xref: /openbmc/linux/fs/btrfs/compression.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
33 
34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
35 {
36 	switch (type) {
37 	case BTRFS_COMPRESS_ZLIB:
38 	case BTRFS_COMPRESS_LZO:
39 	case BTRFS_COMPRESS_ZSTD:
40 	case BTRFS_COMPRESS_NONE:
41 		return btrfs_compress_types[type];
42 	default:
43 		break;
44 	}
45 
46 	return NULL;
47 }
48 
49 bool btrfs_compress_is_valid_type(const char *str, size_t len)
50 {
51 	int i;
52 
53 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54 		size_t comp_len = strlen(btrfs_compress_types[i]);
55 
56 		if (len < comp_len)
57 			continue;
58 
59 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
60 			return true;
61 	}
62 	return false;
63 }
64 
65 static int compression_compress_pages(int type, struct list_head *ws,
66                struct address_space *mapping, u64 start, struct page **pages,
67                unsigned long *out_pages, unsigned long *total_in,
68                unsigned long *total_out)
69 {
70 	switch (type) {
71 	case BTRFS_COMPRESS_ZLIB:
72 		return zlib_compress_pages(ws, mapping, start, pages,
73 				out_pages, total_in, total_out);
74 	case BTRFS_COMPRESS_LZO:
75 		return lzo_compress_pages(ws, mapping, start, pages,
76 				out_pages, total_in, total_out);
77 	case BTRFS_COMPRESS_ZSTD:
78 		return zstd_compress_pages(ws, mapping, start, pages,
79 				out_pages, total_in, total_out);
80 	case BTRFS_COMPRESS_NONE:
81 	default:
82 		/*
83 		 * This can't happen, the type is validated several times
84 		 * before we get here. As a sane fallback, return what the
85 		 * callers will understand as 'no compression happened'.
86 		 */
87 		return -E2BIG;
88 	}
89 }
90 
91 static int compression_decompress_bio(int type, struct list_head *ws,
92 		struct compressed_bio *cb)
93 {
94 	switch (type) {
95 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
96 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
97 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
98 	case BTRFS_COMPRESS_NONE:
99 	default:
100 		/*
101 		 * This can't happen, the type is validated several times
102 		 * before we get here.
103 		 */
104 		BUG();
105 	}
106 }
107 
108 static int compression_decompress(int type, struct list_head *ws,
109                unsigned char *data_in, struct page *dest_page,
110                unsigned long start_byte, size_t srclen, size_t destlen)
111 {
112 	switch (type) {
113 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
114 						start_byte, srclen, destlen);
115 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
116 						start_byte, srclen, destlen);
117 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
118 						start_byte, srclen, destlen);
119 	case BTRFS_COMPRESS_NONE:
120 	default:
121 		/*
122 		 * This can't happen, the type is validated several times
123 		 * before we get here.
124 		 */
125 		BUG();
126 	}
127 }
128 
129 static int btrfs_decompress_bio(struct compressed_bio *cb);
130 
131 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
132 				      unsigned long disk_size)
133 {
134 	return sizeof(struct compressed_bio) +
135 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
136 }
137 
138 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
139 				 u64 disk_start)
140 {
141 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
142 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
143 	const u32 csum_size = fs_info->csum_size;
144 	const u32 sectorsize = fs_info->sectorsize;
145 	struct page *page;
146 	unsigned long i;
147 	char *kaddr;
148 	u8 csum[BTRFS_CSUM_SIZE];
149 	struct compressed_bio *cb = bio->bi_private;
150 	u8 *cb_sum = cb->sums;
151 
152 	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
153 		return 0;
154 
155 	shash->tfm = fs_info->csum_shash;
156 
157 	for (i = 0; i < cb->nr_pages; i++) {
158 		u32 pg_offset;
159 		u32 bytes_left = PAGE_SIZE;
160 		page = cb->compressed_pages[i];
161 
162 		/* Determine the remaining bytes inside the page first */
163 		if (i == cb->nr_pages - 1)
164 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
165 
166 		/* Hash through the page sector by sector */
167 		for (pg_offset = 0; pg_offset < bytes_left;
168 		     pg_offset += sectorsize) {
169 			kaddr = kmap_atomic(page);
170 			crypto_shash_digest(shash, kaddr + pg_offset,
171 					    sectorsize, csum);
172 			kunmap_atomic(kaddr);
173 
174 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
175 				btrfs_print_data_csum_error(inode, disk_start,
176 						csum, cb_sum, cb->mirror_num);
177 				if (btrfs_io_bio(bio)->device)
178 					btrfs_dev_stat_inc_and_print(
179 						btrfs_io_bio(bio)->device,
180 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
181 				return -EIO;
182 			}
183 			cb_sum += csum_size;
184 			disk_start += sectorsize;
185 		}
186 	}
187 	return 0;
188 }
189 
190 /* when we finish reading compressed pages from the disk, we
191  * decompress them and then run the bio end_io routines on the
192  * decompressed pages (in the inode address space).
193  *
194  * This allows the checksumming and other IO error handling routines
195  * to work normally
196  *
197  * The compressed pages are freed here, and it must be run
198  * in process context
199  */
200 static void end_compressed_bio_read(struct bio *bio)
201 {
202 	struct compressed_bio *cb = bio->bi_private;
203 	struct inode *inode;
204 	struct page *page;
205 	unsigned long index;
206 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
207 	int ret = 0;
208 
209 	if (bio->bi_status)
210 		cb->errors = 1;
211 
212 	/* if there are more bios still pending for this compressed
213 	 * extent, just exit
214 	 */
215 	if (!refcount_dec_and_test(&cb->pending_bios))
216 		goto out;
217 
218 	/*
219 	 * Record the correct mirror_num in cb->orig_bio so that
220 	 * read-repair can work properly.
221 	 */
222 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
223 	cb->mirror_num = mirror;
224 
225 	/*
226 	 * Some IO in this cb have failed, just skip checksum as there
227 	 * is no way it could be correct.
228 	 */
229 	if (cb->errors == 1)
230 		goto csum_failed;
231 
232 	inode = cb->inode;
233 	ret = check_compressed_csum(BTRFS_I(inode), bio,
234 				    bio->bi_iter.bi_sector << 9);
235 	if (ret)
236 		goto csum_failed;
237 
238 	/* ok, we're the last bio for this extent, lets start
239 	 * the decompression.
