_pages);
798 fail1:
799 	kfree(cb);
800 out:
801 	free_extent_map(em);
802 	return ret;
803 }
804 
805 /*
806  * Heuristic uses systematic sampling to collect data from the input data
807  * range, the logic can be tuned by the following constants:
808  *
809  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
810  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
811  */
812 #define SAMPLING_READ_SIZE	(16)
813 #define SAMPLING_INTERVAL	(256)
814 
815 /*
816  * For statistical analysis of the input data we consider bytes that form a
817  * Galois Field of 256 objects. Each object has an attribute count, ie. how
818  * many times the object appeared in the sample.
819  */
820 #define BUCKET_SIZE		(256)
821 
822 /*
823  * The size of the sample is based on a statistical sampling rule of thumb.
824  * The common way is to perform sampling tests as long as the number of
825  * elements in each cell is at least 5.
826  *
827  * Instead of 5, we choose 32 to obtain more accurate results.
828  * If the data contain the maximum number of symbols, which is 256, we obtain a
829  * sample size bound by 8192.
830  *
831  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
832  * from up to 512 locations.
833  */
834 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
835 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
836 
837 struct bucket_item {
838 	u32 count;
839 };
840 
841 struct heuristic_ws {
842 	/* Partial copy of input data */
843 	u8 *sample;
844 	u32 sample_size;
845 	/* Buckets store counters for each byte value */
846 	struct bucket_item *bucket;
847 	/* Sorting buffer */
848 	struct bucket_item *bucket_b;
849 	struct list_head list;
850 };
851 
852 static struct workspace_manager heuristic_wsm;
853 
854 static void free_heuristic_ws(struct list_head *ws)
855 {
856 	struct heuristic_ws *workspace;
857 
858 	workspace = list_entry(ws, struct heuristic_ws, list);
859 
860 	kvfree(workspace->sample);
861 	kfree(workspace->bucket);
862 	kfree(workspace->bucket_b);
863 	kfree(workspace);
864 }
865 
866 static struct list_head *alloc_heuristic_ws(unsigned int level)
867 {
868 	struct heuristic_ws *ws;
869 
870 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
871 	if (!ws)
872 		return ERR_PTR(-ENOMEM);
873 
874 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
875 	if (!ws->sample)
876 		goto fail;
877 
878 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
879 	if (!ws->bucket)
880 		goto fail;
881 
882 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
883 	if (!ws->bucket_b)
884 		goto fail;
885 
886 	INIT_LIST_HEAD(&ws->list);
887 	return &ws->list;
888 fail:
889 	free_heuristic_ws(&ws->list);
890 	return ERR_PTR(-ENOMEM);
891 }
892 
893 const struct btrfs_compress_op btrfs_heuristic_compress = {
894 	.workspace_manager = &heuristic_wsm,
895 };
896 
897 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
898 	/* The heuristic is represented as compression type 0 */
899 	&btrfs_heuristic_compress,
900 	&btrfs_zlib_compress,
901 	&btrfs_lzo_compress,
902 	&btrfs_zstd_compress,
903 };
904 
905 static struct list_head *alloc_workspace(int type, unsigned int level)
906 {
907 	switch (type) {
908 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
909 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
910 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
911 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
912 	default:
913 		/*
914 		 * This can't happen, the type is validated several times
915 		 * before we get here.
916 		 */
917 		BUG();
918 	}
919 }
920 
921 static void free_workspace(int type, struct list_head *ws)
922 {
923 	switch (type) {
924 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
925 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
926 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
927 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
928 	default:
929 		/*
930 		 * This can't happen, the type is validated several times
931 		 * before we get here.
932 		 */
933 		BUG();
934 	}
935 }
936 
937 static void btrfs_init_workspace_manager(int type)
938 {
939 	struct workspace_manager *wsm;
940 	struct list_head *workspace;
941 
942 	wsm = btrfs_compress_op[type]->workspace_manager;
943 	INIT_LIST_HEAD(&wsm->idle_ws);
944 	spin_lock_init(&wsm->ws_lock);
945 	atomic_set(&wsm->total_ws, 0);
946 	init_waitqueue_head(&wsm->ws_wait);
947 
948 	/*
949 	 * Preallocate one workspace for each compression type so we can
950 	 * guarantee forward progress in the worst case
951 	 */
952 	workspace = alloc_workspace(type, 0);
953 	if (IS_ERR(workspace)) {
954 		pr_warn(
955 	"BTRFS: cannot preallocate compression workspace, will try later\n");
956 	} else {
957 		atomic_set(&wsm->total_ws, 1);
958 		wsm->free_ws = 1;
959 		list_add(workspace, &wsm->idle_ws);
960 	}
961 }
962 
963 static void btrfs_cleanup_workspace_manager(int type)
964 {
965 	struct workspace_manager *wsman;
966 	struct list_head *ws;
967 
968 	wsman = btrfs_compress_op[type]->workspace_manager;
969 	while (!list_empty(&wsman->idle_ws)) {
970 		ws = wsman->idle_ws.next;
971 		list_del(ws);
972 		free_workspace(type, ws);
973 		atomic_dec(&wsman->total_ws);
974 	}
975 }
976 
977 /*
978  * This finds an available workspace or allocates a new one.
979  * If it's not possible to allocate a new one, waits until there's one.
980  * Preallocation makes a forward progress guarantees and we do not return
981  * errors.
982  */
983 struct list_head *btrfs_get_workspace(int type, unsigned int level)
984 {
985 	struct workspace_manager *wsm;
986 	struct list_head *workspace;
987 	int cpus = num_online_cpus();
988 	unsigned nofs_flag;
989 	struct list_head *idle_ws;
990 	spinlock_t *ws_lock;
991 	atomic_t *total_ws;
992 	wait_queue_head_t *ws_wait;
993 	int *free_ws;
994 
995 	wsm = btrfs_compress_op[type]->workspace_manager;
996 	idle_ws	 = &wsm->idle_ws;
997 	ws_lock	 = &wsm->ws_lock;
998 	total_ws = &wsm->total_ws;
999 	ws_wait	 = &wsm->ws_wait;
1000 	free_ws	 = &wsm->free_ws;
1001 
1002 again:
1003 	spin_lock(ws_lock);
1004 	if (!list_empty(idle_ws)) {
1005 		workspace = idle_ws->next;
1006 		list_del(workspace);
1007 		(*free_ws)--;
1008 		spin_unlock(ws_lock);
1009 		return workspace;
1010 
1011 	}
1012 	if (atomic_read(total_ws) > cpus) {
1013 		DEFINE_WAIT(wait);
1014 
1015 		spin_unlock(ws_lock);
1016 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1017 		if (atomic_read(total_ws) > cpus && !*free_ws)
1018 			schedule();
1019 		finish_wait(ws_wait, &wait);
1020 		goto again;
1021 	}
1022 	atomic_inc(total_ws);
1023 	spin_unlock(ws_lock);
1024 
1025 	/*
1026 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1027 	 * to turn it off here because we might get called from the restricted
1028 	 * context of btrfs_compress_bio/btrfs_compress_pages
1029 	 */
1030 	nofs_flag = memalloc_nofs_save();
1031 	workspace = alloc_workspace(type, level);
1032 	memalloc_nofs_restore(nofs_flag);
1033 
1034 	if (IS_ERR(workspace)) {
1035 		atomic_dec(total_ws);
1036 		wake_up(ws_wait);
1037 
1038 		/*
1039 		 * Do not return the error but go back to waiting. There's a
1040 		 * workspace preallocated for each type and the compression
1041 		 * time is bounded so we get to a workspace eventually. This
1042 		 * makes our caller's life easier.
1043 		 *
1044 		 * To prevent silent and low-probability deadlocks (when the
1045 		 * initial preallocation fails), check if there are any
1046 		 * workspaces at all.
1047 		 */
1048 		if (atomic_read(total_ws) == 0) {
1049 			static DEFINE_RATELIMIT_STATE(_rs,
1050 					/* once per minute */ 60 * HZ,
1051 					/* no burst */ 1);
1052 
1053 			if (__ratelimit(&_rs)) {
1054 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1055 			}
1056 		}
1057 		goto again;
1058 	}
1059 	return workspace;
1060 }
1061 
1062 static struct list_head *get_workspace(int type, int level)
1063 {
1064 	switch (type) {
1065 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1066 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1067 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1068 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1069 	default:
1070 		/*
1071 		 * This can't happen, the type is validated several times
1072 		 * before we get here.