240 	 */
241 	ret = btrfs_decompress_bio(cb);
242 
243 csum_failed:
244 	if (ret)
245 		cb->errors = 1;
246 
247 	/* release the compressed pages */
248 	index = 0;
249 	for (index = 0; index < cb->nr_pages; index++) {
250 		page = cb->compressed_pages[index];
251 		page->mapping = NULL;
252 		put_page(page);
253 	}
254 
255 	/* do io completion on the original bio */
256 	if (cb->errors) {
257 		bio_io_error(cb->orig_bio);
258 	} else {
259 		struct bio_vec *bvec;
260 		struct bvec_iter_all iter_all;
261 
262 		/*
263 		 * we have verified the checksum already, set page
264 		 * checked so the end_io handlers know about it
265 		 */
266 		ASSERT(!bio_flagged(bio, BIO_CLONED));
267 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
268 			SetPageChecked(bvec->bv_page);
269 
270 		bio_endio(cb->orig_bio);
271 	}
272 
273 	/* finally free the cb struct */
274 	kfree(cb->compressed_pages);
275 	kfree(cb);
276 out:
277 	bio_put(bio);
278 }
279 
280 /*
281  * Clear the writeback bits on all of the file
282  * pages for a compressed write
283  */
284 static noinline void end_compressed_writeback(struct inode *inode,
285 					      const struct compressed_bio *cb)
286 {
287 	unsigned long index = cb->start >> PAGE_SHIFT;
288 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
289 	struct page *pages[16];
290 	unsigned long nr_pages = end_index - index + 1;
291 	int i;
292 	int ret;
293 
294 	if (cb->errors)
295 		mapping_set_error(inode->i_mapping, -EIO);
296 
297 	while (nr_pages > 0) {
298 		ret = find_get_pages_contig(inode->i_mapping, index,
299 				     min_t(unsigned long,
300 				     nr_pages, ARRAY_SIZE(pages)), pages);
301 		if (ret == 0) {
302 			nr_pages -= 1;
303 			index += 1;
304 			continue;
305 		}
306 		for (i = 0; i < ret; i++) {
307 			if (cb->errors)
308 				SetPageError(pages[i]);
309 			end_page_writeback(pages[i]);
310 			put_page(pages[i]);
311 		}
312 		nr_pages -= ret;
313 		index += ret;
314 	}
315 	/* the inode may be gone now */
316 }
317 
318 /*
319  * do the cleanup once all the compressed pages hit the disk.
320  * This will clear writeback on the file pages and free the compressed
321  * pages.
322  *
323  * This also calls the writeback end hooks for the file pages so that
324  * metadata and checksums can be updated in the file.
325  */
326 static void end_compressed_bio_write(struct bio *bio)
327 {
328 	struct compressed_bio *cb = bio->bi_private;
329 	struct inode *inode;
330 	struct page *page;
331 	unsigned long index;
332 
333 	if (bio->bi_status)
334 		cb->errors = 1;
335 
336 	/* if there are more bios still pending for this compressed
337 	 * extent, just exit
338 	 */
339 	if (!refcount_dec_and_test(&cb->pending_bios))
340 		goto out;
341 
342 	/* ok, we're the last bio for this extent, step one is to
343 	 * call back into the FS and do all the end_io operations
344 	 */
345 	inode = cb->inode;
346 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
347 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
348 			cb->start, cb->start + cb->len - 1,
349 			bio->bi_status == BLK_STS_OK);
350 	cb->compressed_pages[0]->mapping = NULL;
351 
352 	end_compressed_writeback(inode, cb);
353 	/* note, our inode could be gone now */
354 
355 	/*
356 	 * release the compressed pages, these came from alloc_page and
357 	 * are not attached to the inode at all
358 	 */
359 	index = 0;
360 	for (index = 0; index < cb->nr_pages; index++) {
361 		page = cb->compressed_pages[index];
362 		page->mapping = NULL;
363 		put_page(page);
364 	}
365 
366 	/* finally free the cb struct */
367 	kfree(cb->compressed_pages);
368 	kfree(cb);
369 out:
370 	bio_put(bio);
371 }
372 
373 /*
374  * worker function to build and submit bios for previously compressed pages.
375  * The corresponding pages in the inode should be marked for writeback
376  * and the compressed pages should have a reference on them for dropping
377  * when the IO is complete.
378  *
379  * This also checksums the file bytes and gets things ready for
380  * the end io hooks.
381  */
382 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
383 				 unsigned long len, u64 disk_start,
384 				 unsigned long compressed_len,
385 				 struct page **compressed_pages,
386 				 unsigned long nr_pages,
387 				 unsigned int write_flags,
388 				 struct cgroup_subsys_state *blkcg_css)
389 {
390 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
391 	struct bio *bio = NULL;
392 	struct compressed_bio *cb;
393 	unsigned long bytes_left;
394 	int pg_index = 0;
395 	struct page *page;
396 	u64 first_byte = disk_start;
397 	blk_status_t ret;
398 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
399 
400 	WARN_ON(!PAGE_ALIGNED(start));
401 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
402 	if (!cb)
403 		return BLK_STS_RESOURCE;
404 	refcount_set(&cb->pending_bios, 0);
405 	cb->errors = 0;
406 	cb->inode = &inode->vfs_inode;
407 	cb->start = start;
408 	cb->len = len;
409 	cb->mirror_num = 0;
410 	cb->compressed_pages = compressed_pages;
411 	cb->compressed_len = compressed_len;
412 	cb->orig_bio = NULL;
413 	cb->nr_pages = nr_pages;
414 
415 	bio = btrfs_bio_alloc(first_byte);
416 	bio->bi_opf = REQ_OP_WRITE | write_flags;
417 	bio->bi_private = cb;
418 	bio->bi_end_io = end_compressed_bio_write;
419 
420 	if (blkcg_css) {
421 		bio->bi_opf |= REQ_CGROUP_PUNT;
422 		kthread_associate_blkcg(blkcg_css);
423 	}
424 	refcount_set(&cb->pending_bios, 1);
425 