1073 		 */
1074 		BUG();
1075 	}
1076 }
1077 
1078 /*
1079  * put a workspace struct back on the list or free it if we have enough
1080  * idle ones sitting around
1081  */
1082 void btrfs_put_workspace(int type, struct list_head *ws)
1083 {
1084 	struct workspace_manager *wsm;
1085 	struct list_head *idle_ws;
1086 	spinlock_t *ws_lock;
1087 	atomic_t *total_ws;
1088 	wait_queue_head_t *ws_wait;
1089 	int *free_ws;
1090 
1091 	wsm = btrfs_compress_op[type]->workspace_manager;
1092 	idle_ws	 = &wsm->idle_ws;
1093 	ws_lock	 = &wsm->ws_lock;
1094 	total_ws = &wsm->total_ws;
1095 	ws_wait	 = &wsm->ws_wait;
1096 	free_ws	 = &wsm->free_ws;
1097 
1098 	spin_lock(ws_lock);
1099 	if (*free_ws <= num_online_cpus()) {
1100 		list_add(ws, idle_ws);
1101 		(*free_ws)++;
1102 		spin_unlock(ws_lock);
1103 		goto wake;
1104 	}
1105 	spin_unlock(ws_lock);
1106 
1107 	free_workspace(type, ws);
1108 	atomic_dec(total_ws);
1109 wake:
1110 	cond_wake_up(ws_wait);
1111 }
1112 
1113 static void put_workspace(int type, struct list_head *ws)
1114 {
1115 	switch (type) {
1116 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1117 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1118 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1119 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1120 	default:
1121 		/*
1122 		 * This can't happen, the type is validated several times
1123 		 * before we get here.
1124 		 */
1125 		BUG();
1126 	}
1127 }
1128 
1129 /*
1130  * Adjust @level according to the limits of the compression algorithm or
1131  * fallback to default
1132  */
1133 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1134 {
1135 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1136 
1137 	if (level == 0)
1138 		level = ops->default_level;
1139 	else
1140 		level = min(level, ops->max_level);
1141 
1142 	return level;
1143 }
1144 
1145 /*
1146  * Given an address space and start and length, compress the bytes into @pages
1147  * that are allocated on demand.
1148  *
1149  * @type_level is encoded algorithm and level, where level 0 means whatever
1150  * default the algorithm chooses and is opaque here;
1151  * - compression algo are 0-3
1152  * - the level are bits 4-7
1153  *
1154  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1155  * and returns number of actually allocated pages
1156  *
1157  * @total_in is used to return the number of bytes actually read.  It
1158  * may be smaller than the input length if we had to exit early because we
1159  * ran out of room in the pages array or because we cross the
1160  * max_out threshold.
1161  *
1162  * @total_out is an in/out parameter, must be set to the input length and will
1163  * be also used to return the total number of compressed bytes
1164  *
1165  * @max_out tells us the max number of bytes that we're allowed to
1166  * stuff into pages
1167  */
1168 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1169 			 u64 start, struct page **pages,
1170 			 unsigned long *out_pages,
1171 			 unsigned long *total_in,
1172 			 unsigned long *total_out)
1173 {
1174 	int type = btrfs_compress_type(type_level);
1175 	int level = btrfs_compress_level(type_level);
1176 	struct list_head *workspace;
1177 	int ret;
1178 
1179 	level = btrfs_compress_set_level(type, level);
1180 	workspace = get_workspace(type, level);
1181 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1182 					 out_pages, total_in, total_out);
1183 	put_workspace(type, workspace);
1184 	return ret;
1185 }
1186 
1187 /*
1188  * pages_in is an array of pages with compressed data.
1189  *
1190  * disk_start is the starting logical offset of this array in the file
1191  *
1192  * orig_bio contains the pages from the file that we want to decompress into
1193  *
1194  * srclen is the number of bytes in pages_in
1195  *
1196  * The basic idea is that we have a bio that was created by readpages.
1197  * The pages in the bio are for the uncompressed data, and they may not
1198  * be contiguous.  They all correspond to the range of bytes covered by
1199  * the compressed extent.
1200  */
1201 static int btrfs_decompress_bio(struct compressed_bio *cb)
1202 {
1203 	struct list_head *workspace;
1204 	int ret;
1205 	int type = cb->compress_type;
1206 
1207 	workspace = get_workspace(type, 0);
1208 	ret = compression_decompress_bio(type, workspace, cb);
1209 	put_workspace(type, workspace);
1210 
1211 	return ret;
1212 }
1213 
1214 /*
1215  * a less complex decompression routine.  Our compressed data fits in a
1216  * single page, and we want to read a single page out of it.
1217  * start_byte tells us the offset into the compressed data we're interested in
1218  */
1219 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1220 		     unsigned long start_byte, size_t srclen, size_t destlen)
1221 {
1222 	struct list_head *workspace;
1223 	int ret;
1224 
1225 	workspace = get_workspace(type, 0);
1226 	ret = compression_decompress(type, workspace, data_in, dest_page,
1227 				     start_byte, srclen, destlen);
1228 	put_workspace(type, workspace);
1229 
1230 	return ret;
1231 }
1232 
1233 void __init btrfs_init_compress(void)
1234 {
1235 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1236 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1237 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1238 	zstd_init_workspace_manager();
1239 }
1240 
1241 void __cold btrfs_exit_compress(void)
1242 {
1243 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1244 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1245 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1246 	zstd_cleanup_workspace_manager();
1247 }
1248 
1249 /*
1250  * Copy uncompressed data from working buffer to pages.
1251  *
1252  * buf_start is the byte offset we're of the start of our workspace buffer.
1253  *
1254  * total_out is the last byte of the buffer
1255  */
1256 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1257 			      unsigned long total_out, u64 disk_start,
1258 			      struct bio *bio)
1259 {
1260 	unsigned long buf_offset;
1261 	unsigned long current_buf_start;
1262 	unsigned long start_byte;
1263 	unsigned long prev_start_byte;
1264 	unsigned long working_bytes = total_out - buf_start;
1265 	unsigned long bytes;
1266 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1267 
1268 	/*
1269 	 * start byte is the first byte of the page we're currently
1270 	 * copying into relative to the start of the compressed data.
1271 	 */
1272 	start_byte = page_offset(bvec.bv_page) - disk_start;
1273 
1274 	/* we haven't yet hit data corresponding to this page */
1275 	if (total_out <= start_byte)
1276 		return 1;
1277 
1278 	/*
1279 	 * the start of the data we care about is offset into
1280 	 * the middle of our working buffer
1281 	 */
1282 	if (total_out > start_byte && buf_start < start_byte) {
1283 		buf_offset = start_byte - buf_start;
1284 		working_bytes -= buf_offset;
1285 	} else {
1286 		buf_offset = 0;
1287 	}
1288 	current_buf_start = buf_start;
1289 
1290 	/* copy bytes from the working buffer into the pages */
1291 	while (working_bytes > 0) {
1292 		bytes = min_t(unsigned long, bvec.bv_len,
1293 				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1294 		bytes = min(bytes, working_bytes);
1295 
1296 		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
1297 			       bytes);
1298 		flush_dcache_page(bvec.bv_page);
1299 
1300 		buf_offset += bytes;
1301 		working_bytes -= bytes;
1302 		current_buf_start += bytes;
1303 
1304 		/* check if we need to pick another page */
1305 		bio_advance(bio, bytes);
1306 		if (!bio->bi_iter.bi_size)
1307 			return 0;
1308 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1309 		prev_start_byte = start_byte;
1310 		start_byte = page_offset(bvec.bv_page) - disk_start;
1311 
1312 		/*
1313 		 * We need to make sure we're only adjusting
1314 		 * our offset into compression working buffer when
1315 		 * we're switching pages.  Otherwise we can incorrectly
1316 		 * keep copying when we were actually done.
1317 		 */
1318 		if (start_byte != prev_start_byte) {
1319 			/*
1320 			 * make sure our new page is covered by this
1321 			 * working buffer
1322 			 */
1323 			if (total_out <= start_byte)
1324 				return 1;
1325 
1326 			/*
1327 			 * the next page in the biovec might not be adjacent
1328 			 * to the last page, but it might still be found
1329 			 * inside this working buffer. bump our offset pointer
1330 			 */
1331 			if (total_out > start_byte &&
1332 			    current_buf_start < start_byte) {
1333 				buf_offset = start_byte - buf_start;
1334 				working_bytes = total_out - start_byte;
1335 				current_buf_start = buf_start + buf_offset;
1336 			}
1337 		}
1338 	}
1339 
1340 	return 1;
1341 }
1342 
1343 /*
1344  * Shannon Entropy calculation
1345  *
1346  * Pure byte distribution analysis fails to determine compressibility of data.