426 	/* create and submit bios for the compressed pages */
427 	bytes_left = compressed_len;
428 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
429 		int submit = 0;
430 
431 		page = compressed_pages[pg_index];
432 		page->mapping = inode->vfs_inode.i_mapping;
433 		if (bio->bi_iter.bi_size)
434 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
435 							  0);
436 
437 		page->mapping = NULL;
438 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
439 		    PAGE_SIZE) {
440 			/*
441 			 * inc the count before we submit the bio so
442 			 * we know the end IO handler won't happen before
443 			 * we inc the count.  Otherwise, the cb might get
444 			 * freed before we're done setting it up
445 			 */
446 			refcount_inc(&cb->pending_bios);
447 			ret = btrfs_bio_wq_end_io(fs_info, bio,
448 						  BTRFS_WQ_ENDIO_DATA);
449 			BUG_ON(ret); /* -ENOMEM */
450 
451 			if (!skip_sum) {
452 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
453 				BUG_ON(ret); /* -ENOMEM */
454 			}
455 
456 			ret = btrfs_map_bio(fs_info, bio, 0);
457 			if (ret) {
458 				bio->bi_status = ret;
459 				bio_endio(bio);
460 			}
461 
462 			bio = btrfs_bio_alloc(first_byte);
463 			bio->bi_opf = REQ_OP_WRITE | write_flags;
464 			bio->bi_private = cb;
465 			bio->bi_end_io = end_compressed_bio_write;
466 			if (blkcg_css)
467 				bio->bi_opf |= REQ_CGROUP_PUNT;
468 			bio_add_page(bio, page, PAGE_SIZE, 0);
469 		}
470 		if (bytes_left < PAGE_SIZE) {
471 			btrfs_info(fs_info,
472 					"bytes left %lu compress len %lu nr %lu",
473 			       bytes_left, cb->compressed_len, cb->nr_pages);
474 		}
475 		bytes_left -= PAGE_SIZE;
476 		first_byte += PAGE_SIZE;
477 		cond_resched();
478 	}
479 
480 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
481 	BUG_ON(ret); /* -ENOMEM */
482 
483 	if (!skip_sum) {
484 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
485 		BUG_ON(ret); /* -ENOMEM */
486 	}
487 
488 	ret = btrfs_map_bio(fs_info, bio, 0);
489 	if (ret) {
490 		bio->bi_status = ret;
491 		bio_endio(bio);
492 	}
493 
494 	if (blkcg_css)
495 		kthread_associate_blkcg(NULL);
496 
497 	return 0;
498 }
499 
500 static u64 bio_end_offset(struct bio *bio)
501 {
502 	struct bio_vec *last = bio_last_bvec_all(bio);
503 
504 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
505 }
506 
507 static noinline int add_ra_bio_pages(struct inode *inode,
508 				     u64 compressed_end,
509 				     struct compressed_bio *cb)
510 {
511 	unsigned long end_index;
512 	unsigned long pg_index;
513 	u64 last_offset;
514 	u64 isize = i_size_read(inode);
515 	int ret;
516 	struct page *page;
517 	unsigned long nr_pages = 0;
518 	struct extent_map *em;
519 	struct address_space *mapping = inode->i_mapping;
520 	struct extent_map_tree *em_tree;
521 	struct extent_io_tree *tree;
522 	u64 end;
523 	int misses = 0;
524 
525 	last_offset = bio_end_offset(cb->orig_bio);
526 	em_tree = &BTRFS_I(inode)->extent_tree;
527 	tree = &BTRFS_I(inode)->io_tree;
528 
529 	if (isize == 0)
530 		return 0;
531 
532 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
533 
534 	while (last_offset < compressed_end) {
535 		pg_index = last_offset >> PAGE_SHIFT;
536 
537 		if (pg_index > end_index)
538 			break;
539 
540 		page = xa_load(&mapping->i_pages, pg_index);
541 		if (page && !xa_is_value(page)) {
542 			misses++;
543 			if (misses > 4)
544 				break;
545 			goto next;
546 		}
547 
548 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
549 								 ~__GFP_FS));
550 		if (!page)
551 			break;
552 
553 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
554 			put_page(page);
555 			goto next;
556 		}
557 
558 		/*
559 		 * at this point, we have a locked page in the page cache
560 		 * for these bytes in the file.  But, we have to make
561 		 * sure they map to this compressed extent on disk.
562 		 */
563 		ret = set_page_extent_mapped(page);
564 		if (ret < 0) {
565 			unlock_page(page);
566 			put_page(page);
567 			break;
568 		}
569 
570 		end = last_offset + PAGE_SIZE - 1;
571 		lock_extent(tree, last_offset, end);
572 		read_lock(&em_tree->lock);
573 		em = lookup_extent_mapping(em_tree, last_offset,
574 					   PAGE_SIZE);
575 		read_unlock(&em_tree->lock);
576 
577 		if (!em || last_offset < em->start ||
578 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
579 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
580 			free_extent_map(em);
581 			unlock_extent(tree, last_offset, end);
582 			unlock_page(page);
583 			put_page(page);
584 			break;
585 		}
586 		free_extent_map(em);
587 
588 		if (page->index == end_index) {
589 			char *userpage;
590 			size_t zero_offset = offset_in_page(isize);
591 
592 			if (zero_offset) {
593 				int zeros;
594 				zeros = PAGE_SIZE - zero_offset;
595 				userpage = kmap_atomic(page);
596 				memset(userpage + zero_offset, 0, zeros);
597 				flush_dcache_page(page);
598 				kunmap_atomic(userpage);
599 			}
600 		}
601 
602 		ret = bio_add_page(cb->orig_bio, page,
603 				   PAGE_SIZE, 0);
604 
605 		if (ret == PAGE_SIZE) {
606 			nr_pages++;
607 			put_page(page);
608 		} else {
609 			unlock_extent(tree, last_offset, end);
610 			unlock_page(page);
611 			put_page(page);
612 			break;
613 		}
614 next:
615 		last_offset += PAGE_SIZE;
616 	}
617 	return 0;
618 }
619 
620 /*
621  * for a compressed read, the bio we get passed has all the inode pages
622  * in it.  We don't actually do IO on those pages but allocate new ones
623  * to hold the compressed pages on disk.