1347  * Try calculating entropy to estimate the average minimum number of bits
1348  * needed to encode the sampled data.
1349  *
1350  * For convenience, return the percentage of needed bits, instead of amount of
1351  * bits directly.
1352  *
1353  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1354  *			    and can be compressible with high probability
1355  *
1356  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1357  *
1358  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1359  */
1360 #define ENTROPY_LVL_ACEPTABLE		(65)
1361 #define ENTROPY_LVL_HIGH		(80)
1362 
1363 /*
1364  * For increasead precision in shannon_entropy calculation,
1365  * let's do pow(n, M) to save more digits after comma:
1366  *
1367  * - maximum int bit length is 64
1368  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1369  * - 13 * 4 = 52 < 64		-> M = 4
1370  *
1371  * So use pow(n, 4).
1372  */
1373 static inline u32 ilog2_w(u64 n)
1374 {
1375 	return ilog2(n * n * n * n);
1376 }
1377 
1378 static u32 shannon_entropy(struct heuristic_ws *ws)
1379 {
1380 	const u32 entropy_max = 8 * ilog2_w(2);
1381 	u32 entropy_sum = 0;
1382 	u32 p, p_base, sz_base;
1383 	u32 i;
1384 
1385 	sz_base = ilog2_w(ws->sample_size);
1386 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1387 		p = ws->bucket[i].count;
1388 		p_base = ilog2_w(p);
1389 		entropy_sum += p * (sz_base - p_base);
1390 	}
1391 
1392 	entropy_sum /= ws->sample_size;
1393 	return entropy_sum * 100 / entropy_max;
1394 }
1395 
1396 #define RADIX_BASE		4U
1397 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1398 
1399 static u8 get4bits(u64 num, int shift) {
1400 	u8 low4bits;
1401 
1402 	num >>= shift;
1403 	/* Reverse order */
1404 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1405 	return low4bits;
1406 }
1407 
1408 /*
1409  * Use 4 bits as radix base
1410  * Use 16 u32 counters for calculating new position in buf array
1411  *
1412  * @array     - array that will be sorted
1413  * @array_buf - buffer array to store sorting results
1414  *              must be equal in size to @array
1415  * @num       - array size
1416  */
1417 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1418 		       int num)
1419 {
1420 	u64 max_num;
1421 	u64 buf_num;
1422 	u32 counters[COUNTERS_SIZE];
1423 	u32 new_addr;
1424 	u32 addr;
1425 	int bitlen;
1426 	int shift;
1427 	int i;
1428 
1429 	/*
1430 	 * Try avoid useless loop iterations for small numbers stored in big
1431 	 * counters.  Example: 48 33 4 ... in 64bit array
1432 	 */
1433 	max_num = array[0].count;
1434 	for (i = 1; i < num; i++) {
1435 		buf_num = array[i].count;
1436 		if (buf_num > max_num)
1437 			max_num = buf_num;
1438 	}
1439 
1440 	buf_num = ilog2(max_num);
1441 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1442 
1443 	shift = 0;
1444 	while (shift < bitlen) {
1445 		memset(counters, 0, sizeof(counters));
1446 
1447 		for (i = 0; i < num; i++) {
1448 			buf_num = array[i].count;
1449 			addr = get4bits(buf_num, shift);
1450 			counters[addr]++;
1451 		}
1452 
1453 		for (i = 1; i < COUNTERS_SIZE; i++)
1454 			counters[i] += counters[i - 1];
1455 
1456 		for (i = num - 1; i >= 0; i--) {
1457 			buf_num = array[i].count;
1458 			addr = get4bits(buf_num, shift);
1459 			counters[addr]--;
1460 			new_addr = counters[addr];
1461 			array_buf[new_addr] = array[i];
1462 		}
1463 
1464 		shift += RADIX_BASE;
1465 
1466 		/*
1467 		 * Normal radix expects to move data from a temporary array, to
1468 		 * the main one.  But that requires some CPU time. Avoid that
1469 		 * by doing another sort iteration to original array instead of
1470 		 * memcpy()
1471 		 */
1472 		memset(counters, 0, sizeof(counters));
1473 
1474 		for (i = 0; i < num; i ++) {
1475 			buf_num = array_buf[i].count;
1476 			addr = get4bits(buf_num, shift);
1477 			counters[addr]++;
1478 		}
1479 
1480 		for (i = 1; i < COUNTERS_SIZE; i++)
1481 			counters[i] += counters[i - 1];
1482 
1483 		for (i = num - 1; i >= 0; i--) {
1484 			buf_num = array_buf[i].count;
1485 			addr = get4bits(buf_num, shift);
1486 			counters[addr]--;
1487 			new_addr = counters[addr];
1488 			array[new_addr] = array_buf[i];
1489 		}
1490 
1491 		shift += RADIX_BASE;
1492 	}
1493 }
1494 
1495 /*
1496  * Size of the core byte set - how many bytes cover 90% of the sample
1497  *
1498  * There are several types of structured binary data that use nearly all byte
1499  * values. The distribution can be uniform and counts in all buckets will be
1500  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1501  *
1502  * Other possibility is normal (Gaussian) distribution, where the data could
1503  * be potentially compressible, but we have to take a few more steps to decide
1504  * how much.
1505  *
1506  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1507  *                       compression algo can easy fix that
1508  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1509  *                       probability is not compressible
1510  */
1511 #define BYTE_CORE_SET_LOW		(64)
1512 #define BYTE_CORE_SET_HIGH		(200)
1513 
1514 static int byte_core_set_size(struct heuristic_ws *ws)
1515 {
1516 	u32 i;
1517 	u32 coreset_sum = 0;
1518 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1519 	struct bucket_item *bucket = ws->bucket;
1520 
1521 	/* Sort in reverse order */
1522 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1523 
1524 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1525 		coreset_sum += bucket[i].count;
1526 
1527 	if (coreset_sum > core_set_threshold)
1528 		return i;
1529 
1530 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1531 		coreset_sum += bucket[i].count;
1532 		if (coreset_sum > core_set_threshold)
1533 			break;
1534 	}
1535 
1536 	return i;
1537 }
1538 
1539 /*
1540  * Count byte values in buckets.
1541  * This heuristic can detect textual data (configs, xml, json, html, etc).
1542  * Because in most text-like data byte set is restricted to limited number of
1543  * possible characters, and that restriction in most cases makes data easy to
1544  * compress.
1545  *
1546  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1547  *	less - compressible
1548  *	more - need additional analysis
1549  */
1550 #define BYTE_SET_THRESHOLD		(64)
1551 
1552 static u32 byte_set_size(const struct heuristic_ws *ws)
1553 {
1554 	u32 i;
1555 	u32 byte_set_size = 0;
1556 
1557 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1558 		if (ws->bucket[i].count > 0)
1559 			byte_set_size++;
1560 	}
1561 
1562 	/*
1563 	 * Continue collecting count of byte values in buckets.  If the byte
1564 	 * set size is bigger then the threshold, it's pointless to continue,
1565 	 * the detection technique would fail for this type of data.
1566 	 */
1567 	for (; i < BUCKET_SIZE; i++) {
1568 		if (ws->bucket[i].count > 0) {
1569 			byte_set_size++;
1570 			if (byte_set_size > BYTE_SET_THRESHOLD)
1571 				return byte_set_size;
1572 		}
1573 	}
1574 
1575 	return byte_set_size;
1576 }
1577 
1578 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1579 {
1580 	const u32 half_of_sample = ws->sample_size / 2;
1581 	const u8 *data = ws->sample;
1582 
1583 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1584 }
1585 
1586 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1587 				     struct heuristic_ws *ws)
1588 {
1589 	struct page *page;
1590 	u64 index, index_end;
1591 	u32 i, curr_sample_pos;
1592 	u8 *in_data;
1593 
1594 	/*
1595 	 * Compression handles the input data by chunks of 128KiB
1596 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1597 	 *
1598 	 * We do the same for the heuristic and loop over the whole range.