624  *
625  * bio->bi_iter.bi_sector points to the compressed extent on disk
626  * bio->bi_io_vec points to all of the inode pages
627  *
628  * After the compressed pages are read, we copy the bytes into the
629  * bio we were passed and then call the bio end_io calls
630  */
631 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
632 				 int mirror_num, unsigned long bio_flags)
633 {
634 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
635 	struct extent_map_tree *em_tree;
636 	struct compressed_bio *cb;
637 	unsigned long compressed_len;
638 	unsigned long nr_pages;
639 	unsigned long pg_index;
640 	struct page *page;
641 	struct bio *comp_bio;
642 	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
643 	u64 em_len;
644 	u64 em_start;
645 	struct extent_map *em;
646 	blk_status_t ret = BLK_STS_RESOURCE;
647 	int faili = 0;
648 	u8 *sums;
649 
650 	em_tree = &BTRFS_I(inode)->extent_tree;
651 
652 	/* we need the actual starting offset of this extent in the file */
653 	read_lock(&em_tree->lock);
654 	em = lookup_extent_mapping(em_tree,
655 				   page_offset(bio_first_page_all(bio)),
656 				   fs_info->sectorsize);
657 	read_unlock(&em_tree->lock);
658 	if (!em)
659 		return BLK_STS_IOERR;
660 
661 	compressed_len = em->block_len;
662 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
663 	if (!cb)
664 		goto out;
665 
666 	refcount_set(&cb->pending_bios, 0);
667 	cb->errors = 0;
668 	cb->inode = inode;
669 	cb->mirror_num = mirror_num;
670 	sums = cb->sums;
671 
672 	cb->start = em->orig_start;
673 	em_len = em->len;
674 	em_start = em->start;
675 
676 	free_extent_map(em);
677 	em = NULL;
678 
679 	cb->len = bio->bi_iter.bi_size;
680 	cb->compressed_len = compressed_len;
681 	cb->compress_type = extent_compress_type(bio_flags);
682 	cb->orig_bio = bio;
683 
684 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
685 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
686 				       GFP_NOFS);
687 	if (!cb->compressed_pages)
688 		goto fail1;
689 
690 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
691 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
692 							      __GFP_HIGHMEM);
693 		if (!cb->compressed_pages[pg_index]) {
694 			faili = pg_index - 1;
695 			ret = BLK_STS_RESOURCE;
696 			goto fail2;
697 		}
698 	}
699 	faili = nr_pages - 1;
700 	cb->nr_pages = nr_pages;
701 
702 	add_ra_bio_pages(inode, em_start + em_len, cb);
703 
704 	/* include any pages we added in add_ra-bio_pages */
705 	cb->len = bio->bi_iter.bi_size;
706 
707 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
708 	comp_bio->bi_opf = REQ_OP_READ;
709 	comp_bio->bi_private = cb;
710 	comp_bio->bi_end_io = end_compressed_bio_read;
711 	refcount_set(&cb->pending_bios, 1);
712 
713 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
714 		u32 pg_len = PAGE_SIZE;
715 		int submit = 0;
716 
717 		/*
718 		 * To handle subpage case, we need to make sure the bio only
719 		 * covers the range we need.
720 		 *
721 		 * If we're at the last page, truncate the length to only cover
722 		 * the remaining part.
723 		 */
724 		if (pg_index == nr_pages - 1)
725 			pg_len = min_t(u32, PAGE_SIZE,
726 					compressed_len - pg_index * PAGE_SIZE);
727 
728 		page = cb->compressed_pages[pg_index];
729 		page->mapping = inode->i_mapping;
730 		page->index = em_start >> PAGE_SHIFT;
731 
732 		if (comp_bio->bi_iter.bi_size)
733 			submit = btrfs_bio_fits_in_stripe(page, pg_len,
734 							  comp_bio, 0);
735 
736 		page->mapping = NULL;
737 		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
738 			unsigned int nr_sectors;
739 
740 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
741 						  BTRFS_WQ_ENDIO_DATA);
742 			BUG_ON(ret); /* -ENOMEM */
743 
744 			/*
745 			 * inc the count before we submit the bio so
746 			 * we know the end IO handler won't happen before
747 			 * we inc the count.  Otherwise, the cb might get
748 			 * freed before we're done setting it up
749 			 */
750 			refcount_inc(&cb->pending_bios);
751 
752 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
753 			BUG_ON(ret); /* -ENOMEM */
754 
755 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
756 						  fs_info->sectorsize);
757 			sums += fs_info->csum_size * nr_sectors;
758 
759 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
760 			if (ret) {
761 				comp_bio->bi_status = ret;
762 				bio_endio(comp_bio);
763 			}
764 
765 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
766 			comp_bio->bi_opf = REQ_OP_READ;
767 			comp_bio->bi_private = cb;
768 			comp_bio->bi_end_io = end_compressed_bio_read;
769 
770 			bio_add_page(comp_bio, page, pg_len, 0);
771 		}
772 		cur_disk_byte += pg_len;
773 	}
774 
775 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
776 	BUG_ON(ret); /* -ENOMEM */
777 
778 	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
779 	BUG_ON(ret); /* -ENOMEM */
780 
781 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
782 	if (ret) {
783 		comp_bio->bi_status = ret;
784 		bio_endio(comp_bio);
785 	}
786 
787 	return 0;
788 
789 fail2:
790 	while (faili >= 0) {
791 		__free_page(cb->compressed_pages[faili]);
792 		faili--;
793 	}
794 
795 	kfree(cb->compressed_pages);
796 fail1:
797 	kfree(cb);
798 out:
799 	free_extent_map(em);
800 	return ret;
801 }
802 
803 /*
804  * Heuristic uses systematic sampling to collect data from the input data
805  * range, the logic can be tuned by the following constants:
806  *
807  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
808  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
809  */
810 #define SAMPLING_READ_SIZE	(16)
811 #define SAMPLING_INTERVAL	(256)
812 
813 /*
814  * For statistical analysis of the input data we consider bytes that form a
815  * Galois Field of 256 objects. Each object has an attribute count, ie. how
816  * many times the object appeared in the sample.
817  */
818 #define BUCKET_SIZE		(256)
819 
820 /*
821  * The size of the sample is based on a statistical sampling rule of thumb.
822  * The common way is to perform sampling tests as long as the number of
823  * elements in each cell is at least 5.
824  *
825  * Instead of 5, we choose 32 to obtain more accurate results.
826  * If the data contain the maximum number of symbols, which is 256, we obtain a
827  * sample size bound by 8192.
828  *
829  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
830  * from up to 512 locations.
831  */
832 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
833 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
834 
835 struct bucket_item {
836 	u32 count;
837 };
838 
839 struct heuristic_ws {
840 	/* Partial copy of input data */
841 	u8 *sample;
842 	u32 sample_size;
843 	/* Buckets store counters for each byte value */
844 	struct bucket_item *bucket;
845 	/* Sorting buffer */
846 	struct bucket_item *bucket_b;
847 	struct list_head list;
848 };
849 
850 static struct workspace_manager heuristic_wsm;
851 
852 static void free_heuristic_ws(struct list_head *ws)
853 {
854 	struct heuristic_ws *workspace;
855 
856 	workspace = list_entry(ws, struct heuristic_ws, list);
857 
858 	kvfree(workspace->sample);
859 	kfree(workspace->bucket);
860 	kfree(workspace->bucket_b);
861 	kfree(workspace);
862 }
863 
864 static struct list_head *alloc_heuristic_ws(unsigned int level)
865 {
866 	struct heuristic_ws *ws;
867 
868 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
869 	if (!ws)
870 		return ERR_PTR(-ENOMEM);
871 
872 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
873 	if (!ws->sample)
874 		goto fail;
875 
876 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
877 	if (!ws->bucket)
878 		goto fail;
879 
880 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
881 	if (!ws->bucket_b)
882 		goto fail;
883 
884 	INIT_LIST_HEAD(&ws->list);
885 	return &ws->list;
886 fail:
887 	free_heuristic_ws(&ws->list);
888 	return ERR_PTR(-ENOMEM);
889 }
890 
891 const struct btrfs_compress_op btrfs_heuristic_compress = {
892 	.workspace_manager = &heuristic_wsm,
893 };
894 
895 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
896 	/* The heuristic is represented as compression type 0 */
897 	&btrfs_heuristic_compress,
898 	&btrfs_zlib_compress,
899 	&btrfs_lzo_compress,
900 	&btrfs_zstd_compress,
901 };
902 
903 static struct list_head *alloc_workspace(int type, unsigned int level)
904 {
905 	switch (type) {
906 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
907 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
908 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
909 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
910 	default:
911 		/*
912 		 * This can't happen, the type is validated several times
913 		 * before we get here.