1599 	 *
1600 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1601 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1602 	 */
1603 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1604 		end = start + BTRFS_MAX_UNCOMPRESSED;
1605 
1606 	index = start >> PAGE_SHIFT;
1607 	index_end = end >> PAGE_SHIFT;
1608 
1609 	/* Don't miss unaligned end */
1610 	if (!IS_ALIGNED(end, PAGE_SIZE))
1611 		index_end++;
1612 
1613 	curr_sample_pos = 0;
1614 	while (index < index_end) {
1615 		page = find_get_page(inode->i_mapping, index);
1616 		in_data = kmap_local_page(page);
1617 		/* Handle case where the start is not aligned to PAGE_SIZE */
1618 		i = start % PAGE_SIZE;
1619 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1620 			/* Don't sample any garbage from the last page */
1621 			if (start > end - SAMPLING_READ_SIZE)
1622 				break;
1623 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1624 					SAMPLING_READ_SIZE);
1625 			i += SAMPLING_INTERVAL;
1626 			start += SAMPLING_INTERVAL;
1627 			curr_sample_pos += SAMPLING_READ_SIZE;
1628 		}
1629 		kunmap_local(in_data);
1630 		put_page(page);
1631 
1632 		index++;
1633 	}
1634 
1635 	ws->sample_size = curr_sample_pos;
1636 }
1637 
1638 /*
1639  * Compression heuristic.
1640  *
1641  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1642  * quickly (compared to direct compression) detect data characteristics
1643  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1644  * data.
1645  *
1646  * The following types of analysis can be performed:
1647  * - detect mostly zero data
1648  * - detect data with low "byte set" size (text, etc)
1649  * - detect data with low/high "core byte" set
1650  *
1651  * Return non-zero if the compression should be done, 0 otherwise.
1652  */
1653 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1654 {
1655 	struct list_head *ws_list = get_workspace(0, 0);
1656 	struct heuristic_ws *ws;
1657 	u32 i;
1658 	u8 byte;
1659 	int ret = 0;
1660 
1661 	ws = list_entry(ws_list, struct heuristic_ws, list);
1662 
1663 	heuristic_collect_sample(inode, start, end, ws);
1664 
1665 	if (sample_repeated_patterns(ws)) {
1666 		ret = 1;
1667 		goto out;
1668 	}
1669 
1670 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1671 
1672 	for (i = 0; i < ws->sample_size; i++) {
1673 		byte = ws->sample[i];
1674 		ws->bucket[byte].count++;
1675 	}
1676 
1677 	i = byte_set_size(ws);
1678 	if (i < BYTE_SET_THRESHOLD) {
1679 		ret = 2;
1680 		goto out;
1681 	}
1682 
1683 	i = byte_core_set_size(ws);
1684 	if (i <= BYTE_CORE_SET_LOW) {
1685 		ret = 3;
1686 		goto out;
1687 	}
1688 
1689 	if (i >= BYTE_CORE_SET_HIGH) {
1690 		ret = 0;
1691 		goto out;
1692 	}
1693 
1694 	i = shannon_entropy(ws);
1695 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1696 		ret = 4;
1697 		goto out;
1698 	}
1699 
1700 	/*
1701 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1702 	 * needed to give green light to compression.
1703 	 *
1704 	 * For now just assume that compression at that level is not worth the
1705 	 * resources because:
1706 	 *
1707 	 * 1. it is possible to defrag the data later
1708 	 *
1709 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1710 	 * values, every bucket has counter at level ~54. The heuristic would
1711 	 * be confused. This can happen when data have some internal repeated
1712 	 * patterns like "abbacbbc...". This can be detected by analyzing
1713 	 * pairs of bytes, which is too costly.
1714 	 */
1715 	if (i < ENTROPY_LVL_HIGH) {
1716 		ret = 5;
1717 		goto out;
1718 	} else {
1719 		ret = 0;
1720 		goto out;
1721 	}
1722 
1723 out:
1724 	put_workspace(0, ws_list);
1725 	return ret;
1726 }
1727 
1728 /*
1729  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1730  * level, unrecognized string will set the default level
1731  */
1732 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1733 {
1734 	unsigned int level = 0;
1735 	int ret;
1736 
1737 	if (!type)
1738 		return 0;
1739 
1740 	if (str[0] == ':') {
1741 		ret = kstrtouint(str + 1, 10, &level);
1742 		if (ret)
1743 			level = 0;
1744 	}
1745 
1746 	level = btrfs_compress_set_level(type, level);
1747 
1748 	return level;
1749 }
1750