914 		 */
915 		BUG();
916 	}
917 }
918 
919 static void free_workspace(int type, struct list_head *ws)
920 {
921 	switch (type) {
922 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
923 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
924 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
925 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
926 	default:
927 		/*
928 		 * This can't happen, the type is validated several times
929 		 * before we get here.
930 		 */
931 		BUG();
932 	}
933 }
934 
935 static void btrfs_init_workspace_manager(int type)
936 {
937 	struct workspace_manager *wsm;
938 	struct list_head *workspace;
939 
940 	wsm = btrfs_compress_op[type]->workspace_manager;
941 	INIT_LIST_HEAD(&wsm->idle_ws);
942 	spin_lock_init(&wsm->ws_lock);
943 	atomic_set(&wsm->total_ws, 0);
944 	init_waitqueue_head(&wsm->ws_wait);
945 
946 	/*
947 	 * Preallocate one workspace for each compression type so we can
948 	 * guarantee forward progress in the worst case
949 	 */
950 	workspace = alloc_workspace(type, 0);
951 	if (IS_ERR(workspace)) {
952 		pr_warn(
953 	"BTRFS: cannot preallocate compression workspace, will try later\n");
954 	} else {
955 		atomic_set(&wsm->total_ws, 1);
956 		wsm->free_ws = 1;
957 		list_add(workspace, &wsm->idle_ws);
958 	}
959 }
960 
961 static void btrfs_cleanup_workspace_manager(int type)
962 {
963 	struct workspace_manager *wsman;
964 	struct list_head *ws;
965 
966 	wsman = btrfs_compress_op[type]->workspace_manager;
967 	while (!list_empty(&wsman->idle_ws)) {
968 		ws = wsman->idle_ws.next;
969 		list_del(ws);
970 		free_workspace(type, ws);
971 		atomic_dec(&wsman->total_ws);
972 	}
973 }
974 
975 /*
976  * This finds an available workspace or allocates a new one.
977  * If it's not possible to allocate a new one, waits until there's one.
978  * Preallocation makes a forward progress guarantees and we do not return
979  * errors.
980  */
981 struct list_head *btrfs_get_workspace(int type, unsigned int level)
982 {
983 	struct workspace_manager *wsm;
984 	struct list_head *workspace;
985 	int cpus = num_online_cpus();
986 	unsigned nofs_flag;
987 	struct list_head *idle_ws;
988 	spinlock_t *ws_lock;
989 	atomic_t *total_ws;
990 	wait_queue_head_t *ws_wait;
991 	int *free_ws;
992 
993 	wsm = btrfs_compress_op[type]->workspace_manager;
994 	idle_ws	 = &wsm->idle_ws;
995 	ws_lock	 = &wsm->ws_lock;
996 	total_ws = &wsm->total_ws;
997 	ws_wait	 = &wsm->ws_wait;
998 	free_ws	 = &wsm->free_ws;
999 
1000 again:
1001 	spin_lock(ws_lock);
1002 	if (!list_empty(idle_ws)) {
1003 		workspace = idle_ws->next;
1004 		list_del(workspace);
1005 		(*free_ws)--;
1006 		spin_unlock(ws_lock);
1007 		return workspace;
1008 
1009 	}
1010 	if (atomic_read(total_ws) > cpus) {
1011 		DEFINE_WAIT(wait);
1012 
1013 		spin_unlock(ws_lock);
1014 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1015 		if (atomic_read(total_ws) > cpus && !*free_ws)
1016 			schedule();
1017 		finish_wait(ws_wait, &wait);
1018 		goto again;
1019 	}
1020 	atomic_inc(total_ws);
1021 	spin_unlock(ws_lock);
1022 
1023 	/*
1024 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1025 	 * to turn it off here because we might get called from the restricted
1026 	 * context of btrfs_compress_bio/btrfs_compress_pages
1027 	 */
1028 	nofs_flag = memalloc_nofs_save();
1029 	workspace = alloc_workspace(type, level);
1030 	memalloc_nofs_restore(nofs_flag);
1031 
1032 	if (IS_ERR(workspace)) {
1033 		atomic_dec(total_ws);
1034 		wake_up(ws_wait);
1035 
1036 		/*
1037 		 * Do not return the error but go back to waiting. There's a
1038 		 * workspace preallocated for each type and the compression
1039 		 * time is bounded so we get to a workspace eventually. This
1040 		 * makes our caller's life easier.
1041 		 *
1042 		 * To prevent silent and low-probability deadlocks (when the
1043 		 * initial preallocation fails), check if there are any
1044 		 * workspaces at all.
1045 		 */
1046 		if (atomic_read(total_ws) == 0) {
1047 			static DEFINE_RATELIMIT_STATE(_rs,
1048 					/* once per minute */ 60 * HZ,
1049 					/* no burst */ 1);
1050 
1051 			if (__ratelimit(&_rs)) {
1052 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1053 			}
1054 		}
1055 		goto again;
1056 	}
1057 	return workspace;
1058 }
1059 
1060 static struct list_head *get_workspace(int type, int level)
1061 {
1062 	switch (type) {
1063 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1064 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1065 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1066 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1067 	default:
1068 		/*
1069 		 * This can't happen, the type is validated several times
1070 		 * before we get here.
1071 		 */
1072 		BUG();
1073 	}
1074 }
1075 
1076 /*
1077  * put a workspace struct back on the list or free it if we have enough
1078  * idle ones sitting around
1079  */
1080 void btrfs_put_workspace(int type, struct list_head *ws)
1081 {
1082 	struct workspace_manager *wsm;
1083 	struct list_head *idle_ws;
1084 	spinlock_t *ws_lock;
1085 	atomic_t *total_ws;
1086 	wait_queue_head_t *ws_wait;
1087 	int *free_ws;
1088 
1089 	wsm = btrfs_compress_op[type]->workspace_manager;
1090 	idle_ws	 = &wsm->idle_ws;
1091 	ws_lock	 = &wsm->ws_lock;
1092 	total_ws = &wsm->total_ws;
1093 	ws_wait	 = &wsm->ws_wait;
1094 	free_ws	 = &wsm->free_ws;
1095 
1096 	spin_lock(ws_lock);
1097 	if (*free_ws <= num_online_cpus()) {
1098 		list_add(ws, idle_ws);
1099 		(*free_ws)++;
1100 		spin_unlock(ws_lock);
1101 		goto wake;
1102 	}
1103 	spin_unlock(ws_lock);
1104 
1105 	free_workspace(type, ws);
1106 	atomic_dec(total_ws);
1107 wake:
1108 	cond_wake_up(ws_wait);
1109 }
1110 
1111 static void put_workspace(int type, struct list_head *ws)
1112 {
1113 	switch (type) {
1114 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1115 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1116 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1117 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1118 	default:
1119 		/*
1120 		 * This can't happen, the type is validated several times
1121 		 * before we get here.
1122 		 */
1123 		BUG();
1124 	}
1125 }
1126 
1127 /*
1128  * Adjust @level according to the limits of the compression algorithm or
1129  * fallback to default
1130  */
1131 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1132 {
1133 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1134 
1135 	if (level == 0)
1136 		level = ops->default_level;
1137 	else
1138 		level = min(level, ops->max_level);
1139 
1140 	return level;
1141 }
1142 
1143 /*
1144  * Given an address space and start and length, compress the bytes into @pages
1145  * that are allocated on demand.
1146  *
1147  * @type_level is encoded algorithm and level, where level 0 means whatever
1148  * default the algorithm chooses and is opaque here;
1149  * - compression algo are 0-3
1150  * - the level are bits 4-7
1151  *
1152  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1153  * and returns number of actually allocated pages
1154  *
1155  * @total_in is used to return the number of bytes actually read.  It
1156  * may be smaller than the input length if we had to exit early because we
1157  * ran out of room in the pages array or because we cross the
1158  * max_out threshold.
1159  *
1160  * @total_out is an in/out parameter, must be set to the input length and will
1161  * be also used to return the total number of compressed bytes
1162  *
1163  * @max_out tells us the max number of bytes that we're allowed to
1164  * stuff into pages
1165  */
1166 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1167 			 u64 start, struct page **pages,
1168 			 unsigned long *out_pages,
1169 			 unsigned long *total_in,
1170 			 unsigned long *total_out)
1171 {
1172 	int type = btrfs_compress_type(type_level);
1173 	int level = btrfs_compress_level(type_level);
1174 	struct list_head *workspace;
1175 	int ret;
1176 
1177 	level = btrfs_compress_set_level(type, level);
1178 	workspace = get_workspace(type, level);
1179 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1180 					 out_pages, total_in, total_out);
1181 	put_workspace(type, workspace);
1182 	return ret;
1183 }
1184 
1185 /*
1186  * pages_in is an array of pages with compressed data.
1187  *
1188  * disk_start is the starting logical offset of this array in the file
1189  *
1190  * orig_bio contains the pages from the file that we want to decompress into
1191  *
1192  * srclen is the number of bytes in pages_in
1193  *
1194  * The basic idea is that we have a bio that was created by readpages.
1195  * The pages in the bio are for the uncompressed data, and they may not
1196  * be contiguous.  They all correspond to the range of bytes covered by
1197  * the compressed extent.
1198  */
1199 static int btrfs_decompress_bio(struct compressed_bio *cb)
1200 {
1201 	struct list_head *workspace;
1202 	int ret;
1203 	int type = cb->compress_type;
1204 
1205 	workspace = get_workspace(type, 0);
1206 	ret = compression_decompress_bio(type, workspace, cb);
1207 	put_workspace(type, workspace);
1208 
1209 	return ret;
1210 }
1211 
1212 /*
1213  * a less complex decompression routine.  Our compressed data fits in a
1214  * single page, and we want to read a single page out of it.
1215  * start_byte tells us the offset into the compressed data we're interested in
1216  */
1217 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1218 		     unsigned long start_byte, size_t srclen, size_t destlen)
1219 {
1220 	struct list_head *workspace;
1221 	int ret;
1222 
1223 	workspace = get_workspace(type, 0);
1224 	ret = compression_decompress(type, workspace, data_in, dest_page,
1225 				     start_byte, srclen, destlen);
1226 	put_workspace(type, workspace);
1227 
1228 	return ret;
1229 }
1230 
1231 void __init btrfs_init_compress(void)
1232 {
1233 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1234 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1235 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1236 	zstd_init_workspace_manager();
1237 }
1238 
1239 void __cold btrfs_exit_compress(void)
1240 {
1241 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1242 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1243 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1244 	zstd_cleanup_workspace_manager();
1245 }
1246 
1247 /*
1248  * Copy uncompressed data from working buffer to pages.
1249  *
1250  * buf_start is the byte offset we're of the start of our workspace buffer.
1251  *
1252  * total_out is the last byte of the buffer
1253  */
1254 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1255 			      unsigned long total_out, u64 disk_start,
1256 			      struct bio *bio)
1257 {
1258 	unsigned long buf_offset;
1259 	unsigned long current_buf_start;
1260 	unsigned long start_byte;
1261 	unsigned long prev_start_byte;
1262 	unsigned long working_bytes = total_out - buf_start;
1263 	unsigned long bytes;
1264 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1265 
1266 	/*
1267 	 * start byte is the first byte of the page we're currently
1268 	 * copying into relative to the start of the compressed data.
1269 	 */
1270 	start_byte = page_offset(bvec.bv_page) - disk_start;
1271 
1272 	/* we haven't yet hit data corresponding to this page */
1273 	if (total_out <= start_byte)
1274 		return 1;
1275 
1276 	/*
1277 	 * the start of the data we care about is offset into
1278 	 * the middle of our working buffer
1279 	 */
1280 	if (total_out > start_byte && buf_start < start_byte) {
1281 		buf_offset = start_byte - buf_start;
1282 		working_bytes -= buf_offset;
1283 	} else {
1284 		buf_offset = 0;
1285 	}
1286 	current_buf_start = buf_start;
1287 
1288 	/* copy bytes from the working buffer into the pages */
1289 	while (working_bytes > 0) {
1290 		bytes = min_t(unsigned long, bvec.bv_len,
1291 				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1292 		bytes = min(bytes, working_bytes);
1293 
1294 		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
1295 			       bytes);
1296 		flush_dcache_page(bvec.bv_page);
1297 
1298 		buf_offset += bytes;
1299 		working_bytes -= bytes;
1300 		current_buf_start += bytes;
1301 
1302 		/* check if we need to pick another page */
1303 		bio_advance(bio, bytes);
1304 		if (!bio->bi_iter.bi_size)
1305 			return 0;
1306 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1307 		prev_start_byte = start_byte;
1308 		start_byte = page_offset(bvec.bv_page) - disk_start;
1309 
1310 		/*
1311 		 * We need to make sure we're only adjusting
1312 		 * our offset into compression working buffer when
1313 		 * we're switching pages.  Otherwise we can incorrectly
1314 		 * keep copying when we were actually done.
1315 		 */
1316 		if (start_byte != prev_start_byte) {
1317 			/*
1318 			 * make sure our new page is covered by this
1319 			 * working buffer
1320 			 */
1321 			if (total_out <= start_byte)
1322 				return 1;
1323 
1324 			/*
1325 			 * the next page in the biovec might not be adjacent
1326 			 * to the last page, but it might still be found
1327 			 * inside this working buffer. bump our offset pointer
1328 			 */
1329 			if (total_out > start_byte &&
1330 			    current_buf_start < start_byte) {
1331 				buf_offset = start_byte - buf_start;
1332 				working_bytes = total_out - start_byte;
1333 				current_buf_start = buf_start + buf_offset;
1334 			}
1335 		}
1336 	}
1337 
1338 	return 1;
1339 }
1340 
1341 /*
1342  * Shannon Entropy calculation
1343  *
1344  * Pure byte distribution analysis fails to determine compressibility of data.
1345  * Try calculating entropy to estimate the average minimum number of bits
1346  * needed to encode the sampled data.
1347  *
1348  * For convenience, return the percentage of needed bits, instead of amount of
1349  * bits directly.
1350  *
1351  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1352  *			    and can be compressible with high probability
1353  *
1354  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1355  *
1356  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1357  */
1358 #define ENTROPY_LVL_ACEPTABLE		(65)
1359 #define ENTROPY_LVL_HIGH		(80)
1360 
1361 /*
1362  * For increasead precision in shannon_entropy calculation,
1363  * let's do pow(n, M) to save more digits after comma:
1364  *
1365  * - maximum int bit length is 64
1366  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1367  * - 13 * 4 = 52 < 64		-> M = 4
1368  *
1369  * So use pow(n, 4).
1370  */
1371 static inline u32 ilog2_w(u64 n)
1372 {
1373 	return ilog2(n * n * n * n);
1374 }
1375 
1376 static u32 shannon_entropy(struct heuristic_ws *ws)
1377 {
1378 	const u32 entropy_max = 8 * ilog2_w(2);
1379 	u32 entropy_sum = 0;
1380 	u32 p, p_base, sz_base;
1381 	u32 i;
1382 
1383 	sz_base = ilog2_w(ws->sample_size);
1384 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1385 		p = ws->bucket[i].count;
1386 		p_base = ilog2_w(p);
1387 		entropy_sum += p * (sz_base - p_base);
1388 	}
1389 
1390 	entropy_sum /= ws->sample_size;
1391 	return entropy_sum * 100 / entropy_max;
1392 }
1393 
1394 #define RADIX_BASE		4U
1395 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1396 
1397 static u8 get4bits(u64 num, int shift) {
1398 	u8 low4bits;
1399 
1400 	num >>= shift;
1401 	/* Reverse order */
1402 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1403 	return low4bits;
1404 }
1405 
1406 /*
1407  * Use 4 bits as radix base
1408  * Use 16 u32 counters for calculating new position in buf array
1409  *
1410  * @array     - array that will be sorted
1411  * @array_buf - buffer array to store sorting results
1412  *              must be equal in size to @array
1413  * @num       - array size
1414  */
1415 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1416 		       int num)
1417 {
1418 	u64 max_num;
1419 	u64 buf_num;
1420 	u32 counters[COUNTERS_SIZE];
1421 	u32 new_addr;
1422 	u32 addr;
1423 	int bitlen;
1424 	int shift;
1425 	int i;
1426 
1427 	/*
1428 	 * Try avoid useless loop iterations for small numbers stored in big
1429 	 * counters.  Example: 48 33 4 ... in 64bit array
1430 	 */
1431 	max_num = array[0].count;
1432 	for (i = 1; i < num; i++) {
1433 		buf_num = array[i].count;
1434 		if (buf_num > max_num)
1435 			max_num = buf_num;
1436 	}
1437 
1438 	buf_num = ilog2(max_num);
1439 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1440 
1441 	shift = 0;
1442 	while (shift < bitlen) {
1443 		memset(counters, 0, sizeof(counters));
1444 
1445 		for (i = 0; i < num; i++) {
1446 			buf_num = array[i].count;
1447 			addr = get4bits(buf_num, shift);
1448 			counters[addr]++;
1449 		}
1450 
1451 		for (i = 1; i < COUNTERS_SIZE; i++)
1452 			counters[i] += counters[i - 1];
1453 
1454 		for (i = num - 1; i >= 0; i--) {
1455 			buf_num = array[i].count;
1456 			addr = get4bits(buf_num, shift);
1457 			counters[addr]--;
1458 			new_addr = counters[addr];
1459 			array_buf[new_addr] = array[i];
1460 		}
1461 
1462 		shift += RADIX_BASE;
1463 
1464 		/*
1465 		 * Normal radix expects to move data from a temporary array, to
1466 		 * the main one.  But that requires some CPU time. Avoid that
1467 		 * by doing another sort iteration to original array instead of
1468 		 * memcpy()
1469 		 */
1470 		memset(counters, 0, sizeof(counters));
1471 
1472 		for (i = 0; i < num; i ++) {
1473 			buf_num = array_buf[i].count;
1474 			addr = get4bits(buf_num, shift);
1475 			counters[addr]++;
1476 		}
1477 
1478 		for (i = 1; i < COUNTERS_SIZE; i++)
1479 			counters[i] += counters[i - 1];
1480 
1481 		for (i = num - 1; i >= 0; i--) {
1482 			buf_num = array_buf[i].count;
1483 			addr = get4bits(buf_num, shift);
1484 			counters[addr]--;
1485 			new_addr = counters[addr];
1486 			array[new_addr] = array_buf[i];
1487 		}
1488 
1489 		shift += RADIX_BASE;
1490 	}
1491 }
1492 
1493 /*
1494  * Size of the core byte set - how many bytes cover 90% of the sample
1495  *
1496  * There are several types of structured binary data that use nearly all byte
1497  * values. The distribution can be uniform and counts in all buckets will be
1498  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1499  *
1500  * Other possibility is normal (Gaussian) distribution, where the data could
1501  * be potentially compressible, but we have to take a few more steps to decide
1502  * how much.
1503  *
1504  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1505  *                       compression algo can easy fix that
1506  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1507  *                       probability is not compressible
1508  */
1509 #define BYTE_CORE_SET_LOW		(64)
1510 #define BYTE_CORE_SET_HIGH		(200)
1511 
1512 static int byte_core_set_size(struct heuristic_ws *ws)
1513 {
1514 	u32 i;
1515 	u32 coreset_sum = 0;
1516 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1517 	struct bucket_item *bucket = ws->bucket;
1518 
1519 	/* Sort in reverse order */
1520 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1521 
1522 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1523 		coreset_sum += bucket[i].count;
1524 
1525 	if (coreset_sum > core_set_threshold)
1526 		return i;
1527 
1528 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1529 		coreset_sum += bucket[i].count;
1530 		if (coreset_sum > core_set_threshold)
1531 			break;
1532 	}
1533 
1534 	return i;
1535 }
1536 
1537 /*
1538  * Count byte values in buckets.
1539  * This heuristic can detect textual data (configs, xml, json, html, etc).
1540  * Because in most text-like data byte set is restricted to limited number of
1541  * possible characters, and that restriction in most cases makes data easy to
1542  * compress.
1543  *
1544  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1545  *	less - compressible
1546  *	more - need additional analysis
1547  */
1548 #define BYTE_SET_THRESHOLD		(64)
1549 
1550 static u32 byte_set_size(const struct heuristic_ws *ws)
1551 {
1552 	u32 i;
1553 	u32 byte_set_size = 0;
1554 
1555 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1556 		if (ws->bucket[i].count > 0)
1557 			byte_set_size++;
1558 	}
1559 
1560 	/*
1561 	 * Continue collecting count of byte values in buckets.  If the byte
1562 	 * set size is bigger then the threshold, it's pointless to continue,
1563 	 * the detection technique would fail for this type of data.
1564 	 */
1565 	for (; i < BUCKET_SIZE; i++) {
1566 		if (ws->bucket[i].count > 0) {
1567 			byte_set_size++;
1568 			if (byte_set_size > BYTE_SET_THRESHOLD)
1569 				return byte_set_size;
1570 		}
1571 	}
1572 
1573 	return byte_set_size;
1574 }
1575 
1576 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1577 {
1578 	const u32 half_of_sample = ws->sample_size / 2;
1579 	const u8 *data = ws->sample;
1580 
1581 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1582 }
1583 
1584 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1585 				     struct heuristic_ws *ws)
1586 {
1587 	struct page *page;
1588 	u64 index, index_end;
1589 	u32 i, curr_sample_pos;
1590 	u8 *in_data;
1591 
1592 	/*
1593 	 * Compression handles the input data by chunks of 128KiB
1594 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1595 	 *
1596 	 * We do the same for the heuristic and loop over the whole range.
1597 	 *
1598 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1599 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1600 	 */
1601 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1602 		end = start + BTRFS_MAX_UNCOMPRESSED;
1603 
1604 	index = start >> PAGE_SHIFT;
1605 	index_end = end >> PAGE_SHIFT;
1606 
1607 	/* Don't miss unaligned end */
1608 	if (!IS_ALIGNED(end, PAGE_SIZE))
1609 		index_end++;
1610 
1611 	curr_sample_pos = 0;
1612 	while (index < index_end) {
1613 		page = find_get_page(inode->i_mapping, index);
1614 		in_data = kmap(page);
1615 		/* Handle case where the start is not aligned to PAGE_SIZE */
1616 		i = start % PAGE_SIZE;
1617 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1618 			/* Don't sample any garbage from the last page */
1619 			if (start > end - SAMPLING_READ_SIZE)
1620 				break;
1621 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1622 					SAMPLING_READ_SIZE);
1623 			i += SAMPLING_INTERVAL;
1624 			start += SAMPLING_INTERVAL;
1625 			curr_sample_pos += SAMPLING_READ_SIZE;
1626 		}
1627 		kunmap(page);
1628 		put_page(page);
1629 
1630 		index++;
1631 	}
1632 
1633 	ws->sample_size = curr_sample_pos;
1634 }
1635 
1636 /*
1637  * Compression heuristic.
1638  *
1639  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1640  * quickly (compared to direct compression) detect data characteristics
1641  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1642  * data.
1643  *
1644  * The following types of analysis can be performed:
1645  * - detect mostly zero data
1646  * - detect data with low "byte set" size (text, etc)
1647  * - detect data with low/high "core byte" set
1648  *
1649  * Return non-zero if the compression should be done, 0 otherwise.
1650  */
1651 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1652 {
1653 	struct list_head *ws_list = get_workspace(0, 0);
1654 	struct heuristic_ws *ws;
1655 	u32 i;
1656 	u8 byte;
1657 	int ret = 0;
1658 
1659 	ws = list_entry(ws_list, struct heuristic_ws, list);
1660 
1661 	heuristic_collect_sample(inode, start, end, ws);
1662 
1663 	if (sample_repeated_patterns(ws)) {
1664 		ret = 1;
1665 		goto out;
1666 	}
1667 
1668 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1669 
1670 	for (i = 0; i < ws->sample_size; i++) {
1671 		byte = ws->sample[i];
1672 		ws->bucket[byte].count++;
1673 	}
1674 
1675 	i = byte_set_size(ws);
1676 	if (i < BYTE_SET_THRESHOLD) {
1677 		ret = 2;
1678 		goto out;
1679 	}
1680 
1681 	i = byte_core_set_size(ws);
1682 	if (i <= BYTE_CORE_SET_LOW) {
1683 		ret = 3;
1684 		goto out;
1685 	}
1686 
1687 	if (i >= BYTE_CORE_SET_HIGH) {
1688 		ret = 0;
1689 		goto out;
1690 	}
1691 
1692 	i = shannon_entropy(ws);
1693 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1694 		ret = 4;
1695 		goto out;
1696 	}
1697 
1698 	/*
1699 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1700 	 * needed to give green light to compression.
1701 	 *
1702 	 * For now just assume that compression at that level is not worth the
1703 	 * resources because:
1704 	 *
1705 	 * 1. it is possible to defrag the data later
1706 	 *
1707 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1708 	 * values, every bucket has counter at level ~54. The heuristic would
1709 	 * be confused. This can happen when data have some internal repeated
1710 	 * patterns like "abbacbbc...". This can be detected by analyzing
1711 	 * pairs of bytes, which is too costly.
1712 	 */
1713 	if (i < ENTROPY_LVL_HIGH) {
1714 		ret = 5;
1715 		goto out;
1716 	} else {
1717 		ret = 0;
1718 		goto out;
1719 	}
1720 
1721 out:
1722 	put_workspace(0, ws_list);
1723 	return ret;
1724 }
1725 
1726 /*
1727  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1728  * level, unrecognized string will set the default level
1729  */
1730 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1731 {
1732 	unsigned int level = 0;
1733 	int ret;
1734 
1735 	if (!type)
1736 		return 0;
1737 
1738 	if (str[0] == ':') {
1739 		ret = kstrtouint(str + 1, 10, &level);
1740 		if (ret)
1741 			level = 0;
1742 	}
1743 
1744 	level = btrfs_compress_set_level(type, level);
1745 
1746 	return level;
1747 }
1748